JP5333615B2 - Polarizing element and transmissive liquid crystal projector - Google Patents

Polarizing element and transmissive liquid crystal projector Download PDF

Info

Publication number
JP5333615B2
JP5333615B2 JP2012017006A JP2012017006A JP5333615B2 JP 5333615 B2 JP5333615 B2 JP 5333615B2 JP 2012017006 A JP2012017006 A JP 2012017006A JP 2012017006 A JP2012017006 A JP 2012017006A JP 5333615 B2 JP5333615 B2 JP 5333615B2
Authority
JP
Japan
Prior art keywords
inorganic fine
substrate
polarizing element
layer
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012017006A
Other languages
Japanese (ja)
Other versions
JP2012103728A (en
Inventor
昭夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2012017006A priority Critical patent/JP5333615B2/en
Publication of JP2012103728A publication Critical patent/JP2012103728A/en
Application granted granted Critical
Publication of JP5333615B2 publication Critical patent/JP5333615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizing plate which has a desired extinction ratio in a visible light region and has light resistance against strong light, and to provide a liquid crystal projector using the polarizing plate. <P>SOLUTION: The polarizing element 10 comprises: a substrate 11 transparent to visible light; and inorganic fine particle layers 15 made by linearly arranging inorganic fine particles on the substrate 11, the inorganic fine particle layers 15 being disposed on the substrate 11 at predetermined intervals to form a wire grid structure, wherein the inorganic fine particles each have shape anisotropic properties in which a diameter of the inorganic fine particles in the disposed direction is long and a diameter in a direction perpendicular to thereto is short. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、強い光に対する耐久性を有する偏光素子及び該偏光素子を用いた液晶プロジェクターに関するものである。   The present invention relates to a polarizing element having durability against strong light and a liquid crystal projector using the polarizing element.

液晶表示装置はその画像形成原理から液晶パネル表面に偏光板を配置する事が必要不可欠である。偏光板の機能は、直交する偏光成分(いわゆるP偏光波、S偏光波)の片方を吸収し他方を透過させる事である。このような偏光板として従来フィルム内にヨウ素系や染料系の高分子有機物を含有させた二色性の偏光板が多く用いられている。   In the liquid crystal display device, it is indispensable to dispose a polarizing plate on the surface of the liquid crystal panel from the principle of image formation. The function of the polarizing plate is to absorb one of orthogonal polarization components (so-called P-polarized wave and S-polarized wave) and transmit the other. As such a polarizing plate, a dichroic polarizing plate in which an iodine-based or dye-based high molecular organic substance is contained in a conventional film is often used.

二色性の偏光板の一般的な製法として、ポリビニルアルコール系フィルムとヨウ素などの二色性材料で染色を行った後、架橋剤を用いて架橋を行い、一軸延伸する方法が用いられる。このように延伸により作製されるため、一般にこの種の偏光板は収縮し易い。またポリビニルアルコール系フィルムは親水性ポリマーを使用していることから、特に加湿条件下においては非常に変形し易い。また根本的にフィルムを用いるためデバイスとしての機械的強度が弱い。これを避けるため透明保護フィルムを接着する方法が用いられることがある。   As a general method for producing a dichroic polarizing plate, a method of dyeing with a dichroic material such as a polyvinyl alcohol film and iodine, followed by crosslinking using a crosslinking agent and uniaxial stretching is used. Since it is produced by stretching as described above, this type of polarizing plate generally tends to shrink. In addition, since the polyvinyl alcohol film uses a hydrophilic polymer, it is very easily deformed particularly under humidified conditions. Moreover, since the film is fundamentally used, the mechanical strength as a device is weak. In order to avoid this, a method of adhering a transparent protective film may be used.

ところで近年、液晶表示装置はその用途が拡大し高機能化している。それに伴い液晶表示装置を構成する個々のデバイスに対して高い信頼性、耐久性が求められる。例えば透過型液晶プロジェクターのような光量の大きな光源を使用する液晶表示装置の場合には偏光板は強い輻射線を受ける。よって、これらに使用される偏光板には優れた耐熱性が必要となる。しかしながら、上記のようなフィルムベースの偏光板は有機物であることからこれらの特性を上げることにはおのずと限界がある。   Incidentally, in recent years, liquid crystal display devices have become more sophisticated as their applications have expanded. Accordingly, high reliability and durability are required for individual devices constituting the liquid crystal display device. For example, in the case of a liquid crystal display device using a light source with a large amount of light, such as a transmissive liquid crystal projector, the polarizing plate receives strong radiation. Therefore, the heat resistance required for the polarizing plate used for these is required. However, since the film-based polarizing plate as described above is an organic substance, there is a limit in raising these characteristics.

この問題に対して、米国コーニング社よりPolarcorという商品名で耐熱性の高い無機偏光板が販売されている。この偏光板は銀微粒子をガラス内に拡散させた構造をしており、フィルム等の有機物を使用しておらず、その原理は島状微粒子のプラズマ共鳴を利用するものである。すなわち、貴金属や遷移金属の島状粒子に光が入射した時の表面プラズマ共鳴による光吸収を利用するものであり、吸収波長は、粒子形状、周囲の誘電率の影響を受ける。ここで島状微粒子の形状を楕円形にすると長軸方向と短軸方向の共鳴波長が異なり、これにより偏向特性が得られ、具体的には長波長側での長軸に平行な偏光成分を吸収し、短軸と平行な偏光成分を透過させるという偏光特性が得られる。しかしながら、Polarcorの場合、偏光特性が得られる波長域は赤外部に近い領域であり、液晶表示装置で求められるような可視光域をカバーしていない。これは島状微粒子に用いられている銀の物理的性質によるものである。   In response to this problem, Corning Corporation in the United States sells a highly heat-resistant inorganic polarizing plate under the name Polarcor. This polarizing plate has a structure in which silver fine particles are diffused in glass, and does not use an organic substance such as a film, and its principle uses plasma resonance of island-like fine particles. That is, light absorption by surface plasma resonance when light is incident on noble metal or transition metal island-like particles is used, and the absorption wavelength is affected by the particle shape and the surrounding dielectric constant. Here, when the shape of the island-shaped fine particles is elliptical, the resonance wavelengths in the major axis direction and the minor axis direction are different, and thereby deflection characteristics are obtained. Specifically, a polarization component parallel to the major axis on the long wavelength side is obtained. A polarization characteristic of absorbing and transmitting a polarization component parallel to the minor axis is obtained. However, in the case of Polarcor, the wavelength range in which the polarization characteristics can be obtained is a region close to the infrared region, and does not cover the visible light range required for a liquid crystal display device. This is due to the physical properties of silver used in the island-shaped fine particles.

特許文献1には、上記の原理を応用し熱還元によりガラス中に微粒子を析出させることによるUV偏光板が示されており、具体例に金属微粒子として銀を用いることが提示されている。この場合は、先のPolarcorとは逆に短軸方向での吸収を用いるものと考えられる。Figure1に示されているように400nm付近でも偏光板として機能はしているが消光比が小さくかつ吸収できる帯域が非常に狭いので、仮にPolarcorと特許文献1の技術を組み合わせたとしても可視光全域をカバーできる偏光板にはならない。   Patent Document 1 discloses a UV polarizing plate obtained by applying the above principle and depositing fine particles in glass by thermal reduction, and it is proposed to use silver as metal fine particles in a specific example. In this case, it is considered that absorption in the minor axis direction is used contrary to the previous Polarcor. As shown in Figure 1, although it functions as a polarizing plate even at around 400 nm, the extinction ratio is small and the band that can be absorbed is very narrow, so even if Polarcor and the technique of Patent Document 1 are combined, the entire visible light range It will not be a polarizing plate that can cover.

また、非特許文献1には、金属島状微粒子のプラズマ共鳴を使った無機偏光板の理論解析が述べられている。この文献によればアルミニウム微粒子は銀微粒子より共鳴波長が200nm程度短く、このためアルミニウム微粒子を用いることで可視光域をカバーする偏光板を製作できる可能性があることが記述されている。   Non-Patent Document 1 describes a theoretical analysis of an inorganic polarizing plate using plasma resonance of metal island-shaped fine particles. According to this document, it is described that aluminum fine particles have a resonance wavelength shorter than that of silver fine particles by about 200 nm, and therefore it is possible to produce a polarizing plate that covers the visible light region by using aluminum fine particles.

また特許文献2には、アルミニウム微粒子を使った偏光板の幾つかの作成方法が示されている。その中でケイ酸塩をベースとしたガラスではアルミニウムとガラスが反応するので基板としては望ましくなくカルシウム・アルミノ硼酸塩ガラスが適している記述されている(段落0018,0019)。しかし、ケイ酸塩を使用したガラスは光学ガラスとして広く流通しており、信頼性の高い製品を安価に入手でき、これが適さないという事は経済的に好ましくない。またレジストパターンをエッチングすることで島状粒子を形成する方法が述べられている(段落0037,0038)。通常プロジェクターで使用する偏光板は数cm程度の大きさが必要でかつ高い消光比が要求される。従って、可視光用偏光板を目的とした場合、レジストパターンサイズは可視光波長より充分に短い、すなわち数十ナノメートルの大きさが必要であり、またかつ高い消光比を得るためにはパターンを高密度に形成する必要がある。またプロジェクター用として使用する場合には大面積が必要である。しかしながら記述されているようなリソグラフィにより高密度微細パターン形成を応用する方法では、そのようなパターンを得るために電子ビーム描画などを用いる必要がある。電子ビーム描画は個々のパターンを電子ビームより描く方法であり生産性が悪く実用的でない。   Patent Document 2 discloses several methods for producing a polarizing plate using aluminum fine particles. Among them, it is described that glass based on silicate is not desirable as a substrate because aluminum and glass react with each other, and calcium aluminoborate glass is suitable (paragraphs 0018 and 0019). However, glass using silicate is widely distributed as optical glass, and it is economically undesirable that a highly reliable product can be obtained at a low cost and this is not suitable. In addition, a method for forming island-shaped particles by etching a resist pattern is described (paragraphs 0037 and 0038). Usually, a polarizing plate used in a projector needs to have a size of several centimeters and a high extinction ratio. Therefore, for the purpose of a polarizing plate for visible light, the resist pattern size must be sufficiently shorter than the visible light wavelength, that is, several tens of nanometers, and the pattern must be formed in order to obtain a high extinction ratio. It is necessary to form it with high density. Moreover, when using it for projectors, a large area is required. However, in the method of applying high-density fine pattern formation by lithography as described, it is necessary to use electron beam drawing or the like in order to obtain such a pattern. Electron beam drawing is a method of drawing individual patterns from an electron beam, and is not practical because of poor productivity.

また特許文献2には、アルミニウムを塩素プラズマにより除去すると記述されているが、通常そのようにエッチングした場合にはアルミニウムパターンの側壁に塩化物が付着する。市販のウエットエッチング液(例えば東京応化工業のSST−A2)により除去可能であるが、アルミ塩化物に反応するこのような薬液はアルミニウムにもエッチング速度は遅いながらも反応はするので、述べられているような方法で所望のパターン形状を実現する事は難しい。   Further, Patent Document 2 describes that aluminum is removed by chlorine plasma. However, when etching is usually performed, chloride adheres to the side wall of the aluminum pattern. Although it can be removed with a commercially available wet etching solution (for example, SST-A2 from Tokyo Ohka Kogyo Co., Ltd.), such a chemical solution that reacts with aluminum chloride reacts with aluminum even though the etching rate is slow. It is difficult to realize a desired pattern shape by such a method.

さらに特許文献2には、別な方法として、パターン化されたフォトレジスト上に斜め成膜によりアルミニウムを堆積しフォトレジストを除去する方法が記述されている(段落0045,0047)。しかしこのような方法では、基板とアルミニウムの密着性を得るために、ある程度基板面にもアルミニウムを堆積する必要があるものと考えられる。しかしこれは堆積したアルミニウム膜の形状が段落0015に記述されている適当な形状である扁長の楕円体を含む扁長の球体とは異なる事を意味する。また、段落0047には表面に垂直な異方性エッチングにより過沈積分を除去すると記述されている。偏光板として機能させるにはアルミニウムの形状異方性は極めて重要である。従ってレジスト部と基板面に堆積するアルミニウムの量をエッチングにより所望の形状が得られるように調整する必要があると考えられるが、段落0047に記述されているような0.05μmというサブミクロン以下のサイズでこれらを制御する事は非常に困難と考えられ、生産性の高い製作方法として適しているか疑問である。また偏光板の特性として透過軸方向は高い透過率が求められるが、通常基板にガラスを用いる場合ガラス界面から数%の反射は避けられず、これに対する対策がなされておらず高い透過率を得ることが難しい。   Furthermore, Patent Document 2 describes another method of depositing aluminum on a patterned photoresist by oblique film formation and removing the photoresist (paragraphs 0045 and 0047). However, in such a method, in order to obtain adhesion between the substrate and aluminum, it is considered that aluminum needs to be deposited on the substrate surface to some extent. However, this means that the shape of the deposited aluminum film is different from prolate spheres including prolate ellipsoids, which are suitable shapes described in paragraph 0015. In addition, paragraph 0047 describes that the overprecipitation integral is removed by anisotropic etching perpendicular to the surface. In order to function as a polarizing plate, the shape anisotropy of aluminum is extremely important. Therefore, it is considered necessary to adjust the amount of aluminum deposited on the resist portion and the substrate surface so that a desired shape can be obtained by etching. However, as described in paragraph 0047, the submicron is 0.05 μm or less. It is considered very difficult to control these by size, and it is doubtful whether it is suitable as a production method with high productivity. In addition, as a characteristic of the polarizing plate, high transmittance is required in the direction of the transmission axis, but when glass is usually used for the substrate, reflection of several percent from the glass interface is unavoidable, and no countermeasure is taken to obtain high transmittance. It is difficult.

また特許文献3には、斜め蒸着による偏光板について記述されている。この方法は使用帯域の波長に対して透明及び不透明な物質を斜め蒸着により微小柱状構造を製作することで偏光特性を得るものであり、特許文献1と異なり簡便な方法で微細パターンを得られるため生産性の高い方法と考えられるが問題点もある。すなわち、始めに形成される使用帯域に対し不透明な物質の微小柱状構造のアスペクト比、個々の微小柱状構造の間隔、直線性は良好な偏光特性を得るために重要な要素であり特性の再現性の観点からも意図的に制御されるべきものであるが、この方法では蒸着粒子の初期堆積層の影となる部分に次に飛来する蒸着粒子が堆積しないことにより柱状構造が得られるという現象を利用しているため、上記の項目を意図的に制御することが難しかった。これを改善する方法として、蒸着前にラビング処理により基板に研磨痕を設ける方法が記述されているが、一般的には蒸着膜の粒子径は最大でも数十nm程度の大きさであり、このような粒子の異方性を制御するにはサブミクロン以下のピッチを研磨により意図的に製作する必要があった。しかし一般の研磨シート等ではサブミクロン程度が限界でありそのような微細な研磨痕を製作することは容易でない。また前記のようにAl微粒子の共鳴波長は周りの屈折率に大きく依存しこの場合の透明及び不透明な物質の組み合わせが重要であるが、特許文献3には可視光域で良好な偏光特性を得るための組み合わせについて記述がされていない。また特許文献1と同様に通常基板としてガラスを用いる場合、ガラス界面から数%の反射は避けられず、これに対する対策がなされていなかった。   Patent Document 3 describes a polarizing plate by oblique vapor deposition. This method obtains polarization characteristics by fabricating a micro-columnar structure by oblique deposition of a transparent and opaque material with respect to the wavelength of the band used, and unlike Patent Document 1, a fine pattern can be obtained by a simple method. Although it is considered a highly productive method, there are also problems. In other words, the aspect ratio of the micro-columnar structure of the opaque material, the spacing between the individual micro-columnar structures, and the linearity are important factors for obtaining good polarization characteristics, and the reproducibility of the characteristics. From this point of view, this method should be intentionally controlled. However, in this method, the phenomenon that the columnar structure is obtained by the deposition of the next flying vapor particles not depositing in the shadowed part of the initial deposition layer of the vapor deposition particles. Since it is used, it was difficult to control the above items intentionally. As a method for improving this, a method of providing a polishing mark on a substrate by rubbing before vapor deposition is described, but in general, the particle diameter of the vapor deposition film is about several tens of nanometers at maximum. In order to control the anisotropy of such particles, it was necessary to intentionally produce a submicron pitch by polishing. However, a general polishing sheet or the like has a limit of about submicron, and it is not easy to manufacture such fine polishing marks. In addition, as described above, the resonance wavelength of the Al fine particles greatly depends on the surrounding refractive index, and the combination of transparent and opaque materials in this case is important. However, Patent Document 3 obtains good polarization characteristics in the visible light region. There is no description about the combination. Further, as in Patent Document 1, when glass is used as a normal substrate, several percent of reflection from the glass interface is unavoidable, and no countermeasure has been taken.

また非特許文献2には、Lamipolと称する赤外通信用の偏光板についての記述されている。これはAlとSiO2の積層構造をしており、この文献によれば非常に高い消光比を示す。また非特許文献3には、Lamipolの光吸収を担うAlの代わりにGeを使うことで波長1μm以下で高い消光比を実現できることが述べられている。また同資料中のFig3からTe(テルル)も高い消光比が得られることが期待できる。このようにLamipolは高い消光比が得られる吸収型偏光板であるが、吸光物質と透過性物質の積層厚が受光面の大きさとなるために数cm角の大きさが必要なプロジェクター用途の偏光板には向かない。   Non-Patent Document 2 describes a polarizing plate for infrared communication called Lamipol. This has a laminated structure of Al and SiO2, and according to this document, exhibits a very high extinction ratio. Non-Patent Document 3 describes that a high extinction ratio can be realized at a wavelength of 1 μm or less by using Ge instead of Al that is responsible for Lamipol's light absorption. Moreover, it can be expected that FIG. 3 to Te (tellurium) in the same material can also obtain a high extinction ratio. In this way, Lamipol is an absorptive polarizing plate that provides a high extinction ratio, but it is polarized light for projector applications that requires a size of several cm square because the thickness of the light-absorbing and transmissive materials is the size of the light-receiving surface. Not suitable for boards.

特許文献4には、ワイヤグリッド型偏光板が開示されている。これは、基板上に使用帯域の光の波長よりも小さいピッチで金属細線を形成したもので、金属細線と平行とする偏光成分の光を反射し、直交する偏光成分を透過させる事で所定の偏光特性を出現させる。   Patent Document 4 discloses a wire grid type polarizing plate. This is a thin metal wire formed on the substrate at a pitch smaller than the wavelength of the light in the use band, and reflects light of a polarization component parallel to the thin metal wire and transmits a perpendicular polarization component to give a predetermined Appears polarization characteristics.

また特許文献5には、ワイヤグリッド型偏光素子を金属格子上に誘電層/金属層を形成し、計3層とする事で金属格子から反射した光を干渉効果により打ち消す事により、一般には反射型であるワイヤグリッドを吸収型として用いる方法が開示されている。このような多層構造で得られる光学特性を利用し吸収型偏光板として使用する場合には、誘電層上に形成される金属層の膜厚及び光学特性が所望の特性を得るために重要な要素となると考えられるが当該特許ではそれが考慮されていない。すなわち当該特許ではこの点について記述されておらず詳細は不明であるが、記述されているような干渉効果を得るためには上部金属層を光が通過する必要がある。光が通過するという事はその過程で光の一部が上部金属膜で吸収される事を意味する。吸収があると透過軸方向の透過率が下がり、これは偏光透過軸の特性としては望ましくなく、特に可視域で高い透過率が要求される液晶表示装置においては好ましくない。すなわち吸収効果を持つ偏光板は、本質的に吸収層の光学異方性の制御しなければ機能せず、偏光板として応用する事は実用上難しい。   In Patent Document 5, a wire grid type polarizing element is formed by forming a dielectric layer / metal layer on a metal grid, and a total of three layers is used, so that light reflected from the metal grid is canceled out by an interference effect, so that reflection is generally performed. A method of using a wire grid as a mold as an absorption mold is disclosed. When using the optical characteristics obtained with such a multilayer structure as an absorption type polarizing plate, the film thickness and optical characteristics of the metal layer formed on the dielectric layer are important factors for obtaining desired characteristics. This is not considered in the patent. That is, in this patent, this point is not described and details are unknown. However, in order to obtain the interference effect as described, it is necessary for light to pass through the upper metal layer. The passage of light means that part of the light is absorbed by the upper metal film in the process. Absorption reduces the transmittance in the direction of the transmission axis, which is not desirable as a characteristic of the polarization transmission axis, and is not preferable particularly in a liquid crystal display device that requires high transmittance in the visible range. That is, a polarizing plate having an absorption effect essentially does not function unless the optical anisotropy of the absorbing layer is controlled, and is practically difficult to apply as a polarizing plate.

また特許文献6には、半導体ナノロッドをガラス中に分散させた無機偏光板について記載されている。可視光域で良好な偏光特性を得られる事が記載されているが、これは前記コーニング社のPolarcorと同様の手法で製作されるために延伸工程が必要となり大型化が難しい。   Patent Document 6 describes an inorganic polarizing plate in which semiconductor nanorods are dispersed in glass. Although it is described that good polarization characteristics can be obtained in the visible light region, this is manufactured by a method similar to the above-mentioned Corning's Polarcor, so that a stretching process is required and it is difficult to increase the size.

米国特許第6772608号明細書US Pat. No. 6,772,608 特開2000−147253号公報JP 2000-147253 A 特開2002−372620号公報JP 2002-372620 A 米国特許第6122103号明細書US Pat. No. 6,122,103 米国特許第6813077号明細書US Pat. No. 6813077 特開2006−323119号公報JP 2006-323119 A

J.Opt.Soc.Am.A Vol.8,No.4 619−624J. et al. Opt. Soc. Am. A Vol. 8, no. 4 619-624 Applied Optics Vol.25 No.2 1986 311−314Applied Optics Vol. 25 No. 2 1986 311-314 J. Lightwave Tec. Vol.15 No.6 1997 1042−1050J. et al. Lightwave Tec. Vol. 15 No. 6 1997 1042-1050 ナノ粒子オプトサイエンスの展開 応用物理 第73巻 第7号 2004Development of Nanoparticle Optoscience Applied Physics Vol.73 No.7 2004 J. Microelectromechanical Systems Vol.10 No.1 2001 33−40J. Microelectromechanical Systems Vol. 10 No. 1 2001 33-40

本発明は、以上の従来技術における問題に鑑みてなされたものであり、可視光域で所望の消光比をもち、強い光に対する耐光特性のある偏光板及び該偏光板を用いた液晶プロジェクターを提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and provides a polarizing plate having a desired extinction ratio in the visible light region and having light resistance to strong light, and a liquid crystal projector using the polarizing plate. The purpose is to do.

本発明によれば、可視光に対し透明な基板と、金属からなり上記基板上に一方向に延びた帯状薄膜が一定間隔に設けられてなる反射層と、上記反射層上に形成された誘電体層と、無機微粒子が線状に配列されてなる無機微粒子層と、を有し、上記無機微粒子層は、上記帯状薄膜に対応する位置において、上記誘電体上の上記帯状薄膜の頂部の両側面部に形成され、上記無機微粒子が線状に配列された方向と同じ方向を長手方向とするワイヤグリッド構造を有する、偏光素子が提供される。   According to the present invention, a substrate transparent to visible light, a reflective layer made of metal and extending in one direction on the substrate and having a strip-like thin film provided at regular intervals, and a dielectric formed on the reflective layer A body layer and an inorganic fine particle layer in which inorganic fine particles are linearly arranged, and the inorganic fine particle layer is located on both sides of the top of the strip thin film on the dielectric at a position corresponding to the strip thin film. A polarizing element is provided which has a wire grid structure formed on the surface portion and having the same direction as the direction in which the inorganic fine particles are linearly arranged in the longitudinal direction.

また本発明によれば、光源と、液晶パネルと、入射側偏光板と、出射側偏光板とを有し、上記入射側偏光板又は上記出射側偏光板のいずれかは、可視光に対し透明な基板と、金属からなり上記基板上に一方向に延びた帯状薄膜が一定間隔に設けられてなる反射層と、上記反射層上に形成された誘電体層と、無機微粒子が線状に配列されてなる無機微粒子層を有し、上記無機微粒子層は、上記帯状薄膜に対応する位置において、上記誘電体層上の上記帯状薄膜の頂部の両側面部に形成され、上記無機微粒子が線状に配列された方向と同じ方向を長手方向とするワイヤグリッド構造を有する偏光素子である、透過型液晶プロジェクターが提供される。   Moreover, according to this invention, it has a light source, a liquid crystal panel, an incident side polarizing plate, and an output side polarizing plate, and either the said incident side polarizing plate or the said output side polarizing plate is transparent with respect to visible light. A substrate, a reflective layer in which strip-like thin films made of metal and extending in one direction on the substrate are provided at regular intervals, a dielectric layer formed on the reflective layer, and inorganic fine particles arranged linearly The inorganic fine particle layer is formed on both sides of the top of the strip thin film on the dielectric layer at a position corresponding to the strip thin film, and the inorganic fine particles are linearly formed. There is provided a transmissive liquid crystal projector that is a polarizing element having a wire grid structure whose longitudinal direction is the same direction as the arranged direction.

本発明の偏光素子によれば、可視光域で所望の消光比を持ちつつ、従来の偏光素子よりも耐久性の高いものを提供することができる。
また本発明の液晶プロジェクターによれば、強い光に対して優れた耐光特性をもつ偏光素子を備えるので、信頼性の高い液晶プロジェクターを実現することができる。
According to the polarizing element of the present invention, it is possible to provide an element having higher durability than the conventional polarizing element while having a desired extinction ratio in the visible light region.
Moreover, according to the liquid crystal projector of the present invention, since the polarizing element having excellent light resistance against strong light is provided, a highly reliable liquid crystal projector can be realized.

本発明に係る偏光素子の第1の実施の形態における構成を示す概略図である。It is the schematic which shows the structure in 1st Embodiment of the polarizing element which concerns on this invention. 基板の凹凸部の断面図である。It is sectional drawing of the uneven | corrugated | grooved part of a board | substrate. 本発明に係る偏光素子表面の凹凸形状を示す断面図である。It is sectional drawing which shows the uneven | corrugated shape of the polarizing element surface which concerns on this invention. 斜めスパッタ成膜の構成を示す概略図である。It is the schematic which shows the structure of oblique sputtering film-forming. 本発明に係る偏光素子の第2の実施の形態における構成を示す概略図である。It is the schematic which shows the structure in 2nd Embodiment of the polarizing element which concerns on this invention. 図5に示した偏光素子の作用を説明する図である。It is a figure explaining the effect | action of the polarizing element shown in FIG. 図5に示した偏光素子の構成の変形例を示す概略側断面図である。It is a schematic sectional side view which shows the modification of a structure of the polarizing element shown in FIG. 図5に示した偏光素子の出射面迷光対策例(1)を示す図である。It is a figure which shows the output surface stray light countermeasure example (1) of the polarizing element shown in FIG. 図5に示した偏光素子の出射面迷光対策例(2)を示す図である。It is a figure which shows the output surface stray light countermeasure example (2) of the polarizing element shown in FIG. 本発明に係る偏光素子の第2の実施の形態のバリエーションの構成を示す概略図である。It is the schematic which shows the structure of the variation of 2nd Embodiment of the polarizing element which concerns on this invention. 図10に示した構成の偏光素子における出射面迷光対策例(1)を示す図である。It is a figure which shows the output surface stray light countermeasure example (1) in the polarizing element of the structure shown in FIG. 図10に示した構成の偏光素子における出射面迷光対策例(2)を示す図である。It is a figure which shows the output surface stray light countermeasure example (2) in the polarizing element of the structure shown in FIG. 本発明に係る液晶プロジェクターの光学エンジン部分の構成を示す断面図である。It is sectional drawing which shows the structure of the optical engine part of the liquid crystal projector which concerns on this invention. 静止した基板に対するGeの斜めスパッタ成膜を行う方法の説明図と成膜したGe膜の光学定数の測定結果を示す図である。It is explanatory drawing of the method of performing the oblique sputtering film-forming of Ge with respect to a stationary board | substrate, and the figure which shows the measurement result of the optical constant of the formed Ge film. 回転する基板に対するGeのスパッタ成膜(垂直方向からの入射)を行う方法の説明図と成膜したGe膜の光学定数の測定結果を示す図である。It is explanatory drawing of the method of performing the sputter film-forming (injection from the orthogonal | vertical direction) of Ge with respect to the rotating board | substrate, and a figure which shows the measurement result of the optical constant of the formed Ge film. スパッタ成膜したSi膜の光学定数の測定結果を示す図である。It is a figure which shows the measurement result of the optical constant of Si film | membrane formed into a film by sputtering. 光学異方性を有するGe膜の偏光透過特性を示す図である。It is a figure which shows the polarization transmission characteristic of Ge film | membrane which has optical anisotropy. 実施例2のサンプル構成を示す概略図である。6 is a schematic diagram illustrating a sample configuration of Example 2. FIG. 実施例2の光学特性の結果を示す図である。It is a figure which shows the result of the optical characteristic of Example 2. FIG. 実施例3の光学特性の結果を示す図である。It is a figure which shows the result of the optical characteristic of Example 3. Agからなり光学異方性を有する無機微粒子層の光学定数を示す図である。It is a figure which shows the optical constant of the inorganic fine particle layer which consists of Ag and has optical anisotropy. 図21の無機微粒子層を有する偏光素子の偏光透過特性を示す図である。It is a figure which shows the polarization transmission characteristic of the polarizing element which has an inorganic fine particle layer of FIG. 平板上の無機微粒子層の表面組織を示す図である。It is a figure which shows the surface structure of the inorganic fine particle layer on a flat plate. 図3(c)に示す構成の偏光素子サンプルの偏光特性を示す図である。It is a figure which shows the polarization characteristic of the polarizing element sample of the structure shown in FIG.3 (c). 図3(c)に示す構成の偏光素子サンプル断面の元素分布マッピング図である。It is an element distribution mapping figure of the polarizing element sample cross section of the structure shown in FIG.3 (c). 図3(c)に示す構成の偏光素子サンプルにおける無機微粒子層の観察結果のスケッチ図である。It is a sketch figure of the observation result of the inorganic particulate layer in the polarizing element sample of the composition shown in Drawing 3 (c). 図3(c)に示す構成の偏光素子サンプルにおける無機微粒子層の電子線回折像である。It is an electron beam diffraction image of the inorganic fine particle layer in the polarizing element sample of the structure shown in FIG.3 (c). 図5に示す構成の偏光素子サンプルの偏光特性を示す図である。It is a figure which shows the polarization characteristic of the polarizing element sample of the structure shown in FIG. 図5に示す構成の偏光素子サンプルの透過コントラストを示す図である。It is a figure which shows the transmission contrast of the polarizing element sample of the structure shown in FIG. 図5に示す構成の偏光素子サンプルにおける無機微粒子層の観察結果のスケッチ図である。It is a sketch figure of the observation result of the inorganic fine particle layer in the polarizing element sample of composition shown in FIG. 斜めスパッタ成膜における無機微粒子の長径と膜厚との関係を示す図である。It is a figure which shows the relationship between the long diameter of an inorganic fine particle and film thickness in oblique sputtering film-forming. 図5に示す構成の偏光素子サンプルを上から見たSEM像である。It is the SEM image which looked at the polarizing element sample of the structure shown in FIG. 5 from the top. 光学特性シミュレーションにおける偏光素子の前提条件を示す図である。It is a figure which shows the precondition of the polarizing element in an optical characteristic simulation. 無機微粒子層の構成材料がGe微粒子、Ge薄膜である場合の偏光素子の光学特性を示す図である。It is a figure which shows the optical characteristic of a polarizing element in case the constituent material of an inorganic fine particle layer is Ge fine particle and Ge thin film. 平板上に基板傾斜角θを変化させて斜めスパッタ成膜した場合のGe微粒子のアスペクト比分布である。This is an aspect ratio distribution of Ge fine particles when oblique sputtering film formation is performed by changing the substrate inclination angle θ on a flat plate. 基板傾斜角θを変化させて斜めスパッタ成膜した場合の図3(c)に示す構成の偏光素子サンプルの偏光特性を示す図である。It is a figure which shows the polarization characteristic of the polarizing element sample of the structure shown in FIG.3 (c) at the time of changing a board | substrate inclination-angle (theta) and carrying out oblique sputtering film-forming. 実施例7の斜め成膜方法の説明図である。10 is an explanatory diagram of an oblique film formation method of Example 7. FIG. 実施例7のGe微粒子層サンプルの偏光特性を示す図である。It is a figure which shows the polarization characteristic of Ge fine particle layer sample of Example 7. 図5に示す構成の偏光素子における反射層としてのアルミ高さとコントラストとの関係図である。FIG. 6 is a relationship diagram between the height of aluminum as a reflective layer and contrast in the polarizing element having the configuration shown in FIG. 5. 実施例8の偏光素子サンプルの偏光特性を示す図である。It is a figure which shows the polarization characteristic of the polarizing element sample of Example 8. ラビング処理により形成されたテクスチャー構造の凹凸状態を示す図である。It is a figure which shows the uneven | corrugated state of the texture structure formed by the rubbing process. ラビング処理前後の基板の透過率特性を示す図である。It is a figure which shows the transmittance | permeability characteristic of the board | substrate before and behind a rubbing process. ラビング処理された基板上に設けられたGe微粒子膜(反射防止膜)の表面組織を示す図である。It is a figure which shows the surface structure | tissue of Ge fine particle film (antireflection film) provided on the board | substrate by which the rubbing process was carried out. ラビング処理による反射防止膜の偏光特性の改善を示す図である。It is a figure which shows the improvement of the polarization characteristic of the antireflection film by a rubbing process. 実施例10のSiからなる無機微粒子層のサンプルの偏光特性を示す図である。It is a figure which shows the polarization characteristic of the sample of the inorganic fine particle layer which consists of Si of Example 10. FIG. 実施例10のSnからなる無機微粒子層のサンプルの偏光特性を示す図である。It is a figure which shows the polarization characteristic of the sample of the inorganic fine particle layer which consists of Sn of Example 10. FIG.

本発明に係る偏光素子は、可視光に対し透明な基板と、無機微粒子が該基板上で一方向に連なって配列されてなる線状の無機微粒子層とを備え、該無機微粒子層が前記基板上に一定間隔に並べられて一次元格子状のワイヤグリッド構造となる偏光素子であって、前記無機微粒子は、該無機微粒子の配列方向の径が長く、配列方向と直交する方向の径が短い形状異方性を有することを特徴とするものである。また、前記無機微粒子層の光学定数として、前記無機微粒子の配列方向の光学定数が該無機微粒子の配列方向と直交する方向の光学定数よりも大であることを特徴とする。詳しくは、前記無機微粒子の配列方向の屈折率が該無機微粒子の配列方向と直交する方向の屈折率よりも大であり、前記無機微粒子の配列方向の消耗係数が該無機微粒子の配列方向と直交する方向の消耗係数よりも大であることを特徴とするものである。   The polarizing element according to the present invention includes a substrate transparent to visible light, and a linear inorganic fine particle layer in which inorganic fine particles are arranged in one direction on the substrate, and the inorganic fine particle layer is the substrate. A polarizing element having a one-dimensional lattice-like wire grid structure arranged at regular intervals above, wherein the inorganic fine particles have a long diameter in the arrangement direction of the inorganic fine particles and a short diameter in a direction perpendicular to the arrangement direction. It has a shape anisotropy. In addition, as an optical constant of the inorganic fine particle layer, an optical constant in the arrangement direction of the inorganic fine particles is larger than an optical constant in a direction orthogonal to the arrangement direction of the inorganic fine particles. Specifically, the refractive index in the arrangement direction of the inorganic fine particles is larger than the refractive index in the direction orthogonal to the arrangement direction of the inorganic fine particles, and the wear coefficient in the arrangement direction of the inorganic fine particles is orthogonal to the arrangement direction of the inorganic fine particles. It is characterized by being larger than the wear coefficient in the direction of the movement.

以下に、本発明に係る偏光素子の第1の実施の形態における構成について説明する。なお、本発明を図面に示した実施形態をもって説明するが、本発明はこれに限定されるものではなく、実施の態様に応じて適宜変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   The configuration of the polarizing element according to the first embodiment of the present invention will be described below. The present invention will be described with reference to the embodiment shown in the drawings, but the present invention is not limited to this, and can be appropriately changed according to the embodiment. -As long as an effect is produced, it is included in the scope of the present invention.

本実施の形態では、偏光素子は、可視光に対し透明な材料からなり前記基板の主面と平行な一方向に延びた凸部が該基板上に一定間隔に設けられてなり、前記無機微粒子層は該凸部の頂部または少なくとも一方の側壁部に形成されてなるものである。
図1に、本発明に係る偏光素子の第1の実施の形態における構成例を示す。図1(a)は偏光素子10の断面図、図1(b)は偏光素子10の平面図である。
In the present embodiment, the polarizing element is made of a material transparent to visible light, and convex portions extending in one direction parallel to the main surface of the substrate are provided on the substrate at regular intervals. The layer is formed on the top or at least one side wall of the convex portion.
FIG. 1 shows a configuration example of the polarizing element according to the first embodiment of the present invention. FIG. 1A is a sectional view of the polarizing element 10, and FIG. 1B is a plan view of the polarizing element 10.

図1に示すように、偏光素子10は、可視光に対し透明な基板11の表面に設けられた凸部14aの一側面部に無機微粒子層15を選択的に形成することにより、該無機微粒子層15を基板11上で一定間隔に並べられたワイヤグリッド構造としたものである。   As shown in FIG. 1, the polarizing element 10 is formed by selectively forming an inorganic fine particle layer 15 on one side surface of a convex portion 14a provided on the surface of a substrate 11 that is transparent to visible light. The layer 15 has a wire grid structure in which the layers 15 are arranged at regular intervals on the substrate 11.

ここで、基板11は、使用帯域の光(本実施形態では可視光域)に対して透明で屈折率が1.1〜2.2の材料、例えば、ガラス、サファイア、水晶などで構成されている。本実施形態では、ガラス、特に、石英(屈折率1.46)やソーダ石灰ガラス(屈折率1.51)が用いられることが好ましい。ガラス材料の成分組成は特に制限されず、例えば光学ガラスとして広く流通しているケイ酸塩ガラスなどの安価なガラス材料を用いることができ、製造コストの低減を図ることができる。なお、基板11の構成材料として、熱伝導性の高い水晶やサファイア基板を用いることにより、発熱量の多いプロジェクターの光学エンジン用偏光素子として有利に用いることができる。   Here, the substrate 11 is made of a material having a refractive index of 1.1 to 2.2, for example, glass, sapphire, crystal, etc., with respect to light in the use band (visible light region in the present embodiment). Yes. In the present embodiment, it is preferable to use glass, particularly quartz (refractive index 1.46) or soda lime glass (refractive index 1.51). The component composition of the glass material is not particularly limited. For example, an inexpensive glass material such as silicate glass widely distributed as optical glass can be used, and the manufacturing cost can be reduced. By using a quartz or sapphire substrate with high thermal conductivity as the constituent material of the substrate 11, it can be advantageously used as a polarizing element for an optical engine of a projector that generates a large amount of heat.

凹凸部14は、基板11の主面と平行な一方向(吸収軸Y方向)に延びるように基板11の主面上に形成された断面形状が矩形の凸部14aが、基板11の吸収軸Y方向と直交する方向(透過軸X方向)に可視光域の波長よりも小さいピッチで周期的に形成されてなるものである。また凹凸部14は、無機微粒子層15を形成するために設けられるものであり、凹凸部14の加工サイズやパターン形状によって無機微粒子層15のワイヤグリッド構造が決定され、偏光素子10の所期の偏光特性を得るために重要である。すなわち、凹凸部14の加工サイズ、パターン形状は、目的とする偏光特性(消光比)や対象とする可視光波長領域に応じて適宜設定される。具体的には、図2において、凹凸部14の溝の(X方向の)ピッチは0.5μm以下、凹凸部14のライン幅(凸部14aの形成幅)は0.25μm以下、凹凸部14の形成深さは1nm以上である。   The concavo-convex portion 14 is a convex portion 14 a having a rectangular cross-sectional shape formed on the main surface of the substrate 11 so as to extend in one direction (absorption axis Y direction) parallel to the main surface of the substrate 11, and the absorption axis of the substrate 11. It is formed periodically at a pitch smaller than the wavelength in the visible light region in a direction (transmission axis X direction) perpendicular to the Y direction. The uneven portion 14 is provided to form the inorganic fine particle layer 15, and the wire grid structure of the inorganic fine particle layer 15 is determined by the processing size and pattern shape of the uneven portion 14, and the polarizing element 10 is expected. This is important for obtaining polarization characteristics. That is, the processing size and pattern shape of the concavo-convex portion 14 are appropriately set according to the target polarization characteristics (extinction ratio) and the target visible light wavelength region. Specifically, in FIG. 2, the pitch (in the X direction) of the grooves of the concavo-convex portion 14 is 0.5 μm or less, the line width of the concavo-convex portion 14 (formation width of the convex portion 14 a) is 0.25 μm or less, and the concavo-convex portion 14. The formation depth of is 1 nm or more.

なお、凹凸部14のピッチ、ライン幅/ピッチ、凹部深さ(凸部高さ)、凸部長さ、上部ライン幅/底部ライン幅は、それぞれ以下の範囲とするのが好ましい。
0.05μm<ピッチ<0.8μm、
0.1<(ライン幅/ピッチ)<0.9、
0.01μm<凹部深さ<0.2μm、
0.05μm<凸部長さ、
1.0≦(上部ライン幅/底部ライン幅)
In addition, it is preferable that the pitch, the line width / pitch, the concave portion depth (the convex portion height), the convex portion length, and the top line width / bottom portion line width of the concavo-convex portions 14 are in the following ranges, respectively.
0.05 μm <pitch <0.8 μm,
0.1 <(line width / pitch) <0.9,
0.01 μm <recess depth <0.2 μm,
0.05 μm <projection length,
1.0 ≤ (top line width / bottom line width)

凹凸部14は、基板11に直接形成してもよいし、別途形成してもよい。凹凸部14の形成方法としては、研磨シートによるラッピングによる形成方法、半導体デバイス作製で用いられるようなフォトレジストを基板に塗布してマスクを使った露光によりパターンを作製した後、そのパターンを形成したフォトレジストをマスクとして基板をエッチングする方法、凹凸部14の形状寸法に対応して形成された金型を用いて、基板上に金型形状を転写する方法(ナノインプリント法)などがあり、適宜採用すればよい。   The uneven portion 14 may be formed directly on the substrate 11 or may be formed separately. As a method for forming the concavo-convex portion 14, a pattern is formed by applying a photoresist as used in semiconductor device fabrication to a substrate by lapping with a polishing sheet, and by using a mask to produce a pattern. There are a method of etching a substrate using a photoresist as a mask, a method of transferring a mold shape onto a substrate (a nanoimprint method) using a mold formed corresponding to the shape and size of the concavo-convex portion 14, and so on. do it.

なお、凹凸部14の凸部の形状は四角形や台形などの矩形状、あるいは鋸歯形状、三角形状に形成することができる。図3(a)は凹凸部14の凸部14aが断面矩形状で、その一側面部に無機微粒子層15を形成した例を示している。また、図3(b)は凹凸部16の凸部16aが断面鋸歯形状で、その垂直方向に立設した一側面部に無機微粒子層15を形成した例を示している。凸状部の断面を鋸歯状に形成することで、凸状部の頂部への膜の付着を回避することができる。また、図3(c)は凹凸部17の凸部17aが断面三角形状で、その一側面に無機微粒子層15を形成した例を示している。   In addition, the shape of the convex part of the uneven | corrugated | grooved part 14 can be formed in rectangular shapes, such as a rectangle and a trapezoid, or a sawtooth shape and a triangular shape. FIG. 3A shows an example in which the convex portion 14a of the concave and convex portion 14 has a rectangular cross section, and the inorganic fine particle layer 15 is formed on one side surface portion thereof. FIG. 3B shows an example in which the convex part 16a of the concave-convex part 16 has a sawtooth cross-sectional shape, and the inorganic fine particle layer 15 is formed on one side face standing in the vertical direction. By forming the cross section of the convex portion in a sawtooth shape, adhesion of the film to the top of the convex portion can be avoided. FIG. 3C shows an example in which the convex portion 17a of the concave-convex portion 17 has a triangular cross section, and the inorganic fine particle layer 15 is formed on one side surface thereof.

このような凸部14aの頂部または少なくとも一方の側壁部に無機微粒子層15を形成することにより、形状異方性を有する無機微粒子層15を所望の微細形状で基板11表面に縞状に分布させることができ、無機微粒子の孤立化を実現することができる。また、あらかじめ機械的に形成した凹凸部14の上に無機微粒子層15を形成するようにしているので、凹凸部14を安定して形成できるとともに、その上に形成される無機微粒子層15の形状制御を容易に行うことができる。   By forming the inorganic fine particle layer 15 on the top or at least one side wall of the convex portion 14a, the inorganic fine particle layer 15 having shape anisotropy is distributed in a striped pattern on the surface of the substrate 11 in a desired fine shape. And isolation of inorganic fine particles can be realized. In addition, since the inorganic fine particle layer 15 is formed on the concavo-convex portion 14 mechanically formed in advance, the concavo-convex portion 14 can be stably formed, and the shape of the inorganic fine particle layer 15 formed thereon is formed. Control can be easily performed.

無機微粒子層15は、凸部14aの頂部または少なくとも一方の側壁部に無機微粒子を付着させることにより、基板11の主面と平行な一方向(吸収軸Y方向)に該無機微粒子が線状に配列されてなるものである。「無機微粒子が線状に配列されてなる」とは、無機微粒子が相互につながった連続した帯状の膜、無機微粒子が適度な大きさにまとまってそれぞれ独立した島状となり、その島が一方向に並んだ不連続な膜のいずれの状態でもよく、粒界が形成されていればよい。また、一定間隔で規則的に設けられた複数の凸部14aそれぞれに無機微粒子層15が形成されることにより、無機微粒子層15の形成パターンが縞状(一次元格子状)となりワイヤグリッド構造を呈する。   The inorganic fine particle layer 15 is linearly formed in one direction (absorption axis Y direction) parallel to the main surface of the substrate 11 by adhering inorganic fine particles to the top portion or at least one side wall portion of the convex portion 14a. It is arranged. “Inorganic fine particles are arranged in a line” means a continuous band-like film in which inorganic fine particles are connected to each other, and the inorganic fine particles are gathered in an appropriate size to form independent islands. Any of the discontinuous films arranged in a row may be used as long as a grain boundary is formed. In addition, by forming the inorganic fine particle layer 15 on each of the plurality of convex portions 14a regularly provided at a constant interval, the formation pattern of the inorganic fine particle layer 15 becomes striped (one-dimensional lattice shape), and the wire grid structure is formed. Present.

本発明では、無機微粒子は、該無機微粒子の配列方向の径が長く、配列方向と直交する方向の径が短い形状異方性を有する。また、無機微粒子は使用帯域の波長以下のサイズであって、個々の粒子が完全に孤立化していることが望ましい。   In the present invention, the inorganic fine particles have shape anisotropy having a long diameter in the arrangement direction of the inorganic fine particles and a short diameter in the direction orthogonal to the arrangement direction. In addition, it is desirable that the inorganic fine particles have a size equal to or smaller than the wavelength in the use band, and the individual particles are completely isolated.

また本発明では無機微粒子層15の光学定数として、吸収軸Y方向(前記無機微粒子の配列方向)の光学定数が透過軸X方向(該無機微粒子の配列方向と直交する方向)の光学定数よりも大であることが肝要である。詳しくは、無機微粒子層15の吸収軸Y方向の屈折率が透過軸X方向の屈折率よりも大であり、吸収軸Y方向の消耗係数が透過軸X方向の消耗係数よりも大であることを特徴とする。この特性を得るためには、無機微粒子層15を、斜めスパッタ法により成膜する。   In the present invention, the optical constant of the inorganic fine particle layer 15 is such that the optical constant in the absorption axis Y direction (arrangement direction of the inorganic fine particles) is larger than the optical constant in the transmission axis X direction (direction orthogonal to the arrangement direction of the inorganic fine particles). It is important to be large. Specifically, the refractive index in the absorption axis Y direction of the inorganic fine particle layer 15 is larger than the refractive index in the transmission axis X direction, and the consumption coefficient in the absorption axis Y direction is larger than the consumption coefficient in the transmission axis X direction. It is characterized by. In order to obtain this characteristic, the inorganic fine particle layer 15 is formed by an oblique sputtering method.

本発明の無機微粒子層15を形成するための斜めスパッタ成膜の様子を図4に示す。なお、ここではイオンビームスパッタの例を示しているが、これに限定されるものではなく、スパッタリング法であればいずれの方式のものでもよい。   FIG. 4 shows a state of oblique sputtering film formation for forming the inorganic fine particle layer 15 of the present invention. Although an example of ion beam sputtering is shown here, the present invention is not limited to this, and any method may be used as long as it is a sputtering method.

図4において、1は基板11を支持するステージ、2はターゲット、3はビームソース(イオン源)、4は制御板である。ステージ1は、ターゲット2の法線方向に対して所定角度θ傾斜しており、基板11は凹凸部14の凸部14aの長手方向がターゲット2からの無機微粒子の入射方向に対して直交する向きに配置されている。角度θは、例えば0°から15°である。ビームソース3から引き出されたイオンは、ターゲット2へ照射される。イオンビームの照射によりターゲット2から叩き出された無機微粒子は、基板11の表面に斜め方向から入射して付着する。このとき、基板11上に一定間隔(例えば50mm)で平板状の制御板4を配置すれば基板11表面への入射粒子の方向を制御し、凸部14aの側壁部にのみ粒子を堆積させることができる。このときの無機微粒子層15の膜厚は、200nm以下であることが好ましい。   In FIG. 4, 1 is a stage for supporting the substrate 11, 2 is a target, 3 is a beam source (ion source), and 4 is a control plate. The stage 1 is inclined at a predetermined angle θ with respect to the normal direction of the target 2, and the substrate 11 is oriented so that the longitudinal direction of the convex portion 14 a of the concave and convex portion 14 is orthogonal to the incident direction of the inorganic fine particles from the target 2. Is arranged. The angle θ is, for example, 0 ° to 15 °. Ions extracted from the beam source 3 are irradiated to the target 2. The inorganic fine particles knocked out from the target 2 by the irradiation of the ion beam are incident on and adhered to the surface of the substrate 11 from an oblique direction. At this time, if the flat control plate 4 is arranged on the substrate 11 at a constant interval (for example, 50 mm), the direction of the incident particles on the surface of the substrate 11 is controlled, and the particles are deposited only on the side wall portion of the convex portion 14a. Can do. The film thickness of the inorganic fine particle layer 15 at this time is preferably 200 nm or less.

以上のように、スパッタリング法により成膜時に基板11をターゲット2に対して傾斜させて無機微粒子の入射方向を制限することにより、凸部14aの頂部または一側面部に選択的に形成されて配列方向の径が長く、配列方向と直交する方向の径が短い形状異方性を有する無機微粒子が線状に配列されてなり、吸収軸Y方向の光学定数が透過軸X方向の光学定数よりも大となる無機微粒子層15を得ることができる。   As described above, the substrate 11 is tilted with respect to the target 2 at the time of film formation by the sputtering method to limit the incident direction of the inorganic fine particles, thereby being selectively formed on the top portion or one side surface portion of the convex portion 14a. Inorganic fine particles having a shape anisotropy having a long direction diameter and a short diameter in the direction orthogonal to the arrangement direction are linearly arranged, and the optical constant in the absorption axis Y direction is larger than the optical constant in the transmission axis X direction. A large inorganic fine particle layer 15 can be obtained.

ここで、無機微粒子層15に用いられる材料(無機微粒子を構成する材料)としては、偏光素子10として使用帯域に応じて適切な材料が選択される必要がある。すなわち、金属材料や半導体材料がこれを満たす材料であり、具体的には金属材料として、Al,Ag,Cu,Au,Mo,Cr,Ti,W,Ni,Fe,Si,Ge,Te,Sn単体もしくはこれらを含む合金が挙げられる。また半導体材料としては、Si,Ge,Te,ZnOが挙げられる。さらに、FeSi2(特にβ−FeSi2),MgSi2,NiSi2,BaSi2,CrSi2,CoSi2などのシリサイド系材料が適している。   Here, as the material used for the inorganic fine particle layer 15 (material constituting the inorganic fine particles), it is necessary to select an appropriate material for the polarizing element 10 according to the use band. That is, a metal material or a semiconductor material is a material satisfying this, and specifically, as a metal material, Al, Ag, Cu, Au, Mo, Cr, Ti, W, Ni, Fe, Si, Ge, Te, Sn A simple substance or an alloy containing these may be used. Moreover, Si, Ge, Te, ZnO is mentioned as a semiconductor material. Further, silicide-based materials such as FeSi2 (particularly β-FeSi2), MgSi2, NiSi2, BaSi2, CrSi2, CoSi2 are suitable.

また無機微粒子層15に用いられる材料が半導体材料の場合、その吸収作用には半導体のバンドギャップエネルギーが関与している。なぜなら、このエネルギー以下の光を吸収するからである。従って半導体材料を可視光の偏光素子とする場合にはバンドギャップエネルギーは使用帯域以下になっている事が必要である。例えば、可視光使用を考えた場合には波長400nm以上での吸収、すなわちバンドギャップとしては3.1eV以下の材料を使用する必要がある。バンドギャップエネルギーは非特許文献4に記載されているように、微粒子のサイズにも依存し、特に数nmになると急激に上昇する傾向があるので、このようなサイズ効果も考慮して材料とその厚みを決定する必要がある。このような観点からバルク状態でのバンドギャップエネルギーが小さい半導体材料が好ましく、例えば、Geはバルク状態でのバンドギャップエネルギーが0.67eV(波長約1.85μm)と小さいので、可視光用偏光素子としては望ましい材料である。   When the material used for the inorganic fine particle layer 15 is a semiconductor material, the band gap energy of the semiconductor is involved in the absorption action. This is because light below this energy is absorbed. Therefore, when the semiconductor material is a polarizing element for visible light, the band gap energy needs to be equal to or lower than the use band. For example, considering the use of visible light, it is necessary to use a material having an absorption at a wavelength of 400 nm or more, that is, a band gap of 3.1 eV or less. As described in Non-Patent Document 4, the band gap energy also depends on the size of the fine particles, and particularly tends to increase rapidly when it reaches several nanometers. It is necessary to determine the thickness. From this point of view, a semiconductor material having a small band gap energy in the bulk state is preferable. For example, Ge has a small band gap energy in the bulk state of 0.67 eV (wavelength of about 1.85 μm). Is a desirable material.

以上の構成とすることにより、偏光素子10は、可視光域で所望の消光比を持ちつつ、従来の偏光素子よりも耐久性の高いものとなる。   With the above configuration, the polarizing element 10 has higher durability than the conventional polarizing element while having a desired extinction ratio in the visible light range.

また、必要に応じて、基板表面、裏面に反射防止膜をコートすることで、空気と基板の界面での反射を防止し、透過軸透過率を向上させることができる。反射防止膜としては、一般的に用いられるMgF2などの低屈折率膜や、低屈折率膜と高屈折率膜で構成される多層膜などで構わない。また、図1に示す構成とした後、その表面にSiO2などの使用帯域で透明な物質を保護膜として偏光特性に影響を与えない範囲の膜厚でコートすることは、耐湿性の向上など信頼性向上に有効である。但し、無機微粒子の光学的特性は周囲の屈折率によっても影響を受けるため、保護膜の形成により偏光特性の変化が生じる場合がある。また入射光に対する反射率は保護膜の光学厚さ(屈折率×保護膜の膜厚)によっても変化するので、保護膜材料とその膜厚は、これらを考慮して選択されるべきである。材料としては屈折率が2以下、消衰係数が零に近い物質が望ましい。このような物質としてSiO2、Al2O3などがある。これらは一般的な真空成膜法(化学気相成長法、スパッタ法、蒸着法など)や、これらが液体中に分散された状態のゾルを、スピンコート法、ディッピング法などで成膜可能である。さらに非特許文献5に記載されているような自己組織化膜も使用可能である。耐湿性向上の目的では撥水性の自己組織化膜が好ましい。Perfluorodecyltrichlorosilane(FDTS)、Octadecanetrichlorosilane(OTS)などがその一例である。撥水性を有するので防汚対策の面からも有効である。これから、薬品メーカー、例えば米国Gelest社より購入可能でありディッピングにより成膜できる。また、気相成長によっても成膜可能で、米国Applied Microstructures社より専用装置も販売されている。なお、このようなシラン系の自己組織化膜の場合には、密着性を向上する目的で、偏光素子上に密着層としてSiO2を上記方法でコートした後に自己組織化膜を堆積させてもよい。   In addition, if necessary, an antireflection film is coated on the front surface and the back surface of the substrate, so that reflection at the interface between air and the substrate can be prevented and the transmission axis transmittance can be improved. The antireflection film may be a generally used low refractive index film such as MgF2, or a multilayer film composed of a low refractive index film and a high refractive index film. In addition, after the structure shown in FIG. 1 is applied, the surface is coated with a transparent material in a use band such as SiO2 as a protective film so as not to affect the polarization characteristics. It is effective for improving the performance. However, since the optical characteristics of the inorganic fine particles are also affected by the refractive index of the surroundings, the polarization characteristics may change due to the formation of the protective film. Moreover, since the reflectance with respect to incident light changes also with the optical thickness (refractive index x protective film thickness) of the protective film, the protective film material and the film thickness should be selected in consideration of these. As a material, a material having a refractive index of 2 or less and an extinction coefficient close to zero is desirable. Such materials include SiO2, Al2O3 and the like. These can be formed by a general vacuum film-forming method (chemical vapor deposition, sputtering, vapor deposition, etc.) or a sol in which these are dispersed in a liquid by spin coating or dipping. is there. Furthermore, a self-assembled film as described in Non-Patent Document 5 can also be used. For the purpose of improving moisture resistance, a water-repellent self-assembled film is preferable. Examples are perfluorodecyltrichlorosilane (FDTS) and Octadecanetrichlorosilane (OTS). Since it has water repellency, it is also effective in terms of antifouling measures. From now on, it can be purchased from a chemical manufacturer, for example, Gelest, USA, and can be formed by dipping. Films can also be formed by vapor deposition, and dedicated equipment is also sold by Applied Microstructures, USA. In the case of such a silane-based self-assembled film, for the purpose of improving adhesion, the self-assembled film may be deposited after coating SiO 2 as an adhesion layer on the polarizing element by the above method. .

次に、本発明に係る偏光素子の第2の実施の形態における構成について説明する。
本実施の形態では、金属からなり前記基板の主面と平行な一方向に延びた帯状薄膜が該基板上に一定間隔に設けられてなる反射層と、前記反射層上に形成された誘電体層とを備え、前記無機微粒子層は前記帯状薄膜に対応する位置であって前記誘電体層上に形成されてなることを特徴とするものである。
Next, the configuration of the polarizing element according to the second embodiment of the present invention will be described.
In the present embodiment, a reflective layer in which a strip-like thin film made of metal and extending in one direction parallel to the main surface of the substrate is provided on the substrate, and a dielectric formed on the reflective layer And the inorganic fine particle layer is formed on the dielectric layer at a position corresponding to the strip-shaped thin film.

図5は、本発明に係る偏光素子の第2の実施の形態における構成例を示す概略図である。図5(a)は偏光素子20の断面図、図5(b)は偏光素子20の平面図である。
図5に示すように、可視光に対し透明な基板21の表面に設けられた反射層22を構成する薄膜22aと誘電体層23の積層構造の上に無機微粒子層25を選択的に形成することにより、該無機微粒子層25を基板21上で一定間隔に並べられたワイヤグリッド構造としたものである。
FIG. 5 is a schematic diagram showing a configuration example of the polarizing element according to the second embodiment of the present invention. FIG. 5A is a cross-sectional view of the polarizing element 20, and FIG. 5B is a plan view of the polarizing element 20.
As shown in FIG. 5, an inorganic fine particle layer 25 is selectively formed on a laminated structure of a thin film 22a and a dielectric layer 23 constituting a reflective layer 22 provided on the surface of a substrate 21 transparent to visible light. Thus, the inorganic fine particle layer 25 has a wire grid structure in which the inorganic fine particle layer 25 is arranged on the substrate 21 at regular intervals.

ここで、基板21は、第1の実施の形態における基板11と同じ材料から構成されるものである。   Here, the board | substrate 21 is comprised from the same material as the board | substrate 11 in 1st Embodiment.

反射層22は、金属からなり基板21の主面と平行な一方向(吸収軸Y方向)に帯状に延びた薄膜22aが基板21上に配列されてなるものである。反射層22の構成材料には、種々の材料を用いることができ、例えばAl,Ag,Cu,Mo,Cr,Ti,Ni,W,Fe,Si,Ge,Teなどの金属あるいは半導体材料を用いることができる。なお、金属材料以外にも、例えば着色等により表面の反射率が高く形成された金属以外の無機膜や樹脂膜で構成されていてもよい。   The reflective layer 22 is made of metal, and is formed by arranging thin films 22 a extending in a strip shape in one direction (absorption axis Y direction) parallel to the main surface of the substrate 21 on the substrate 21. Various materials can be used as the constituent material of the reflective layer 22, for example, a metal such as Al, Ag, Cu, Mo, Cr, Ti, Ni, W, Fe, Si, Ge, Te, or a semiconductor material is used. be able to. In addition to the metal material, for example, it may be composed of an inorganic film or a resin film other than a metal formed with high surface reflectance by coloring or the like.

薄膜22aは、可視光域の波長よりも小さいピッチで基板21の表面に配列され、例えば、フォトリソグラフィ技術を用いた上記金属膜のパターン加工によって形成されるもの(金属格子)である。反射層22は、ワイヤグリッド型偏光子としての機能を有し、基板21の表面に入射した光のうち、ワイヤグリッドの長手方向に平行な方向(Y軸方向)に電界成分をもつ偏光波(TE波(S波))を減衰させ、ワイヤグリッドの長手方向と直交する方向(X軸方向)に電界成分をもつ偏光波(TM波(P波))を透過させる。   The thin film 22a is arranged on the surface of the substrate 21 at a pitch smaller than the wavelength in the visible light region, and is formed by, for example, pattern processing of the metal film using a photolithography technique (metal lattice). The reflective layer 22 has a function as a wire grid polarizer, and of the light incident on the surface of the substrate 21, a polarized wave having an electric field component in the direction parallel to the longitudinal direction of the wire grid (Y-axis direction) ( The TE wave (S wave) is attenuated, and a polarized wave (TM wave (P wave)) having an electric field component in a direction (X-axis direction) orthogonal to the longitudinal direction of the wire grid is transmitted.

なお、反射層22(薄膜22a)のピッチ、ライン幅/ピッチ、薄膜高さ(厚さ、格子深さ)、薄膜長さ(格子長さ)は、それぞれ以下の範囲とするのが好ましい。
0.05μm<ピッチ<0.8μm
0.1<(ライン幅/ピッチ)<0.9
0.01μm<薄膜高さ<1μm
0.05μm<薄膜長さ
The pitch, line width / pitch, thin film height (thickness, lattice depth), and thin film length (lattice length) of the reflective layer 22 (thin film 22a) are preferably in the following ranges.
0.05μm <pitch <0.8μm
0.1 <(line width / pitch) <0.9
0.01 μm <thin film height <1 μm
0.05μm <thin film length

誘電体層23は、基板21の表面にスパッタ法、気相成長法、蒸着法などの一般的な真空成膜法あるいはゾルゲル法(例えばスピンコート法によりゾルをコートし熱硬化によりゲル化させる方法)により成膜されたSiO2などの可視光に対して透明な光学材料で形成されている。誘電体層23は、無機微粒子層25の下地層を形成するとともに、後述するように、無機微粒子層25で反射した偏光に対して、無機微粒子層25を透過し反射層22で反射した当該偏光の位相が半波長ずれる膜厚で形成されている。具体的には1〜500nmの範囲で適宜設定するとよい。当該偏光の位相を調整し干渉効果を高める目的で形成され、半波長ずれる膜厚が望ましいが、無機微粒子層が吸収効果を有するので反射した光を吸収する事ができ、膜厚が最適化されていなくてもコントラストの向上は実現でき、実用上は、所望の偏光特性と実際の作製工程の兼ね合いで決定してかまわない。実用上の膜厚範囲は1〜500nmである。   The dielectric layer 23 is formed by coating the surface of the substrate 21 with a general vacuum film forming method such as a sputtering method, a vapor phase growth method, or an evaporation method, or a sol-gel method (for example, a method of coating a sol by a spin coating method and gelling it by thermosetting. ) Formed by an optical material transparent to visible light such as SiO2. The dielectric layer 23 forms an underlayer of the inorganic fine particle layer 25 and, as will be described later, the polarized light reflected by the inorganic fine particle layer 25 and reflected by the reflective layer 22 with respect to the polarized light reflected by the inorganic fine particle layer 25. Is formed with a film thickness that is shifted by a half wavelength. Specifically, it may be set appropriately within a range of 1 to 500 nm. It is formed to increase the interference effect by adjusting the phase of the polarized light, and a film thickness shifted by half wavelength is desirable. However, since the inorganic fine particle layer has an absorption effect, the reflected light can be absorbed and the film thickness is optimized. Even if it is not, improvement in contrast can be realized, and in practice, it may be determined based on a balance between desired polarization characteristics and an actual manufacturing process. The practical film thickness range is 1 to 500 nm.

誘電体層23を構成する材料は、SiO2、Al2O3、MgF2などの一般的な材料を用いることができる。これらは、スパッタ、気相成長法、蒸着法などの一般的な真空成膜法やゾル状の物質を基板上にコートし熱硬化させることで薄膜化が可能である。また、誘電体層23の屈折率は1より大、2.5以下とすることが好ましい。無機微粒子層25の光学特性は、周囲の屈折率によっても影響を受けるため、誘電層材料により偏光素子特性を制御する事も可能である。   As a material constituting the dielectric layer 23, a general material such as SiO2, Al2O3, MgF2 can be used. These can be thinned by coating a substrate with a general vacuum film-forming method such as sputtering, vapor phase epitaxy, or vapor deposition, or a sol-like substance and thermally curing it. The refractive index of the dielectric layer 23 is preferably greater than 1 and not greater than 2.5. Since the optical characteristics of the inorganic fine particle layer 25 are also influenced by the surrounding refractive index, it is also possible to control the polarizing element characteristics by the dielectric layer material.

無機微粒子層25は、薄膜22aに対応する位置であって誘電体層23上に無機微粒子を付着させることにより、基板21の主面と平行な一方向(吸収軸Y方向)に該無機微粒子が線状に配列されてなるものである。また、一定間隔で規則的に設けられた複数の薄膜22aそれぞれの上に無機微粒子層25が形成されることにより、無機微粒子層25の形成パターンが縞状となりワイヤグリッド構造を呈する。   The inorganic fine particle layer 25 is located at a position corresponding to the thin film 22a and adheres to the dielectric layer 23 so that the inorganic fine particles are in one direction parallel to the main surface of the substrate 21 (absorption axis Y direction). It is arranged in a line. In addition, by forming the inorganic fine particle layer 25 on each of the plurality of thin films 22a regularly provided at a constant interval, the formation pattern of the inorganic fine particle layer 25 becomes striped and exhibits a wire grid structure.

図5では、無機微粒子層25は、薄膜22aの長手方向(Y軸方向)に平行に長軸方向を有するとともに長手方向に直交する方向(X軸方向)に短軸方向を有する長楕円形状の島状の無機微粒子25aがY軸方向に配列された構成となっている。また、無機微粒子25aは使用帯域の波長以下のサイズであって、個々の粒子が完全に孤立化していることが望ましい。   In FIG. 5, the inorganic fine particle layer 25 has a long elliptical shape having a major axis direction parallel to the longitudinal direction (Y-axis direction) of the thin film 22a and a minor axis direction perpendicular to the longitudinal direction (X-axis direction). The island-shaped inorganic fine particles 25a are arranged in the Y-axis direction. Further, it is desirable that the inorganic fine particles 25a have a size equal to or smaller than the wavelength of the use band, and the individual particles are completely isolated.

本発明では無機微粒子層25の光学定数として、吸収軸Y方向(前記無機微粒子の配列方向)の光学定数が透過軸X方向(該無機微粒子の配列方向と直交する方向)の光学定数よりも大であることを特徴とする。詳しくは、無機微粒子層25の吸収軸Y方向の屈折率が透過軸X方向の屈折率よりも大であり、吸収軸Y方向の消耗係数が透過軸X方向の消耗係数よりも大であることを特徴とする。この特性を得るためには、無機微粒子層25を、斜めスパッタ法により成膜する。その詳細は第1の実施の形態で示した方法と同じである。また、無機微粒子層25に用いる材料も第1の実施の形態における無機微粒子層15で用いる材料と同じである。   In the present invention, as the optical constant of the inorganic fine particle layer 25, the optical constant in the absorption axis Y direction (arrangement direction of the inorganic fine particles) is larger than the optical constant in the transmission axis X direction (direction orthogonal to the arrangement direction of the inorganic fine particles). It is characterized by being. Specifically, the refractive index in the absorption axis Y direction of the inorganic fine particle layer 25 is larger than the refractive index in the transmission axis X direction, and the consumption coefficient in the absorption axis Y direction is larger than the consumption coefficient in the transmission axis X direction. It is characterized by. In order to obtain this characteristic, the inorganic fine particle layer 25 is formed by an oblique sputtering method. The details are the same as the method shown in the first embodiment. The material used for the inorganic fine particle layer 25 is also the same as the material used for the inorganic fine particle layer 15 in the first embodiment.

以上のように構成される本実施形態の偏光素子20は、基板21の表面側、即ち、帯状の薄膜22a、誘電体層23及び無機微粒子層25の形成面側が光入射面とされる。そして、偏光素子20は、光の透過、反射、干渉、光学異方性による偏光波の選択的光吸収の4つの作用を利用することで、反射層22のワイヤグリッド長手方向に平行な電界成分(Y軸方向)をもつ偏光波(TE波(S波))を減衰させるとともに、ワイヤグリッド長手方向に垂直な電界成分(X軸方向)をもつ偏光波(TM波(P波))を透過させる。   In the polarizing element 20 of the present embodiment configured as described above, the surface side of the substrate 21, that is, the formation surface side of the band-shaped thin film 22a, the dielectric layer 23, and the inorganic fine particle layer 25 is the light incident surface. The polarizing element 20 uses four functions of light transmission, reflection, interference, and selective light absorption of polarized waves due to optical anisotropy, so that an electric field component parallel to the longitudinal direction of the wire grid of the reflective layer 22 is obtained. Attenuates a polarized wave (TE wave (S wave)) having (Y-axis direction) and transmits a polarized wave (TM wave (P wave)) having an electric field component (X-axis direction) perpendicular to the longitudinal direction of the wire grid. Let

すなわち、図6(a)に示すように、TE波は、形状異方性を有する無機微粒子25aからなる無機微粒子層25の光学異方性による偏光波の選択的光吸収作用によって減衰される。薄膜22aはワイヤグリッドとして機能し、図6(b)に示すように、無機微粒子層25及び誘電体層23を透過したTE波を反射する。このとき、無機微粒子層25を透過し薄膜22aで反射したTE波の位相が半波長ずれるように誘電体層23を構成することによって、薄膜22aで反射したTE波は無機微粒子層25で反射したTE波と干渉により打ち消し合って減衰される。以上のようにしてTE波の選択的減衰を行うことができる。前記のように半波長ずれる膜厚が望ましいが、無機微粒子層が吸収効果を有するので、誘電層の膜厚が最適化されていなくてもコントラストの向上は実現でき、実用上は、所望の偏光特性と実際の作製工程における経済的効率から決定されてかまわない。   That is, as shown in FIG. 6A, the TE wave is attenuated by the selective light absorption action of the polarized wave due to the optical anisotropy of the inorganic fine particle layer 25 composed of the inorganic fine particles 25a having shape anisotropy. The thin film 22a functions as a wire grid, and reflects TE waves transmitted through the inorganic fine particle layer 25 and the dielectric layer 23, as shown in FIG. 6B. At this time, the TE wave reflected by the thin film 22a is reflected by the inorganic fine particle layer 25 by configuring the dielectric layer 23 so that the phase of the TE wave transmitted through the inorganic fine particle layer 25 and reflected by the thin film 22a is shifted by a half wavelength. Attenuated by TE wave and interference. The TE wave can be selectively attenuated as described above. As described above, a film thickness shifted by half a wavelength is desirable. However, since the inorganic fine particle layer has an absorption effect, an improvement in contrast can be realized even if the film thickness of the dielectric layer is not optimized. It may be determined from the characteristics and economic efficiency in the actual fabrication process.

また、出射側で低反射が必要な場合には、逆に反射層側から光を入射すればよい。この場合も無機微粒子層の選択的吸収効果により、前記と同等の透過コントラストが得られる。後記のように、透過コントラストの大きさは反射層厚に依存するからである。これを実際の使用について当てはめると、例えば後述する本発明の液晶プロジェクターの光学エンジン部分(図13)において、液晶パネルへの望ましくない反射光を避ける目的で入射偏光板10Aに本発明の偏光板を使用する場合には、本偏光板の膜面(図6の無機微粒子層25側)を液晶パネル側に向くように配置する。そうする事により、望ましくない反射光は、光源側に戻る事となる。出射偏光板10Bもしくは10Cとして本発明の偏光板を使用する場合にも同様に本偏光板の膜面(図6の無機微粒子層25側)を液晶パネル側に向けるとよい。入射偏光板と出射偏光板に使用する場合とでは本偏光板への光の入射方向が逆になるが、前記のようにどちら側から光を入射させても同等の透過コントラストが得られるので実用上問題ない。   On the contrary, when low reflection is required on the emission side, light may be incident on the reflection layer side. Also in this case, the transmission contrast equivalent to the above can be obtained by the selective absorption effect of the inorganic fine particle layer. This is because the size of the transmission contrast depends on the thickness of the reflective layer as will be described later. When this is applied to actual use, for example, in the optical engine portion (FIG. 13) of the liquid crystal projector of the present invention described later, the polarizing plate of the present invention is applied to the incident polarizing plate 10A for the purpose of avoiding unwanted reflected light to the liquid crystal panel. When used, the polarizing plate is disposed so that the film surface (the inorganic fine particle layer 25 side in FIG. 6) faces the liquid crystal panel. By doing so, undesirable reflected light returns to the light source side. Similarly, when the polarizing plate of the present invention is used as the output polarizing plate 10B or 10C, the film surface of the polarizing plate (the inorganic fine particle layer 25 side in FIG. 6) is preferably directed to the liquid crystal panel side. Although the incident direction of light to the polarizing plate is reversed when used for the incident polarizing plate and the outgoing polarizing plate, the same transmission contrast can be obtained regardless of which side the light is incident as described above. No problem.

偏光素子20は、例えば以下のようにして製造することができる。即ち、基板21に金属膜及び誘電膜を積層し、フォトリソグラフィなどにより金属膜及び誘電膜の格子パターンを形成した後、斜めスパッタ成膜法により無機微粒子層25を形成する。斜めスパッタ成膜時の入射角度を調節することで、帯状薄膜22a及び誘電体層23からなる凸部の頂点付近に集中的に微粒子を堆積させることが可能となる。   The polarizing element 20 can be manufactured as follows, for example. That is, after laminating a metal film and a dielectric film on the substrate 21 and forming a lattice pattern of the metal film and the dielectric film by photolithography or the like, the inorganic fine particle layer 25 is formed by an oblique sputtering film forming method. By adjusting the incident angle at the time of oblique sputtering film formation, fine particles can be concentrated in the vicinity of the apex of the convex portion formed of the strip-shaped thin film 22a and the dielectric layer 23.

上記以外にも、透明基板上に透明材料を一次元格子状に形成し、この格子の凸部上に金属層、誘電体層及び無機微粒子層を順次斜め成膜により積層する方法も適用可能である。更には、基板上に金属膜、誘電膜、微粒子膜を順次積層した後、これらを一括して一次元格子状にエッチングする方法を用いてもよい。   In addition to the above, it is also possible to apply a method in which a transparent material is formed on a transparent substrate in a one-dimensional lattice shape, and a metal layer, a dielectric layer, and an inorganic fine particle layer are sequentially laminated on the convex portions of the lattice by oblique film formation. is there. Furthermore, a method may be used in which a metal film, a dielectric film, and a fine particle film are sequentially laminated on a substrate, and then these are collectively etched into a one-dimensional lattice shape.

更に、図7に示すように、基板21上に反射層22を一次元格子状に形成した後、誘電体層23を基板21の表面全域に形成する。これにより、誘電体層23は、反射層22の帯状薄膜22aの直上で凸部、帯状薄膜22a間で凹部となる凹凸形状を有する。その後、斜めスパッタ成膜法により、誘電体層23の凸部の頂部の側面部に無機微粒子層25を形成することで、図5の例と同様な作用効果を有する偏光素子を作製することができる。無機微粒子層25の形成領域は図示する誘電体層23の頂部の一側面部に限らず、両側面部であってもよい。   Further, as shown in FIG. 7, after the reflective layer 22 is formed on the substrate 21 in a one-dimensional lattice shape, the dielectric layer 23 is formed over the entire surface of the substrate 21. As a result, the dielectric layer 23 has a concavo-convex shape in which a convex portion is formed immediately above the strip-shaped thin film 22a of the reflective layer 22 and a concave portion is formed between the strip-shaped thin films 22a. Thereafter, by forming the inorganic fine particle layer 25 on the side surface portion of the top of the convex portion of the dielectric layer 23 by an oblique sputtering film forming method, a polarizing element having the same function and effect as the example of FIG. 5 can be manufactured. it can. The formation region of the inorganic fine particle layer 25 is not limited to one side surface portion of the top portion of the dielectric layer 23 shown in the drawing, and may be both side surface portions.

なお、本発明の偏光素子として、図5において誘電体層23を省略した構成の偏光素子としてもよい。すなわち、可視光に対し透明な基板21の表面に設けられた反射層22を構成する薄膜22aの上に無機微粒子層25を選択的に形成することにより、該無機微粒子層25を基板21上で一定間隔に並べられたワイヤグリッド構造とする。この構成でも、可視光域で所望の消光比(コントラスト:透過軸透過率/吸収軸透過率)を持たせることが可能である。   The polarizing element of the present invention may be a polarizing element having a configuration in which the dielectric layer 23 is omitted in FIG. That is, the inorganic fine particle layer 25 is selectively formed on the substrate 21 by selectively forming the inorganic fine particle layer 25 on the thin film 22a constituting the reflective layer 22 provided on the surface of the substrate 21 transparent to visible light. The wire grid structure is arranged at regular intervals. Even with this configuration, a desired extinction ratio (contrast: transmission axis transmittance / absorption axis transmittance) can be provided in the visible light range.

つぎに、液晶プロジェクターにおける出射面迷光対策(ゴースト対策)として、偏光素子20の裏面側に選択的光吸収層を設けた例を説明する。
図8はその偏光素子20Aの概略構成を示す側断面図である。なお、図において上述の偏光素子20と同一構成部分については同一の符号を付し、その詳細な説明は省略する。
Next, an example in which a selective light absorption layer is provided on the back side of the polarizing element 20 will be described as a countermeasure against stray light on the emission surface (ghost countermeasure) in the liquid crystal projector.
FIG. 8 is a side sectional view showing a schematic configuration of the polarizing element 20A. In the figure, the same components as those of the polarizing element 20 described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態の偏光素子20Aは、基板21の表面(一方の面)に、一次元格子状の反射層22が形成されており、この反射層22の上に誘電体層23及び無機微粒子層25が順次形成されている。そして、基板21の裏面(他方の面)には、誘電材料からなる凹凸部26と、この凹凸部26の凸部の頂部又は少なくとも一側面部に形成された第2の無機微粒子層27とからなる光学異方性による偏光波の選択的光吸収層28が設けられている。   In the polarizing element 20A of the present embodiment, a one-dimensional lattice-like reflective layer 22 is formed on the surface (one surface) of a substrate 21, and a dielectric layer 23 and an inorganic fine particle layer 25 are formed on the reflective layer 22. Are sequentially formed. Then, on the back surface (the other surface) of the substrate 21, a concavo-convex portion 26 made of a dielectric material and a second inorganic fine particle layer 27 formed on the top portion or at least one side surface portion of the concavo-convex portion 26. A selective light absorption layer 28 for polarized waves due to optical anisotropy is provided.

この光学異方性による偏光波の選択的光吸収層28が設けられていない偏光素子20においては、基板21の裏面側が反射層22による鏡面を呈するため、偏光素子を透過し当該偏光素子の次段に配置されたレンズ等の他の光学素子で反射して戻った光は、上記鏡面で再び反射されることになる。このような迷光は、液晶プロジェクターにおいてゴースト等の画質の劣化を引き起こす。   In the polarizing element 20 in which the selective light absorption layer 28 for the polarized wave due to the optical anisotropy is not provided, the back surface side of the substrate 21 exhibits a mirror surface by the reflecting layer 22, so that it passes through the polarizing element and follows the polarizing element. The light reflected and returned by another optical element such as a lens arranged in a step is reflected again by the mirror surface. Such stray light causes image quality deterioration such as ghost in the liquid crystal projector.

本実施形態では、基板21の裏面側に上記構成の光学異方性による偏光波の選択的光吸収層28を設けることにより、上記迷光を吸収し反射層22における反射を防止する。光学異方性による偏光波の選択的光吸収層28を構成する凹凸部26は、誘電体層23と同様な材料からなるとともに、反射層22の帯状薄膜22aが延びる方向と同一方向に延びるように形成された一次元格子状に形成されている。第2の無機微粒子層27は、凹凸部26の凸部の頂部又は側面部に無機微粒子が線状に配列されて形成されており、基板21表面側の無機微粒子層25と同様な材料で構成されることにより、基板21裏面からの入射光の選択的光吸収効果を出現させる。   In the present embodiment, by providing the selective light absorption layer 28 of the polarized wave due to the optical anisotropy having the above configuration on the back surface side of the substrate 21, the stray light is absorbed and reflection on the reflection layer 22 is prevented. The concavo-convex part 26 constituting the selective light absorption layer 28 of the polarized wave due to optical anisotropy is made of the same material as the dielectric layer 23 and extends in the same direction as the direction in which the strip-like thin film 22a of the reflective layer 22 extends. Are formed in a one-dimensional lattice shape. The second inorganic fine particle layer 27 is formed by linearly arranging inorganic fine particles on the top or side surface of the convex portion of the concavo-convex portion 26 and is composed of the same material as the inorganic fine particle layer 25 on the surface side of the substrate 21. As a result, a selective light absorption effect of incident light from the back surface of the substrate 21 appears.

凹凸部26の形成方法としては、誘電体層23の形成方法と同様にスパッタ法やゾルゲル法等によって形成される。凹凸形状の付与は、フォトリソグラフィ技術を用いたパターン加工やナノインプリント法によるプレス形成が好適である。第2の無機微粒子層27の形成方法としては、基板21表面側の無機微粒子層25の形成方法と同様な斜め成膜が好適である。第2の無機微粒子層27は、凹凸部26の凸部の頂部又は一側面部あるいは両側面部に形成される。   As a method for forming the concavo-convex portion 26, it is formed by a sputtering method, a sol-gel method, or the like, similarly to the method for forming the dielectric layer 23. For imparting the uneven shape, pattern processing using a photolithography technique or press formation by a nanoimprint method is suitable. As a method for forming the second inorganic fine particle layer 27, an oblique film formation similar to the method for forming the inorganic fine particle layer 25 on the surface side of the substrate 21 is suitable. The second inorganic fine particle layer 27 is formed on the top portion, one side surface portion, or both side surface portions of the convex portion of the uneven portion 26.

あるいは、偏光素子20Aの別の作製方法として、図1に示す偏光素子10と図5に示す偏光素子20とを用いて、お互いの基板11,21の裏面同士を透明接着剤により貼り合わせて偏光素子20Aとしてもよい。この場合、無機微粒子層15、25の無機微粒子の配列方向が揃うようにするとよい。   Alternatively, as another manufacturing method of the polarizing element 20A, the polarizing element 10 shown in FIG. 1 and the polarizing element 20 shown in FIG. 5 are used, and the back surfaces of the substrates 11 and 21 are bonded to each other with a transparent adhesive. The element 20A may be used. In this case, the arrangement direction of the inorganic fine particles in the inorganic fine particle layers 15 and 25 is preferably aligned.

つぎに、液晶プロジェクターにおける別のゴースト対策として、基板21と反射層22との間に反射防止層を設けた例を説明する。
図9はその偏光素子20Bの概略構成を示す側断面図である。なお、図において上述の偏光素子20と同一構成部分については同一の符号を付し、その詳細な説明は省略する。
Next, an example in which an antireflection layer is provided between the substrate 21 and the reflection layer 22 will be described as another ghost countermeasure in the liquid crystal projector.
FIG. 9 is a side sectional view showing a schematic configuration of the polarizing element 20B. In the figure, the same components as those of the polarizing element 20 described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態の偏光素子20Bは、上述の偏光素子20Aと同様な目的で構成されている。即ち、本実施形態の偏光素子20Bは、基板21と反射層22との間に、反射防止層29が形成されている。このように一次元格子状の反射層22の直下に反射防止層29を設けることにより、基板21の裏面からの入射光の反射を防止するようにしている。   The polarizing element 20B of the present embodiment is configured for the same purpose as the polarizing element 20A described above. That is, in the polarizing element 20 </ b> B of this embodiment, the antireflection layer 29 is formed between the substrate 21 and the reflection layer 22. In this way, by providing the antireflection layer 29 immediately below the one-dimensional lattice-like reflection layer 22, reflection of incident light from the back surface of the substrate 21 is prevented.

反射防止層29は、例えばカーボンブラック膜等の黒色層が好適である。これにより、基板21裏面からの入射光を効率よく吸収することができる。また、カーボンのほか、酸素欠損したシリコン酸化物層や、反射層22よりも反射率の低い低反射材料層が適用可能である。あるいは無機微粒子層25と同様のものを反射防止層29としてもよい。なお、図示の例では、反射層22と反射防止層29との間で干渉効果を得る事により反射率軽減を図る事を目的として誘電体層2aが設けられている。この誘電体層2a及び反射防止層29の格子形状への加工は、例えば反射層22のパターン加工で同時に行うことができる。   The antireflection layer 29 is preferably a black layer such as a carbon black film. Thereby, the incident light from the back surface of the substrate 21 can be efficiently absorbed. In addition to carbon, a silicon oxide layer deficient in oxygen or a low-reflective material layer having a lower reflectance than the reflective layer 22 can be applied. Alternatively, the antireflection layer 29 may be the same as the inorganic fine particle layer 25. In the illustrated example, the dielectric layer 2 a is provided for the purpose of reducing the reflectance by obtaining an interference effect between the reflective layer 22 and the antireflection layer 29. The processing of the dielectric layer 2a and the antireflection layer 29 into a lattice shape can be simultaneously performed by pattern processing of the reflective layer 22, for example.

さらに、液晶プロジェクターにおけるまた別のゴースト対策として、つぎの方法がある。すなわち基板21について、その表面をラビング処理して、該表面にその後形成される無機微粒子層25の無機微粒子25aの配列方向に対応するように微細なすじが一方向に揃った状態の凹凸からなるテクスチャー構造を形成し、ついで、該ラビング処理後の表面に無機微粒子25aの配列方向に対応するように前述した斜めスパッタ法により形状異方性を有する無機微粒子からなる薄膜(反射防止層)を形成するとよい。前記テクスチャー構造により無機微粒子の長軸方向がすじの長手方向となるように無機微粒子の配列性が向上して薄膜の偏光特性が改善され、ゴースト対策効果を高めることができる。同時に偏光素子としての透過コントラスト特性の増大も期待できる。   Further, as another ghost countermeasure in the liquid crystal projector, there is the following method. That is, the surface of the substrate 21 is composed of irregularities in which fine streaks are aligned in one direction so as to correspond to the arrangement direction of the inorganic fine particles 25a of the inorganic fine particle layer 25 subsequently formed on the surface by rubbing the surface. A texture structure is formed, and then a thin film (antireflection layer) made of inorganic fine particles having shape anisotropy is formed on the surface after the rubbing treatment by the above-described oblique sputtering method so as to correspond to the arrangement direction of the inorganic fine particles 25a. Good. Due to the texture structure, the alignment of the inorganic fine particles is improved so that the long axis direction of the inorganic fine particles becomes the longitudinal direction of the stripes, the polarization characteristics of the thin film are improved, and the ghost countermeasure effect can be enhanced. At the same time, an increase in transmission contrast characteristics as a polarizing element can be expected.

本発明の第2の実施の形態のバリエーションとして、前記無機微粒子層25上に、前述した誘電体層23/無機微粒子層25の積層構造を1または複数積み重ねた多層構造としてもよい。図10にその構成例を示す。   As a variation of the second embodiment of the present invention, a multilayer structure in which one or a plurality of the above-described multilayer structure of the dielectric layer 23 / inorganic fine particle layer 25 are stacked on the inorganic fine particle layer 25 may be used. FIG. 10 shows an example of the configuration.

図10において、偏光素子30は、基板21上に反射層22を構成する帯状薄膜22a、誘電体層23、無機微粒子層25がこの順番で積層されており、該無機微粒子層25上に誘電体層23/無機微粒子層25の積層構造26aがさらに積み重ねられたワイヤグリッド構造となっている。また、この積層構造26aの上にさらに積層構造26aを積み重ねていってもよい。これにより、各層間の干渉効果を高めて所望の波長での透過軸方向コントラストを増大させると同時に、透過型液晶表示装置において好ましくない偏光素子からの反射成分を広範囲に渡り低下させることができ、図5の構成の偏光素子20よりも薄い膜厚で高コントラスト、低反射を実現することができる。   In FIG. 10, the polarizing element 30 is formed by laminating a strip-like thin film 22 a constituting a reflective layer 22, a dielectric layer 23, and an inorganic fine particle layer 25 in this order on a substrate 21, and a dielectric material on the inorganic fine particle layer 25. The layered structure 26a of the layer 23 / inorganic fine particle layer 25 is further stacked to form a wire grid structure. Further, the laminated structure 26a may be further stacked on the laminated structure 26a. As a result, the interference effect between the respective layers can be enhanced to increase the contrast in the transmission axis direction at a desired wavelength, and at the same time, the reflection component from the polarizing element that is not preferable in the transmissive liquid crystal display device can be reduced over a wide range, High contrast and low reflection can be realized with a thinner film thickness than the polarizing element 20 having the configuration of FIG.

本発明の偏光素子30の製作方法としては例えばつぎの3つの方法がある。すなわち、第一の方法としては、基板21に反射層材料(金属格子材料)、誘電体膜を積層し、ナノインプリントやフォトリソグラフィなどの手法により一次元格子パターンを形成あるいはエッチングした後、斜めスパッタ成膜法により微粒子を成膜するものである。これによれば斜めスパッタ成膜時の入射角度を調節することで、凸部となった誘電体層23の頂点付近に集中的に無機微粒子を堆積させることが可能である。また第二の方法としては、透明基板上に透明材料を用いて一次元格子形状の凹凸部を形成し、反射層材料、誘電体層材料、無機微粒子材料を順次積層数分斜め成膜により積層するものである。また第三の方法としては、反射層の薄膜(金属格子膜)の上に(誘電体膜/無機微粒子薄膜)の積層構造を積層数分だけ順次積層した後にエッチングするものである。なお無機微粒子材料は完全な島状になっている必要はなく、粒界が形成されていればよい。また誘電体層23と無機微粒子層25はスパッタ成膜及びエッチングによる形成方法と斜めスパッタ成膜による形成方法とを組み合わせて製作してもよい。なお、上記の製造プロセスを実行する上で基板材料の種類に限定は無いが、発熱量の多いプロジェクターに応用する場合には、熱伝導性の高い水晶やサファイア基板が適している。   For example, there are the following three methods for manufacturing the polarizing element 30 of the present invention. That is, as a first method, a reflective layer material (metal lattice material) and a dielectric film are laminated on the substrate 21, and a one-dimensional lattice pattern is formed or etched by a technique such as nanoimprint or photolithography, and then oblique sputtering is performed. Fine particles are formed by a film method. According to this, by adjusting the incident angle at the time of oblique sputtering film formation, inorganic fine particles can be concentrated in the vicinity of the apex of the dielectric layer 23 that has become a convex portion. As a second method, a transparent material is used to form a one-dimensional lattice-shaped concavo-convex portion on a transparent substrate, and a reflective layer material, a dielectric layer material, and an inorganic fine particle material are sequentially stacked by the number of layers. To do. As a third method, a stacked structure of (dielectric film / inorganic fine particle thin film) is sequentially stacked on the thin film (metal lattice film) of the reflective layer by the number of stacked layers and then etched. In addition, the inorganic fine particle material does not need to be a complete island shape, and it is sufficient that a grain boundary is formed. The dielectric layer 23 and the inorganic fine particle layer 25 may be manufactured by combining a formation method by sputtering film formation and etching and a formation method by oblique sputtering film formation. In executing the above manufacturing process, the type of substrate material is not limited, but a quartz or sapphire substrate with high thermal conductivity is suitable for application to a projector with a large amount of heat generation.

ところで、これまで述べた構造の偏光素子30のままでは、光の出射面(反射層22)が金属でできているために戻り光がある場合には反射率が高くなってしまう。そこで、本実施の形態においても前述した出射面迷光対策をとるとよい。
図11、図12に本実施の形態における出射面迷光対策例を示す。
By the way, if the polarizing element 30 having the structure described so far is used, the light exit surface (reflective layer 22) is made of metal, and therefore the reflectance is high when there is return light. Therefore, it is preferable to take the above-described countermeasure against stray light on the exit surface also in this embodiment.
FIG. 11 and FIG. 12 show examples of the exit surface stray light countermeasure in this embodiment.

図11は、図8の構成を本実施の形態に適用した例である。
偏光素子30Aは、偏光素子30において、基板21の反射層22形成面とは反対面(裏面)に誘電材料からなる凹凸部26と、この凹凸部26の凸部の頂部又は少なくとも一側面部に形成された第2の無機微粒子層27とからなる光学異方性による偏光波の選択的光吸収層28が設けられてなるものである。
FIG. 11 shows an example in which the configuration of FIG. 8 is applied to this embodiment.
The polarizing element 30A includes a concavo-convex portion 26 made of a dielectric material on a surface (back surface) opposite to the surface on which the reflective layer 22 is formed of the substrate 21, and a top portion or at least one side surface portion of the convex portion of the concavo-convex portion 26. A selective light absorption layer 28 for a polarized wave due to optical anisotropy, which is formed of the formed second inorganic fine particle layer 27, is provided.

図12は、図9の構成を本実施の形態に適用した例である。
偏光素子30Bは、偏光素子30において、一次元格子状の反射層22の直下に反射防止層29が設けられ、さらに反射層22と反射防止層29との間で干渉効果を得る目的で誘電体層2aが設けられている。なお、図12において反射層22下の誘電体層2aは無くてもよく、単に反射層22の下に反射防止層29が形成されていてもよい。また、反射防止層29が無機微粒子層25と同じものである場合はコントラストの向上にも寄与するものとなるが、単に戻り光の反射防止をする目的であれば反射層22の下に反射防止層29として該反射層22よりも反射率が低い層(低反射層)を設けるとよい。低反射材料としては反射層22よりも反射率が低ければ効果があり、カーボンや酸素欠損SiOxなどの酸化膜を使用したり、あるいは金属または半導体微粒子などを用いたりすることも可能である。
FIG. 12 shows an example in which the configuration of FIG. 9 is applied to this embodiment.
In the polarizing element 30B, the anti-reflection layer 29 is provided immediately below the one-dimensional lattice-like reflecting layer 22 in the polarizing element 30, and a dielectric is provided for the purpose of obtaining an interference effect between the reflecting layer 22 and the anti-reflection layer 29. Layer 2a is provided. In FIG. 12, the dielectric layer 2 a below the reflective layer 22 may be omitted, and the antireflection layer 29 may be simply formed below the reflective layer 22. Further, when the antireflection layer 29 is the same as the inorganic fine particle layer 25, it contributes to the improvement of contrast. However, for the purpose of simply preventing the reflection of the return light, the antireflection layer 22 is provided under the reflection layer 22. As the layer 29, a layer having a lower reflectance than the reflective layer 22 (a low reflective layer) may be provided. The low reflection material is effective when the reflectance is lower than that of the reflection layer 22, and an oxide film such as carbon or oxygen deficient SiOx, or metal or semiconductor fine particles can be used.

反射層22の下に反射防止層29及び誘電体層2aを付加する場合、あるいは反射防止層29を反射層22直下に作製する場合、これらの膜を反射層用の膜の成膜前に成膜し反射層22形成のためのエッチングの際に同時にエッチングすると、反射層22の帯状薄膜22a直下にのみこれらの層を形成できるので透過特性に影響を与えないことが可能である。   When the antireflection layer 29 and the dielectric layer 2a are added under the reflection layer 22, or when the antireflection layer 29 is formed directly under the reflection layer 22, these films are formed before forming the film for the reflection layer. When the film is formed and etched simultaneously to form the reflective layer 22, these layers can be formed only immediately below the strip-like thin film 22a of the reflective layer 22, so that the transmission characteristics can be unaffected.

また、第2の実施形態においても必要に応じて、基板表面、裏面に反射防止膜をコートすることで、空気と基板の界面での反射を防止し、透過軸透過率を向上させることができる。反射防止膜としては、一般的に用いられるMgF2などの低屈折率膜や、低屈折率膜と高屈折率膜で構成される多層膜などで構わない。なお、図5あるいは図7に示す構成とした後、その表面にSiO2などの使用帯域で透明な物質を保護膜として偏光特性に影響を与えない範囲の膜厚でコートすることは、耐湿性の向上など信頼性向上に有効である。但し、無機微粒子の光学的特性は周囲の屈折率によっても影響を受けるため、保護膜の形成により偏光特性の変化が生じる場合がある。また入射光に対する反射率は保護膜の光学厚さ(屈折率×保護膜の膜厚)によっても変化するので、保護膜材料とその膜厚は、これらを考慮して選択されるべきである。材料としては屈折率が2以下、消衰係数が零に近い物質が望ましい。このような物質としてSiO2、Al2O3などがある。これらは一般的な真空成膜法(化学気相成長法、スパッタ法、蒸着法など)や、これらが液体中に分散された状態のゾルを、スピンコート法、ディッピング法などで成膜可能である。さらに非特許文献5に記載されているような自己組織化膜も使用可能である。耐湿性向上の目的では撥水性の自己組織化膜が好ましい。Perfluorodecyltrichlorosilane(FDTS)、Octadecanetrichlorosilane(OTS)などがその一例である。撥水性を有するので防汚対策の面からも有効である。これから、薬品メーカー、例えば米国Gelest社より購入可能でありディッピングにより成膜できる。また、気相成長によっても成膜可能で、米国Applied Microstructures社より専用装置も販売されている。なお、このようなシラン系の自己組織化膜の場合には、密着性を向上する目的で、偏光素子上に密着層としてSiO2を上記方法でコートした後に自己組織化膜を堆積させてもよい。   Also in the second embodiment, if necessary, an antireflection film can be coated on the front surface and back surface of the substrate to prevent reflection at the interface between the air and the substrate and improve the transmission axis transmittance. . The antireflection film may be a generally used low refractive index film such as MgF2, or a multilayer film composed of a low refractive index film and a high refractive index film. In addition, after the structure shown in FIG. 5 or FIG. 7 is applied, the surface is coated with a transparent material in a use band such as SiO2 as a protective film in a thickness range that does not affect the polarization characteristics. It is effective for improving reliability such as improvement. However, since the optical characteristics of the inorganic fine particles are also affected by the refractive index of the surroundings, the polarization characteristics may change due to the formation of the protective film. Moreover, since the reflectance with respect to incident light changes also with the optical thickness (refractive index x protective film thickness) of the protective film, the protective film material and the film thickness should be selected in consideration of these. As a material, a material having a refractive index of 2 or less and an extinction coefficient close to zero is desirable. Such materials include SiO2, Al2O3 and the like. These can be formed by a general vacuum film-forming method (chemical vapor deposition, sputtering, vapor deposition, etc.) or a sol in which these are dispersed in a liquid by spin coating or dipping. is there. Furthermore, a self-assembled film as described in Non-Patent Document 5 can also be used. For the purpose of improving moisture resistance, a water-repellent self-assembled film is preferable. Examples are perfluorodecyltrichlorosilane (FDTS) and Octadecanetrichlorosilane (OTS). Since it has water repellency, it is also effective in terms of antifouling measures. From now on, it can be purchased from a chemical manufacturer, for example, Gelest, USA, and can be formed by dipping. Films can also be formed by vapor deposition, and dedicated equipment is also sold by Applied Microstructures, USA. In the case of such a silane-based self-assembled film, for the purpose of improving adhesion, the self-assembled film may be deposited after coating SiO 2 as an adhesion layer on the polarizing element by the above method. .

つぎに、本発明に係る液晶プロジェクターについて説明する。
本発明の液晶プロジェクターは、光源となるランプと、液晶パネルと、前述した本発明の偏光素子10,20,20A,20B,30,30A,30Bのいずれかとを備えるものである。
Next, a liquid crystal projector according to the present invention will be described.
The liquid crystal projector of the present invention includes a lamp serving as a light source, a liquid crystal panel, and any one of the polarizing elements 10, 20, 20A, 20B, 30, 30A, and 30B of the present invention described above.

図13に、本発明に係る液晶プロジェクターの光学エンジン部分の構成例を示す。
液晶プロジェクター100の光学エンジン部分は、赤色光LRに対する入射側偏光素子10A、液晶パネル50、出射プリ偏光素子10B、出射メイン偏光素子10Cと、緑色光LGに対する入射側偏光素子10A、液晶パネル50、出射プリ偏光素子10B、出射メイン偏光素子10Cと、青色光LBに対する入射側偏光素子10A、液晶パネル50、出射プリ偏光素子10B、出射メイン偏光素子10Cと、それぞれの出射メイン偏光素子10Cから出てくる光を合成し投射レンズに出射するクロスダイクロプリズム60とを備えている。ここで、本発明の偏光素子10,20,30は、入射側偏光素子10A、出射プリ偏光素子10B、出射メイン偏光素子10Cそれぞれに適用されている。
FIG. 13 shows a configuration example of the optical engine portion of the liquid crystal projector according to the present invention.
The optical engine portion of the liquid crystal projector 100 includes an incident side polarizing element 10A for the red light LR, a liquid crystal panel 50, an outgoing pre-polarizing element 10B, an outgoing main polarizing element 10C, and an incident side polarizing element 10A for the green light LG, the liquid crystal panel 50, Outgoing pre-polarizing element 10B, outgoing main polarizing element 10C, incident side polarizing element 10A for blue light LB, liquid crystal panel 50, outgoing pre-polarizing element 10B, outgoing main polarizing element 10C, and outgoing main polarizing element 10C And a cross dichroic prism 60 for synthesizing the incoming light and emitting it to the projection lens. Here, the polarizing elements 10, 20, and 30 of the present invention are applied to the incident side polarizing element 10A, the outgoing pre-polarizing element 10B, and the outgoing main polarizing element 10C, respectively.

本発明の液晶プロジェクター100では、光源ランプ(不図示)から出射される光をダイクロイックミラー(不図示)により赤色光LR、緑色光LG、青色光LBに分離し、それぞれの光に対応する入射側偏光素子10Aに入射させ、ついでそれぞれの入射側偏光素子10Aで偏光された光LR、LG、LBは液晶パネル50にて空間変調されて出射され、出射プリ偏光素子10B、出射メイン偏光素子10Cを通過した後、クロスダイクロプリズム60にて合成されて投射レンズ(不図示)から投射される構成となっている。光源ランプは高出力のものであっても、強い光に対して優れた耐光特性をもつ本発明の偏光素子10,20,30を用いているため、信頼性の高い液晶プロジェクターを実現することができる。   In the liquid crystal projector 100 of the present invention, light emitted from a light source lamp (not shown) is separated into red light LR, green light LG, and blue light LB by a dichroic mirror (not shown), and incident sides corresponding to the respective lights. Lights LR, LG, and LB that are incident on the polarizing element 10A and then polarized by the respective incident-side polarizing elements 10A are spatially modulated by the liquid crystal panel 50 and emitted, and the outgoing pre-polarizing element 10B and the outgoing main polarizing element 10C are output. After passing, it is composed by the cross dichroic prism 60 and projected from a projection lens (not shown). Even if the light source lamp has a high output, since the polarizing elements 10, 20, and 30 of the present invention having excellent light resistance against strong light are used, a highly reliable liquid crystal projector can be realized. it can.

なお、本発明の偏光素子は、前記液晶プロジェクターへの適用に限定されるわけではなく、使用環境として熱を受ける偏光素子として好適である。例えば、自動車のカーナビやインパネの液晶ディスプレイの偏光素子として適用することができる。   The polarizing element of the present invention is not limited to application to the liquid crystal projector, but is suitable as a polarizing element that receives heat as a use environment. For example, the present invention can be applied as a polarizing element for a car navigation system of an automobile or a liquid crystal display of an instrument panel.

以下に、本発明に係る偏光素子における偏光特性を検証した結果を示す。
(実施例1)
まず、図4の斜めスパッタ成膜によって形成した無機微粒子層の光学特性について検証を行った。
図14にこのような斜めイオンビームスパッタによる光学異方性増強効果の実験結果を示す。図14Aに示すように、イオンビームスパッタ法によりガラス基板41の表面に対して10°方向で、基板41を静止状態でGeスパッタ粒子を入射、堆積させてGe粒子膜44を作製した。図14Bは、作製したGe粒子膜44の光学定数(屈折率、消衰定数)の測定結果を示している。測定は分光エリプソメーターにより行った。この時の膜厚は10nmである。この実験では光学異方性が生じたことにより、面内で光学定数すなわち屈折率n及び消衰定数kに違いがあった。なお、比較のために、図15Aに示すように基板41の垂直方向から基板41を回転させながらGeスパッタ粒子を成膜したところ、得られたGe粒子膜44の光学定数として、図15Bに示すように屈折率n及び消衰定数kの光学異方性は生じておらず、各光学定数は文献値に近い値であった。
Below, the result of having verified the polarization characteristic in the polarizing element which concerns on this invention is shown.
Example 1
First, the optical characteristics of the inorganic fine particle layer formed by the oblique sputtering film formation of FIG. 4 were verified.
FIG. 14 shows the experimental results of the optical anisotropy enhancement effect by such oblique ion beam sputtering. As shown in FIG. 14A, a Ge particle film 44 was produced by allowing Ge sputtered particles to be incident and deposited in a 10 ° direction with respect to the surface of the glass substrate 41 in a stationary state by ion beam sputtering. FIG. 14B shows the measurement results of the optical constants (refractive index, extinction constant) of the manufactured Ge particle film 44. The measurement was performed with a spectroscopic ellipsometer. The film thickness at this time is 10 nm. In this experiment, due to the occurrence of optical anisotropy, the optical constant, that is, the refractive index n and the extinction constant k were different in the plane. For comparison, when Ge sputtered particles were formed while rotating the substrate 41 from the direction perpendicular to the substrate 41 as shown in FIG. 15A, the optical constant of the obtained Ge particle film 44 is shown in FIG. 15B. Thus, the optical anisotropy of the refractive index n and the extinction constant k did not occur, and each optical constant was a value close to the literature value.

また、ターゲット2の組成をGeからSiに変え、前記Geスパッタ成膜の場合と同じ条件でガラス基板41上にSi粒子膜を形成し、その光学定数の測定を行った。その結果を図16に示す。
Siの場合も、ガラス基板41の表面に対して10°方向で斜めスパッタ成膜した場合(図16A)には、光学異方性が生じたことにより、面内で光学定数すなわち屈折率n及び消衰定数kに違いが認められた。また、基板41の垂直方向から基板41を回転させながらスパッタ成膜した場合(図16B)には屈折率n及び消衰定数kの光学異方性は生じていなかった。
Further, the composition of the target 2 was changed from Ge to Si, an Si particle film was formed on the glass substrate 41 under the same conditions as in the Ge sputtering film formation, and the optical constants were measured. The result is shown in FIG.
Also in the case of Si, when the oblique sputtering film formation is performed in the direction of 10 ° with respect to the surface of the glass substrate 41 (FIG. 16A), optical anisotropy occurs, so that the optical constant, that is, the refractive index n and A difference was observed in the extinction constant k. Further, when the sputter film was formed while rotating the substrate 41 from the vertical direction of the substrate 41 (FIG. 16B), the optical anisotropy of the refractive index n and the extinction constant k did not occur.

つぎに、図14Aの条件にてガラス基板41上に膜厚20nmのGe粒子膜44が形成されている場合の偏光透過率をシミュレーション計算により求めた。その結果を図17に示す。ここでは、X軸方向に平行に電場が振動している光にはX軸方向の光学定数を用い、Y軸方向に電場が振動している光にはY軸方向の光学定数を用いて偏光透過率の計算を行っている。その結果によると、光学異方性特性を持つことにより偏光方向で透過率が異なるようになっている。すなわち、このような光学異方性を有する膜を偏光素子の材料として用いることで、偏光素子の特性向上が期待できる。   Next, the polarization transmittance in the case where a 20 nm-thick Ge particle film 44 is formed on the glass substrate 41 under the conditions of FIG. 14A was obtained by simulation calculation. The result is shown in FIG. Here, an optical constant in the X-axis direction is used for light whose electric field is oscillating parallel to the X-axis direction, and polarization is performed using an optical constant in the Y-axis direction for light whose electric field is oscillating in the Y-axis direction. The transmittance is calculated. According to the result, the transmittance varies depending on the polarization direction due to the optical anisotropic characteristics. That is, by using a film having such an optical anisotropy as a material for a polarizing element, an improvement in the characteristics of the polarizing element can be expected.

(実施例2)
つぎに、無機微粒子層の光学異方性の有無が偏光素子に与える影響を調べた。具体的には、図1及び図5の偏光素子の構成を前提として、波長厳密結合波解析(RCWA)によりその偏光特性を求めた。ここでは、図18に示すように、ガラス基板41上にワイヤグリッド構造のGeからなる無機微粒子層45を有する構成として、無機微粒子層45の各寸法を、ピッチ:150nm、ライン幅(Ge格子方向幅):37.5nmとし、無機微粒子層45が光学異方性有りの場合(図14Aの方法)の厚みを100nm、光学異方性無しの場合(図15Aの方法)の厚みを10nmとして計算を行った。その結果を図19に示す。
(Example 2)
Next, the influence of the optical anisotropy of the inorganic fine particle layer on the polarizing element was examined. Specifically, on the premise of the configuration of the polarizing element of FIG. 1 and FIG. 5, the polarization characteristics were obtained by wavelength rigorous coupled wave analysis (RCWA). Here, as shown in FIG. 18, the inorganic fine particle layer 45 made of Ge having a wire grid structure is provided on a glass substrate 41, and each dimension of the inorganic fine particle layer 45 is set to a pitch of 150 nm and a line width (Ge lattice direction). Width): 37.5 nm, thickness calculated when the inorganic fine particle layer 45 has optical anisotropy (method of FIG. 14A) is 100 nm, and thickness without optical anisotropy (method of FIG. 15A) is 10 nm. Went. The result is shown in FIG.

図19では、プロジェクター等の光学エンジン用途で重要な可視域550nm以下(すなわち、緑、青色域)で光学異方性が無い(バルクと記載の点線で示すデータ)は光学異方性有り(斜めと記載の実線で示すデータ)と比べ、膜厚が薄いにもかかわらず吸収軸透過率が高くまた反射率も高い。これに対して、光学異方性有りの方は吸収軸透過率が低く反射率も低い。よって吸収型として好ましい特性となっている。膜厚に関して、この計算では光学異方性無しは10nmとしている。これを厚くすれば吸収軸透過率は減少するが、同時に反射率も高くなってしまう。よって光学異方性を有する場合のような偏光素子として好ましい特性は膜厚操作によって得ることはできない。   In FIG. 19, there is no optical anisotropy in the visible region of 550 nm or less (that is, green or blue region), which is important for optical engine applications such as projectors (data indicated by a dotted line described as “bulk”). Compared with the data indicated by the solid line), the absorption axis transmittance is high and the reflectance is high even though the film thickness is small. On the other hand, those with optical anisotropy have low absorption axis transmittance and low reflectance. Therefore, it is a characteristic preferable as an absorption type. Regarding the film thickness, in this calculation, no optical anisotropy is 10 nm. Increasing the thickness reduces the absorption axis transmittance, but at the same time increases the reflectance. Therefore, characteristics preferable as a polarizing element having optical anisotropy cannot be obtained by film thickness manipulation.

(実施例3)
図19は、無機微粒子層が単層の場合の実施例であったが、このようなことは図10に示した無機微粒子層が多層構造の偏光素子についても同様なことがいえる。
ここでは、多層構造の偏光素子においてGeからなる無機微粒子層を図14Aで示した方法により光学異方性有りとした場合の偏光特性と図15Aで示した方法により光学異方性無しとした場合の偏光特性を波長厳密結合波解析(RCWA)で計算した。また、ここで用いた多層構造は、基板側からGe(15nm)/反射層;Al(240nm)/誘電体層;SiO2(205nm)/無機微粒子層;Ge(90nm)(表面側)の多層構造(かっこ内は各層の膜厚)とし、無機微粒子層の各寸法を、ピッチ:150nm、ライン幅(Ge格子方向幅):37.5nmとした。なお、偏光素子出射面への戻り光の再反射による迷光の影響を抑えるために、反射層より基板側にGe層を設けている。計算の結果を図20に示す。
単層の場合(図19)と同様に光学異方性が無い場合(等方と記載の点線で示すデータ)には、可視域550nm以下で光学異方性が有る場合(異方と記載の実線で示すデータ)よりも吸収軸の反射率が高く透過軸の透過率が低いという結果となる。よって吸収型偏光素子としては好ましくない。以上のように光学異方性が偏光素子の偏光特性に与える効果は大きい。
(Example 3)
FIG. 19 shows an example in which the inorganic fine particle layer is a single layer, but this is also true for the polarizing element having the multilayer structure of the inorganic fine particle layer shown in FIG.
Here, in the polarizing element having a multilayer structure, when the inorganic fine particle layer made of Ge has optical anisotropy by the method shown in FIG. 14A and when there is no optical anisotropy by the method shown in FIG. 15A The polarization characteristics were calculated by wavelength rigorous coupled wave analysis (RCWA). The multilayer structure used here is a multilayer structure of Ge (15 nm) / reflective layer; Al (240 nm) / dielectric layer; SiO2 (205 nm) / inorganic fine particle layer; Ge (90 nm) (surface side) from the substrate side. (The thickness in parentheses is the thickness of each layer), and the dimensions of the inorganic fine particle layer were set to pitch: 150 nm, line width (Ge lattice direction width): 37.5 nm. Note that a Ge layer is provided on the substrate side of the reflective layer in order to suppress the influence of stray light due to re-reflection of the return light to the output surface of the polarizing element. The result of the calculation is shown in FIG.
As in the case of a single layer (FIG. 19), when there is no optical anisotropy (data indicated by a dotted line described as isotropic), there is optical anisotropy in a visible region of 550 nm or less (described as anisotropic). As a result, the reflectance of the absorption axis is higher and the transmittance of the transmission axis is lower than the data indicated by the solid line. Therefore, it is not preferable as an absorption type polarizing element. As described above, the optical anisotropy has a great effect on the polarization characteristics of the polarizing element.

(実施例4)
以上のように光学異方性を有する無機微粒子層を偏光素子に用いる事で偏光特性の向上が可能となる。そして、好ましくは無機微粒子層の光学定数が(透過軸方向光学定数)<(吸収軸方向光学定数)、すなわち(透過軸方向屈折率)<(吸収軸方向屈折率)及び(透過軸方向消衰係数)<(吸収軸方向消衰係数)の関係を満足していることが肝要である。これを示す実施例を図21、図22に示す。
図21は、図5の構造の偏光素子のうち、無機微粒子層25としてAgを斜めスパッタ成膜法により形成した場合のAg膜(無機微粒子層25)の光学定数を示すものである。この場合もGeのように光学異方性を有することがわかる。しかしながら、波長550nm付近でX,Y方向の屈折率の大小が反転、波長440nm付近でX,Y方向の消衰係数が反転している。
図22は、図17と同様にして、図21に示すAg膜(無機微粒子層25)の光学定数によりAg膜厚が20nmの場合の偏光透過率を計算した結果である。低波長域になるに従い偏光透過率が低下していき、波長450nm付近で、x、y方向透過率の大小が反転している。これは図21の光学定数の反転によるものであり、偏光素子に応用する場合にはこのような反転特性を持つ事は偏光透過率の低下を意味するので好ましくない。また、吸収軸では消衰係数大なら吸収率大であり、また透過軸では空気層から入射した光が減衰や反射されずに透過することが望ましい、すなわち屈折率が小さい方が望ましい(空気の屈折率=1のため)。よって、望ましい無機微粒子層の光学定数としては使用帯域で光学定数の反転が無く、かつ(透過軸方向光学定数)<(吸収軸方向光学定数)、すなわち、(透過軸方向屈折率)<(吸収軸方向屈折率)及び(透過軸方向消衰係数)<(吸収軸方向消衰係数)の関係を満足していることである。
Example 4
As described above, the use of the inorganic fine particle layer having optical anisotropy for the polarizing element can improve the polarization characteristics. Preferably, the optical constant of the inorganic fine particle layer is (transmission axis direction optical constant) <(absorption axis direction optical constant), that is, (transmission axis direction refractive index) <(absorption axis direction refractive index) and (transmission axis direction extinction). It is important that the relationship of (coefficient) <(absorption coefficient in the absorption axis direction) is satisfied. Examples showing this are shown in FIGS.
FIG. 21 shows the optical constants of the Ag film (inorganic fine particle layer 25) when Ag is formed as the inorganic fine particle layer 25 by the oblique sputtering film forming method in the polarizing element having the structure of FIG. Also in this case, it can be seen that it has optical anisotropy like Ge. However, the magnitudes of the refractive indexes in the X and Y directions are inverted near the wavelength of 550 nm, and the extinction coefficients in the X and Y directions are inverted near the wavelength of 440 nm.
FIG. 22 shows the result of calculating the polarization transmittance when the Ag film thickness is 20 nm based on the optical constants of the Ag film (inorganic fine particle layer 25) shown in FIG. The polarization transmittance decreases as the wavelength decreases, and the transmittance in the x and y directions is reversed around the wavelength of 450 nm. This is due to the inversion of the optical constant in FIG. 21. When applied to a polarizing element, having such inversion characteristics is not preferable because it means a decrease in the polarization transmittance. Further, if the extinction coefficient is large on the absorption axis, the absorptance is large. On the transmission axis, it is desirable that light incident from the air layer is transmitted without being attenuated or reflected. (Because refractive index = 1). Therefore, as the optical constant of the desired inorganic fine particle layer, there is no inversion of the optical constant in the use band, and (transmission axis direction optical constant) <(absorption axis direction optical constant), that is, (transmission axis direction refractive index) <(absorption That is, the relationship of “axial refractive index” and (transmission axis direction extinction coefficient) <(absorption axis direction extinction coefficient) is satisfied.

(実施例5)
つぎに、本発明の偏光素子における光学異方性発現と無機微粒子との関係について調査を行った。
(1)平板上の無機微粒子層
まず、単結晶Si基板の表面にSiO2を10nm成膜した表面が平滑な基板を用いて、実施例1と同じ条件(斜めスパッタ成膜、基板面に対して垂直方向からスパッタ成膜)でGe粒子膜を形成し、AFM(原子間力顕微鏡)により該Ge微粒子膜におけるGe微粒子の形状を観察した。その結果を図23に示す。
図23(a)に示す、斜めスパッタ成膜サンプルでは個々の微粒子が明確に観察され、該微粒子にはGe入射方向に対して垂直方向に径が長く、Ge入射方向に径が短い形状異方性が生じていた。これに対して、図23(b)に示す、基板面に対して垂直方向からスパッタ成膜したサンプルでは、同じ倍率では粒子サイズが非常に小さく非常に平坦な膜表面になっているために微粒子形状が観察できなかった。
(Example 5)
Next, the relationship between the optical anisotropy expression and the inorganic fine particles in the polarizing element of the present invention was investigated.
(1) Inorganic fine particle layer on flat plate First, using a substrate having a smooth surface with a SiO2 film of 10 nm on the surface of a single crystal Si substrate, the same conditions as in Example 1 (oblique sputtering film formation, with respect to the substrate surface) A Ge particle film was formed by sputtering from the vertical direction), and the shape of Ge fine particles in the Ge fine particle film was observed by AFM (atomic force microscope). The result is shown in FIG.
In the oblique sputter deposition sample shown in FIG. 23A, individual fine particles are clearly observed, and the fine particles are anisotropic in shape having a diameter that is long in the direction perpendicular to the Ge incident direction and short in the Ge incident direction. Sex was occurring. On the other hand, in the sample sputter-deposited from the direction perpendicular to the substrate surface shown in FIG. 23 (b), the particle size is very small at the same magnification, and the surface is very flat. The shape could not be observed.

(2)偏光素子10
つぎに、図3(c)に示す構成の偏光素子のサンプルを作製した。ここでは、まず水晶基板に塗布したポリマー層(Micro Resist Technology社製mr-I 8010E)を一次格子パターン(ピッチ150nm、ライン/スペース比=0.7、深さ150nm)のモールドで熱式ナノインプリント法によりプレス成形してモールドパターンをポリマー層に転写し、ついで該ポリマー層をレジストマスクとしてCF4ガス+Arガスにより水晶基板をエッチングして、一方向に延びた凸部17aが一定間隔に設けられた基板11とした。ついで、図4のイオンビームスパッタ装置により、常温の基板11に基板傾斜角θ=5°として実施例1の斜めスパッタ成膜を行ってGeからなる膜厚30nmの無機微粒子層15を形成した後、SiO2からなる膜厚15nmの偏光素子保護層を気相成長法により成膜してサンプルとした。なお、基板11の裏面側には反射防止膜としてSiO2/Ta2O5の多層膜をスパッタリングにより形成した。得られた偏光素子サンプルの偏光特性を調査した。その結果、図24に示すように、吸収軸の透過率が透過軸の透過率よりも低い光学異方性を示した。
(2) Polarizing element 10
Next, a sample of a polarizing element having the configuration shown in FIG. Here, a thermal nanoimprint method is first performed by molding a polymer layer (mr-I 8010E manufactured by Micro Resist Technology) on a quartz substrate with a mold having a primary lattice pattern (pitch 150 nm, line / space ratio = 0.7, depth 150 nm). The mold pattern is transferred to the polymer layer by press molding, and then the quartz substrate is etched with CF4 gas + Ar gas using the polymer layer as a resist mask, and the convex portions 17a extending in one direction are provided at regular intervals. It was set to 11. Next, after forming the inorganic fine particle layer 15 of Ge having a thickness of 30 nm by performing the oblique sputtering film formation of Example 1 on the substrate 11 at room temperature with the substrate inclination angle θ = 5 ° by the ion beam sputtering apparatus of FIG. A polarizing element protective layer made of SiO 2 and having a thickness of 15 nm was formed by vapor deposition to prepare a sample. A multilayer film of SiO 2 / Ta 2 O 5 was formed on the back side of the substrate 11 as an antireflection film by sputtering. The polarization characteristics of the obtained polarizing element samples were investigated. As a result, as shown in FIG. 24, the optical anisotropy of the transmittance of the absorption axis was lower than the transmittance of the transmission axis.

この偏光素子サンプルについて、断面よりTEMによる元素分布を分析したところ、図25の元素分布マッピングに示すように、Siが主成分の基板の凸部17aそれぞれの頂部から側壁にかけてGeからなる無機粒子層15が形成されていることがわかった。この結果に基づき、当該偏光素子サンプルにおける無機微粒子層15を詳細に観察した。その結果を図26に示す。図26(a)は、断面から観察したときのスケッチであり、図25の元素分布結果を加味したものである。また、図26(b)は上から観察したときのスケッチである。   When the element distribution by TEM was analyzed from the cross section of this polarizing element sample, as shown in the element distribution mapping of FIG. 25, the inorganic particle layer made of Ge from the top part to the side wall of each convex part 17a of the Si-based substrate. It was found that 15 was formed. Based on this result, the inorganic fine particle layer 15 in the polarizing element sample was observed in detail. The result is shown in FIG. FIG. 26A is a sketch when observed from a cross section, and takes into account the element distribution result of FIG. FIG. 26B is a sketch when observed from above.

図26(b)に示すように、一次格子状の凸部17aそれぞれの頂部から側壁部にかけて凸部17aの長手方向に沿う態様で、無機微粒子層15が形成されており、また無機微粒子層15は形状異方性を有する無機微粒子15aが連なって配列して構成された線あるいは帯として観察された。また無機微粒子15aは個々の粒子が明確に観察され、該無機微粒子の長軸方向が配列方向となり、短軸方向が配列方向と直交する方向となっている状態が観察された。   As shown in FIG. 26 (b), the inorganic fine particle layer 15 is formed in a mode along the longitudinal direction of the convex portion 17a from the top portion to the side wall portion of each convex portion 17a in the primary lattice shape, and the inorganic fine particle layer 15 is formed. Was observed as a line or band composed of a series of inorganic fine particles 15a having shape anisotropy. In addition, individual particles of the inorganic fine particles 15a were clearly observed, and a state in which the major axis direction of the inorganic fine particles was the arrangement direction and the minor axis direction was a direction orthogonal to the arrangement direction was observed.

また、図25のGe部分について電子線回折像を調べたところ、図27に示すように、明確な輝線が認められないことから、無機微粒子層15を構成するGe微粒子15aの結晶構造はアモルファスであることが分かった。アモルファスであるということは、成膜されたGe微粒子は結晶学的な方位を持っていないということである。なお一般に、低温成膜されたGe膜の構造はアモルファス状態になりやすいことが知られている(DUBEY M,MCLANE G F,JONES K A,LAREAU R T,ECKART D W,HAN W Y,ROBERTS C,DUNKEL J,WEST L C, Mat. Res. Soc. Symp. Proc. Vol.340. 411-416(1994))。   Further, when an electron diffraction image of the Ge portion in FIG. 25 was examined, no clear emission line was observed as shown in FIG. 27. Therefore, the crystal structure of the Ge fine particles 15a constituting the inorganic fine particle layer 15 was amorphous. I found out. Being amorphous means that the deposited Ge microparticles have no crystallographic orientation. In general, it is known that the structure of Ge film formed at low temperature tends to be in an amorphous state (DUBEY M, MCLANE GF, JONES KA, LAREAU RT, ECKART DW, HAN WY, ROBERTS C, DUNKEL J, WEST. LC, Mat. Res. Soc. Symp. Proc. Vol. 340. 411-416 (1994)).

(3)偏光素子20
つぎに、図5に示す構成の偏光素子のサンプルを作製した。ここでは、ガラス(コーニング1737)製の基板21上に、反射層22としてピッチ150nm、格子深さ200nmのアルミニウム格子を作製し、その上に誘電体層23としてSiO2を30nmを形成し、ついで本実施例の偏光素子10と同じ条件で斜めスパッタ成膜を行って無機微粒子層25としてGe微粒子層を30nm積層し、最表層に保護膜として膜厚30nmのSiO2を形成して、図5に示す偏光素子サンプルを作製した。図28に、その偏光素子サンプルの偏光特性を示す。吸収軸の透過率がほぼゼロとなり、また反射率も低い値になっている。また、図29に、この場合の透過率の比をコントラストとして示すが、透過コントラストが550nm域を中心とする緑域では3000以上、450nm付近の青域を含む可視光全域では1500以上となっており、偏光素子として良好な特性を示していた。
(3) Polarizing element 20
Next, a sample of a polarizing element having the configuration shown in FIG. 5 was produced. Here, an aluminum grating having a pitch of 150 nm and a grating depth of 200 nm is formed on the substrate 21 made of glass (Corning 1737) as the reflective layer 22, and SiO 2 of 30 nm is formed thereon as the dielectric layer 23. As shown in FIG. 5, oblique sputtering film formation is performed under the same conditions as in the polarizing element 10 of the example, and a Ge fine particle layer is deposited as an inorganic fine particle layer 25 with a thickness of 30 nm. A polarizing element sample was produced. FIG. 28 shows the polarization characteristics of the polarizing element sample. The transmittance of the absorption axis is almost zero, and the reflectance is also low. FIG. 29 shows the transmittance ratio in this case as contrast. The transmission contrast is 3000 or more in the green region centered on the 550 nm region, and 1500 or more in the entire visible light region including the blue region near 450 nm. As a result, it showed good characteristics as a polarizing element.

この偏光素子サンプルについて、断面より観察したところ、図30(a)のスケッチに示すように、基板21上に設けられた一次格子状の反射層22及び誘電体層23それぞれの頂部から側壁にかけてGeからなる無機粒子層25が形成されていることがわかった。   When this polarizing element sample was observed from the cross section, as shown in the sketch of FIG. 30 (a), the primary lattice-like reflective layer 22 and dielectric layer 23 provided on the substrate 21 were respectively covered with Ge from the top to the side wall. It turned out that the inorganic particle layer 25 which consists of is formed.

また、図30(b)及び図31に、この偏光素子サンプルを上から観察した結果を示す。図30(b)はスケッチであり、図31はその基となるSEM像である。
一次格子状の誘電体層23それぞれの頂部から側壁部にかけて誘電体層23の長手方向に沿う態様で、無機微粒子層25が形成されており、また無機微粒子層25は形状異方性を有する無機微粒子25aが連なって配列して構成された線あるいは帯として観察された。また無機微粒子25aは、該無機微粒子の長軸方向が配列方向となり、短軸方向が配列方向と直交する方向となっている状態が観察された。
Moreover, the result of having observed this polarizing element sample from the top in FIG.30 (b) and FIG.31 is shown. FIG. 30B is a sketch, and FIG. 31 is an SEM image as a basis.
The inorganic fine particle layer 25 is formed in a mode along the longitudinal direction of the dielectric layer 23 from the top portion to the side wall portion of each of the primary lattice-like dielectric layers 23, and the inorganic fine particle layer 25 is an inorganic material having shape anisotropy. The fine particles 25a were observed as a line or a band composed of a continuous array. Further, in the inorganic fine particles 25a, it was observed that the long axis direction of the inorganic fine particles was the arrangement direction, and the short axis direction was the direction orthogonal to the arrangement direction.

以上の結果から、本発明の偏光素子における無機微粒子は斜めスパッタ成膜により形状異方性を有し、かつ該無機微粒子が一次元格子状に配列された際にその長軸方向が一次元格子の格子方向に揃えられた状態で形成されている。またアモルファスの状態にある。本発明ではこれらのことが光学異方性の発現に影響していると考えられる。なお、斜め蒸着によって形状異方性をもつ微粒子が成膜されるが、この形状異方性を示すことはステアリング効果(Steering Effect)と呼ばれている(Jikeun Seo, S.-M. Kwon, H.-Y. Kim and J.-S. Kim Phys. Rev. B67 121402(2003))。   From the above results, the inorganic fine particles in the polarizing element of the present invention have shape anisotropy by oblique sputtering film formation, and when the inorganic fine particles are arranged in a one-dimensional lattice, the long axis direction is a one-dimensional lattice. Are aligned in the lattice direction. It is in an amorphous state. In the present invention, these are considered to influence the expression of optical anisotropy. Fine particles with shape anisotropy are formed by oblique deposition, and this shape anisotropy is called the Steering Effect (Jikeun Seo, S.-M. Kwon, H.-Y. Kim and J.-S. Kim Phys. Rev. B67 121402 (2003)).

なお、斜めスパッタ成膜では、図32に示すように、膜厚(無機微粒子の成長方向の厚さ)とともに成膜粒子の形状が変化し、光学異方性に影響する。すなわち、無機微粒子の膜厚bが粒子の長径aよりも小さい場合(図32A)、基板面上の2方向(X,Y方向)で光学異方性を持ち、粒子長径aの方向が吸収軸となる。これに対して、無機微粒子の膜厚bが粒子の長径aよりも大きい場合(図32B)、無機微粒子の厚み方向と面内の軸方向で光学異方性を持ち、粒子膜厚bの方向が吸収軸となることから、図32Aと図32Bとでは光学異方性の方向が実質的に逆転することになる。本発明の偏光素子10,20では、格子方向を吸収軸として使用するので、膜厚が厚いと偏光特性が低下する事を意味する。よって、図32Aのように(粒子長径a)>(粒子膜厚b)の関係となる領域で使用する事が望ましい。   In the oblique sputtering film formation, as shown in FIG. 32, the shape of the film formation particles changes with the film thickness (thickness in the growth direction of the inorganic fine particles), which affects the optical anisotropy. That is, when the film thickness b of the inorganic fine particles is smaller than the major axis a of the particles (FIG. 32A), it has optical anisotropy in two directions (X and Y directions) on the substrate surface, and the direction of the major axis a is the absorption axis. It becomes. On the other hand, when the film thickness b of the inorganic fine particles is larger than the major axis a of the particles (FIG. 32B), it has optical anisotropy in the thickness direction of the inorganic fine particles and the in-plane axial direction. Becomes the absorption axis, the direction of optical anisotropy is substantially reversed in FIGS. 32A and 32B. In the polarizing elements 10 and 20 of the present invention, since the grating direction is used as the absorption axis, a thick film means that the polarization characteristics deteriorate. Therefore, as shown in FIG. 32A, it is desirable to use in a region where the relationship (particle long diameter a)> (particle film thickness b) is satisfied.

ところで、光学異方性をもたない薄膜(例えばゲルマニウム薄膜)を無機微粒子層25の代わりに誘電層23上に形成しても、その膜厚を最適化することにより吸収軸方向の反射率の抑制は可能である。しかしこの場合には、抑制は干渉効果が支配的なために、波長帯域が狭く、透過軸方向の吸収があるために透過軸透過率が減少するという問題がある。さらに干渉効果は膜厚に敏感なので、所望の特性を得るためには、厳密な誘電体層23の膜厚、ゲルマニウム薄膜の膜厚の制御が必要である。これに対し本発明では、光学異方性をもったゲルマニウム微粒子を用いるので、設計範囲が広く、製造も容易である。   By the way, even if a thin film having no optical anisotropy (for example, a germanium thin film) is formed on the dielectric layer 23 instead of the inorganic fine particle layer 25, the reflectivity in the absorption axis direction can be improved by optimizing the film thickness. Suppression is possible. However, in this case, since the interference effect is dominant in the suppression, there is a problem that the transmission band transmittance decreases because the wavelength band is narrow and there is absorption in the transmission axis direction. Furthermore, since the interference effect is sensitive to the film thickness, in order to obtain desired characteristics, it is necessary to strictly control the film thickness of the dielectric layer 23 and the film thickness of the germanium thin film. On the other hand, in the present invention, germanium fine particles having optical anisotropy are used, so that the design range is wide and the manufacture is easy.

そこで、波長厳密結合波解析(RCWA)法により、偏光素子20における無機微粒子層25が薄膜である場合と微粒子である場合とによる光学特性の違いをシミュレーションした。ここでは、反射層22について膜厚(アルミ厚):200nm,格子ピッチ:150nm,アルミ幅:45nmとし、誘電体層23について膜厚(SiO2):30nmとして、Ge薄膜とGe微粒子の膜厚に対する波長450nmにおける吸収軸反射率、透過軸透過率、透過コントラストの依存性を計算した。またGe薄膜の光学定数は、図15Bの値を使い、Ge微粒子の光学定数は、格子に成膜された場合の異方性増大を考慮するため、図33に示すモデルにて、入射光の波長よりも十分に小さい微粒子が誘電体層中に軸方向をそろえて分布していると仮定して計算で求めた。さらに誘電体層23中のGeの体積率は0.4、アスペクト比は20として計算した。
その結果を図34に示す。図34(a)が吸収軸反射率、図34(b)が透過軸透過率、図34(c)が透過コントラストの結果である。Ge微粒子の場合の方がGe薄膜の場合よりも、コントラストが同程度で、さらに透過率が高く、かつ反射率を軽減できる膜厚範囲が広いことがわかる。
Therefore, a difference in optical characteristics between the case where the inorganic fine particle layer 25 in the polarizing element 20 is a thin film and the case of fine particles was simulated by a wavelength strict coupling wave analysis (RCWA) method. Here, the reflection layer 22 has a film thickness (aluminum thickness): 200 nm, a lattice pitch: 150 nm, and an aluminum width: 45 nm, and the dielectric layer 23 has a film thickness (SiO2): 30 nm. The dependence of absorption axis reflectance, transmission axis transmittance, and transmission contrast at a wavelength of 450 nm was calculated. In addition, the optical constant of the Ge thin film uses the value of FIG. 15B, and the optical constant of the Ge fine particle takes into account the increase in anisotropy when it is formed on the lattice. The calculation was performed on the assumption that fine particles sufficiently smaller than the wavelength were distributed in the dielectric layer with the axial direction aligned. Further, the volume ratio of Ge in the dielectric layer 23 was calculated as 0.4 and the aspect ratio was 20.
The result is shown in FIG. FIG. 34A shows the absorption axis reflectance, FIG. 34B shows the transmission axis transmittance, and FIG. 34C shows the transmission contrast. It can be seen that the Ge fine particles have the same contrast, higher transmittance, and wider film thickness range in which the reflectance can be reduced than the Ge thin film.

(実施例6)
つぎに、無機微粒子のアスペクト比と偏光素子におけるコントラストとの関係を調べた。
(1)平板上への斜めスパッタ成膜
まず図4のイオンビームスパッタ装置を用いて、基板傾斜角θ=20,10°と変化させて、平坦なSi基板上に膜厚30nmのGe微粒子層を形成し、得られたサンプルをSEMで観察し、SEM像中の任意のGe微粒子40個を抽出し、そのサイズ(長径(長軸長さ)、短径(短軸長さ))を測定してアスペクト比を求めた。
図35に、その結果をアスペクト比のヒストグラムとして示す。ヒストグラムの分布として、図35(a)(基板傾斜角θ=20°)よりも図35(b)(基板傾斜角θ=10°)の方がよりアスペクト比が大きくなるほうに分布がシフトする傾向が見られた。また、このときのGe微粒子の長軸長さの平均値は、基板傾斜角θ=20°のときが30nm、基板傾斜角θ=10°のときが63nmであり、アスペクト比の平均値は、基板傾斜角θ=20°のときが3.2、基板傾斜角θ=10°のときが4.0であった。
(Example 6)
Next, the relationship between the aspect ratio of the inorganic fine particles and the contrast in the polarizing element was examined.
(1) Diagonal sputtering film formation on a flat plate First, using the ion beam sputtering apparatus of FIG. 4, the substrate inclination angle θ is changed to 20 and 10 °, and a Ge fine particle layer having a film thickness of 30 nm is formed on a flat Si substrate. The sample obtained is observed with an SEM, 40 arbitrary Ge fine particles in the SEM image are extracted, and the size (major axis (major axis length), minor axis (minor axis length)) is measured. To obtain the aspect ratio.
FIG. 35 shows the result as an aspect ratio histogram. As for the distribution of the histogram, the distribution shifts toward a larger aspect ratio in FIG. 35B (substrate tilt angle θ = 10 °) than in FIG. 35A (substrate tilt angle θ = 20 °). There was a trend. Further, the average value of the major axis length of the Ge fine particles at this time is 30 nm when the substrate tilt angle θ = 20 °, and 63 nm when the substrate tilt angle θ = 10 °, and the average value of the aspect ratio is It was 3.2 when the substrate tilt angle θ = 20 °, and 4.0 when the substrate tilt angle θ = 10 °.

また図4のイオンビームスパッタ装置を用いて、基板傾斜角θ=20,10°と変化させて、平坦なガラス基板(コーニング1737)上に膜厚10nmのGe微粒子層を形成したサンプルについて透過率を測定し、波長550nmにおける透過率の比をコントラストとして求めた。なお、x方向、y方向は図14Aの関係としている。その結果を表1に示す。基板傾斜角θを小さくするとGe微粒子のアスペクト比が大きくなるとともにコントラストが大きくなる傾向が見られた。   Further, the transmittance of a sample in which a Ge fine particle layer having a thickness of 10 nm is formed on a flat glass substrate (Corning 1737) by changing the substrate inclination angle θ = 20, 10 ° using the ion beam sputtering apparatus of FIG. Was measured, and the ratio of transmittance at a wavelength of 550 nm was determined as contrast. The x direction and the y direction have the relationship shown in FIG. 14A. The results are shown in Table 1. When the substrate tilt angle θ was decreased, the aspect ratio of the Ge fine particles increased and the contrast tended to increase.

(2)偏光素子10
実施例5の偏光素子10について、無機微粒子層15形成時の斜めスパッタ成膜条件のうち基板傾斜角θ=10,20°の2水準とし、それ以外は実施例5の偏光素子10と同じ条件で偏光素子サンプルを作製した。本サンプルについて透過軸、吸収軸の透過率を測定し、波長550nmにおける透過率の比をコントラストとして求めた。その結果を図36及び表2に示す。本発明の偏光素子においても基板傾斜角θを小さくするとコントラストが大きくなる傾向が見られた。
(2) Polarizing element 10
Regarding the polarizing element 10 of Example 5, the substrate inclination angle θ = 10, 20 ° out of the oblique sputtering film forming conditions at the time of forming the inorganic fine particle layer 15, and the other conditions are the same as those of the polarizing element 10 of Example 5. A polarizing element sample was prepared. The transmittance of the transmission axis and absorption axis of this sample was measured, and the ratio of the transmittance at a wavelength of 550 nm was determined as contrast. The results are shown in FIG. Also in the polarizing element of the present invention, when the substrate tilt angle θ is decreased, the contrast tends to increase.

以上のように、斜めスパッタ成膜により基板面内に形状異方性をもつ無機微粒子を成膜することができるが、無機微粒子の長径と短径との比であるアスペクト比は無機微粒子の入射角度(図4でいう基板傾斜角θ)に依存し、その角度が小さい方がアスペクト比が大きくなる。また、アスペクト比が大きくなると同時に透過コントラストも大きくなる。このように斜めスパッタ成膜によるステアリング効果を利用することで、良好な特性を有する偏光素子を実現することができる。   As described above, inorganic fine particles having shape anisotropy can be formed on the substrate surface by oblique sputter film formation, but the aspect ratio, which is the ratio of the long axis to the short axis of the inorganic fine particles, is incident on the inorganic particles. Depending on the angle (substrate tilt angle θ in FIG. 4), the smaller the angle, the larger the aspect ratio. In addition, the transmission contrast increases as the aspect ratio increases. In this way, by using the steering effect by oblique sputtering film formation, a polarizing element having good characteristics can be realized.

(実施例7)
成膜方法(ドライプロセス)の種類を変えて、Alからなる反射層22を一次元格子状(ピッチ150nm)に設けた基板上にGe微粒子層を斜め成膜した。ここでは、つぎの3種類のドライプロセスを用いた。
(a)電子ビーム蒸着(図37(a))
Geを装着した蒸発源の法線方向に対して10度傾けた基板を該蒸発源から80cm離してセットし、成膜速度0.3nm/secの電子ビーム蒸着を行った。
(b)マグネトロンスパッタ(図37(b))
Geターゲットの法線方向に10度傾けた基板を該ターゲットから40cm離してセットし、成膜速度0.1nm/secのマグネトロンスパッタ成膜を行った。
(c)イオンビームスパッタ(図37(c))
本発明で例示した図4に示すスパッタ成膜方法である。ここでは、基板をθ=45度でセットし、Geターゲットから15cm離して、成膜速度0.2nm/secでイオンビームスパッタ成膜を行った。
なお、基板は実施例5の偏光素子10の場合と同じ基板11を用い、図14Aと同様にGe入射方向が格子長手方向(x方向)に直交する方向(y方向)となるようにセットした。また、Ge微粒子層の膜厚はいずれも10nmとした。
(Example 7)
By changing the type of film forming method (dry process), a Ge fine particle layer was obliquely formed on a substrate provided with a reflective layer 22 made of Al in a one-dimensional lattice shape (pitch 150 nm). Here, the following three types of dry processes were used.
(A) Electron beam evaporation (FIG. 37 (a))
A substrate tilted by 10 degrees with respect to the normal direction of the evaporation source equipped with Ge was set 80 cm away from the evaporation source, and electron beam evaporation was performed at a deposition rate of 0.3 nm / sec.
(B) Magnetron sputtering (FIG. 37 (b))
A substrate tilted 10 degrees in the normal direction of the Ge target was set 40 cm away from the target, and magnetron sputter deposition was performed at a deposition rate of 0.1 nm / sec.
(C) Ion beam sputtering (FIG. 37 (c))
It is the sputter film-forming method shown in FIG. 4 illustrated by this invention. Here, the substrate was set at θ = 45 degrees, and was separated from the Ge target by 15 cm, and ion beam sputtering film formation was performed at a film formation rate of 0.2 nm / sec.
The substrate used was the same substrate 11 as in the polarizing element 10 of Example 5, and was set so that the Ge incident direction was a direction (y direction) perpendicular to the lattice longitudinal direction (x direction), as in FIG. 14A. . In addition, the film thickness of each Ge fine particle layer was 10 nm.

得られたサンプルについて、透過率を測定した。その結果を図38に示す。
3つのサンプルのうち、イオンビームスパッタによる成膜法が透過率も高く、x方向、y方向の透過率の差が大きいことから、本発明の偏光素子の成膜方法として最も好ましいことが分かる。
The transmittance of the obtained sample was measured. The result is shown in FIG.
Among the three samples, the film forming method by ion beam sputtering has a high transmittance, and the difference in the transmittance in the x direction and the y direction is large. Therefore, it can be seen that the film forming method of the polarizing element of the present invention is the most preferable.

(実施例8)
本発明に係る偏光素子のうち、図5に示す構成の偏光素子20において、反射層22の高さ(膜厚)を変えることでその透過コントラストを容易に制御することができる。その一例として図39に、Alからなる一次格子状の反射層22としてピッチ150nm、アルミ幅37.5nmの場合の反射層膜厚(アルミ高さ)と透過コントラストの波長厳密結合波解析(RCWA)による計算結果を示す。
(Example 8)
Among the polarizing elements according to the present invention, in the polarizing element 20 having the configuration shown in FIG. 5, the transmission contrast can be easily controlled by changing the height (film thickness) of the reflective layer 22. As an example of this, FIG. 39 shows a strict coupled wave analysis (RCWA) of the reflection layer thickness (aluminum height) and transmission contrast when the pitch is 150 nm and the aluminum width is 37.5 nm as the primary lattice-like reflection layer 22 made of Al. The calculation result by is shown.

また図5に示す構成の偏光素子20において、誘電体層23の高さ(膜厚)を変えることでその光学特性を容易に制御することができる。ここでは、ガラス(コーニング1737)製の基板21上に、Alからなる一次格子状の反射層22としてその膜厚(アルミ高さ)を200nm、そのピッチを150nm、格子幅を50nmとし、RFスパッタ成膜によるSiO2からなる誘電体層23としてその膜厚を0,19,37,56,74nmと変化させ、Ge微粒子からなる無機微粒子層25としてその膜厚を30nmとして、本発明の偏光素子20のサンプルを作製し、得られたサンプルの波長450,550,650nmにおける誘電層膜厚と透過軸透過率、コントラスト、吸収軸反射率の関係を求めた。その結果を表3に示す。   In the polarizing element 20 having the configuration shown in FIG. 5, the optical characteristics can be easily controlled by changing the height (film thickness) of the dielectric layer 23. Here, on the substrate 21 made of glass (Corning 1737), the primary lattice-like reflective layer 22 made of Al has a thickness (aluminum height) of 200 nm, a pitch of 150 nm, a lattice width of 50 nm, and RF sputtering. The thickness of the dielectric layer 23 made of SiO2 by film formation is changed to 0, 19, 37, 56, and 74 nm, the thickness of the inorganic fine particle layer 25 made of Ge fine particles is 30 nm, and the polarizing element 20 of the present invention. The sample was prepared, and the relationship between the thickness of the dielectric layer at the wavelengths of 450, 550, and 650 nm, the transmission axis transmittance, the contrast, and the absorption axis reflectance of the obtained sample was determined. The results are shown in Table 3.

得られた結果より、例えば吸収軸反射率を軽減したい場合には誘電体層23の膜厚を19〜37nmの範囲とすればよい。また、反射の影響が少ない用途に用いる場合には誘電体層13の膜厚を0として使用することも可能である。これは、製作工程の減少を意味し、生産性の向上につながる。また、波長450〜650nmで高いコントラストを実現しており、使用波長範囲が広いプロジェクター用途に適している。
一方、透過率に関しては、波長450nmでは70%以上、波長550,650nmでは80%以上の高い透過率を示している。格子のピッチをより狭める事で透過率のさらなる向上も可能である。
また、コントラストに関しては、金属格子の高さにより調整することが可能である。より高いコントラストが必要な場合はアルミ格子を高くすればよく、下げたい場合は低くすればよい。
From the obtained results, for example, when it is desired to reduce the absorption axis reflectivity, the film thickness of the dielectric layer 23 may be set in the range of 19 to 37 nm. In addition, when used in applications where the influence of reflection is small, the film thickness of the dielectric layer 13 can be set to zero. This means a reduction in the production process and leads to an improvement in productivity. In addition, it achieves high contrast at a wavelength of 450 to 650 nm, and is suitable for projector applications with a wide operating wavelength range.
On the other hand, the transmittance is as high as 70% or higher at a wavelength of 450 nm and 80% or higher at wavelengths of 550 and 650 nm. The transmittance can be further improved by narrowing the pitch of the grating.
The contrast can be adjusted by the height of the metal grid. If higher contrast is required, the aluminum grid should be raised, and lower if desired.

つぎに、図40に、実施例5の偏光素子20と同じ構造で、アルミ高さを30nmにした場合の偏光特性を示す。この場合、反射層の膜厚が薄い(アルミ高さが低い)ので、コントラストは青域で3程度になっているが、図28と同様に反射率はGe微粒子の効果で2%以下に抑えられている。このような性能を有する偏光素子の場合、Ge微粒子は、図31のSEM像に示されるように、反射層/誘電体層からなる凸部の側壁に堆積し、異方性光学吸収素子として良好な形状をしている。このことは、図1,図3に示す偏光素子10についても同様に言える。   Next, FIG. 40 shows the polarization characteristics when the aluminum height is 30 nm with the same structure as the polarizing element 20 of the fifth embodiment. In this case, since the thickness of the reflective layer is thin (the aluminum height is low), the contrast is about 3 in the blue region. Similar to FIG. 28, the reflectance is suppressed to 2% or less by the effect of the Ge fine particles. It has been. In the case of a polarizing element having such a performance, Ge fine particles are deposited on the side wall of the convex portion made of a reflective layer / dielectric layer as shown in the SEM image of FIG. It has a nice shape. This also applies to the polarizing element 10 shown in FIGS.

本発明の偏光素子では、格子形状(図2における凸部14aや図5における反射層22/誘電体層23の形状や高さ、一次格子のピッチなど)とステアリング効果(無機微粒子のサイズ、アスペクト比、配列性など)とを組み合わせることで、吸収型偏光素子として好適な微粒子形状を実現することができる。   In the polarizing element of the present invention, the lattice shape (the shape and height of the convex layer 14a in FIG. 2, the reflective layer 22 / dielectric layer 23 in FIG. 5, the pitch of the primary lattice, etc.) and the steering effect (size of inorganic fine particles, aspect ratio) In combination with the ratio, arrangement, etc., a fine particle shape suitable as an absorption polarizing element can be realized.

(実施例9)
図5に示す偏光素子20において、出射面迷光対策(ゴースト対策)として、基板21についてその表面を後に形成される無機微粒子25aの配列方向に対応するように細かいスジが一方向に揃った状態であるテクスチャー構造となるようにラビング処理し、該ラビング処理後の表面に無機微粒子25aの配列方向に対応するように形状異方性を有する無機微粒子からなる薄膜(反射防止層29となる薄膜(以下、反射防止膜))を形成するとよい。具体的には、研磨テープなどの研磨材により機械的にテクスチャー構造を基板21の表面に形成し、その後無機微粒子からなる反射防止膜を斜めスパッタ成膜法により形成することで、格子上に成膜される無機微粒子層25と同様にステアリング効果による形状異方性を有する無機微粒子とすることができるので、無機微粒子の偏光効果が高まり、結果としてゴースト抑制効果を高めることが可能となる。以下、具体的に実施した例を説明する。
Example 9
In the polarizing element 20 shown in FIG. 5, as a countermeasure against the stray light on the exit surface (ghost countermeasure), the surface of the substrate 21 is aligned in one direction so as to correspond to the arrangement direction of the inorganic fine particles 25a to be formed later. A rubbing process is performed so as to have a certain texture structure, and a thin film made of inorganic fine particles having shape anisotropy corresponding to the arrangement direction of the inorganic fine particles 25a on the surface after the rubbing process (a thin film to be the antireflection layer 29 (hereinafter referred to as an antireflection layer 29) An antireflection film)) may be formed. Specifically, a texture structure is mechanically formed on the surface of the substrate 21 with an abrasive such as an abrasive tape, and then an antireflection film made of inorganic fine particles is formed on the lattice by an oblique sputtering film formation method. Since the inorganic fine particles having shape anisotropy due to the steering effect can be formed in the same manner as the inorganic fine particle layer 25 to be formed, the polarization effect of the inorganic fine particles is enhanced, and as a result, the ghost suppressing effect can be enhanced. Hereinafter, a specific example will be described.

ここでは、研磨材として日本ミクロコーティング製D20000を用いて効果の検証を行った。基板にはコーニング1737ガラスを用い、D2000で表面を一方向に擦る事によってテクスチャーを形成した。図41に、AFM(原子間力顕微鏡)によりテクスチャー形成後の基板表面を測定した結果を示す。横軸は基板上の位置、縦軸は表面の凹凸高さである。基板表面の凹凸の平均ピッチは160nmであった。また、テクスチャー形成前後での基板の透過率を調べたところ、図42に示すように、テクスチャー形成前後(研磨前後)で透過率が変化していないことがわかった。すなわち本方法により、基板の透過特性を悪化させずにかつ簡単にナノレベルの精密加工をすることが可能である。   Here, the effect was verified using Nippon Micro Coating D20000 as an abrasive. Corning 1737 glass was used as the substrate, and the texture was formed by rubbing the surface in one direction with D2000. FIG. 41 shows the result of measuring the substrate surface after texture formation by AFM (atomic force microscope). The horizontal axis is the position on the substrate, and the vertical axis is the height of the surface irregularities. The average pitch of the irregularities on the substrate surface was 160 nm. Further, when the transmittance of the substrate before and after the texture formation was examined, it was found that the transmittance did not change before and after the texture formation (before and after polishing) as shown in FIG. That is, according to this method, it is possible to easily perform nano-level precision processing without deteriorating the transmission characteristics of the substrate.

つぎに、前記テクスチャー形成後の基板に、図4のイオンビームスパッタ装置により、基板傾斜角θ=5°として斜めスパッタ成膜を行ってGe微粒子からなる膜厚10nmの反射防止膜を形成したが、このときGe入射方向と基板との関係を、図14Aにおいてy方向がテクスチャー長手方向となるように基板を配置してスパッタ成膜した。得られたサンプルについて、AFM(原子間力顕微鏡)により該反射防止膜におけるGe微粒子の形状を観察したところ、図43に示すように、テクスチャーに沿ってGe微粒子が整列している状態が観察された。   Next, a 10 nm-thick antireflection film made of Ge fine particles was formed on the textured substrate by oblique sputtering deposition with the substrate tilt angle θ = 5 ° by the ion beam sputtering apparatus of FIG. At this time, as for the relationship between the Ge incident direction and the substrate, sputtering was performed by arranging the substrate so that the y direction in FIG. 14A is the texture longitudinal direction. With respect to the obtained sample, the shape of Ge fine particles in the antireflection film was observed with an AFM (atomic force microscope). As a result, as shown in FIG. 43, the Ge fine particles were aligned along the texture. It was.

図44に、このサンプルの透過特性を示す。比較として、基板をラビング処理していない1737ガラス基板を用い、それ以外は同一条件で反射防止膜を形成したサンプルについても透過特性を調べた。図44では本実施例サンプルを「テクスチャー基板」、比較サンプルを「基板まま」と表記している。その結果、両者ともにステアリング効果により偏光特性が見られるが、テクスチャーを形成した方が、x方向の透過率がより高く、y方向の透過率との差が大きく、良好な偏光特性を示していた。
本発明では、本実施例サンプル(テクスチャー構造を有する基板上に反射防止膜を形成したもの)を用いて、その上に図5における偏光素子20の層構造を形成するが、反射層22あるいは誘電体層23をパターン加工すると同時に前記反射防止膜も格子状に加工して反射防止層29とする。これにより、ゴースト対策効果を高めることができると同時に偏光素子としての透過コントラスト特性の増大も期待できる。
FIG. 44 shows the transmission characteristics of this sample. For comparison, transmission characteristics were also examined for a sample in which an antireflection film was formed under the same conditions using a 1737 glass substrate on which the substrate was not rubbed. In FIG. 44, the sample of this example is described as “texture substrate”, and the comparative sample as “substrate as it is”. As a result, both showed polarization characteristics due to the steering effect. However, the texture formation had higher transmittance in the x direction and a larger difference from the transmittance in the y direction, indicating good polarization characteristics. .
In the present invention, the layer structure of the polarizing element 20 in FIG. 5 is formed on the sample of this embodiment (an antireflection film formed on a substrate having a texture structure). At the same time that the body layer 23 is patterned, the antireflection film is also processed into a lattice shape to form an antireflection layer 29. Thereby, the ghost countermeasure effect can be enhanced, and at the same time, an increase in transmission contrast characteristics as a polarizing element can be expected.

(実施例10)
上記実施例ではほとんどの場合にGeを例に偏光素子の実施例を示してきたが、他の材料でも形状異方性を有する無機微粒子を形成することができる。したがって、材料を選択することで、目的の波長の偏光素子とすることが可能である。
図45,図46は、それぞれSi、Snを用いて膜厚30nmの無機微粒子として、図3(c)の偏光素子10の構成で製作した場合の偏光特性である。なお、裏面の反射防止膜は形成していない。これらの材料の場合には反射率はGeより若干高いが、青域での透過軸偏光特性が高くなっており、目的によっては偏光素子としての使用が可能である。
(Example 10)
In the above embodiments, Ge has been shown as an example in most cases, but inorganic fine particles having shape anisotropy can be formed using other materials. Therefore, it is possible to obtain a polarizing element having a target wavelength by selecting a material.
45 and 46 show the polarization characteristics in the case where the inorganic fine particles having a film thickness of 30 nm are manufactured using Si and Sn, respectively, with the configuration of the polarizing element 10 in FIG. Note that an antireflection film on the back surface is not formed. In the case of these materials, the reflectance is slightly higher than that of Ge, but the transmission axis polarization characteristics in the blue region are high, and depending on the purpose, it can be used as a polarizing element.

1・・・ステージ、2・・・ターゲット、3・・・ビームソース、4・・・制御板、10,10A,10B,10C,20,20A,20B,30,30A,30B・・・偏光素子、11,21,41・・・基板、14,16,17・・・凹凸部、14a,16a,17a・・・凸部、15,25,45・・・無機微粒子層、22・・・反射層、22a・・・帯状薄膜、23,2a・・・誘電体層、25a・・・無機微粒子、26・・・凹凸部、27・・・無機微粒子層(光学異方性による偏光波の選択的光吸収層)、28・・・光学異方性による偏光波の選択的光吸収層、29・・・反射防止層、44・・・Ge粒子膜、50・・・液晶パネル、60・・・クロスダイクロプリズム、100・・・液晶プロジェクター

DESCRIPTION OF SYMBOLS 1 ... Stage, 2 ... Target, 3 ... Beam source, 4 ... Control board 10, 10A, 10B, 10C, 20, 20A, 20B, 30, 30A, 30B ... Polarizing element 11, 21, 41 ... substrate, 14, 16, 17 ... uneven portion, 14a, 16a, 17a ... convex portion, 15, 25, 45 ... inorganic fine particle layer, 22 ... reflection Layer, 22a ... belt-like thin film, 23, 2a ... dielectric layer, 25a ... inorganic fine particles, 26 ... irregularities, 27 ... inorganic fine particle layer (selection of polarized wave by optical anisotropy) Light absorption layer), 28 ... selective light absorption layer of polarized wave due to optical anisotropy, 29 ... antireflection layer, 44 ... Ge particle film, 50 ... liquid crystal panel, 60 ...・ Cross dichroic prism, 100 ... LCD projector

Claims (18)

可視光に対し透明な基板と、
金属からなり前記基板上に一方向に延びた帯状薄膜が一定間隔に設けられてなる反射層と、
前記反射層上に形成された誘電体層と、
無機微粒子が線状に配列されてなる無機微粒子層と、
を備え、
前記無機微粒子層は、前記帯状薄膜に対応する位置において、前記誘電体上の前記帯状薄膜の頂部の両側面部に形成され、
前記無機微粒子が線状に配列された方向と同じ方向を長手方向とするワイヤグリッド構造を有する、偏光素子。
A substrate transparent to visible light;
A reflective layer made of metal and provided with a strip-like thin film extending in one direction on the substrate at regular intervals;
A dielectric layer formed on the reflective layer;
An inorganic fine particle layer in which inorganic fine particles are linearly arranged;
With
The inorganic fine particle layer is formed on both sides of the top of the strip thin film on the dielectric at a position corresponding to the strip thin film,
A polarizing element having a wire grid structure in which the same direction as the direction in which the inorganic fine particles are linearly arranged is a longitudinal direction.
前記無機微粒子層上に、前記誘電体層及び前記無機微粒子層の積層構造を1又は複数有する、請求項1に記載の偏光素子。   The polarizing element according to claim 1, wherein the polarizing element has one or a plurality of laminated structures of the dielectric layer and the inorganic fine particle layer on the inorganic fine particle layer. 前記無機微粒子は、バンドギャップエネルギーが3.1eV以下の半導体材料からなる、請求項1又は2のいずれかに記載の偏光素子。   The polarizing element according to claim 1, wherein the inorganic fine particles are made of a semiconductor material having a band gap energy of 3.1 eV or less. 前記無機微粒子層の膜厚は200nm以下である、請求項1〜3のいずれか1項に記載の偏光素子。   The polarizing element according to claim 1, wherein the inorganic fine particle layer has a thickness of 200 nm or less. 前記基板と前記反射層との間に、反射防止層を有する、請求項1〜4のいずれか1項に記載の偏光素子。   The polarizing element according to claim 1, further comprising an antireflection layer between the substrate and the reflective layer. 前記基板上に凹凸部が形成され、前記凹凸部のピッチは0.05〜0.8μmであり、前記凹凸部のライン幅をピッチで除算した値は0.1〜0.9であり、前記凹凸部の凹部深さは0.01〜0.2μmであり、前記凹凸部の凸部長さは0.05μmより小さく、前記凹凸部の上部ライン幅を底部ライン幅で除算した値は1.0以上であり、
前記凹凸部は、前記基板の表面に対して平行な一方向に延びるように前記基板の表面上に形成された凸部が、前記基板の前記一方向と直交する方向に可視光域の波長よりも小さいピッチで周期的に形成されてなり、
前記凸部の頂部、一側面部または両側面部に前記無機微粒子層が形成される、請求項1〜5のいずれか1項に記載の偏光素子。
An uneven part is formed on the substrate, the pitch of the uneven part is 0.05 to 0.8 μm, and the value obtained by dividing the line width of the uneven part by the pitch is 0.1 to 0.9, The concave / convex depth of the concave / convex portion is 0.01 to 0.2 μm, the convex portion length of the concave / convex portion is smaller than 0.05 μm, and the value obtained by dividing the top line width of the concave / convex portion by the bottom line width is 1.0. Ri der above,
The convex and concave portions formed on the surface of the substrate so as to extend in one direction parallel to the surface of the substrate have a wavelength of visible light in a direction perpendicular to the one direction of the substrate. Is formed periodically with a small pitch,
Top of the convex portion, one side surface or the both sides face the inorganic fine particle layer is Ru is formed, the polarization element according to any one of claims 1 to 5.
前記偏光素子の最表面に、使用帯域の光に対して透明な偏光子保護層が形成されている、請求項1〜6のいずれか1項に記載の偏光素子。 Wherein the outermost surface of the polarizing element, a transparent polarizing element protective layer to light in the usable band is formed, the polarization element according to any one of claims 1-6. 前記偏光素子保護層は、SiO2により形成される、請求項7に記載の偏光素子。   The polarizing element according to claim 7, wherein the polarizing element protective layer is formed of SiO 2. 前記無機微粒子は、Al,Ag,Cu,Au,Mo,Cr,Ti,W,Ni,Fe,Si,Ge,Te,Snの単体又はこれらを含む材料からなる請求項1〜8のいずれか1項に記載の偏光素子。   The inorganic fine particles are made of a single substance of Al, Ag, Cu, Au, Mo, Cr, Ti, W, Ni, Fe, Si, Ge, Te, Sn or a material containing them. The polarizing element according to item. 前記基板は、ガラス、サファイア、又は水晶で形成され、
前記基板上にピッチ0.5μm以下、ライン幅0.25μm以下、深さ1nm以上の凹凸部が形成され
前記凹凸部は、前記基板の表面に対して平行な一方向に延びるように前記基板の表面上に形成された凸部が、前記基板の前記一方向と直交する方向に可視光域の波長よりも小さいピッチで周期的に形成されてなり、
前記凸部の頂部、一側面部または両側面部に前記無機微粒子層が形成される、請求項1〜9のいずれかに記載の偏光素子。
The substrate is formed of glass, sapphire, or quartz,
An uneven portion having a pitch of 0.5 μm or less, a line width of 0.25 μm or less, and a depth of 1 nm or more is formed on the substrate ,
The convex and concave portions formed on the surface of the substrate so as to extend in one direction parallel to the surface of the substrate have a wavelength of visible light in a direction perpendicular to the one direction of the substrate. Is formed periodically with a small pitch,
Top of the convex portion, Ru the inorganic particle layer on one side surface or both side surfaces is formed, the polarization element according to any one of claims 1 to 9.
前記無機微粒子層の透過軸方向屈折率が吸収軸方向屈折率より小さく、且つ、透過軸方向消衰係数が吸収軸方向消衰係数より小さい、請求項1〜10のいずれかに記載の偏光素子。   The polarizing element according to claim 1, wherein a refractive index in the transmission axis direction of the inorganic fine particle layer is smaller than a refractive index in the absorption axis direction, and a transmission axis direction extinction coefficient is smaller than the absorption axis direction extinction coefficient. . 前記無機微粒子は、Si,Ge,Te,若しくはZnO、又はFeSi2,MgSi2,NiSi2,BaSi2,CrSi2,若しくはCoSi2からなる、請求項1〜11のいずれかに記載の偏光素子。   The polarizing element according to claim 1, wherein the inorganic fine particles are made of Si, Ge, Te, or ZnO, or FeSi 2, MgSi 2, NiSi 2, BaSi 2, CrSi 2, or CoSi 2. 光源と、液晶パネルと、入射側偏光板と、出射側偏光板と、
を備え、
前記入射側偏光板又は前記出射側偏光板のいずれかは、
可視光に対し透明な基板と、金属からなり前記基板上に一方向に延びた帯状薄膜が一定間隔に設けられてなる反射層と、前記反射層上に形成された誘電体層と、無機微粒子が線状に配列されてなる無機微粒子層を有し、
前記無機微粒子層は、前記帯状薄膜に対応する位置において、前記誘電体層上の前記帯状薄膜の頂部の両側面部に形成され、
前記無機微粒子が線状に配列された方向と同じ方向を長手方向とするワイヤグリッド構造を有する偏光素子である、
透過型液晶プロジェクター。
A light source, a liquid crystal panel, an incident side polarizing plate, an outgoing side polarizing plate,
With
Either the incident side polarizing plate or the outgoing side polarizing plate is:
A substrate transparent to visible light, a reflective layer made of metal and extending in one direction on the substrate and provided at regular intervals, a dielectric layer formed on the reflective layer, and inorganic fine particles Have an inorganic fine particle layer arranged linearly,
The inorganic fine particle layer is formed on both sides of the top of the strip thin film on the dielectric layer at a position corresponding to the strip thin film,
A polarizing element having a wire grid structure in which the same direction as the direction in which the inorganic fine particles are linearly arranged is a longitudinal direction,
A transmissive LCD projector.
前記出射側偏光板が、前記基板よりも前記無機微粒子層が前記液晶パネル側に配置される偏光素子である、請求項13に記載の透過型液晶プロジェクター。   The transmissive liquid crystal projector according to claim 13, wherein the output-side polarizing plate is a polarizing element in which the inorganic fine particle layer is disposed on the liquid crystal panel side with respect to the substrate. 前記入射側偏光板が、前記基板よりも前記無機微粒子層が前記液晶パネル側に配置される偏光素子である、請求項13に記載の透過型液晶プロジェクター。   The transmissive liquid crystal projector according to claim 13, wherein the incident-side polarizing plate is a polarizing element in which the inorganic fine particle layer is disposed closer to the liquid crystal panel than the substrate. 前記反射層は金属層である、請求項13〜15のいずれかに記載の透過型液晶プロジェクター。   The transmissive liquid crystal projector according to claim 13, wherein the reflective layer is a metal layer. 前記無機微粒子は、バンドギャップエネルギーが3.1eV以下の半導体材料からなる、請求項13〜16のいずれかに記載の透過型液晶プロジェクター。   The transmissive liquid crystal projector according to claim 13, wherein the inorganic fine particles are made of a semiconductor material having a band gap energy of 3.1 eV or less. 前記無機微粒子層の膜厚は200nm以下である、請求項13〜17のいずれかに記載の透過型液晶プロジェクター。
The transmissive liquid crystal projector according to claim 13, wherein the inorganic fine particle layer has a thickness of 200 nm or less.
JP2012017006A 2007-02-06 2012-01-30 Polarizing element and transmissive liquid crystal projector Active JP5333615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017006A JP5333615B2 (en) 2007-02-06 2012-01-30 Polarizing element and transmissive liquid crystal projector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007026348 2007-02-06
JP2007026348 2007-02-06
JP2012017006A JP5333615B2 (en) 2007-02-06 2012-01-30 Polarizing element and transmissive liquid crystal projector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009261221A Division JP4957779B2 (en) 2007-02-06 2009-11-16 Polarizing element, liquid crystal projector, manufacturing method of polarizing element, and liquid crystal display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013126430A Division JP5776729B2 (en) 2007-02-06 2013-06-17 Polarizing element and transmissive liquid crystal projector

Publications (2)

Publication Number Publication Date
JP2012103728A JP2012103728A (en) 2012-05-31
JP5333615B2 true JP5333615B2 (en) 2013-11-06

Family

ID=39837013

Family Applications (10)

Application Number Title Priority Date Filing Date
JP2007170585A Active JP4488033B2 (en) 2007-02-06 2007-06-28 Polarizing element and liquid crystal projector
JP2009261221A Active JP4957779B2 (en) 2007-02-06 2009-11-16 Polarizing element, liquid crystal projector, manufacturing method of polarizing element, and liquid crystal display device
JP2011284165A Active JP4957867B1 (en) 2007-02-06 2011-12-26 Polarizing element and transmissive liquid crystal projector
JP2012017006A Active JP5333615B2 (en) 2007-02-06 2012-01-30 Polarizing element and transmissive liquid crystal projector
JP2013126430A Active JP5776729B2 (en) 2007-02-06 2013-06-17 Polarizing element and transmissive liquid crystal projector
JP2015100450A Active JP6056903B2 (en) 2007-02-06 2015-05-15 Polarizing element and transmissive liquid crystal projector
JP2016112858A Active JP6164339B2 (en) 2007-02-06 2016-06-06 Polarizing element and transmissive liquid crystal projector
JP2017111272A Active JP6539879B2 (en) 2007-02-06 2017-06-06 Wire grid type light absorbing polarizing element, transmission type projector, and liquid crystal display device
JP2019106576A Pending JP2019200422A (en) 2007-02-06 2019-06-06 Polarization element and transmission type liquid crystal projector
JP2020219692A Active JP7237057B2 (en) 2007-02-06 2020-12-28 Polarizing element

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2007170585A Active JP4488033B2 (en) 2007-02-06 2007-06-28 Polarizing element and liquid crystal projector
JP2009261221A Active JP4957779B2 (en) 2007-02-06 2009-11-16 Polarizing element, liquid crystal projector, manufacturing method of polarizing element, and liquid crystal display device
JP2011284165A Active JP4957867B1 (en) 2007-02-06 2011-12-26 Polarizing element and transmissive liquid crystal projector

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2013126430A Active JP5776729B2 (en) 2007-02-06 2013-06-17 Polarizing element and transmissive liquid crystal projector
JP2015100450A Active JP6056903B2 (en) 2007-02-06 2015-05-15 Polarizing element and transmissive liquid crystal projector
JP2016112858A Active JP6164339B2 (en) 2007-02-06 2016-06-06 Polarizing element and transmissive liquid crystal projector
JP2017111272A Active JP6539879B2 (en) 2007-02-06 2017-06-06 Wire grid type light absorbing polarizing element, transmission type projector, and liquid crystal display device
JP2019106576A Pending JP2019200422A (en) 2007-02-06 2019-06-06 Polarization element and transmission type liquid crystal projector
JP2020219692A Active JP7237057B2 (en) 2007-02-06 2020-12-28 Polarizing element

Country Status (2)

Country Link
US (3) USRE45642E1 (en)
JP (10) JP4488033B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200579A (en) * 2007-02-06 2013-10-03 Sony Corp Polarizing element and transmissive liquid crystal projector
US11029458B2 (en) 2017-09-28 2021-06-08 Dexerials Corporation Polarizing plate and optical apparatus including the same
US11112550B2 (en) 2018-07-31 2021-09-07 Dexerials Corporation Polarizing plate, optical apparatus and method of manufacturing polarizing plate

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2760078C (en) 2009-05-13 2016-01-19 Meiji Seika Pharma Co., Ltd. Process for producing pyripyropene derivatives
JP5552888B2 (en) * 2009-10-30 2014-07-16 セイコーエプソン株式会社 Polarizing element, manufacturing method of polarizing element, liquid crystal device, and electronic apparatus
JP5353666B2 (en) * 2009-11-30 2013-11-27 旭硝子株式会社 Wire grid polarizer and optical head device
JP2011141468A (en) * 2010-01-08 2011-07-21 Seiko Epson Corp Polarizing element, method for manufacturing the polarizing element, and electronic apparatus
JP5672702B2 (en) * 2010-01-08 2015-02-18 セイコーエプソン株式会社 Polarizing element, manufacturing method of polarizing element, electronic device
JP5387424B2 (en) 2010-01-22 2014-01-15 セイコーエプソン株式会社 LCD projector
UA111151C2 (en) 2010-03-01 2016-04-11 Мейдзі Сейка Фарма Ко., Лтд. METHOD OF PREPARATION OF PYRIPYROPENE DERIVATIVES
JP2011227415A (en) * 2010-04-23 2011-11-10 Polatechno Co Ltd Inorganic polarizing plate for liquid crystal projector and liquid crystal projector using the same
JP2012002971A (en) * 2010-06-16 2012-01-05 Seiko Epson Corp Polarizing element and method for manufacturing the same, liquid crystal device and electronic equipment
JP5760388B2 (en) * 2010-11-01 2015-08-12 セイコーエプソン株式会社 Polarizing element and manufacturing method thereof, projector, liquid crystal device, electronic device
US20150077851A1 (en) * 2010-12-30 2015-03-19 Moxtek, Inc. Multi-layer absorptive wire grid polarizer
JP2012181420A (en) 2011-03-02 2012-09-20 Sony Chemical & Information Device Corp Polarization element
JP5765984B2 (en) * 2011-03-28 2015-08-19 キヤノン株式会社 Polarization separation element and image projection apparatus
JP2013024982A (en) * 2011-07-19 2013-02-04 Isuzu Seiko Glass Kk Wire grid polarizer and method for manufacturing the same
JP2013057820A (en) * 2011-09-08 2013-03-28 Asahi Kasei E-Materials Corp Light transmissible laminate body for vehicle window
JP6051519B2 (en) * 2011-12-20 2016-12-27 株式会社リコー Method for manufacturing wire grid element
JP2013167823A (en) 2012-02-16 2013-08-29 Dexerials Corp Inorganic polarizing plate
JP2013167824A (en) * 2012-02-16 2013-08-29 Dexerials Corp Polarization element, and manufacturing method of polarization element
WO2013190681A1 (en) * 2012-06-21 2013-12-27 日立コンシューマエレクトロニクス株式会社 Optical element, production method for optical element, and optical device
JP2014164124A (en) * 2013-02-25 2014-09-08 Seiko Epson Corp Method of manufacturing polarizer, polarizer, and projection display device
JP6527211B2 (en) * 2013-07-10 2019-06-05 デクセリアルズ株式会社 Polarizing plate, and method of manufacturing polarizing plate
JP6136675B2 (en) * 2013-07-10 2017-05-31 大日本印刷株式会社 Polarizer
JP6285131B2 (en) 2013-07-10 2018-02-28 デクセリアルズ株式会社 Polarizing plate and manufacturing method of polarizing plate
CN111929760B (en) 2013-07-11 2023-03-24 迪睿合株式会社 Polarizing plate, method for manufacturing polarizing plate, and method for manufacturing bundle structure
JP6409295B2 (en) * 2013-12-20 2018-10-24 大日本印刷株式会社 Polarizer and optical alignment device
WO2015072482A1 (en) * 2013-11-13 2015-05-21 大日本印刷株式会社 Polarizer, polarizer substrate, and optical alignment device
KR101827658B1 (en) * 2013-11-13 2018-02-08 다이니폰 인사츠 가부시키가이샤 Polarizer, polarizer substrate, and optical alignment device
JP6428171B2 (en) * 2013-11-13 2018-11-28 大日本印刷株式会社 Polarizer, polarizer substrate and optical alignment apparatus
JP2015152835A (en) * 2014-02-17 2015-08-24 キヤノン株式会社 Wavelength selective polarizing element, optical system, and projection display device
JP6614147B2 (en) * 2014-07-23 2019-12-04 大日本印刷株式会社 Polarizer and optical alignment device
JP5996587B2 (en) 2014-08-22 2016-09-21 デクセリアルズ株式会社 Inorganic polarizing plate and method for producing the same
CN104297835B (en) * 2014-10-17 2017-03-08 京东方科技集团股份有限公司 A kind of preparation method of wire grid polarizer
CN104459865A (en) * 2014-12-30 2015-03-25 京东方科技集团股份有限公司 Wire grid polarizer, manufacturing method of wire grid polarizer and display device
CN104483733B (en) 2014-12-30 2017-11-21 京东方科技集团股份有限公司 A kind of wire grid polarizer and preparation method thereof, display device
JP5936727B2 (en) * 2015-02-09 2016-06-22 デクセリアルズ株式会社 Polarizing element
JP6512041B2 (en) * 2015-09-07 2019-05-15 岩崎電気株式会社 Light alignment device
CN111258196B (en) 2015-09-30 2022-11-29 佳能株式会社 Drum unit, process cartridge, and image forming apparatus
JP6170985B2 (en) 2015-10-29 2017-07-26 デクセリアルズ株式会社 Inorganic polarizing plate and method for producing the same
US10175401B2 (en) * 2015-11-12 2019-01-08 Moxtek, Inc. Dual-purpose, absorptive, reflective wire grid polarizer
KR20170079671A (en) * 2015-12-30 2017-07-10 코오롱인더스트리 주식회사 Wire Grid Polarizer And Liquid Crystal Display Device Including The Same
JP6915310B2 (en) * 2016-03-10 2021-08-04 大日本印刷株式会社 Polarizer
KR102345406B1 (en) * 2016-03-10 2021-12-31 다이니폰 인사츠 가부시키가이샤 polarizer
JP6903470B2 (en) * 2016-05-12 2021-07-14 Eneos株式会社 Optical retardation member and projector
JP6378252B2 (en) * 2016-06-08 2018-08-22 デクセリアルズ株式会社 Polarizing element and liquid crystal projector
JP6440172B2 (en) * 2016-08-31 2018-12-19 デクセリアルズ株式会社 Inorganic polarizing plate
US9960328B2 (en) 2016-09-06 2018-05-01 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
CN109804280B (en) * 2016-11-22 2022-03-04 莫克斯泰克公司 Wire grid polarizer heat sink
KR101846741B1 (en) 2016-11-22 2018-04-09 한국과학기술원 Wire grid polazizer using nano-transfer printing and method for manufacturing the same
JP6935318B2 (en) * 2016-12-28 2021-09-15 デクセリアルズ株式会社 Polarizing plate and its manufacturing method, and optical equipment
JP2017129887A (en) * 2017-05-01 2017-07-27 デクセリアルズ株式会社 Polarization element and manufacturing method of polarization element
US11125999B2 (en) 2017-06-29 2021-09-21 Kyocera Corporation Polarization plate, image display device using same, and mobile body
JP2019061125A (en) 2017-09-27 2019-04-18 デクセリアルズ株式会社 Polarizer, manufacturing method for the same and optical equipment
JP6678630B2 (en) * 2017-09-28 2020-04-08 デクセリアルズ株式会社 Polarizing plate and optical device having the same
CN109975910B (en) 2017-12-28 2022-02-18 迪睿合株式会社 Polarizing plate, method for manufacturing the same, and optical device
JP2019144334A (en) * 2018-02-19 2019-08-29 デクセリアルズ株式会社 Polarizer, method for manufacturing the same, and optical equipment
JP6670879B2 (en) * 2018-04-11 2020-03-25 デクセリアルズ株式会社 Polarizing element, liquid crystal projector and method of manufacturing polarizing element
JP7327907B2 (en) 2018-04-25 2023-08-16 デクセリアルズ株式会社 Polarizing plate and method for producing polarizing plate
US11314005B2 (en) * 2018-05-17 2022-04-26 Apple Inc. Electronic device with infrared transparent one-way mirror
JP6484373B1 (en) * 2018-06-26 2019-03-13 デクセリアルズ株式会社 Polarizing plate and optical apparatus including the same
JP7226966B2 (en) 2018-10-26 2023-02-21 デクセリアルズ株式会社 Polarizing plate and method for producing polarizing plate
JP7333168B2 (en) * 2018-11-19 2023-08-24 デクセリアルズ株式会社 POLARIZING ELEMENT, POLARIZING ELEMENT MANUFACTURING METHOD, AND OPTICAL DEVICE
JP2020086426A (en) * 2018-11-20 2020-06-04 デクセリアルズ株式会社 Polarizer and optical device having the same
JP6988847B2 (en) * 2019-02-28 2022-01-05 セイコーエプソン株式会社 Optical modules and projectors
CN111624802B (en) * 2019-02-28 2023-06-02 精工爱普生株式会社 Light modulation device, optical module, and projector
JP2019095817A (en) * 2019-03-25 2019-06-20 デクセリアルズ株式会社 Polarization element, and manufacturing method of polarization element
JP7075372B2 (en) * 2019-04-26 2022-05-25 デクセリアルズ株式会社 Polarizing plate and its manufacturing method, and optical equipment
JP2021113936A (en) 2020-01-21 2021-08-05 デクセリアルズ株式会社 Polarizing plate, optical apparatus and method of manufacturing polarizing plate
JP7320461B2 (en) 2020-01-29 2023-08-03 デクセリアルズ株式会社 Polarizing plate, optical device, and method for producing polarizing plate
JP2021179496A (en) * 2020-05-12 2021-11-18 デクセリアルズ株式会社 Polarizing plate and manufacturing method thereof, and optical equipment
JP2022141467A (en) * 2021-03-15 2022-09-29 デクセリアルズ株式会社 Optical apparatus

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318978A (en) * 1976-11-05 1982-03-09 Corning Glass Works Photosensitive film and methods
JP2902456B2 (en) * 1990-08-09 1999-06-07 株式会社豊田中央研究所 Inorganic polarizing thin film
GB9026687D0 (en) 1990-12-07 1991-01-23 Vascutek Ltd Process for providing a low-energy surface on a polymer
JPH06273621A (en) * 1993-01-25 1994-09-30 Tokin Corp Polarizer and its production
JP2783491B2 (en) 1993-03-16 1998-08-06 住友大阪セメント株式会社 Laminated light polarization control device for near infrared to visible light region
JP3574158B2 (en) * 1993-05-14 2004-10-06 セイコーエプソン株式会社 Liquid crystal display
JPH0756018A (en) 1993-08-17 1995-03-03 Tokin Corp Production of polarizer
US5999315A (en) * 1996-04-26 1999-12-07 Kyocera Corporation Polarizer and a production method thereof and an optical isolator
JPH1073722A (en) * 1996-08-30 1998-03-17 Sony Corp Polarizing optical element and its production
JPH10213785A (en) * 1996-11-25 1998-08-11 Ricoh Co Ltd Polarizer, its production and display or display device provided with polarizer
US5991075A (en) * 1996-11-25 1999-11-23 Ricoh Company, Ltd. Light polarizer and method of producing the light polarizer
JPH10213285A (en) 1997-01-30 1998-08-11 Tokyo Gas Co Ltd Welding plug device for work of boring gas piping, and work method for gas piping for fixing welded cup by using the plug device
JP3654553B2 (en) 1997-06-19 2005-06-02 株式会社リコー Optical element
JP3722603B2 (en) 1997-10-29 2005-11-30 京セラ株式会社 Manufacturing method of polarizer
JP3372466B2 (en) * 1997-12-22 2003-02-04 ティーディーケイ株式会社 Manufacturing method of polarizing plate
EP0933655A1 (en) * 1998-01-29 1999-08-04 ETHZ Institut für Polymere Efficient photoluminescent polarizers, process for forming, and application in display devices
US6912087B1 (en) 1998-05-14 2005-06-28 Corning Incorporated Ultra-thin glass polarizers and method of making same
DE19829970C2 (en) 1998-07-04 2000-07-13 F O B Gmbh Process for the production of UV polarizers
EP0999459A3 (en) * 1998-11-03 2001-12-05 Corning Incorporated UV-visible light polarizer and methods
JP3486355B2 (en) 1998-12-07 2004-01-13 日本電信電話株式会社 Manufacturing method of polarizer
US6122103A (en) * 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
JP4427837B2 (en) * 1999-09-03 2010-03-10 住友化学株式会社 Wire grid type polarization optical element
JP3918416B2 (en) * 2000-01-28 2007-05-23 セイコーエプソン株式会社 Projection display
JP2001330728A (en) 2000-05-22 2001-11-30 Jasco Corp Wire grid type polarizer and its manufacturing method
US6532111B2 (en) 2001-03-05 2003-03-11 Eastman Kodak Company Wire grid polarizer
JP2002267842A (en) 2001-03-12 2002-09-18 Nippon Sheet Glass Co Ltd Polarization element and method for manufacturing the same
JP2002328222A (en) * 2001-04-26 2002-11-15 Nippon Sheet Glass Co Ltd Polarizing element and method for manufacturing the same
JP2002372620A (en) 2001-06-13 2002-12-26 Toyota Central Res & Dev Lab Inc Polarization control element and method for manufacturing the same
US6813077B2 (en) 2001-06-19 2004-11-02 Corning Incorporated Method for fabricating an integrated optical isolator and a novel wire grid structure
US6909473B2 (en) 2002-01-07 2005-06-21 Eastman Kodak Company Display apparatus and method
JP4373793B2 (en) * 2002-02-12 2009-11-25 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト Ingredients containing submicron hollow spaces
JP3724801B2 (en) * 2002-10-08 2005-12-07 日東電工株式会社 Polarizer, optical film, and image display device
US7113335B2 (en) 2002-12-30 2006-09-26 Sales Tasso R Grid polarizer with suppressed reflectivity
JP4280567B2 (en) 2003-06-23 2009-06-17 リコー光学株式会社 Polarizing optical element and manufacturing method thereof
JP4425059B2 (en) * 2003-06-25 2010-03-03 シャープ株式会社 Polarizing optical element and display device using the same
JP4386413B2 (en) * 2003-08-25 2009-12-16 株式会社エンプラス Manufacturing method of wire grid polarizer
JP4661038B2 (en) 2003-09-11 2011-03-30 セイコーエプソン株式会社 LIGHT SOURCE DEVICE, LIGHT SOURCE DEVICE MANUFACTURING METHOD, PROJECTION TYPE DISPLAY DEVICE
JP2005106940A (en) 2003-09-29 2005-04-21 Victor Co Of Japan Ltd Reflection type polarizer and image display device
JP2005172844A (en) * 2003-12-05 2005-06-30 Enplas Corp Wire grid polarizer
JP4527986B2 (en) * 2004-01-07 2010-08-18 旭化成イーマテリアルズ株式会社 Wire grid polarizer
JP2005242080A (en) * 2004-02-27 2005-09-08 Victor Co Of Japan Ltd Wire grid polarizer
JP4556486B2 (en) 2004-05-19 2010-10-06 セイコーエプソン株式会社 Polarizer and projector
JP2006003447A (en) * 2004-06-15 2006-01-05 Sony Corp Polarized light separating element and manufacturing method thereof
JP2006047829A (en) 2004-08-06 2006-02-16 Dainippon Printing Co Ltd Liquid crystal display device
US7414784B2 (en) 2004-09-23 2008-08-19 Rohm And Haas Denmark Finance A/S Low fill factor wire grid polarizer and method of use
KR20060042481A (en) * 2004-11-09 2006-05-15 엘지전자 주식회사 Liquid crystal display with reflective polarizer
US7570424B2 (en) * 2004-12-06 2009-08-04 Moxtek, Inc. Multilayer wire-grid polarizer
WO2006064693A1 (en) * 2004-12-16 2006-06-22 Toray Industries, Inc. Polarizing plate, method of producing the polarizing plate, and liquid crystal display device using the polarizing plate
JP2006241306A (en) * 2005-03-03 2006-09-14 Fuji Photo Film Co Ltd Cellulose acylate film, method for producing cellulose acylate film, polarizing plate and liquid crystal display device
JP2006323119A (en) 2005-05-19 2006-11-30 Kawazoe Frontier Technology Kk Solid polarizing element and its manufacturing method, and liquid crystal display device, liquid crystal display panel, and optical isolator using solid polarizing element
JP4680677B2 (en) 2005-05-23 2011-05-11 株式会社リコー Polarization control element
JP4760135B2 (en) * 2005-05-24 2011-08-31 ソニー株式会社 Optical device and optical device manufacturing method
JP4696783B2 (en) 2005-08-26 2011-06-08 日本ゼオン株式会社 Polarized light separating film, method for producing polarized light separating film, and liquid crystal display device
JP2007003870A (en) 2005-06-24 2007-01-11 Seiko Epson Corp Method for manufacturing optical element, optical element and projection display device
US7903194B2 (en) * 2005-06-24 2011-03-08 3M Innovative Properties Company Optical element for lateral light spreading in back-lit displays and system using same
JP2007033558A (en) * 2005-07-22 2007-02-08 Nippon Zeon Co Ltd Grid polarizer and its manufacturing method
KR20080036995A (en) * 2005-07-22 2008-04-29 니폰 제온 가부시키가이샤 Grid polarizer and method for manufacturing same
JP4275692B2 (en) * 2005-10-17 2009-06-10 旭化成株式会社 Wire grid polarizer and liquid crystal display using the same
JP4275691B2 (en) * 2005-10-17 2009-06-10 旭化成株式会社 Manufacturing method of wire grid polarizing plate
WO2007053579A2 (en) * 2005-10-31 2007-05-10 Kabushiki Kaisha Toshiba Short-wavelength polarizing elements and the manufacture and use thereof
JP2007183524A (en) * 2006-01-06 2007-07-19 Cheil Industries Inc Polarizing optical element and liquid crystal display device using it
US20070217008A1 (en) * 2006-03-17 2007-09-20 Wang Jian J Polarizer films and methods of making the same
US20070285779A1 (en) * 2006-06-13 2007-12-13 Walker Christopher B Optical films comprising high refractive index and antireflective coatings
US8755113B2 (en) * 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
JP4778873B2 (en) * 2006-10-20 2011-09-21 株式会社 日立ディスプレイズ Liquid crystal display
JP2008107720A (en) * 2006-10-27 2008-05-08 Enplas Corp Polarizer and its manufacturing method
JP2008268861A (en) * 2006-12-18 2008-11-06 Rohm & Haas Denmark Finance As Shaped article with polymer domain and process
JP4488033B2 (en) 2007-02-06 2010-06-23 ソニー株式会社 Polarizing element and liquid crystal projector
US7683982B2 (en) * 2007-02-16 2010-03-23 Samsung Electronics Co., Ltd. Active reflective polarizer, liquid crystal display employing the same and method for the same
JP5338286B2 (en) * 2008-03-26 2013-11-13 株式会社デンソー Fuel supply device
JP4640446B2 (en) * 2008-05-26 2011-03-02 ソニー株式会社 Liquid crystal device, color filter substrate and array substrate
JP5498114B2 (en) 2009-09-29 2014-05-21 アズビル株式会社 Control valve and calibration method of actual opening conversion characteristics of control valve
JP2012017006A (en) 2010-07-07 2012-01-26 Valeo Japan Co Ltd Vehicle air conditioning device provided with ozone generator
JP5682312B2 (en) * 2011-01-05 2015-03-11 ソニー株式会社 Method for manufacturing solid-state imaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200579A (en) * 2007-02-06 2013-10-03 Sony Corp Polarizing element and transmissive liquid crystal projector
JP2015180947A (en) * 2007-02-06 2015-10-15 ソニー株式会社 Polarizing element and transmissive liquid crystal projector
JP2019200422A (en) * 2007-02-06 2019-11-21 ソニー株式会社 Polarization element and transmission type liquid crystal projector
JP2021063997A (en) * 2007-02-06 2021-04-22 ソニー株式会社 Polarizer and transmissive liquid crystal projector
JP7237057B2 (en) 2007-02-06 2023-03-10 ソニーグループ株式会社 Polarizing element
US11029458B2 (en) 2017-09-28 2021-06-08 Dexerials Corporation Polarizing plate and optical apparatus including the same
US11112550B2 (en) 2018-07-31 2021-09-07 Dexerials Corporation Polarizing plate, optical apparatus and method of manufacturing polarizing plate

Also Published As

Publication number Publication date
JP6539879B2 (en) 2019-07-10
JP6056903B2 (en) 2017-01-11
JP2016167094A (en) 2016-09-15
JP2013200579A (en) 2013-10-03
JP2019200422A (en) 2019-11-21
JP4488033B2 (en) 2010-06-23
JP2017167561A (en) 2017-09-21
JP4957779B2 (en) 2012-06-20
JP6164339B2 (en) 2017-07-19
JP2012103728A (en) 2012-05-31
JP2008216957A (en) 2008-09-18
JP5776729B2 (en) 2015-09-09
USRE45642E1 (en) 2015-08-04
JP2021063997A (en) 2021-04-22
JP4957867B1 (en) 2012-06-20
JP2015180947A (en) 2015-10-15
JP2010044416A (en) 2010-02-25
JP2012123392A (en) 2012-06-28
JP7237057B2 (en) 2023-03-10
USRE48640E1 (en) 2021-07-13
USRE46560E1 (en) 2017-09-26

Similar Documents

Publication Publication Date Title
JP7237057B2 (en) Polarizing element
JP6770037B2 (en) LCD projector
US7957062B2 (en) Polarizing element and liquid crystal projector
JP6100492B2 (en) Polarizing element, projector, and manufacturing method of polarizing element
JP6285131B2 (en) Polarizing plate and manufacturing method of polarizing plate
WO2012118204A1 (en) Polarizing element
JP4935209B2 (en) Polarizing element and manufacturing method thereof
JP2010066571A (en) Polarizing element and production method, and liquid crystal projector
JP5936727B2 (en) Polarizing element
JP6527211B2 (en) Polarizing plate, and method of manufacturing polarizing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250