JP4760135B2 - Optical device and optical device manufacturing method - Google Patents

Optical device and optical device manufacturing method Download PDF

Info

Publication number
JP4760135B2
JP4760135B2 JP2005151154A JP2005151154A JP4760135B2 JP 4760135 B2 JP4760135 B2 JP 4760135B2 JP 2005151154 A JP2005151154 A JP 2005151154A JP 2005151154 A JP2005151154 A JP 2005151154A JP 4760135 B2 JP4760135 B2 JP 4760135B2
Authority
JP
Japan
Prior art keywords
optical device
metal layer
grid
substrate
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005151154A
Other languages
Japanese (ja)
Other versions
JP2006330178A (en
Inventor
真理子 小日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005151154A priority Critical patent/JP4760135B2/en
Publication of JP2006330178A publication Critical patent/JP2006330178A/en
Application granted granted Critical
Publication of JP4760135B2 publication Critical patent/JP4760135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、入射光を選択的に偏光させる光学装置及びその製造方法に関する。   The present invention relates to an optical device that selectively polarizes incident light and a manufacturing method thereof.

基板上に、互いに平行な複数の直線状金属層が、入射光の波長に比して狭い間隔で形成された、所謂ワイヤグリッド構造による光学装置が知られている。
この光学装置は、図18A及び図18Bに斜視図及び断面図を示すように、例えば可視光域に関して透明な基板102の一主面上に、互いに平行な複数の金属層103が、直線状すなわちライン状のグリッドとして、入射光Lの波長に比して狭い間隔で形成された構成を有し、基板102の主面の法線(破線図示)に対して所定の入射角θinで入射する入射光Lのうち、グリッドに垂直な偏光成分aを、透過光Lを構成する主たる偏光成分cとして選択的に透過させ、グリッド103に平行な偏光成分bを、反射光Lを構成する主たる偏光成分dとして選択的に反射させるものである。
There is known an optical device having a so-called wire grid structure in which a plurality of linear metal layers parallel to each other are formed on a substrate at a narrower interval than the wavelength of incident light.
As shown in FIGS. 18A and 18B, the optical device includes a plurality of metal layers 103 that are parallel to each other on one main surface of a substrate 102 that is transparent with respect to the visible light region. The line-shaped grid has a configuration that is formed at a narrower interval than the wavelength of the incident light L, and is incident at a predetermined incident angle θ in on the normal line (shown by a broken line) of the main surface of the substrate 102. of the incident light L, and the vertical polarization components a grid, selectively transmit a main polarization component c constituting the transmitted light L 1, polarization components b parallel to the grid 103, constitutes a reflected light L 2 This is selectively reflected as the main polarization component d.

しかしながら、このワイヤグリッド構造による光学装置101においては、金属層103による直線状グリッドの間隔を可視光域の短波長側よりも短く例えば0.6μmより小とした形成が難しいことなどから、グリッドに平行な偏光成分が透過光Lに一部混入したり(図中e)、グリッドに垂直な偏光成分が反射光Lに一部混入したり(図中f)してしまう。
このため、ワイヤグリッド構造による光学装置においては、前述の透過光L及び反射光Lの主たる偏光成分を選定することはできるものの、入射光Lの完全な選択的偏光すなわち偏光分離をすることは困難とされている。
However, in the optical device 101 having this wire grid structure, it is difficult to form the grid with the metal layer 103 so that the interval between the linear grids is shorter than the short wavelength side of the visible light region, for example, less than 0.6 μm. parallel polarization components or mixed partially transmitted light L 1 (figure e), the vertical polarization component to the grid will be become intermixed part on the reflected light L 2 (in the figure f).
For this reason, in the optical device having the wire grid structure, although the main polarization components of the transmitted light L 1 and the reflected light L 2 can be selected, the incident light L is completely selectively polarized, that is, polarized light is separated. Is considered difficult.

これに対し、ワイヤグリッド構造による光学装置を構成する基板102や金属層103の材料や形状を選定することにより、偏光分離特性の向上が図られた光学装置が提案されている(例えば特許文献1参照)。
特表2003-508813号公報
On the other hand, an optical device has been proposed in which the polarization separation characteristics are improved by selecting the material and shape of the substrate 102 and the metal layer 103 constituting the optical device having a wire grid structure (for example, Patent Document 1). reference).
Special table 2003-508813 gazette

しかし、特許文献1に記載の発明によるのみでは、前述した偏光分離特性の向上が十分なされないおそれが残る。
例えば、前述の特許文献1に記載の発明による光学装置として、例えば基板102及び金属層103をそれぞれSiO及びAl(アルミニウム)により構成し、グリッド間隔すなわちピッチ長を144nm、金属層103の厚さを170nm、金属層103の幅をピッチ長に対して0.45の比率とし、入射光の入射角θinを45°に選定した場合には、光学装置1を経て生じる透過光及び反射光に関する偏光分離特性について、以下のような問題が生じる。
However, only with the invention described in Patent Document 1, there is a possibility that the above-described improvement of the polarization separation characteristic is not sufficiently performed.
For example, as an optical device according to the invention described in Patent Document 1, for example, the substrate 102 and the metal layer 103 are made of SiO 2 and Al (aluminum), respectively, the grid interval, that is, the pitch length is 144 nm, and the thickness of the metal layer 103. Is 170 nm, the width of the metal layer 103 is set to a ratio of 0.45 to the pitch length, and the incident angle θ in of incident light is selected to be 45 °, the transmitted light and reflected light generated through the optical device 1 are related. The following problems occur with respect to polarization separation characteristics.

図19A及び図19Bは、それぞれ、この従来の光学装置において、グリッドに垂直な偏光成分及びグリッドに平行な偏光成分に対する、透過光Lの透過率(破線図示)と反射光Lの反射率(実線図示)の測定結果を示す。
グリッドに平行な偏光成分については、図19Bに示すように、可視光の波長帯域に関わらず透過光が略完全に抑制されるものの、グリッドに垂直な偏光成分については、図19Aに示すように、特に0.6μm以下の短波長域で透過光の透過率低下と反射光の反射率上昇がみられることから、波長依存性が大きく、グリッドに平行な偏光成分を主たる偏光成分とする反射光に、グリッドに垂直な偏光成分が一部混入してしまうことも確認できる。
19A and 19B show the transmittance of the transmitted light L 1 (shown by a broken line) and the reflectance of the reflected light L 2 for the polarization component perpendicular to the grid and the polarization component parallel to the grid, respectively, in this conventional optical device. The measurement result (shown by a solid line) is shown.
As for the polarization component parallel to the grid, as shown in FIG. 19B, transmitted light is almost completely suppressed regardless of the wavelength band of visible light, but for the polarization component perpendicular to the grid, as shown in FIG. 19A. In particular, since the transmittance of the transmitted light is decreased and the reflectance of the reflected light is increased in the short wavelength region of 0.6 μm or less, the reflected light has a large wavelength dependency and a polarization component that is parallel to the grid as a main polarization component. It can also be confirmed that a part of the polarization component perpendicular to the grid is mixed.

また、図20A及び図20Bは、それぞれ、この従来の光学装置における、反射光の消光比(グリッドに平行な偏光の反射光/グリッドに垂直な偏光の反射光)及び透過光の消光比(グリッドに垂直な偏光の透過光/グリッドに平行な偏光の透過光)の測定結果を示す。
これらの測定結果からも、図20Aに示すように、特に短波長域において反射光の消光比が伸びず、波長依存性が強く残っていることがわかる。このような波長依存性は、例えば光学装置によってディスプレイ装置などを構成する場合に、輝度やコントラストの低下、ならびに色斑の発生などの原因となることから、可能な限り低減することが求められる。
20A and 20B show the extinction ratio of reflected light (reflected light of polarized light parallel to the grid / reflected light of polarized light perpendicular to the grid) and the extinction ratio of transmitted light (grid) in this conventional optical device, respectively. (Measurement result of polarized transmitted light perpendicular to the grid / transmitted light polarized parallel to the grid).
Also from these measurement results, as shown in FIG. 20A, it can be seen that the extinction ratio of the reflected light does not increase particularly in the short wavelength region, and the wavelength dependence remains strong. Such wavelength dependence is required to be reduced as much as possible, for example, when a display device or the like is constituted by an optical device, which causes a decrease in luminance and contrast and generation of color spots.

本発明は、上述の諸問題を鑑み、偏光分離特性の向上が図られた光学装置と、この光学装置の製造方法を提供するものである。   In view of the above-described problems, the present invention provides an optical device with improved polarization separation characteristics and a method for manufacturing the optical device.

本発明に係る光学装置は、入射光を選択的に偏光させる光学装置であって、SiO よりなり、表面にグリッド状の凹凸構造を有する基板と、基板の凹凸構造の凸部上に形成され、Alよりなるグリッド状の金属層と、金属層上に形成され、SiO 又はこれより屈折率の高い材料よりなる誘電体層と、を有し、金属層の厚さが170nm、グリッド間隔であるピッチ長が144nm、幅が前記ピッチ長に対して0.45の比率とされ、誘電体層の厚さが100nmとされてなることを特徴とする。 An optical device according to the present invention is an optical device that selectively polarizes incident light, and is formed on a substrate made of SiO 2 and having a grid-like concavo-convex structure on a surface and a convex portion of the concavo-convex structure of the substrate. , A grid-like metal layer made of Al, and a dielectric layer made of SiO 2 or a material having a higher refractive index than that formed on the metal layer, the thickness of the metal layer being 170 nm, with a grid interval The pitch length is 144 nm, the width is 0.45 with respect to the pitch length, and the thickness of the dielectric layer is 100 nm .

本発明に係る光学装置の製造方法は、上述の入射光を選択的に偏光させる光学装置の製造方法である。この製造方法は、SiOよりなる基板の表面に、Alよりなる金属層を、厚さ170nmとして形成する工程と、金属層上に、SiO又はこれより屈折率の高い誘電体材料よりなるレジスト層を、厚さ100nmとして形成する工程と、レジスト層に、ピッチ長を144nm、幅を前記ピッチ長に対して0.45の比率として、直線のグリッド状にパターニングする工程と、パターニングした前記レジスト層をエッチングマスクとして、異方性エッチングにより、前記金属層を直線のグリッド状にパターニングする工程と、レジスト層をエッチングマスクとして、異方性エッチングにより前記基板の表面に凹部を形成する工程と、を含むことを特徴とする。 The method for manufacturing an optical device according to the present invention is a method for manufacturing an optical device that selectively polarizes the incident light described above. This manufacturing method includes a step of forming a metal layer made of Al with a thickness of 170 nm on the surface of a substrate made of SiO 2 , and a resist made of a dielectric material having a refractive index of SiO 2 or higher on the metal layer. Forming a layer with a thickness of 100 nm, patterning the resist layer in a linear grid pattern with a pitch length of 144 nm and a width of 0.45 with respect to the pitch length, and the patterned resist Patterning the metal layer into a linear grid by anisotropic etching using the layer as an etching mask, and forming a recess on the surface of the substrate by anisotropic etching using the resist layer as an etching mask; It is characterized by including.

本発明に係る光学装置によれば、入射光を選択的に偏光させる光学装置において、少なくとも可視光域に関して透明な基板と、この基板の一主面上に互いに平行に設けられ、かつ互いの間隔が前記入射光の波長に比して小とされた複数の直線状金属層とを有し、少なくとも、前記金属層の前記基板とは反対側に誘電体層が形成されることから、短波長域の入射光に対する偏光分離特性すなわち偏光分離効率の向上が図られる。   According to the optical device of the present invention, in the optical device that selectively polarizes incident light, the substrate that is transparent at least with respect to the visible light region and the main surface of the substrate are provided in parallel to each other and spaced from each other. Has a plurality of linear metal layers that are smaller than the wavelength of the incident light, and at least a dielectric layer is formed on the opposite side of the metal layer from the substrate, so that the short wavelength The polarization separation characteristic with respect to the incident light in the region, that is, the polarization separation efficiency is improved.

本発明に係る光学装置によれば、可視光域に関して透明な基板の一主面に金属層を形成する金属層形成工程と、少なくとも金属層を互いに平行な複数の直線状に整形する金属層整形工程と、少なくとも前記金属層の前記基板とは反対側に誘電体層を形成する誘電体層形成工程とを有することから、偏光分離特性の向上が図られた光学装置を製造することが可能となる。   According to the optical device of the present invention, the metal layer forming step of forming a metal layer on one main surface of the substrate transparent with respect to the visible light region, and the metal layer shaping that shapes at least the metal layer into a plurality of straight lines parallel to each other. And a dielectric layer forming step of forming a dielectric layer at least on the opposite side of the metal layer from the substrate, it is possible to manufacture an optical device with improved polarization separation characteristics Become.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<光学装置の第1の実施形態>
本発明に係る光学装置の、第1の実施形態を説明する。
図1A及び図1Bは、本実施形態に係る光学装置の構成を示す概略斜視図及び概略断面図である。
図1Aに示すように、本実施形態に係る光学装置1は、少なくとも可視光域に関して透明な基板2の一主面上に、互いに平行な複数の金属層3が、直線状すなわちライン状のグリッドとして、入射光L´の波長に比して小とされた間隔で形成され、金属層3の少なくとも基板2とは反対側に、すなわち例えば上面に接して、誘電体層4が形成された構成を有する。
<First Embodiment of Optical Device>
A first embodiment of an optical device according to the present invention will be described.
1A and 1B are a schematic perspective view and a schematic cross-sectional view showing a configuration of an optical device according to the present embodiment.
As shown in FIG. 1A, the optical device 1 according to the present embodiment includes a plurality of metal layers 3 parallel to each other on a principal surface of a substrate 2 that is transparent at least in the visible light region. The dielectric layer 4 is formed at an interval which is made smaller than the wavelength of the incident light L ′ and at least on the opposite side of the metal layer 3 from the substrate 2, that is, for example, in contact with the upper surface. Have

なお、本実施形態においては、基板2、金属層3、誘電体層4を、それぞれSiO、Al(アルミニウム)、SiOにより構成し、金属層3のグリッド間隔すなわちピッチ長を144nm、金属層3の厚さを170nm、金属層3の幅をピッチ長に対して0.45の比率とし、入射光の入射角θinを45°に選定し、誘電体層4の厚さは100nmとした。 In the present embodiment, the substrate 2, the metal layer 3, and the dielectric layer 4 are made of SiO 2 , Al (aluminum), and SiO 2 , respectively, and the grid interval, that is, the pitch length of the metal layer 3 is 144 nm. 3 is set to 170 nm, the width of the metal layer 3 is set to a ratio of 0.45 to the pitch length, the incident angle θ in of incident light is selected to be 45 °, and the thickness of the dielectric layer 4 is set to 100 nm. .

本実施形態に係る光学装置1においては、基板2の主面の法線(破線図示)に対して所定の入射角θinで入射する入射光Lのうち、グリッドに垂直な偏光成分a´を、透過光L´を構成する主たる偏光成分c´として選択的に透過させ、グリッド103に平行な偏光成分b´を、反射光L´を構成する主たる偏光成分d´として選択的に反射させるものであるが、金属層3の上面に誘電体層4が設けられたことにより、後述するように、透過率及び反射率ならびに消光比など、偏光分離特性の向上が図られる。 In the optical device 1 according to the present embodiment, out of the incident light L incident at a predetermined incident angle θ in with respect to the normal line (broken line) of the main surface of the substrate 2, the polarization component a ′ perpendicular to the grid is generated. , Selectively transmit as the main polarization component c ′ constituting the transmitted light L 1 ′, and selectively reflect the polarization component b ′ parallel to the grid 103 as the main polarization component d ′ constituting the reflected light L 2 ′. However, the provision of the dielectric layer 4 on the upper surface of the metal layer 3 improves the polarization separation characteristics such as transmittance, reflectance and extinction ratio, as will be described later.

図2A及び図2Bは、それぞれ、本実施形態に係る光学装置1において、グリッドに垂直な偏光成分(a´及びc´)及びグリッドに平行な偏光成分(b´及びd´)に対する、透過光の透過率(破線図示)と反射光の反射率(実線図示)の測定結果を示す。測定は、一般に可視光域と呼称される0.4μm〜0.8μmの波長範囲について行った。
本実施形態に係る光学装置1によれば、グリッドに平行な偏光成分について、図2Bに示すように、可視光の波長帯域に関わらず透過光が略完全に抑制されるとともに、グリッドに垂直な偏光成分についても、図2Aに示すように、前述した従来の光学装置による場合に比して、特に0.6μm以下の短波長域で透過光の透過率低下ならびに反射光の反射率上昇が抑制される。したがって、波長依存性の抑制すなわち改善とともに、グリッドに平行な偏光成分を主たる偏光成分とする反射光に対する、グリッドに垂直な偏光成分の混入が低減されたことが確認できる。
2A and 2B show the transmitted light for the polarization components (a ′ and c ′) perpendicular to the grid and the polarization components (b ′ and d ′) parallel to the grid, respectively, in the optical device 1 according to this embodiment. The measurement results of the transmittance (illustrated by broken lines) and the reflectance of the reflected light (shown by solid lines) are shown. The measurement was performed for a wavelength range of 0.4 μm to 0.8 μm, which is generally called a visible light region.
According to the optical device 1 according to the present embodiment, as shown in FIG. 2B, the transmitted light is substantially completely suppressed regardless of the wavelength band of visible light, and the polarization component parallel to the grid is perpendicular to the grid. As for the polarization component, as shown in FIG. 2A, compared to the case of the conventional optical device described above, the decrease in the transmittance of the transmitted light and the increase in the reflectance of the reflected light are suppressed particularly in the short wavelength region of 0.6 μm or less. Is done. Therefore, it can be confirmed that the mixing of the polarization component perpendicular to the grid with respect to the reflected light having the polarization component parallel to the grid as the main polarization component is reduced along with the suppression or improvement of the wavelength dependency.

図3は、図2Aに示した本実施形態に係る光学装置1における偏光成分の測定結果と、前述した図19Aに示した従来の光学装置101における偏光成分の測定結果を重ね合わせて図示したものである。
図3においては、本実施形態に係る光学装置1による反射光の反射率と透過光の透過率をそれぞれ実線g及び実線iで、従来の光学装置101による反射光の反射率と透過光の透過率をそれぞれ破線h及び破線jで、それぞれ示す。
FIG. 3 shows the measurement result of the polarization component in the optical device 1 according to the present embodiment shown in FIG. 2A and the measurement result of the polarization component in the conventional optical device 101 shown in FIG. It is.
In FIG. 3, the reflectance of the reflected light and the transmittance of the transmitted light by the optical device 1 according to this embodiment are indicated by a solid line g and a solid line i, respectively, and the reflectance of the reflected light and the transmission of the transmitted light by the conventional optical device 101 are illustrated. The rates are indicated by broken lines h and j, respectively.

本実施形態に係る光学装置1によれば、従来の光学装置101による場合に比して、例えば波長0.5μmの入射光に関しては、グリッドに垂直な偏光成分について、反射率が約0.03低減され、透過率が約0.02増大されていることが確認できる。すなわち、本実施形態に係る光学装置1によれば、図1Aに示す、グリッドに垂直な偏光成分を主たる偏光成分とする透過光L´に対するグリッドに平行な偏光成分の混入(図中e´)が抑制されながらも、グリッドに平行な偏光成分を主たる偏光成分とする反射光L´に対するグリッドに垂直な偏光成分の混入(図中f´)が低減され、可視光域における波長依存性が改善されていることがわかる。 According to the optical device 1 according to the present embodiment, as compared with the case of the conventional optical device 101, for example, with respect to incident light having a wavelength of 0.5 μm, the reflectance of the polarization component perpendicular to the grid is about 0.03. It can be confirmed that the transmittance is reduced and the transmittance is increased by about 0.02. That is, according to the optical device 1 according to the present embodiment, the polarization component parallel to the grid is mixed with the transmitted light L 1 ′ having the polarization component perpendicular to the grid as the main polarization component shown in FIG. 1A (e ′ in the figure). ) Is suppressed, but mixing of the polarization component perpendicular to the grid (f ′ in the figure) with respect to the reflected light L 2 ′ having the polarization component parallel to the grid as the main polarization component is reduced, and the wavelength dependence in the visible light region is reduced. It can be seen that is improved.

図4A及び図4Bは、それぞれ、本実施形態に係る光学装置1における、反射光の消光比(グリッドに平行な偏光の反射光/グリッドに垂直な偏光の反射光)及び透過光の消光比(グリッドに垂直な偏光の透過光/グリッドに平行な偏光の透過光)の測定結果を示す。
消光比すなわち消光率は、互いに直交する偏光の強度比であり、この値が大きいほど、偏光分離特性(偏光選択性)が良いと考えられる。
4A and 4B show the extinction ratio of reflected light (reflected light of polarized light parallel to the grid / reflected light of polarized light perpendicular to the grid) and the extinction ratio of transmitted light (in the optical device 1 according to this embodiment, respectively). The measurement result of polarized light transmitted perpendicular to the grid / transmitted light polarized parallel to the grid is shown.
The extinction ratio, that is, the extinction ratio is an intensity ratio of polarized light orthogonal to each other, and it is considered that the larger the value, the better the polarization separation characteristic (polarization selectivity).

本実施形態に係る光学装置1によれば、図4Aに示すように、全波長帯域において反射光の消光比が伸びており、特に短波長域で伸びが大きく、例えば図20Aに示した従来の光学装置101による場合に比して、例えば波長0.6μmの入射光に関しては、約150もの消光比の向上がなされている。
この測定結果からも、本発明構成によって波長依存性の抑制ならびに偏光分離特性の向上が図られることが確認できたことから、例えばディスプレイ装置などを構成する場合にも、輝度及びコントラストの低下や色斑の発生などが低減されると考えられる。
According to the optical device 1 according to the present embodiment, as shown in FIG. 4A, the extinction ratio of the reflected light is extended in the entire wavelength band, and the extension is particularly large in the short wavelength range. For example, the conventional apparatus shown in FIG. Compared to the case of using the optical device 101, for example, about 150 extinction ratios are improved for incident light having a wavelength of 0.6 μm.
From this measurement result, it was confirmed that the wavelength dependency was suppressed and the polarization separation characteristic was improved by the configuration of the present invention. It is considered that the occurrence of spots is reduced.

なお、本実施形態においては、金属層3上の誘電体層4の形状を、概略的に板状もしくは直方体状として示したが、例えば図5に示すように、断面台形に形成しても良いし、後述するように、断面形状を四角形以外の略半円形や多角形として形成しても良い。また、例えば図6に示すように、誘電体層4を金属層3に比して幅広に形成しても良い。   In the present embodiment, the shape of the dielectric layer 4 on the metal layer 3 is schematically shown as a plate shape or a rectangular parallelepiped shape, but may be formed in a trapezoidal cross section as shown in FIG. However, as described later, the cross-sectional shape may be formed as a substantially semicircular shape or polygonal shape other than a quadrangle. For example, as shown in FIG. 6, the dielectric layer 4 may be formed wider than the metal layer 3.

<光学装置の第2の実施形態>
本発明に係る光学装置の、第2の実施形態を説明する。
この第2実施形態では、第1実施形態と異なる部分のみを説明する。説明を省略する部分は、第1実施形態と同様であることとする。また、説明上、第1実施形態と重複する構成要素には、同一の符号を付して重複説明を省略する。
<Second Embodiment of Optical Device>
A second embodiment of the optical device according to the present invention will be described.
In the second embodiment, only portions different from the first embodiment will be described. Portions that are not described are the same as those in the first embodiment. For the sake of explanation, the same reference numerals are given to the same components as those in the first embodiment, and the duplicate description is omitted.

図7は、本実施形態に係る光学装置の構成を示す概略断面図である。
本実施形態に係る光学装置1は、少なくとも可視光域に関して透明な基板2の一主面上に、互いに平行な複数の金属層3が、直線状すなわちライン状のグリッドとして、入射光(図示せず)の波長に比して小とされた間隔で形成され、金属層3の少なくとも基板2とは反対側に誘電体層4が形成された構成を有する。
また、本実施形態に係る光学装置1は、基板2の、金属層3が設けられた主面側の露出部に、金属層3によるグリッドに平行な溝が形成され、この溝による基板2の凹凸によって、金属層3及び誘電体層4の厚さの和に比して大きな深さの凹凸が形成された構成を有する。
FIG. 7 is a schematic cross-sectional view showing the configuration of the optical device according to the present embodiment.
In the optical device 1 according to this embodiment, a plurality of metal layers 3 parallel to each other are formed as linear or line-like grids on one main surface of a substrate 2 transparent at least in the visible light region. The dielectric layer 4 is formed at least on the side opposite to the substrate 2 of the metal layer 3.
Further, in the optical device 1 according to this embodiment, a groove parallel to the grid of the metal layer 3 is formed in the exposed portion of the substrate 2 on the main surface side where the metal layer 3 is provided. It has a configuration in which the unevenness having a depth larger than the sum of the thicknesses of the metal layer 3 and the dielectric layer 4 is formed by the unevenness.

図8A及び図8Bは、それぞれ、本実施形態に係る光学装置1において、グリッドに垂直な偏光成分及びグリッドに平行な偏光成分に対する、透過光の透過率(破線図示)と反射光の反射率(実線図示)の測定結果を示す。
本実施形態に係る光学装置1によれば、グリッドに平行な偏光成分について、図8Bに示すように、可視光の波長帯域に関わらず透過光が略完全に抑制されるとともに、グリッドに垂直な成分についても、図8Aに示すように、前述した第1実施形態における構成よりも更に、短波長域で透過光の透過率低下ならびに反射光の反射率上昇が抑制され、グリッドに平行な偏光成分を主たる偏光成分とする反射光に対する、グリッドに垂直な偏光成分の混入が低減されたことが確認できる。
FIGS. 8A and 8B respectively show the transmittance of transmitted light (shown by a broken line) and the reflectance of reflected light (with respect to a polarization component perpendicular to the grid and a polarization component parallel to the grid) in the optical device 1 according to the present embodiment. The measurement result of a solid line is shown.
According to the optical device 1 according to the present embodiment, as shown in FIG. 8B, transmitted light is substantially completely suppressed regardless of the wavelength band of visible light, and the polarization component parallel to the grid is perpendicular to the grid. As for the component, as shown in FIG. 8A, the polarization component parallel to the grid is further suppressed in the short wavelength region in which the decrease in the transmittance of the transmitted light and the increase in the reflectance of the reflected light are suppressed as compared with the configuration in the first embodiment described above. It can be confirmed that the mixing of the polarization component perpendicular to the grid with respect to the reflected light having the main polarization component is reduced.

図9A及び図9Bは、それぞれ、本実施形態に係る光学装置1における、反射光の消光比(グリッドに平行な偏光の反射光/グリッドに垂直な偏光の反射光)及び透過光の消光比(グリッドに垂直な偏光の透過光/グリッドに平行な偏光の透過光)の測定結果を示す。
図9Aに示すように、特に短波長域において反射光の消光比が伸びており、例えば前述した第1実施形態における構成による場合に比して、短波長側での消光比が上昇して例えば波長0.5μmの入射光に関しては約100もの消光比向上がなされ、更に全波長帯に対して均一性が増し、波長依存性が低減されていることが確認できる。
この測定結果からも、本発明構成によって波長依存性の抑制ならびに偏光分離特性の向上が図られることが確認できたことから、例えばディスプレイ装置などを構成する場合にも、輝度及びコントラストの低下や色斑の発生などが低減されると考えられる。
9A and 9B show the extinction ratio of reflected light (reflected light of polarized light parallel to the grid / reflected light of polarized light perpendicular to the grid) and the extinction ratio of transmitted light (in the optical device 1 according to this embodiment, respectively). The measurement result of polarized light transmitted perpendicular to the grid / transmitted light polarized parallel to the grid is shown.
As shown in FIG. 9A, the extinction ratio of reflected light is increased particularly in a short wavelength region. For example, the extinction ratio on the short wavelength side is increased as compared with the case of the configuration in the first embodiment described above. For incident light with a wavelength of 0.5 μm, it can be confirmed that the extinction ratio is improved by about 100, the uniformity is further increased over the entire wavelength band, and the wavelength dependency is reduced.
From this measurement result, it was confirmed that the wavelength dependency was suppressed and the polarization separation characteristic was improved by the configuration of the present invention. It is considered that the occurrence of spots is reduced.

また、本実施形態においては、金属層3上の誘電体層4の形状を、概略的に板状もしくは直方体状として示したが、例えば図10及び図11に示すように、半円形や多角形などの四角形以外の断面形状を有して形成しても良いし、また例えば図12に示すように、基板2の表面に形成される凹部すなわち溝の形状も適宜選定することができる。   Further, in the present embodiment, the shape of the dielectric layer 4 on the metal layer 3 is schematically shown as a plate shape or a rectangular parallelepiped shape. However, for example, as shown in FIGS. For example, as shown in FIG. 12, the shape of a recess, that is, a groove formed on the surface of the substrate 2 can be selected as appropriate.

<光学装置の第3の実施形態>
本発明に係る光学装置の、第3の実施形態を説明する。
この第3実施形態では、第1実施形態と異なる部分のみを説明する。説明を省略する部分は、第1実施形態と同様であることとする。また、説明上、第1実施形態と重複する構成要素には、同一の符号を付して重複説明を省略する。
<Third Embodiment of Optical Device>
A third embodiment of the optical apparatus according to the present invention will be described.
In the third embodiment, only parts different from the first embodiment will be described. Portions that are not described are the same as those in the first embodiment. For the sake of explanation, the same reference numerals are given to the same components as those in the first embodiment, and the duplicate description is omitted.

図13は、本実施形態に係る光学装置の構成を示す概略断面図である。
本実施形態に係る光学装置1は、少なくとも可視光域に関して透明な基板2の一主面上に、互いに平行な複数の金属層3が、直線状すなわちライン状のグリッドとして、入射光(図示せず)の波長に比して小とされた間隔で形成され、金属層3の少なくとも基板2とは反対側に誘電体層4が形成された構成を有する。
また、本実施形態に係る光学装置1は、基板2と金属層3との間に、第2の誘電体層5が設けられ、この第2の誘電体層5によって、金属層3及び誘電体層4の厚さの和に比して大きな深さの凹凸が形成された構成を有する。
FIG. 13 is a schematic cross-sectional view showing the configuration of the optical device according to the present embodiment.
In the optical device 1 according to this embodiment, a plurality of metal layers 3 parallel to each other are formed as linear or line-like grids on one main surface of a substrate 2 transparent at least in the visible light region. The dielectric layer 4 is formed at least on the side opposite to the substrate 2 of the metal layer 3.
Further, in the optical device 1 according to the present embodiment, the second dielectric layer 5 is provided between the substrate 2 and the metal layer 3, and the metal layer 3 and the dielectric are formed by the second dielectric layer 5. It has a configuration in which irregularities having a depth greater than the sum of the thicknesses of the layers 4 are formed.

本実施形態に係る光学装置1においては、金属層3が設けられる主面側に形成された凹凸の凸部が、金属層3と基板2との間に設けられる第2の誘電体層5によって構成される例を説明したが、これに限られない。例えば、第2の誘電体層5を金属層3のグリッド間隔部すなわちピッチ部にも設ける構成によって、凹部が、第2の誘電体層5の少なくとも一部により形成される構成とすることもできる。   In the optical device 1 according to the present embodiment, the uneven protrusions formed on the main surface side where the metal layer 3 is provided are formed by the second dielectric layer 5 provided between the metal layer 3 and the substrate 2. Although the example which comprises is demonstrated, it is not restricted to this. For example, a configuration in which the second dielectric layer 5 is provided also in a grid interval portion, that is, a pitch portion of the metal layer 3, and the concave portion may be formed by at least a part of the second dielectric layer 5. .

本実施形態に係る光学装置1においては、図示しないが、反射光及び透過光の消光比の測定において、前述の第2の実施形態に係る光学装置におけるのと略同様の傾向を確認することができた。
したがって、本実施形態に係る光学装置によっても、波長依存性の抑制ならびに偏光分離特性の向上が図られ、例えばディスプレイ装置などを構成する場合にも、輝度及びコントラストの低下や色斑の発生などが低減されると考えられる。
In the optical device 1 according to the present embodiment, although not shown, in the measurement of the extinction ratio of the reflected light and the transmitted light, it is possible to confirm the same tendency as in the optical device according to the second embodiment described above. did it.
Therefore, the optical device according to the present embodiment can also suppress the wavelength dependency and improve the polarization separation characteristic. For example, even when a display device is configured, the luminance and contrast are reduced, and color spots are generated. It is thought to be reduced.

前述の第1〜第3の実施形態においては、誘電体層4の厚さを100nmとしたが、厚さはこれに限られず、例えば10nmとした場合や1mmとした場合など、本発明構成による限り、誘電体層4の厚さに関わらず消光比の改善による偏光分離特性の向上を確認することができた。
なお、金属層3の厚さが170nmである場合の消光比については、誘電体層4の厚さを100nm程度とすることが特に好ましく、次いで300nm、500nm、10nmの順に、消光比が大きく改善されることや、誘電体層4の屈折率が基板2の屈折率に比して高い場合に、特に消光比の改善が図られること、更には誘電体層4の屈折率が基板2の屈折率に比して低い場合にも、従来の構成による場合に比して消光比が改善されることなどが確認できた。
In the first to third embodiments described above, the thickness of the dielectric layer 4 is set to 100 nm. However, the thickness is not limited to this. For example, the thickness is set to 10 nm or 1 mm. As far as the thickness of the dielectric layer 4 is concerned, it was confirmed that the polarization splitting characteristics were improved by improving the extinction ratio.
As for the extinction ratio when the thickness of the metal layer 3 is 170 nm, it is particularly preferable that the thickness of the dielectric layer 4 is about 100 nm, and then the extinction ratio is greatly improved in the order of 300 nm, 500 nm, and 10 nm. In addition, when the refractive index of the dielectric layer 4 is higher than the refractive index of the substrate 2, the extinction ratio is particularly improved, and the refractive index of the dielectric layer 4 is higher than the refractive index of the substrate 2. It was confirmed that the extinction ratio was improved as compared with the case of the conventional configuration even when the ratio was low.

また、誘電体層4ならびに第2の誘電体層5を構成する材料としては、前述したSiOのほか、有機物を含め種々の材料を用いることができるが、可視光域に関して透明な誘電体材料の中から、屈折率、透過率、吸収率などを基に選定することが好ましい。例えば、酸化チタン、アルミナ、酸化ビスマス、酸化タングステンなどの酸化物や、フッ化カルシウム、フッ化リチウム、フッ化マグネシウムなどのフッ化物をはじめ、種々の誘電体を用いることが可能である。
また、本発明に係る光学装置1においては、誘電体層4が多層膜により形成される構成や、金属層3と誘電体層4とが繰り返し積層された構成とすることも可能である。
In addition to the above-described SiO 2 , various materials including organic substances can be used as the material constituting the dielectric layer 4 and the second dielectric layer 5, but the dielectric material is transparent in the visible light range. Among these, it is preferable to select based on the refractive index, transmittance, absorptivity, and the like. For example, various dielectrics can be used including oxides such as titanium oxide, alumina, bismuth oxide, and tungsten oxide, and fluorides such as calcium fluoride, lithium fluoride, and magnesium fluoride.
In the optical device 1 according to the present invention, the dielectric layer 4 may be formed of a multilayer film, or the metal layer 3 and the dielectric layer 4 may be repeatedly stacked.

<光学装置の製造方法の第1の実施形態>
本発明に係る光学装置の製造方法の、第1の実施形態を、図14A〜図14Dを参照して説明する。
本実施形態に係る光学装置の製造方法においては、まず、可視光域に関して透明な基板2を用意し、この基板2の一主面に、例えばアルミニウムによる金属層3を、例えば蒸着によって形成する金属層形成工程を行い、図14Aに示すように、例えば電子線描画装置やナノインプリント装置を用いたリソグラフィー手法によって、最終的に金属層3を残す領域に対応させて、レジスト6を被着形成する。
<First Embodiment of Manufacturing Method of Optical Device>
A first embodiment of a method of manufacturing an optical device according to the present invention will be described with reference to FIGS. 14A to 14D.
In the method for manufacturing an optical device according to the present embodiment, first, a substrate 2 that is transparent in the visible light region is prepared, and a metal layer 3 made of, for example, aluminum is formed on one main surface of the substrate 2 by, for example, vapor deposition. A layer forming step is performed, and as shown in FIG. 14A, a resist 6 is deposited and formed so as to correspond to a region where the metal layer 3 is finally left by, for example, a lithography method using an electron beam drawing apparatus or a nanoimprint apparatus.

続いて、レジスト6の開口を通じて、例えば塩素系ガスによるRIE(Reactive Ion Etching)によって金属層3に対する異方性エッチングを行い、図14Bに示すように、金属層3を互いに平行な複数の直線状に整形する金属層整形工程を行う。   Subsequently, anisotropic etching is performed on the metal layer 3 through, for example, RIE (Reactive Ion Etching) using a chlorine-based gas through the opening of the resist 6, and the metal layer 3 is formed into a plurality of straight lines parallel to each other as shown in FIG. 14B. A metal layer shaping step for shaping the film is performed.

続いて、図14Cに示すようにレジスト6を剥離除去し、少なくとも金属層3の基板2とは反対側例えば金属層3の上面に、例えばSiOによる誘電体層4を例えば蒸着によって形成する誘電体層形成工程を行うことにより、図14Dに示すような光学装置1を得る。 Subsequently, as shown in FIG. 14C, the resist 6 is peeled and removed, and a dielectric layer 4 made of, for example, SiO 2 is formed on the opposite side of the metal layer 3 from the substrate 2 such as the upper surface of the metal layer 3 by, for example, vapor deposition. By performing the body layer forming step, the optical device 1 as shown in FIG. 14D is obtained.

<光学装置の製造方法の第2の実施形態>
本発明に係る光学装置の製造方法の、第2の実施形態を、図15A〜図15Cを参照して説明する。
この第2実施形態では、説明を省略する部分は第1実施形態と同様であることとし、また、説明上、第1実施形態と重複する構成要素には、同一の符号を付して重複説明を省略する。
<Second Embodiment of Manufacturing Method of Optical Device>
A second embodiment of the method of manufacturing an optical device according to the present invention will be described with reference to FIGS. 15A to 15C.
In the second embodiment, parts that will not be described are the same as those in the first embodiment, and for the sake of explanation, the same reference numerals are given to the same constituent elements as those in the first embodiment, and the description is repeated. Is omitted.

本実施形態に係る光学装置の製造方法においては、まず、可視光域に関して透明な基板2を用意し、この基板2の一主面に、例えばアルミニウムによる金属層3を形成する金属層形成工程を行い、図15Aに示すように、最終的に金属層3を残す領域に対応して、誘電体によるレジスト7を被着形成して、誘電体層形成工程を行う。   In the method of manufacturing an optical device according to the present embodiment, first, a transparent substrate 2 is prepared with respect to the visible light region, and a metal layer forming step of forming a metal layer 3 of, for example, aluminum on one main surface of the substrate 2 is performed. Then, as shown in FIG. 15A, a resist 7 made of a dielectric material is deposited to correspond to a region where the metal layer 3 is finally left, and a dielectric layer forming step is performed.

続いて、最終的に誘電体層となるレジスト7に、例えばフッ素系ガスによるRIEによって開口を形成し、この開口を通じて、例えば塩素系ガスによるRIEによって金属層3に対するエッチングを行い、図15Bに示すように、金属層3を互いに平行な複数の直線状に整形する金属層整形工程を行う。   Subsequently, an opening is formed in the resist 7 that finally becomes the dielectric layer by, for example, RIE using a fluorine-based gas, and the metal layer 3 is etched through this opening by, for example, RIE using a chlorine-based gas, as shown in FIG. 15B. As described above, a metal layer shaping step for shaping the metal layer 3 into a plurality of straight lines parallel to each other is performed.

続いて、誘電体によるレジスト7を例えばエッチングによって所定の厚さ及び形状として、誘電体層4として形成するとともに、金属層3及び誘電体層4によって基板2の主面上に凹凸を形成して、図15Cに示すような光学装置1を得る。   Subsequently, a resist 7 made of a dielectric is formed as a dielectric layer 4 with a predetermined thickness and shape by etching, for example, and an unevenness is formed on the main surface of the substrate 2 by the metal layer 3 and the dielectric layer 4. An optical device 1 as shown in FIG. 15C is obtained.

本実施形態に係る光学装置の製造方法によれば、金属層整形工程に先立って誘電体層形成工程を行うことから、誘電体層を、金属層整形工程におけるエッチングマスクとして用いることができ、製造コストの低減及び工程数の減少を図ることができる。   According to the manufacturing method of the optical device according to the present embodiment, since the dielectric layer forming step is performed prior to the metal layer shaping step, the dielectric layer can be used as an etching mask in the metal layer shaping step. Costs can be reduced and the number of processes can be reduced.

<光学装置の製造方法の第3の実施形態>
本発明に係る光学装置の製造方法の、第3の実施形態を、図16A〜図16Cを参照して説明する。
この第3実施形態では、説明を省略する部分は第1実施形態と同様であることとし、また、説明上、第1実施形態と重複する構成要素には、同一の符号を付して重複説明を省略する。
<Third Embodiment of Optical Device Manufacturing Method>
A third embodiment of the method of manufacturing an optical device according to the present invention will be described with reference to FIGS. 16A to 16C.
In the third embodiment, parts that will not be described are the same as those in the first embodiment, and for the sake of explanation, the same reference numerals are given to the same constituent elements as those in the first embodiment, and the description is repeated. Is omitted.

本実施形態に係る光学装置の製造方法においては、まず、可視光域に関して透明な基板2を用意し、この基板2の一主面に、例えばアルミニウムによる金属層3を形成する金属層形成工程を行い、図16Aに示すように、最終的に金属層3を残す領域に対応して誘電体によるレジスト7を被着形成して、誘電体層形成工程を行う。   In the method of manufacturing an optical device according to the present embodiment, first, a transparent substrate 2 is prepared with respect to the visible light region, and a metal layer forming step of forming a metal layer 3 of, for example, aluminum on one main surface of the substrate 2 is performed. As shown in FIG. 16A, a dielectric layer 7 is formed by depositing a resist 7 corresponding to the region where the metal layer 3 is finally left.

続いて、最終的に誘電体層となるレジスト7に、例えばフッ素系ガスによるRIEによって開口を形成し、この開口を通じて、例えば塩素系ガスによるRIEによって、金属層3を互いに平行な複数の直線状に整形する金属層整形工程を行うと共に、金属層3と最終的に光学装置の誘電体層を構成するレジスト7の厚さの和に比して大きな深さの凹部を形成する。   Subsequently, an opening is formed in the resist 7 which finally becomes a dielectric layer by, for example, RIE using a fluorine-based gas, and the metal layer 3 is formed into a plurality of straight lines parallel to each other through this opening by, for example, RIE using a chlorine-based gas. A metal layer shaping step is performed, and a recess having a depth larger than the sum of the thicknesses of the metal layer 3 and the resist 7 that finally constitutes the dielectric layer of the optical device is formed.

続いて、誘電体によるレジスト7を例えばエッチングによって所定の厚さ及び形状として、誘電体層4として形成することにより、基板2の主面上に所定の凹凸を形成して、図16Cに示すような光学装置1を得る。   Subsequently, by forming a resist 7 made of a dielectric, for example, by etching to a predetermined thickness and shape as a dielectric layer 4, predetermined irregularities are formed on the main surface of the substrate 2, as shown in FIG. 16C. An optical device 1 is obtained.

本実施形態に係る光学装置の製造方法によれば、金属層整形工程に先立って誘電体層形成工程を行うのみならず、金属層3の整形と基板2表面の凹部形成を同時に行うことができることから、誘電体層を金属層整形工程におけるエッチングマスクとして用いることができるととともに、所望の深さ及び形状を有する凹凸によって、最終的に得る光学装置の主面を構成することが少ない工程数で可能となる。   According to the method for manufacturing an optical device according to the present embodiment, not only the dielectric layer forming step is performed prior to the metal layer shaping step, but also the shaping of the metal layer 3 and the formation of the recesses on the surface of the substrate 2 can be performed simultaneously. Therefore, the dielectric layer can be used as an etching mask in the metal layer shaping process, and the main surface of the optical device finally obtained by the unevenness having a desired depth and shape can be formed with a small number of processes. It becomes possible.

<光学装置の製造方法の第4の実施形態>
本発明に係る光学装置の製造方法の、第4の実施形態を、図17A〜図17Cを参照して説明する。
この第4実施形態では、説明を省略する部分は第1実施形態と同様であることとし、また、説明上、第1実施形態と重複する構成要素には、同一の符号を付して重複説明を省略する。
<Fourth Embodiment of Manufacturing Method of Optical Device>
A fourth embodiment of the method of manufacturing an optical device according to the present invention will be described with reference to FIGS. 17A to 17C.
In the fourth embodiment, parts that will not be described are the same as those in the first embodiment, and for the sake of explanation, the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is given. Is omitted.

本実施形態に係る光学装置の製造方法においては、まず、可視光域に関して透明な基板2を用意し、この基板2の一主面に、最終的に得る光学装置の金属層3上に形成される誘電体層とは別の、例えばSiOによる第2の誘電体層5を例えば蒸着によって形成した後、例えばアルミニウムによる金属層3を形成する金属層形成工程を行い、図17Aに示すように、最終的に金属層3を残す領域に対応して誘電体によるレジスト7を被着形成して、誘電体層形成工程を行う。 In the method of manufacturing an optical device according to this embodiment, first, a substrate 2 that is transparent in the visible light region is prepared, and is formed on one main surface of the substrate 2 on the metal layer 3 of the optical device that is finally obtained. After the second dielectric layer 5 made of, for example, SiO 2 is formed by, for example, vapor deposition, which is different from the dielectric layer to be formed, a metal layer forming step for forming the metal layer 3 made of, for example, aluminum is performed, as shown in FIG. Finally, a dielectric resist 7 is deposited corresponding to the region where the metal layer 3 is left, and a dielectric layer forming step is performed.

続いて、最終的に誘電体層となるレジスト7の開口を通じて、金属層3及び第2の誘電体層5を貫通して基板2でストップするエッチングを行い、図17Bに示すように、金属層3を互いに平行な複数の直線状に整形する金属層整形工程を行うと共に、金属層3と最終的に光学装置の誘電体層を構成するレジスト7の厚さの和に比して大きな深さの凹部を形成する。
なお、本実施形態では、レジスト7に対応する領域の第2の誘電体層5を完全に除去したが、一部残して第2の誘電体層5によって凹部を形成しても良いし、前述のエッチングが基板2に至る、つまり基板2を一部除去して凹部を形成し、これによって最終的に得る光学装置に、金属層と誘電体層の和よりも深い凹凸を形成することもできる。
Subsequently, etching is performed through the metal layer 3 and the second dielectric layer 5 and stopping at the substrate 2 through the opening of the resist 7 which finally becomes the dielectric layer, and as shown in FIG. A metal layer shaping step for shaping 3 into a plurality of straight lines parallel to each other, and a depth larger than the sum of the thicknesses of the metal layer 3 and the resist 7 that finally constitutes the dielectric layer of the optical device A recess is formed.
In the present embodiment, the second dielectric layer 5 in the region corresponding to the resist 7 is completely removed. However, a recess may be formed by the second dielectric layer 5 while leaving a part thereof. The etching reaches the substrate 2, that is, the substrate 2 is partially removed to form a recess, and thereby the optical device finally obtained can be formed with unevenness deeper than the sum of the metal layer and the dielectric layer. .

続いて、誘電体によるレジスト7を、例えばエッチングによって所定の厚さ及び形状として、誘電体層4として形成することにより、基板2の主面上に所定の凹凸を形成して、図17Cに示すような光学装置1を得る。   Subsequently, by forming a resist 7 made of a dielectric, for example, by etching into a dielectric layer 4 having a predetermined thickness and shape, predetermined irregularities are formed on the main surface of the substrate 2 and shown in FIG. 17C. Such an optical device 1 is obtained.

本実施形態に係る光学装置の製造方法によれば、金属層整形工程に先立って誘電体層形成工程を行うのみならず、金属層3と基板2の間にも第2の誘電体層5を設けることができ、所望の深さ及び形状を有する凹凸によって、最終的に得る光学装置の主面を構成することができる。   According to the method for manufacturing an optical device according to the present embodiment, not only the dielectric layer forming step is performed prior to the metal layer shaping step, but also the second dielectric layer 5 is provided between the metal layer 3 and the substrate 2. The main surface of the optical device finally obtained can be constituted by the unevenness having a desired depth and shape.

以上、本発明に係る光学装置及び光学装置の製造方法の実施の形態を説明したが、本発明は、これに限られるものではない。
例えば、前述の実施の形態においては、金属層、誘電体層ならびに第2の誘電体層の形成手法として蒸着を用いる例を説明したが、例えばスパッタリングやMBE(Molecular Beam Epitaxy)などの薄膜形成手法によることも可能であるなど、本発明は、種々の変更及び変形をなされうる。
The embodiments of the optical device and the method for manufacturing the optical device according to the present invention have been described above, but the present invention is not limited to this.
For example, in the above-described embodiment, the example in which vapor deposition is used as the formation method of the metal layer, the dielectric layer, and the second dielectric layer has been described. However, for example, a thin film formation method such as sputtering or MBE (Molecular Beam Epitaxy) Various changes and modifications can be made to the present invention.

A,B それぞれ、本発明に係る光学装置の一例の構成を示す概略斜視図及び概略断面図である。A and B are a schematic perspective view and a schematic cross-sectional view, respectively, showing the configuration of an example of an optical device according to the present invention. A,B それぞれ、本発明に係る光学装置の一例の構成における、グリッドに垂直な偏光成分及びグリッドに平行な偏光成分に対する、透過光の透過率と反射光の反射率の測定結果を示す模式図である。FIGS. 7A and 7B are schematic diagrams illustrating measurement results of transmittance of transmitted light and reflectance of reflected light with respect to a polarization component perpendicular to the grid and a polarization component parallel to the grid, respectively, in the configuration of an example of the optical device according to the present invention. FIGS. It is. 本発明に係る光学装置の一例の構成における、グリッドに垂直な偏光成分に対する、透過光の透過率と反射光の反射率の測定結果を示す拡大模式図である。It is an expansion schematic diagram which shows the measurement result of the transmittance | permeability of the transmitted light and the reflectance of reflected light with respect to the polarization component perpendicular | vertical to a grid in the structure of an example of the optical apparatus which concerns on this invention. A,B それぞれ、本発明に係る光学装置の一例の構成における、反射光の消光比及び透過光の消光比の測定結果を示す模式図である。A and B are schematic views showing measurement results of the extinction ratio of reflected light and the extinction ratio of transmitted light in the configuration of an example of the optical device according to the present invention. 本発明に係る光学装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the optical apparatus which concerns on this invention. 本発明に係る光学装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the optical apparatus which concerns on this invention. 本発明に係る光学装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the optical apparatus which concerns on this invention. A,B それぞれ、本発明に係る光学装置の他の例の構成における、グリッドに垂直な偏光成分及びグリッドに平行な偏光成分に対する、透過光の透過率と反射光の反射率の測定結果を示す模式図である。A and B respectively show the measurement results of the transmittance of the transmitted light and the reflectance of the reflected light with respect to the polarization component perpendicular to the grid and the polarization component parallel to the grid in the configuration of another example of the optical device according to the present invention. It is a schematic diagram. A,B それぞれ、本発明に係る光学装置の他の例の構成における、反射光の消光比及び透過光の消光比の測定結果を示す模式図である。A and B are schematic views showing measurement results of the extinction ratio of reflected light and the extinction ratio of transmitted light in the configuration of another example of the optical device according to the present invention. 本発明に係る光学装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the optical apparatus which concerns on this invention. 本発明に係る光学装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the optical apparatus which concerns on this invention. 本発明に係る光学装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the optical apparatus which concerns on this invention. 本発明に係る光学装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the optical apparatus which concerns on this invention. A〜D 本発明に係る光学装置の製造方法の一例の説明に供する工程図である。AD is process drawing for description of an example of the manufacturing method of the optical apparatus which concerns on this invention. A〜C 本発明に係る光学装置の製造方法の他の例の説明に供する工程図である。FIGS. 8A to 8C are process diagrams for explaining another example of the method for manufacturing an optical device according to the present invention. FIGS. A〜C 本発明に係る光学装置の製造方法の他の例の説明に供する工程図である。FIGS. 8A to 8C are process diagrams for explaining another example of the method for manufacturing an optical device according to the present invention. FIGS. A〜C 本発明に係る光学装置の製造方法の他の例の説明に供する工程図である。FIGS. 8A to 8C are process diagrams for explaining another example of the method for manufacturing an optical device according to the present invention. FIGS. A,B それぞれ、従来の光学装置の構成を示す概略斜視図及び概略断面図である。A and B are a schematic perspective view and a schematic cross-sectional view showing a configuration of a conventional optical device, respectively. A,B それぞれ、従来の光学装置の構成における、グリッドに垂直な偏光成分及びグリッドに平行な偏光成分に対する、透過光の透過率と反射光の反射率の測定結果を示す模式図である。FIGS. 7A and 7B are schematic diagrams illustrating measurement results of transmittance of transmitted light and reflectance of reflected light with respect to a polarization component perpendicular to the grid and a polarization component parallel to the grid, respectively, in the configuration of the conventional optical device. A,B それぞれ、従来の光学装置の構成における、反射光の消光比及び透過光の消光比の測定結果を示す模式図である。A and B are schematic diagrams showing measurement results of the extinction ratio of reflected light and the extinction ratio of transmitted light in the configuration of a conventional optical device, respectively.

符号の説明Explanation of symbols

1・・・光学装置、2・・・基板、3・・・金属層、4・・・誘電体層、5・・・第2の誘電体層、6・・・レジスト、7・・・レジスト(誘電体層)、101・・・従来の光学装置、102・・・基板、103・・・金属層   DESCRIPTION OF SYMBOLS 1 ... Optical apparatus, 2 ... Board | substrate, 3 ... Metal layer, 4 ... Dielectric layer, 5 ... 2nd dielectric layer, 6 ... Resist, 7 ... Resist (Dielectric layer), 101 ... Conventional optical device, 102 ... Substrate, 103 ... Metal layer

Claims (2)

入射光を選択的に偏光させる光学装置であって、
SiOよりなり、表面にグリッド状の凹凸構造を有する基板と、
前記基板の凹凸構造の凸部上に形成され、Alよりなるグリッド状の金属層と、
前記金属層上に形成され、SiO又はこれより屈折率の高い材料よりなる誘電体層と、を有し、
前記金属層の厚さが170nm、グリッド間隔であるピッチ長が144nm、幅が前記ピッチ長に対して0.45の比率とされ、
前記誘電体層の厚さが100nmとされてなる
光学装置。
An optical device that selectively polarizes incident light,
A substrate made of SiO 2 and having a grid-like uneven structure on the surface;
A grid-like metal layer made of Al, formed on the convex portion of the concave-convex structure of the substrate,
A dielectric layer formed on the metal layer and made of SiO 2 or a material having a higher refractive index,
The thickness of the metal layer is 170 nm, the pitch length that is the grid interval is 144 nm, and the width is a ratio of 0.45 to the pitch length,
An optical device, wherein the dielectric layer has a thickness of 100 nm.
SiOよりなる基板の表面に、Alよりなる金属層を、厚さ170nmとして形成する工程と、
前記金属層上に、SiO又はこれより屈折率の高い誘電体材料よりなるレジスト層を、厚さ100nmとして形成する工程と、
前記レジスト層に、ピッチ長を144nm、幅を前記ピッチ長に対して0.45の比率として、直線のグリッド状にパターニングする工程と、
パターニングした前記レジスト層をエッチングマスクとして、異方性エッチングにより、前記金属層を直線のグリッド状にパターニングする工程と、
前記レジスト層をエッチングマスクとして、異方性エッチングにより前記基板の表面に凹部を形成する工程と、を含む
入射光を選択的に偏光させる光学装置の製造方法。
Forming a metal layer made of Al with a thickness of 170 nm on the surface of the substrate made of SiO 2 ;
Forming a resist layer made of SiO 2 or a dielectric material having a higher refractive index on the metal layer with a thickness of 100 nm;
Patterning the resist layer in a linear grid pattern with a pitch length of 144 nm and a width of 0.45 with respect to the pitch length;
Patterning the metal layer into a linear grid by anisotropic etching using the patterned resist layer as an etching mask;
Forming a recess in the surface of the substrate by anisotropic etching using the resist layer as an etching mask.
A method of manufacturing an optical device that selectively polarizes incident light .
JP2005151154A 2005-05-24 2005-05-24 Optical device and optical device manufacturing method Expired - Fee Related JP4760135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151154A JP4760135B2 (en) 2005-05-24 2005-05-24 Optical device and optical device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151154A JP4760135B2 (en) 2005-05-24 2005-05-24 Optical device and optical device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011082226A Division JP2011133912A (en) 2011-04-01 2011-04-01 Method for producing optical apparatus

Publications (2)

Publication Number Publication Date
JP2006330178A JP2006330178A (en) 2006-12-07
JP4760135B2 true JP4760135B2 (en) 2011-08-31

Family

ID=37551950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151154A Expired - Fee Related JP4760135B2 (en) 2005-05-24 2005-05-24 Optical device and optical device manufacturing method

Country Status (1)

Country Link
JP (1) JP4760135B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961393B2 (en) * 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
US8755113B2 (en) * 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
TWI431338B (en) * 2007-01-12 2014-03-21 Toray Industries Polarizing plate and liquid crystal display apparatus having the same
JP4488033B2 (en) * 2007-02-06 2010-06-23 ソニー株式会社 Polarizing element and liquid crystal projector
US8941920B2 (en) 2008-07-28 2015-01-27 Canon Kabushiki Kaisha Method of producing optical element and optical element
JP2010145854A (en) * 2008-12-19 2010-07-01 Asahi Kasei E-Materials Corp Wire grid polarizer
JP5300495B2 (en) * 2009-01-06 2013-09-25 株式会社東芝 Metal thin film composite having selective light transmission characteristics and method for producing the same
JP5636650B2 (en) * 2009-08-14 2014-12-10 セイコーエプソン株式会社 Polarizing element and projection display device
US8611007B2 (en) 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
US8913321B2 (en) 2010-09-21 2014-12-16 Moxtek, Inc. Fine pitch grid polarizer
WO2013046921A1 (en) * 2011-09-27 2013-04-04 日本電気株式会社 Polarizer, polarizing optical element, light source, and image display device
US8922890B2 (en) 2012-03-21 2014-12-30 Moxtek, Inc. Polarizer edge rib modification
US9348076B2 (en) 2013-10-24 2016-05-24 Moxtek, Inc. Polarizer with variable inter-wire distance
JP6230689B1 (en) * 2016-12-28 2017-11-15 デクセリアルズ株式会社 Polarizing plate, method for producing the same, and optical instrument
JP6935318B2 (en) * 2016-12-28 2021-09-15 デクセリアルズ株式会社 Polarizing plate and its manufacturing method, and optical equipment
JP6302040B1 (en) * 2016-12-28 2018-03-28 デクセリアルズ株式会社 Polarizing plate, method for producing the same, and optical instrument
JP2018189980A (en) * 2018-07-19 2018-11-29 デクセリアルズ株式会社 Polarizing plate
US20210333628A1 (en) * 2018-08-30 2021-10-28 Scivax Corporation Polarizer, display utilizing the same and ultraviolet emitting apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219001A (en) * 1989-02-20 1990-08-31 Nippon Sheet Glass Co Ltd Production of diffraction grating
JPH05289027A (en) * 1991-06-14 1993-11-05 Tdk Corp Polarizer, optical element with polarizer and its production
US6122103A (en) * 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
JP4204809B2 (en) * 2002-06-14 2009-01-07 株式会社リコー Method for manufacturing diffractive optical element
US6665119B1 (en) * 2002-10-15 2003-12-16 Eastman Kodak Company Wire grid polarizer
JP4183526B2 (en) * 2003-02-20 2008-11-19 三洋電機株式会社 Surface microstructure optical element
US7570424B2 (en) * 2004-12-06 2009-08-04 Moxtek, Inc. Multilayer wire-grid polarizer

Also Published As

Publication number Publication date
JP2006330178A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4760135B2 (en) Optical device and optical device manufacturing method
JP5686227B2 (en) Wire grid polarizer manufacturing method, nanometer-sized multi-step element, and manufacturing method thereof
US8040607B2 (en) Surface-relief diffraction grating
JP6544943B2 (en) Mask blank, method of manufacturing phase shift mask, phase shift mask, and method of manufacturing semiconductor device
JP5100146B2 (en) Optical element and optical element manufacturing method
CN105683817A (en) Polarizer with variable inter-wire distance
US20140300964A1 (en) Wire grid polarizer with substrate channels
CN111913246B (en) Polarizing plate, optical device, and method for manufacturing polarizing plate
US9488762B2 (en) Polarizing element with moth eye structure between projection portions and a method for manufacturing the same
JP2011133912A (en) Method for producing optical apparatus
WO2012105555A1 (en) Wavelength selective filter element, method for manufacturing same, and image display device
JP6577641B2 (en) Polarizing plate, method for producing the same, and optical instrument
US20090170310A1 (en) Method of forming a metal line of a semiconductor device
JP4909912B2 (en) Pattern formation method
JP6703050B2 (en) Polarizing plate, optical device, and method for manufacturing polarizing plate
JP5404227B2 (en) Optical element manufacturing method and optical element
JP2973254B2 (en) Birefringent structure
US20200192086A1 (en) Phase shift device including metal-dielectric composite structure
JP2006251598A (en) Manufacturing method of thin film structure
JP5349793B2 (en) Optical element and manufacturing method thereof
US20080124823A1 (en) Method of fabricating patterned layer using lift-off process
CN114631041B (en) Optical film and method for producing same
US7674708B2 (en) Method for forming fine patterns of a semiconductor device
WO2015060941A1 (en) Polarizer with wire pair over rib
JP5861461B2 (en) Diamond bite and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees