WO2013046921A1 - Polarizer, polarizing optical element, light source, and image display device - Google Patents

Polarizer, polarizing optical element, light source, and image display device Download PDF

Info

Publication number
WO2013046921A1
WO2013046921A1 PCT/JP2012/069768 JP2012069768W WO2013046921A1 WO 2013046921 A1 WO2013046921 A1 WO 2013046921A1 JP 2012069768 W JP2012069768 W JP 2012069768W WO 2013046921 A1 WO2013046921 A1 WO 2013046921A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarizer
substrate
dielectric
optical element
Prior art date
Application number
PCT/JP2012/069768
Other languages
French (fr)
Japanese (ja)
Inventor
友嗣 大野
雅雄 今井
鈴木 尚文
瑞穂 冨山
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013046921A1 publication Critical patent/WO2013046921A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • the present invention relates to a polarizer that polarizes light.
  • Such a projector includes a light source, an illumination optical system that receives light emitted from the light source, a modulation element that modulates and emits light from the illumination optical system according to a video signal, and light from the modulation element on a screen. And a projection optical system for projecting onto the screen.
  • LED Light Emitting Diode
  • a polarizing element such as a liquid crystal panel may be used as the modulation element.
  • the non-polarized light needs to be converted into a specific polarization state in order to efficiently use the emitted light of the LED as the projection light.
  • the light source may be provided with a polarizing optical element that converts non-polarized light from the LED into light having a specific polarization state and emits the light.
  • a polarizing optical element an element using a wire grid polarizer that is excellent in light utilization efficiency and can be easily reduced in thickness is attracting attention.
  • FIG. 1 is a diagram showing an example of a wire grid polarizer. As shown in FIG. 1, in the wire grid polarizer, a plurality of metal wires 102, which are linear metal members, are arranged on a substrate 101 in a grid.
  • TM polarized light that is a polarization component polarized in the direction A perpendicular to the extending direction of the metal wire 102 in the incident light 111. Passes through the wire grid polarizer and exits as transmitted light 112.
  • TE polarized light that is a polarization component polarized in a direction B orthogonal to the direction A in the incident light 111 is reflected by a wire grid polarizer and returned to the light incident side as reflected light 113 (Patent Document). 1 and 2).
  • FIGS. 2 and 3 are diagrams showing an example of a polarizing optical element using a wire grid polarizer.
  • the polarizing optical element shown in FIG. 2 includes a ⁇ / 4 plate 302 provided on a light emitting element 301 that is an LED, and a wire grid polarizer 303 provided on the ⁇ / 4 plate 302.
  • TM polarized light of the incident light is transmitted through the wire grid polarizer 303 and emitted from the polarizing optical element.
  • the TE polarized light in the incident light is reflected by the wire grid polarizer 303.
  • the reflected light enters the light emitting element 301 through the ⁇ / 4 plate 302, is further reflected by the light emitting element 301, and reenters the wire grid polarizer 303 through the ⁇ / 4 plate 302.
  • the light re-entering the wire grid polarizer 303 passes through the ⁇ / 4 plate 302 twice and becomes TM polarized light, so that it passes through the wire grid polarizer 303 and is emitted from the polarization optical element.
  • the light emitted from the light emitting element 301 is converted into TM polarized light and emitted.
  • the polarizing optical element shown in FIG. 3 has a depolarizing element 302 ′ that converts light into non-polarized light and emits it, instead of the ⁇ / 4 plate 302.
  • the light re-entering the wire grid polarizer 303 is unpolarized because it passes through the depolarization element 302 '. Therefore, TM polarized light of the re-incident light is transmitted through the wire grid polarizer 303, and TE polarized light is further reflected by the wire grid polarizer 303. By repeating such reflection, the light emitted from the light emitting element 301 is converted into TM polarized light and emitted.
  • the light loss can be reduced by re-entering the light returned to the light incident side into the wire grid polarizer.
  • the light extraction efficiency is not sufficient.
  • the present invention has been made in view of the above problems, and a polarizer, a polarizing optical element, and a light source capable of increasing light extraction efficiency when converting non-polarized light into light having a specific polarization state. And it aims at providing an image display device.
  • a first polarizer according to the present invention includes a substrate, a first dielectric portion provided on the substrate, and a metal portion provided on the first dielectric portion, the first dielectric The portion is provided so as to become smaller from the substrate toward the metal portion.
  • a second polarizer according to the present invention includes a substrate, a first dielectric part provided on the substrate, and a metal part provided on the first dielectric part,
  • the dielectric part has an inclined surface from the substrate toward the metal part, and the side surface of the first dielectric part is an inclined surface formed to incline from the substrate toward the metal part.
  • the surface of the dielectric portion on which the metal portion is provided is smaller than the surface on which the substrate of the first dielectric portion is provided.
  • the polarizing optical element according to the present invention includes a polarizer and a polarization state conversion element that is provided on the structure and emits light while changing the polarization state of incident light.
  • the light source of the present invention includes a polarizing optical element and a light emitting element that emits light to the polarizing optical element.
  • the image display device of the present invention has a light source.
  • the present invention it is possible to increase the light extraction efficiency when converting non-polarized light into light having a specific polarization state.
  • FIG. 1 is a layout diagram illustrating an example of a configuration of an image display device using a light source according to a first embodiment of the present invention.
  • FIG. 1 is a layout diagram illustrating an example of a configuration of an image display device using a light source according to a first embodiment of the present invention. It is a figure which shows the evaluation result of the integrated transmittance
  • FIG. 4 is a perspective view schematically showing the light source of the first embodiment of the present invention.
  • the thickness of each layer is very thin, and the difference in thickness between the layers is large, so it is difficult to illustrate each layer with an accurate scale and ratio. For this reason, in the drawings, the layers are not schematically drawn but are shown schematically.
  • the light source 10 of this embodiment includes a light emitting element 1 and a polarizing optical element 2 provided on the light emitting element 1.
  • the light emitting element 1 is, for example, an LED and emits light to the polarizing optical element 2.
  • emitted from the light emitting element 1 is non-polarized light, and assumes that it is visible light.
  • the polarizing optical element 2 converts the light from the light emitting element 1 into a specific polarization state and emits it.
  • the polarizing optical element 2 includes a wave plate 3 provided on the light emitting element 1 and a polarizer 4 which is a wire grid polarizer provided on the wave plate 3.
  • the light emitting element 1 and the wave plate 3 are in close contact with each other, but actually, they may not be in close contact.
  • the wave plate 3 is an example of a polarization state conversion element that changes the polarization state of light. More specifically, the wave plate 3 converts the linearly polarized light into circularly polarized light (elliptical polarized light) by generating a phase difference of 1 ⁇ 4 wavelength of the light between the linearly polarized light vibrating in directions perpendicular to each other.
  • the ⁇ / 4 plate converts circularly polarized light (elliptical polarized light) into linearly polarized light.
  • the wave plate 3 is preferably a zero order wave plate.
  • Examples of the material of the wave plate 3 include inorganic anisotropic crystals such as sapphire and quartz, anisotropic films such as polycarbonate, and nanostructure anisotropic media.
  • the polarizer 4 has a substrate 11 and a plurality of convex portions 15 laminated on the substrate 11 in the order of the first dielectric layer 12, the metal layer 13, and the second dielectric layer 14.
  • the first dielectric layer 12 is an example of a first dielectric part
  • the metal layer 13 is an example of a metal part
  • the second dielectric layer 12 is an example of a second dielectric part.
  • each convex portion 15 is an example of a structure.
  • the upper surface of the substrate 11 is the XY plane
  • the direction orthogonal to the XY plane is the Z direction.
  • the substrate 11 is formed of a substantially transparent material in the wavelength band of light emitted from the light emitting element 1.
  • the material of the substrate 11 include optical glass such as quartz glass and borosilicate crown, inorganic crystals such as sapphire and quartz, and transparent plastic such as polyetherimide resin and polystyrene resin.
  • Each convex portion 15 on the substrate 11 has a linear shape extended in the Y direction, which is the first direction in the upper surface of the substrate 11. Further, the plurality of convex portions 15 are periodically arranged in a grid shape, more specifically, in the X direction, which is a second direction different from the first direction.
  • the first dielectric layer 12 of each convex portion 15 has a tapered structure (inclined surface) in which the cross-sectional area of the first dielectric layer 12 decreases from the substrate 11 toward the metal layer 13.
  • the width of the first dielectric layer 12 is equal to the period of the protrusions 15 on the contact surface between the substrate 11 and the first dielectric layer 12, and the metal layer 13 of the first dielectric layer 12 is in contact with the taper structure. It is desirable that the surface and the surface of the metal layer 13 in contact with the first dielectric layer 12 have the same size.
  • the taper may be smooth as long as it is linear, exponential, or parabola.
  • the first dielectric layer 12 has a refractive index of 1.5 to 2.0, for example, and a height of about 10 nm to 150 nm.
  • the material of the first dielectric layer 12 is not particularly limited. For example, oxides such as silicon oxide, titanium oxide and aluminum oxide, nitrides such as silicon nitride, magnesium fluoride and calcium fluoride are used. And dielectric materials such as fluoride.
  • the metal layer 13 formed on the first dielectric layer 12 has a high light reflectance in the wavelength band of light emitted from the light emitting element 1, such as aluminum, silver, tin, and alloys thereof. It is desirable to be formed of a material.
  • the material of the second dielectric layer 14 formed on the metal layer 13 is not particularly limited.
  • oxides such as silicon oxide, titanium oxide and aluminum oxide, nitrides such as silicon nitride, and fluorine are used.
  • dielectric materials such as fluorides such as magnesium fluoride and calcium fluoride.
  • the second dielectric layer 14 has a refractive index of 1.0 to 2.0 and a height of 50 nm to 200 nm, for example.
  • the size of the second dielectric layer 14 in the XY direction is preferably equal to the size of the metal layer 13.
  • the second dielectric layer 14 is in close contact with the wave plate 3.
  • a protective material or an adhesive material may be inserted between the second dielectric layer 14 and the wave plate 3.
  • the non-polarized light emitted from the light emitting element 1 enters the surface on which the convex portion 15 of the polarizer 4 is formed via the wave plate 3. Since non-polarized light is non-polarized even after passing through the wave plate 3, light incident on the polarizer 4 is also non-polarized.
  • TM polarized light which is a polarization component perpendicular to the Y direction that is the extending direction of each convex portion 15, is transmitted through each convex portion 15 and further transmitted through the substrate 11 and emitted.
  • TE polarized light that is a polarization component parallel to the Y direction that is the extending direction of each convex portion 15 is reflected by the metal layer 13 of each convex portion 15.
  • the reflected TE polarized light passes through the wave plate 3 and becomes circularly polarized light, is reflected by the light emitting element 1, further passes through the wave plate 3, and becomes TM polarized light and reenters the polarizer 4. Therefore, the re-incident light is transmitted through the polarizer 4 and emitted. For this reason, the light emitted from the polarizer 4 becomes TM polarized light having a specific polarization state.
  • the incident side medium on the light incident side of the metal layer 13 is closer to the absolute value of the refractive index of the metal wire, the TE-polarized light absorption by the metal layer 13 increases, and the TE-polarized light reflectance is increased. Is reduced. For this reason, it is desirable that the incident side medium has a refractive index as small as possible.
  • the incident side medium becomes the wave plate 3. Since the degree of freedom with respect to the refractive index of the wave plate 3 is low, the incident side medium becomes large. For this reason, in the present embodiment, the second dielectric layer 14 having a refractive index of about 1.0 to 2.0 is provided on the metal layer 13, thereby reducing the refractive index of the incident side medium. The reflectance of polarized light is improved.
  • the first dielectric layer 12 having a taper between the substrate 11 and the metal layer 13
  • the first dielectric layer is formed on the metal layer 13 side of the first dielectric layer 12.
  • the volume occupied by air is larger than 12 and the volume occupied by the first dielectric layer 12 is larger on the substrate 11 side of the first dielectric layer 12 than air.
  • Fresnel reflection that occurs at the interface between media having different refractive indexes is less likely to occur as the difference in refractive index between the media is smaller. Therefore, the effective refractive index is directed from the substrate 11 toward the metal layer 13 as described above. If it changes continuously, it becomes possible to reduce reflection and to improve the transmittance of TM polarized light.
  • FIG. 5 is a diagram for explaining a manufacturing method for manufacturing the polarizer 4 included in the light source 10 shown in FIG.
  • the manufacturing method demonstrated below is only an example, Comprising: It is not limited to this.
  • the first dielectric layer 12 is formed on the substrate 11 by using, for example, a vapor deposition method, and then the first dielectric layer is formed by using, for example, a sputtering film forming method.
  • a metal layer 13 is formed on 12, and a second dielectric layer 14 is formed on the metal layer 13. Further, a resist layer 21A is laminated on the second dielectric layer 14 so as to be a thin film.
  • the resist layer 21A is patterned in a grid shape to form a plurality of resist layers 21B arranged in a grid shape.
  • the patterning method is not particularly limited, and examples thereof include a photolithography technique that is a mask exposure method, an imprint method, and the like.
  • etching is performed so as to penetrate the second dielectric layer 14, the metal layer 13, and the first dielectric layer 12, and arranged in a grid pattern. A plurality of convex portions 15 are formed.
  • the first dielectric layer 12 is removed so that the first dielectric layer 12 has a tapered structure.
  • a wet etching method or a dry etching method can be used depending on the materials of the first dielectric layer 12, the metal layer 13, and the second dielectric layer.
  • the resist layer 21B is combined with oxygen radicals, and is replaced with a gaseous reaction product such as CO or CO 2 and removed.
  • FIG. 6 is a layout diagram showing an example of the configuration of the image display apparatus having the light source 10 shown in FIG.
  • the image display apparatus shown in FIG. 6 is a projector that projects light onto a screen to form an image on the screen.
  • the projector 500 includes light sources 501R, 501G, and 501B, optical elements 502R, 502G, and 502B, liquid crystal panels 503R, 503G, and 503B, a cross dichroic prism 504, and a projection optical system 505.
  • Each of the light sources 501R, 501G, and 501B has the same structure as the light source 10 shown in FIG.
  • the light emitting elements 1 of the light sources 501R, 501G, and 501B generate light having different wavelengths.
  • red (R) light is emitted from the light source 501R
  • green (G) light is emitted from the light source 501G
  • blue (B) light is emitted from the light source 501B.
  • Each of the optical elements 502R, 502G, and 502B guides the respective color lights generated from the light sources 501R, 501G, and 501B to the liquid crystal panels 503R, 503G, and 503B, respectively, and enters the liquid crystal panels.
  • the liquid crystal panels 503R, 503G, and 503B are spatial light modulation elements that modulate and emit incident color light according to a video signal.
  • the cross dichroic prism 504 combines and outputs the modulated lights emitted from the liquid crystal panels 503R, 503G, and 503B.
  • the projection optical system 505 projects the combined light emitted from the cross dichroic prism 504 onto the screen 600 and displays an image corresponding to the video signal on the screen 600.
  • FIG. 7 is a layout diagram showing another example of the configuration of the projector according to the present embodiment.
  • the projector 500 ′ includes light sources 501 ⁇ / b> R, 501 ⁇ / b> G, and 501 ⁇ / b> B, a light guide 506, a liquid crystal panel 507, and a projection optical system 508.
  • the light guide 506 synthesizes each color light generated from the light sources 501R, 501G, and 501B and outputs the combined light to the liquid crystal panel 507.
  • the liquid crystal panel 507 is a spatial light modulation element that modulates incident combined light according to a video signal and emits the modulated light.
  • the projection optical system 508 projects the modulated light emitted from the liquid crystal panel 507 onto the screen 600 and displays an image corresponding to the video signal on the screen 600.
  • a liquid crystal panel is used as the spatial light modulation element.
  • the modulation element is not limited to the liquid crystal panel and can be changed as appropriate.
  • FIG. 8 is a diagram showing an evaluation result of the integrated transmittance in the light source 10 of the present embodiment.
  • the integrated transmittance indicates a ratio of light emitted from the polarizer 4 at an emission angle included in the usable angle range in the light emitted from the light emitting element 1.
  • the usable angle range is an angle range that can be actually used out of light emitted in various directions from the polarization conversion element.
  • the light sources 501R and 501G are used.
  • the range of the emission angle of light that can be taken into the optical elements 502R, 502G, and 502B.
  • the substrate 11 is a glass having a refractive index of 1.5
  • the first dielectric layer 12 is a dielectric having a refractive index of 1.8
  • the metal layer 13 is Al
  • the second dielectric layer 14 is a dielectric having a refractive index of 1.5. Formed with.
  • the width of the metal layer 13 was 42 nm, the height was 140 nm, and the period of the convex portions 15 was 110 nm.
  • the height of the first dielectric was 50 nm, the width was 110 nm on the substrate 11 side, and 42 nm on the metal layer 13 side.
  • the height of the second dielectric was 100 nm and the width was 42 nm.
  • the wave plate 3 is a zero order uniaxial quarter wave plate of quartz.
  • the light emitted from the light-emitting element 1 is assumed to be completely non-polarized, the light distribution is Lambertian, and the reflectance of the light-emitting element 1 is assumed to be 100%.
  • E is the evaluation result of the wire grid polarizer alone
  • F is the evaluation result of the light source 10
  • G is the evaluation result of the light source of the related technology shown in FIG. 1
  • H is the output light of the light emitting element 1. This is the result when all polarized light is emitted.
  • the integrated light transmittance of the light source 10 of this embodiment is improved by about 1% compared to the light source of the related art shown in FIG.
  • the first dielectric layer 12 is tapered, it is possible to improve the transmittance of TM polarized light. It is possible to increase the light extraction efficiency when converting to light.
  • the second dielectric layer 14 is provided on the metal layer 13, even if the polarizer 4 is brought into close contact with the wave plate 3, it is possible to suppress the decrease in the reflectance of TE-polarized light, or The reflectance of TE polarized light can be improved. Accordingly, it is possible to suppress a decrease in the reflectance of TE-polarized light or to improve the reflectance of TE-polarized light while suppressing leakage light, so that the light when converting non-polarized light into light of a specific polarization state can be obtained. The extraction efficiency can be increased.
  • FIG. 9 is a perspective view schematically showing a light source according to the second embodiment of the present invention.
  • a light source 10A of this embodiment shown in FIG. 9 has a depolarizing element 3A instead of the wave plate 3 with respect to the light source 10 shown in FIG.
  • the depolarization element 3A is an example of a polarization state conversion element that changes the polarization state of light. More specifically, the depolarizing element 3A emits incident light as non-polarized light.
  • Examples of the material for the depolarizing element 3A include inorganic anisotropic crystals such as sapphire and quartz, and anisotropic films such as polycarbonate, whose thickness varies depending on the position in the plane.
  • the light emitting element 1 and the depolarizing element 3 ⁇ / b> A are in close contact with each other, but actually, they may not be in close contact.
  • the non-polarized light emitted from the light emitting element 1 enters the surface on which the convex portion 15 of the polarizer 4 is formed via the depolarizing element 3A. Since non-polarized light is non-polarized even after passing through the depolarizer 3A, the light incident on the polarizer 4 is also non-polarized.
  • TM polarized light which is a polarization component perpendicular to the Y direction that is the extending direction of each convex portion 15, is transmitted through each convex portion 15 and further transmitted through the substrate 11 and emitted.
  • TE polarized light that is a polarization component parallel to the Y direction that is the extending direction of each convex portion 15 is reflected by the metal layer 13 of each convex portion 15.
  • the reflected TE-polarized light passes through the wave plate 3 to become non-polarized light, is reflected by the light emitting element 1, passes through the wave plate 3, and re-enters the polarizer 4 without being polarized. Therefore, TM polarized light out of the re-incident light is transmitted through the polarizer 4, and TE polarized light out of the re-incident light is reflected again.
  • FIG. 10 is a diagram showing an evaluation result of the integrated transmittance in the light source 10A of the present embodiment.
  • the depolarizing element 3A is assumed to make incident light completely non-polarized, and the configuration of other members is the same as that of the first embodiment.
  • E is the evaluation result of the wire grid polarizer alone
  • F is the evaluation result of the light source 10A
  • G is the evaluation result of the light source of the related technology shown in FIG. 1
  • H is the output of the light emitting element 1. This is the result when all the incident light is emitted in a polarized state.
  • FIG. 11 is a diagram showing a side surface and an upper surface of an optical element according to the third embodiment of the present invention.
  • the optical element 200 of the present embodiment includes a substrate 201, a dielectric part 202 provided on the substrate 201, and a metal part 203 provided on the dielectric part 202.
  • the dielectric portion 202 is an example of a first dielectric portion, and the dielectric portion 202 and the metal portion 203 constitute a structure 204.
  • the upper surface of the substrate 201 is the XY plane, and the direction orthogonal to the XY plane is the Z direction.
  • the dielectric part 202 has a structure that decreases from the substrate 201 toward the metal part 203.
  • the bottom surface that is a surface in contact with the substrate 201 of the dielectric portion 202 is rectangular, and the side surface along the Y direction of the dielectric portion 202 has a tapered structure.
  • the length of the metal part 203 in the Y direction is W1
  • the length of the metal part 203 in the X direction is W2.
  • the length in the Y direction of the upper surface which is the surface in contact with the metal portion 203 of the dielectric portion 202, is W1
  • the length in the X direction of the upper surface of the dielectric portion 202 is W2.
  • TM polarized light which is a polarization component orthogonal to the Y direction, of incident light incident on the functional region 210 is transmitted through the substrate 201
  • TE polarized light which is a polarization component parallel to the Y direction, of the incident light is the metal portion 203. Reflect on.
  • the functional region 210 is a range within ⁇ W1 / 2 in the Y direction from the center of the upper surface of the dielectric part 202 and within ⁇ (W2 / 2 + S) in the X direction from the center of the upper surface of the dielectric part 202. Note that S is half ⁇ / 2 of the wavelength ⁇ of light incident on the optical element 200.
  • the optical element 200 functions as a polarizer and the dielectric portion 202 decreases from the substrate 201 toward the metal portion 203 as in the first and second embodiments. , It becomes possible to suppress Fresnel reflection of TM polarized light, and to increase the light extraction efficiency when converting non-polarized light into light of a specific polarization state.
  • FIGS. 12 to 19 are diagrams showing examples of other shapes of the optical element 200.
  • the side surface facing the Y direction on the substrate 201 has a tapered structure.
  • the bottom surface and the top surface of the dielectric 202 are elliptical. Note that, on the bottom surface and the top surface of the dielectric 202, the straight axis is provided along the Y direction.
  • the side surface of the dielectric 202 is perpendicular to the substrate 201 from the bottom surface to a certain position, and a tapered structure is provided from that position.
  • the side surface of the dielectric 202 has a staircase shape.
  • a plurality of structures 204 are provided.
  • the structures 204 are arranged in a one-dimensional direction.
  • the functional area 210 of the optical element 200 is a combination of the functional areas of the structures 204, and therefore, in the one-dimensional direction in which the structures 204 are juxtaposed, such as light from a line light source.
  • the optical element 200 can be made to function as a polarizer even for light having a large spread.
  • the optical element 200 can function as a polarizer.
  • the structures 204 are arranged in parallel so that there is no gap between the bottom surfaces of the dielectrics 202 of the structures 204. However, as shown in FIG. There may be a gap between the bottom surfaces of the body 202.
  • the structure 204 shown in FIGS. 11 and 12 is used as the structure 204.
  • the structure 204 has the structure shown in FIGS. 13, 14, and 15. There may be.
  • the structures 204 shown in FIG. 12 are juxtaposed in a two-dimensional direction.
  • the functional area 210 that functions as a polarizer and the non-functional area 211 that does not function as a polarizer are alternately provided, one of polarized light and non-polarized light depends on the incident position of light from the light source. Can be selectively output.
  • the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
  • the numerical values, materials, and the like in the above-described embodiments are illustrative, and can be changed as appropriate.
  • the depolarizing element 3A can be omitted.

Abstract

There is provided a polarizer capable of increasing the light-extraction efficiency when non-polarized light is converted to light in a specified polarization state. The polarizer is provided with a substrate, a first dielectric part installed on the substrate, and a metal part installed on the first dielectric part, the first dielectric part being installed so as to decrease in size from the substrate toward the metal part.

Description

偏光子、偏光光学素子、光源および画像表示装置Polarizer, polarizing optical element, light source, and image display device
 本発明は、光を偏光させる偏光子に関する。 The present invention relates to a polarizer that polarizes light.
 近年、発光素子としてLED(Light Emitting Diode)を有する光源を用いたプロジェクタが注目されている。このようなプロジェクタは、光源と、光源の出射光が入射される照明光学系と、照明光学系からの光を映像信号に応じて変調して出射する変調素子と、変調素子からの光をスクリーンに投射する投射光学系とを備えている。 In recent years, a projector using a light source having an LED (Light Emitting Diode) as a light emitting element has attracted attention. Such a projector includes a light source, an illumination optical system that receives light emitted from the light source, a modulation element that modulates and emits light from the illumination optical system according to a video signal, and light from the modulation element on a screen. And a projection optical system for projecting onto the screen.
 上記のプロジェクタでは、変調素子として液晶パネルなどの偏光依存性を有するものが使用されることがある。この場合、LEDの出射光は非偏光なので、LEDの出射光を効率良く投射光として利用するためには、非偏光が特定の偏光状態に変換される必要がある。 In the projector described above, a polarizing element such as a liquid crystal panel may be used as the modulation element. In this case, since the emitted light of the LED is non-polarized light, the non-polarized light needs to be converted into a specific polarization state in order to efficiently use the emitted light of the LED as the projection light.
 このため、光源には、LEDからの非偏光を特定の偏光状態の光に変換して出射する偏光光学素子が設けられることがある。このような偏光光学素子としては、光利用効率に優れ、薄型化が容易なワイヤグリッド偏光子を用いたものが注目されている。 For this reason, the light source may be provided with a polarizing optical element that converts non-polarized light from the LED into light having a specific polarization state and emits the light. As such a polarizing optical element, an element using a wire grid polarizer that is excellent in light utilization efficiency and can be easily reduced in thickness is attracting attention.
 図1は、ワイヤグリッド偏光子の一例を示す図である。図1に示すように、ワイヤグリッド偏光子では、基板101上に、線状の金属部材である金属ワイヤ102がグリッド(格子)状に複数配列されている。 FIG. 1 is a diagram showing an example of a wire grid polarizer. As shown in FIG. 1, in the wire grid polarizer, a plurality of metal wires 102, which are linear metal members, are arranged on a substrate 101 in a grid.
 ワイヤグリッド偏光子では、金属ワイヤ102が形成されている面に光が入射すると、その入射光111のうち、金属ワイヤ102の延伸方向に対して垂直な方向Aに偏光した偏光成分であるTM偏光は、ワイヤグリッド偏光子を透過して、透過光112として出射する。また、入射光111のうち、方向Aと直交する方向Bに偏光した偏光成分であるTE偏光は、ワイヤグリッド偏光子で反射して、反射光113として、光の入射側に戻される(特許文献1および2参照)。 In the wire grid polarizer, when light enters the surface on which the metal wire 102 is formed, TM polarized light that is a polarization component polarized in the direction A perpendicular to the extending direction of the metal wire 102 in the incident light 111. Passes through the wire grid polarizer and exits as transmitted light 112. In addition, TE polarized light that is a polarization component polarized in a direction B orthogonal to the direction A in the incident light 111 is reflected by a wire grid polarizer and returned to the light incident side as reflected light 113 (Patent Document). 1 and 2).
 図2および図3は、ワイヤグリッド偏光子を用いた偏光光学素子の一例を示す図である。 2 and 3 are diagrams showing an example of a polarizing optical element using a wire grid polarizer.
 図2に示す偏光光学素子は、LEDである発光素子301の上に設けられたλ/4板302と、λ/4板302の上に設けられたワイヤグリッド偏光子303とを有する。 The polarizing optical element shown in FIG. 2 includes a λ / 4 plate 302 provided on a light emitting element 301 that is an LED, and a wire grid polarizer 303 provided on the λ / 4 plate 302.
 図2に示す偏光光学素子では、発光素子301からの光がワイヤグリッド偏光子303に入射すると、入射光のうちのTM偏光はワイヤグリッド偏光子303を透過して、偏光光学素子から出射され、入射光のうちのTE偏光はワイヤグリッド偏光子303で反射する。この反射した光は、λ/4板302を介して発光素子301に入射し、発光素子301でさらに反射され、λ/4板302を介してワイヤグリッド偏光子303に再入射する。 In the polarizing optical element shown in FIG. 2, when light from the light emitting element 301 enters the wire grid polarizer 303, TM polarized light of the incident light is transmitted through the wire grid polarizer 303 and emitted from the polarizing optical element. The TE polarized light in the incident light is reflected by the wire grid polarizer 303. The reflected light enters the light emitting element 301 through the λ / 4 plate 302, is further reflected by the light emitting element 301, and reenters the wire grid polarizer 303 through the λ / 4 plate 302.
 ワイヤグリッド偏光子303に再入射された光は、λ/4板302を2回通過してTM偏光となっているので、ワイヤグリッド偏光子303を介して透過して、偏光光学素子から出射される。これにより、発光素子301から出射された光がTM偏光に変換されて出射されることになる。 The light re-entering the wire grid polarizer 303 passes through the λ / 4 plate 302 twice and becomes TM polarized light, so that it passes through the wire grid polarizer 303 and is emitted from the polarization optical element. The Thereby, the light emitted from the light emitting element 301 is converted into TM polarized light and emitted.
 また、図3に示す偏光光学素子は、λ/4板302の代わりに、光を非偏光に変換して出射する偏光解消素子302’を有する。 Further, the polarizing optical element shown in FIG. 3 has a depolarizing element 302 ′ that converts light into non-polarized light and emits it, instead of the λ / 4 plate 302.
 図3に示す偏光光学素子では、ワイヤグリッド偏光子303に再入射する光は、偏光解消素子302’を通過しているので、非偏光となっている。このため、再入射した光のうちTM偏光はワイヤグリッド偏光子303を透過し、TE偏光はワイヤグリッド偏光子303でさらに反射される。このような反射が繰り返されることで、発光素子301から出射された光がTM偏光に変換されて出射されることになる。 In the polarization optical element shown in FIG. 3, the light re-entering the wire grid polarizer 303 is unpolarized because it passes through the depolarization element 302 '. Therefore, TM polarized light of the re-incident light is transmitted through the wire grid polarizer 303, and TE polarized light is further reflected by the wire grid polarizer 303. By repeating such reflection, the light emitted from the light emitting element 301 is converted into TM polarized light and emitted.
特開2006-330178号公報JP 2006-330178 A 特開2010-231203号公報JP 2010-231203 A
 上記のようなワイヤグリッド偏光子では、金属ワイヤ102間の空気と基板101との屈折率の差が大きいため、TM偏光が金属ワイヤ102間から基板101に入射したときに、そのTM偏光の一部が反射されて、光の入射側に戻されてしまう。このため、光の取り出し効率が低いという問題がある。 In the wire grid polarizer as described above, since the refractive index difference between the air between the metal wires 102 and the substrate 101 is large, when TM polarized light is incident on the substrate 101 from between the metal wires 102, The part is reflected and returned to the light incident side. For this reason, there is a problem that the light extraction efficiency is low.
 なお、図2および図3で示したように、光の入射側に戻された光をワイヤグリッド偏光子に再入射させることで、光の損失を少なくすることはできる。しかしながら、反射時に金属ワイヤ102における吸収損失による光の減衰が生じるため、光の取り出し効率は十分ではない。 As shown in FIGS. 2 and 3, the light loss can be reduced by re-entering the light returned to the light incident side into the wire grid polarizer. However, since light attenuation occurs due to absorption loss in the metal wire 102 during reflection, the light extraction efficiency is not sufficient.
 本発明は、上記の問題点を鑑みてなされたものであり、非偏光を特定の偏光状態の光に変換する際の光の取り出し効率を高くすることが可能な偏光子、偏光光学素子、光源および画像表示装置を提供することを目的としている。 The present invention has been made in view of the above problems, and a polarizer, a polarizing optical element, and a light source capable of increasing light extraction efficiency when converting non-polarized light into light having a specific polarization state. And it aims at providing an image display device.
 本発明による第1の偏光子は、基板と、基板上に設けられた第1の誘電体部と、第1の誘電体部上に設けられた金属部と、を備え、第1の誘電体部は、基板から金属部に向かって小さくなるように設けられる。 A first polarizer according to the present invention includes a substrate, a first dielectric portion provided on the substrate, and a metal portion provided on the first dielectric portion, the first dielectric The portion is provided so as to become smaller from the substrate toward the metal portion.
 また、本発明による第2の偏光子は、基板と、基板上に設けられた第1の誘電体部と、第1の誘電体部上に設けられた金属部と、を備え、第1の誘電体部は、基板から金属部に向かって傾斜面を有し、第1の誘電体部の側面は、基板から金属部に向かって傾斜するように形成された傾斜面であり、第1の誘電体部の金属部が設けられた面は、第1の誘電部の基板が設けられた面より小さい。 A second polarizer according to the present invention includes a substrate, a first dielectric part provided on the substrate, and a metal part provided on the first dielectric part, The dielectric part has an inclined surface from the substrate toward the metal part, and the side surface of the first dielectric part is an inclined surface formed to incline from the substrate toward the metal part. The surface of the dielectric portion on which the metal portion is provided is smaller than the surface on which the substrate of the first dielectric portion is provided.
 また、本発明による偏光光学素子は、偏光子と、構造体上に設けられ、入射光の偏光状態を変化させて出射する偏光状態変換素子と、を有する。 The polarizing optical element according to the present invention includes a polarizer and a polarization state conversion element that is provided on the structure and emits light while changing the polarization state of incident light.
 また、本発明の光源は、偏光光学素子と、偏光光学素子に光を出射する発光素子と、を有する。 The light source of the present invention includes a polarizing optical element and a light emitting element that emits light to the polarizing optical element.
 また、本発明の画像表示装置は、光源を有する。 The image display device of the present invention has a light source.
 本発明によれば、非偏光を特定の偏光状態の光に変換する際の光の取り出し効率を高くすることが可能になる。 According to the present invention, it is possible to increase the light extraction efficiency when converting non-polarized light into light having a specific polarization state.
本発明の関連技術であるワイヤグリッド偏光子の構成を示す図である。It is a figure which shows the structure of the wire grid polarizer which is a related technique of this invention. 本発明の関連技術である偏光光学素子の一例を示す図である。It is a figure which shows an example of the polarizing optical element which is a related technique of this invention. 本発明の関連技術である偏光光学素子の他の例を示す図である。It is a figure which shows the other example of the polarizing optical element which is a related technique of this invention. 本発明の第1の実施形態の光源の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the light source of the 1st Embodiment of this invention. ワイヤグリッド偏光子の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of a wire grid polarizer. 本発明の第1の実施形態の光源を用いた画像表示装置の構成の一例を示す配置図である。1 is a layout diagram illustrating an example of a configuration of an image display device using a light source according to a first embodiment of the present invention. 本発明の第1の実施形態の光源を用いた画像表示装置の構成の一例を示す配置図である。1 is a layout diagram illustrating an example of a configuration of an image display device using a light source according to a first embodiment of the present invention. 本発明の第1の実施形態の光源における積算透過率の評価結果を示す図である。It is a figure which shows the evaluation result of the integrated transmittance | permeability in the light source of the 1st Embodiment of this invention. 本発明の第1の実施形態の光源の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the light source of the 1st Embodiment of this invention. 本発明の第2の実施形態の光源における積算透過率の評価結果を示す図である。It is a figure which shows the evaluation result of the integrated transmittance | permeability in the light source of the 2nd Embodiment of this invention. 本発明の第3の実施形態の光学素子の側面および上面を示す図である。It is a figure which shows the side surface and upper surface of the optical element of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光学素子の他の形状の一例を示す図である。It is a figure which shows an example of the other shape of the optical element of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光学素子の他の形状の一例を示す図である。It is a figure which shows an example of the other shape of the optical element of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光学素子の他の形状の一例を示す図である。It is a figure which shows an example of the other shape of the optical element of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光学素子の他の形状の一例を示す図である。It is a figure which shows an example of the other shape of the optical element of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光学素子の他の形状の一例を示す図である。It is a figure which shows an example of the other shape of the optical element of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光学素子の他の形状の一例を示す図である。It is a figure which shows an example of the other shape of the optical element of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光学素子の他の形状の一例を示す図である。It is a figure which shows an example of the other shape of the optical element of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光学素子の他の形状の一例を示す図である。It is a figure which shows an example of the other shape of the optical element of the 3rd Embodiment of this invention.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, components having the same function may be denoted by the same reference numerals and description thereof may be omitted.
 図4は、本発明の第1の実施形態の光源を模式的に示す斜視図である。なお、実際の光源では、各層の厚さが非常に薄く、また各層の厚さの違いが大きいので、各層を正確なスケールや比率で図示するのは困難である。このため、図面では各層が実際の比率通りに描かれておらず、模式的に示されている。 FIG. 4 is a perspective view schematically showing the light source of the first embodiment of the present invention. In an actual light source, the thickness of each layer is very thin, and the difference in thickness between the layers is large, so it is difficult to illustrate each layer with an accurate scale and ratio. For this reason, in the drawings, the layers are not schematically drawn but are shown schematically.
 図4に示すように本実施形態の光源10は、発光素子1と、発光素子1の上に設けられた偏光光学素子2とを有する。 As shown in FIG. 4, the light source 10 of this embodiment includes a light emitting element 1 and a polarizing optical element 2 provided on the light emitting element 1.
 発光素子1は、例えば、LEDであり、光を偏光光学素子2に出射する。なお、発光素子1から出射される光は、本実施形態では、非偏光であり、可視光であるとする。 The light emitting element 1 is, for example, an LED and emits light to the polarizing optical element 2. In addition, in this embodiment, the light radiate | emitted from the light emitting element 1 is non-polarized light, and assumes that it is visible light.
 偏光光学素子2は、発光素子1からの光を特定の偏光状態に変換して出射する。 The polarizing optical element 2 converts the light from the light emitting element 1 into a specific polarization state and emits it.
 より具体的には、偏光光学素子2は、発光素子1の上に設けられた波長板3と、波長板3の上に設けられたワイヤグリッド偏光子である偏光子4とを有する。なお、図4では、発光素子1と波長板3とが密着しているが、実際には、密着していなくてもよい。 More specifically, the polarizing optical element 2 includes a wave plate 3 provided on the light emitting element 1 and a polarizer 4 which is a wire grid polarizer provided on the wave plate 3. In FIG. 4, the light emitting element 1 and the wave plate 3 are in close contact with each other, but actually, they may not be in close contact.
 波長板3は、光の偏光状態を変化させる偏光状態変換素子の一例である。より具体的には、波長板3は、互いに直角な方向に振動する直線偏光の間にその光の1/4波長の位相差を生じさせることで、直線偏光を円偏光(楕円偏光)に変換し、円偏光(楕円偏光)を直線偏光に変換するλ/4板である。また、波長板3は、ゼロオーダー波長板であることが望ましい。 The wave plate 3 is an example of a polarization state conversion element that changes the polarization state of light. More specifically, the wave plate 3 converts the linearly polarized light into circularly polarized light (elliptical polarized light) by generating a phase difference of ¼ wavelength of the light between the linearly polarized light vibrating in directions perpendicular to each other. The λ / 4 plate converts circularly polarized light (elliptical polarized light) into linearly polarized light. The wave plate 3 is preferably a zero order wave plate.
 波長板3の材料としては、サファイアや水晶のような無機の異方性結晶、ポリカーボネートのような異方性フィルム、および、ナノ構造異方性媒体などが挙げられる。 Examples of the material of the wave plate 3 include inorganic anisotropic crystals such as sapphire and quartz, anisotropic films such as polycarbonate, and nanostructure anisotropic media.
 偏光子4は、基板11と、その基板11上に、第1誘電体層12、金属層13、第2誘電体層14の順に積層されている複数の凸部15とを有する。なお、第1誘電体層12は、第1の誘電体部の一例であり、金属層13は、金属部の一例であり、第2誘電体層12は、第2の誘電体部の一例であり、各凸部15は、構造体の一例である。また、本実施形態では、基板11の上面をXY平面とし、XY平面と直交する方向をZ方向とする。 The polarizer 4 has a substrate 11 and a plurality of convex portions 15 laminated on the substrate 11 in the order of the first dielectric layer 12, the metal layer 13, and the second dielectric layer 14. The first dielectric layer 12 is an example of a first dielectric part, the metal layer 13 is an example of a metal part, and the second dielectric layer 12 is an example of a second dielectric part. Yes, each convex portion 15 is an example of a structure. In the present embodiment, the upper surface of the substrate 11 is the XY plane, and the direction orthogonal to the XY plane is the Z direction.
 基板11は、発光素子1から出射される光の波長帯域において、実質的に透明な材料で形成される。基板11の材料としては、例えば、石英ガラスおよびホウケイ酸クラウンのような光学ガラス、サファイアおよび水晶のような無機物結晶、ポリエーテルイミド樹脂およびポリスチレン樹脂のような透明プラスチックなどが挙げられる。 The substrate 11 is formed of a substantially transparent material in the wavelength band of light emitted from the light emitting element 1. Examples of the material of the substrate 11 include optical glass such as quartz glass and borosilicate crown, inorganic crystals such as sapphire and quartz, and transparent plastic such as polyetherimide resin and polystyrene resin.
 基板11上の各凸部15は、基板11の上面内の第1方向であるY方向に延伸された線形形状を有する。また、複数の凸部15は、グリッド状、より具体的には、第1方向とは異なる第2方向であるX方向に周期的に配置されている。 Each convex portion 15 on the substrate 11 has a linear shape extended in the Y direction, which is the first direction in the upper surface of the substrate 11. Further, the plurality of convex portions 15 are periodically arranged in a grid shape, more specifically, in the X direction, which is a second direction different from the first direction.
 各凸部15の第1誘電体層12は、基板11から金属層13に向かって、第1誘電体層12の断面積が小さくなるテーパー構造(傾斜面)を有する。テーパー構造は、基板11と第1誘電体層12との接面において、第1誘電体層12の幅が凸部15の周期と同等になり、第1誘電体層12の金属層13と接する面と金属層13の第1誘電体層12と接する面とが同等な大きさになることが望ましい。また、テーパーは、線形、指数関数および放物線のような滑らかなものであればよい。 The first dielectric layer 12 of each convex portion 15 has a tapered structure (inclined surface) in which the cross-sectional area of the first dielectric layer 12 decreases from the substrate 11 toward the metal layer 13. In the taper structure, the width of the first dielectric layer 12 is equal to the period of the protrusions 15 on the contact surface between the substrate 11 and the first dielectric layer 12, and the metal layer 13 of the first dielectric layer 12 is in contact with the taper structure. It is desirable that the surface and the surface of the metal layer 13 in contact with the first dielectric layer 12 have the same size. The taper may be smooth as long as it is linear, exponential, or parabola.
 また、第1誘電体層12は、例えば、1.5~2.0の屈折率を有し、その高さが10nm~150nm程度である。また、第1誘電体層12の材料は、特に限定されないが、例えば、酸化シリコン、酸化チタンおよび酸化アルミニウムのような酸化物、窒化シリコンのような窒化物、フッ化マグネシウムおよびフッ化カルシウムのようなフッ化物などの誘電体材料が挙げられる。 The first dielectric layer 12 has a refractive index of 1.5 to 2.0, for example, and a height of about 10 nm to 150 nm. The material of the first dielectric layer 12 is not particularly limited. For example, oxides such as silicon oxide, titanium oxide and aluminum oxide, nitrides such as silicon nitride, magnesium fluoride and calcium fluoride are used. And dielectric materials such as fluoride.
 第1誘電体層12上に形成される金属層13は、例えば、アルミニウム、銀、錫およびそれらの合金のような、発光素子1から出射される光の波長帯域において、光の反射率が高い材料で形成されることが望ましい。 The metal layer 13 formed on the first dielectric layer 12 has a high light reflectance in the wavelength band of light emitted from the light emitting element 1, such as aluminum, silver, tin, and alloys thereof. It is desirable to be formed of a material.
 また、金属層13上に形成される第2誘電体層14の材料は、特に限定されないが、例えば、酸化シリコン、酸化チタンおよび酸化アルミニウムのような酸化物、窒化シリコンのような窒化物、フッ化マグネシウムおよびフッ化カルシウムのようなフッ化物などの誘電体材料が挙げられる。 The material of the second dielectric layer 14 formed on the metal layer 13 is not particularly limited. For example, oxides such as silicon oxide, titanium oxide and aluminum oxide, nitrides such as silicon nitride, and fluorine are used. And dielectric materials such as fluorides such as magnesium fluoride and calcium fluoride.
 また、第2誘電体層14は、例えば、1.0~2.0の屈折率を有し、高さが50nm~200nmである。XY方向における、第2誘電体層14の大きさは、金属層13の大きさと同等であることが望ましい。 The second dielectric layer 14 has a refractive index of 1.0 to 2.0 and a height of 50 nm to 200 nm, for example. The size of the second dielectric layer 14 in the XY direction is preferably equal to the size of the metal layer 13.
 第2誘電体層14は、波長板3と密着されている。なお、第2誘電体層14と波長板3との間には、保護材や粘着材が挿入されていてもよい。 The second dielectric layer 14 is in close contact with the wave plate 3. A protective material or an adhesive material may be inserted between the second dielectric layer 14 and the wave plate 3.
 以上のように構成された光源10において、発光素子1から出射された非偏光は、波長板3を介して偏光子4の凸部15が形成された面に入射する。なお、非偏光は波長板3を通過しても非偏光であるので、偏光子4に入射する光も非偏光である。 In the light source 10 configured as described above, the non-polarized light emitted from the light emitting element 1 enters the surface on which the convex portion 15 of the polarizer 4 is formed via the wave plate 3. Since non-polarized light is non-polarized even after passing through the wave plate 3, light incident on the polarizer 4 is also non-polarized.
 偏光子4に入射した非偏光のうち、各凸部15の延伸方向であるY方向に垂直な偏光成分であるTM偏光は、各凸部15を透過し、さらに基板11を透過して出射される。 Of the non-polarized light that has entered the polarizer 4, TM polarized light, which is a polarization component perpendicular to the Y direction that is the extending direction of each convex portion 15, is transmitted through each convex portion 15 and further transmitted through the substrate 11 and emitted. The
 一方、偏光子4に入射した非偏光のうち、各凸部15の延伸方向であるY方向に平行な偏光成分であるTE偏光は、各凸部15の金属層13で反射する。この反射したTE偏光は、波長板3を通過して円偏光となり、発光素子1で反射し、さらに波長板3を通過して、TM偏光となって偏光子4に再入射する。したがって、再入射した光は、偏光子4を透過して出射される。このため、偏光子4から出射される光は、特定の偏光状態を有するTM偏光となる。 On the other hand, among the non-polarized light incident on the polarizer 4, TE polarized light that is a polarization component parallel to the Y direction that is the extending direction of each convex portion 15 is reflected by the metal layer 13 of each convex portion 15. The reflected TE polarized light passes through the wave plate 3 and becomes circularly polarized light, is reflected by the light emitting element 1, further passes through the wave plate 3, and becomes TM polarized light and reenters the polarizer 4. Therefore, the re-incident light is transmitted through the polarizer 4 and emitted. For this reason, the light emitted from the polarizer 4 becomes TM polarized light having a specific polarization state.
 このとき、波長板3と偏光子4との間に間隙があると、波長板3から偏光子4に入射されず、外周部から漏れる漏れ光が多くなる。このため、波長板3と偏光子4とが密着されている。 At this time, if there is a gap between the wave plate 3 and the polarizer 4, the light that does not enter the polarizer 4 from the wave plate 3 and leaks from the outer peripheral portion increases. For this reason, the wave plate 3 and the polarizer 4 are in close contact with each other.
 しかしながら、金属層13の光が入射する側の入射側媒体の屈折率が金属ワイヤの屈折率の絶対値に近いほど、金属層13によるTE偏光の吸収率が増大して、TE偏光の反射率が低減する。このため、入射側媒体は、屈折率ができるだけ小さいものが望ましい。 However, as the refractive index of the incident-side medium on the light incident side of the metal layer 13 is closer to the absolute value of the refractive index of the metal wire, the TE-polarized light absorption by the metal layer 13 increases, and the TE-polarized light reflectance is increased. Is reduced. For this reason, it is desirable that the incident side medium has a refractive index as small as possible.
 金属層13に波長板3が直接密着されると、入射側媒体が波長板3となる。波長板3の屈折率に対する自由度は低いので、入射側媒体が大きくなってしまう。このため、本実施形態では、金属層13の上に1.0~2.0程度の屈折率を有する第2誘電体層14を設けることで、入射側媒体の屈折率を低くして、TE偏光の反射率を向上させている。 When the wave plate 3 is in direct contact with the metal layer 13, the incident side medium becomes the wave plate 3. Since the degree of freedom with respect to the refractive index of the wave plate 3 is low, the incident side medium becomes large. For this reason, in the present embodiment, the second dielectric layer 14 having a refractive index of about 1.0 to 2.0 is provided on the metal layer 13, thereby reducing the refractive index of the incident side medium. The reflectance of polarized light is improved.
 また、基板11と各凸部の間の媒体である間隙媒体との屈折率との差が大きいと、TM偏光が基板11で反射する反射率が増大して、TM偏光の透過率が低減する。このため、本実施形態では、基板11と金属層13との間にテーパーを有する第1誘電体層12を設けることで、第1誘電体層12の金属層13側では、第1誘電体層12に比べて空気の占める体積を大きくし、第1誘電体層12の基板11側では、空気に比べて第1誘電体層12の占める体積を大きくしている。このため、基板11上のXY平面と平行な平面における平均的な屈折率である有効屈折率は、基板11から金属層13に向かって連続的に変化していることになる。互いに異なる屈折率を有する媒質間の界面で発生するフレネル反射は、その媒質間の屈折率の差が小さいほど発生しづらくなるので、上記のように有効屈折率が基板11から金属層13に向かって連続的に変化していると、反射を軽減することが可能になり、TM偏光の透過率を向上させることが可能になる。 Also, if the difference in refractive index between the substrate 11 and the gap medium, which is a medium between the convex portions, is large, the reflectance at which the TM polarized light is reflected by the substrate 11 increases, and the transmittance of the TM polarized light decreases. . Therefore, in the present embodiment, by providing the first dielectric layer 12 having a taper between the substrate 11 and the metal layer 13, the first dielectric layer is formed on the metal layer 13 side of the first dielectric layer 12. The volume occupied by air is larger than 12 and the volume occupied by the first dielectric layer 12 is larger on the substrate 11 side of the first dielectric layer 12 than air. For this reason, the effective refractive index that is an average refractive index in a plane parallel to the XY plane on the substrate 11 continuously changes from the substrate 11 toward the metal layer 13. Fresnel reflection that occurs at the interface between media having different refractive indexes is less likely to occur as the difference in refractive index between the media is smaller. Therefore, the effective refractive index is directed from the substrate 11 toward the metal layer 13 as described above. If it changes continuously, it becomes possible to reduce reflection and to improve the transmittance of TM polarized light.
 図5は、図4に示す光源10に含まれる偏光子4を製造する製造方法を説明するための図である。なお、以下で説明する製造方法は、単なる一例であって、これに限定されるものではない。 FIG. 5 is a diagram for explaining a manufacturing method for manufacturing the polarizer 4 included in the light source 10 shown in FIG. In addition, the manufacturing method demonstrated below is only an example, Comprising: It is not limited to this.
 先ず、図5(a)に示すように、例えば蒸着法を用いて、基板11の上に第1誘電体層12を形成し、その後、例えばスパッタリング製膜法を用いて、第1誘電体層12の上に金属層13を製膜し、さらに、金属層13の上に第2誘電体層14を製膜させる。さらに、第2誘電体層14の上にレジスト層21Aを薄膜になるように積層する。 First, as shown in FIG. 5A, the first dielectric layer 12 is formed on the substrate 11 by using, for example, a vapor deposition method, and then the first dielectric layer is formed by using, for example, a sputtering film forming method. A metal layer 13 is formed on 12, and a second dielectric layer 14 is formed on the metal layer 13. Further, a resist layer 21A is laminated on the second dielectric layer 14 so as to be a thin film.
 その後、図5(b)に示すように、レジスト層21Aをグリッド状にパターニングして、グリッド状に配置された複数のレジスト層21Bを形成する。パターニングの方法は、特に限定されないが、例えば、マスク露光法である光リソグラフィー技術やインプリント法などが挙げられる。 Thereafter, as shown in FIG. 5B, the resist layer 21A is patterned in a grid shape to form a plurality of resist layers 21B arranged in a grid shape. The patterning method is not particularly limited, and examples thereof include a photolithography technique that is a mask exposure method, an imprint method, and the like.
 次に、図5(c)に示すように、レジスト層21Bをマスクとして、第2誘電体層14、金属層13および第1誘電体層12を貫くようにエッチング処理を行い、グリッド状に配置された複数の凸部15を形成する。このエッチング処理では、第1誘電体層12がテーパー構造となるように、第1誘電体層12を除去する。なお、エッチングの方法は、第1誘電体層12、金属層13および第2誘電体層14の材料に応じて、ウェットエッチング法やドライエッチング法を用いることができる。 Next, as shown in FIG. 5C, using the resist layer 21B as a mask, etching is performed so as to penetrate the second dielectric layer 14, the metal layer 13, and the first dielectric layer 12, and arranged in a grid pattern. A plurality of convex portions 15 are formed. In this etching process, the first dielectric layer 12 is removed so that the first dielectric layer 12 has a tapered structure. As the etching method, a wet etching method or a dry etching method can be used depending on the materials of the first dielectric layer 12, the metal layer 13, and the second dielectric layer.
 そして、図5(d)に示すように、レジスト層21Bを酸素ラジカルと結合させて、COやCO2などの気体状反応生成物に置換して除去する。 Then, as shown in FIG. 5D, the resist layer 21B is combined with oxygen radicals, and is replaced with a gaseous reaction product such as CO or CO 2 and removed.
 図6は、図4に示した光源10を有する画像表示装置の構成の一例を示す配置図である。図6に示す画像表示装置は、光をスクリーンに投射してスクリーン上に画像を形成するプロジェクタである。 FIG. 6 is a layout diagram showing an example of the configuration of the image display apparatus having the light source 10 shown in FIG. The image display apparatus shown in FIG. 6 is a projector that projects light onto a screen to form an image on the screen.
 図6において、プロジェクタ500は、光源501R、501Gおよび501Bと、光学素子502R、502Gおよび502Bと、液晶パネル503R、503Gおよび503Bと、クロスダイクロイックプリズム504と、投射光学系505とを備える。 6, the projector 500 includes light sources 501R, 501G, and 501B, optical elements 502R, 502G, and 502B, liquid crystal panels 503R, 503G, and 503B, a cross dichroic prism 504, and a projection optical system 505.
 光源501R、501Gおよび501Bのそれぞれは、図4に示した光源10と同じ構造を有する。光源501R、501Gおよび501Bのそれぞれの発光素子1は、波長がそれぞれ異なる光を発生するものとする。以下、光源501Rから赤色(R)光が出射され、光源501Gから緑色(G)光が出射され、光源501Bから青色(B)光が出射されるものとする。 Each of the light sources 501R, 501G, and 501B has the same structure as the light source 10 shown in FIG. The light emitting elements 1 of the light sources 501R, 501G, and 501B generate light having different wavelengths. Hereinafter, it is assumed that red (R) light is emitted from the light source 501R, green (G) light is emitted from the light source 501G, and blue (B) light is emitted from the light source 501B.
 光学素子502R、502Gおよび502Bのそれぞれは、光源501R、501Gおよび501Bから発生した各色光を、液晶パネル503R、503Gおよび503Bのそれぞれに導いて入射する。 Each of the optical elements 502R, 502G, and 502B guides the respective color lights generated from the light sources 501R, 501G, and 501B to the liquid crystal panels 503R, 503G, and 503B, respectively, and enters the liquid crystal panels.
 液晶パネル503R、503Gおよび503Bは、入射された各色光を映像信号に応じて変調して出射する空間光変調素子である。 The liquid crystal panels 503R, 503G, and 503B are spatial light modulation elements that modulate and emit incident color light according to a video signal.
 クロスダイクロイックプリズム504は、液晶パネル503R、503Gおよび503Bのそれぞれから出射された各変調光を合成して出射する。 The cross dichroic prism 504 combines and outputs the modulated lights emitted from the liquid crystal panels 503R, 503G, and 503B.
 投射光学系505は、クロスダイクロイックプリズム504から出射された合成光をスクリーン600に投射して、スクリーン600上に映像信号に応じた映像を表示する。 The projection optical system 505 projects the combined light emitted from the cross dichroic prism 504 onto the screen 600 and displays an image corresponding to the video signal on the screen 600.
 図7は、本実施形態のプロジェクタの構成の別の例を示す配置図である。図7において、プロジェクタ500’は、光源501R、501Gおよび501Bと、導光体506と、液晶パネル507と、投射光学系508とを有する。 FIG. 7 is a layout diagram showing another example of the configuration of the projector according to the present embodiment. In FIG. 7, the projector 500 ′ includes light sources 501 </ b> R, 501 </ b> G, and 501 </ b> B, a light guide 506, a liquid crystal panel 507, and a projection optical system 508.
 導光体506は、光源501R、501Gおよび501Bから発生した各色光を合成して液晶パネル507に出射する。 The light guide 506 synthesizes each color light generated from the light sources 501R, 501G, and 501B and outputs the combined light to the liquid crystal panel 507.
 液晶パネル507は、入射された合成光を映像信号に応じて変調して出射する空間光変調素子である。 The liquid crystal panel 507 is a spatial light modulation element that modulates incident combined light according to a video signal and emits the modulated light.
 投射光学系508は、液晶パネル507から出射された変調光をスクリーン600に投射して、スクリーン600上に映像信号に応じた映像を表示する。 The projection optical system 508 projects the modulated light emitted from the liquid crystal panel 507 onto the screen 600 and displays an image corresponding to the video signal on the screen 600.
 なお、図6および図7では、空間光変調素子として液晶パネルを用いたが、変調素子は液晶パネルに限らず適宜変更可能である。 In FIGS. 6 and 7, a liquid crystal panel is used as the spatial light modulation element. However, the modulation element is not limited to the liquid crystal panel and can be changed as appropriate.
 図8は、本実施形態の光源10における積算透過率の評価結果を示す図である。ここで積算透過率とは、発光素子1から出射された光のうち、使用可能角度範囲に含まれる出射角で偏光子4から出射される光の割合を示す。使用可能角度範囲は、偏光変換素子から様々な方向に出射された光のうち、実際に使うことができる角度範囲のことであり、例えば、図6に示した画像表示装置において、光源501R、501Gおよび501Bから出射された光のうち、光学素子502R、502Gおよび502Bに取り込むことができる光の出射角度の範囲である。 FIG. 8 is a diagram showing an evaluation result of the integrated transmittance in the light source 10 of the present embodiment. Here, the integrated transmittance indicates a ratio of light emitted from the polarizer 4 at an emission angle included in the usable angle range in the light emitted from the light emitting element 1. The usable angle range is an angle range that can be actually used out of light emitted in various directions from the polarization conversion element. For example, in the image display apparatus illustrated in FIG. 6, the light sources 501R and 501G are used. Among the light emitted from 501B and 501B, the range of the emission angle of light that can be taken into the optical elements 502R, 502G, and 502B.
 なお、基板11を屈折率1.5のガラス、第1誘電体層12を屈折率1.8の誘電体、金属層13をAl、第2誘電体層14を屈折率1.5の誘電体で形成した。 The substrate 11 is a glass having a refractive index of 1.5, the first dielectric layer 12 is a dielectric having a refractive index of 1.8, the metal layer 13 is Al, and the second dielectric layer 14 is a dielectric having a refractive index of 1.5. Formed with.
 金属層13の幅を42nm、高さを140nm、凸部15の周期を110nmとした。第1誘電体の高さを50nm、幅を基板11側で110nm、金属層13側で42nmとした。第2誘電体の高さを100nm、幅を42nmとした。さらに、波長板3は、水晶のゼロオーダーの一軸性1/4波長板とした。そして、発光素子1の出射光は、完全非偏光で配光分布はランバーシアンとし、発光素子1の反射率を100%と仮定した。 The width of the metal layer 13 was 42 nm, the height was 140 nm, and the period of the convex portions 15 was 110 nm. The height of the first dielectric was 50 nm, the width was 110 nm on the substrate 11 side, and 42 nm on the metal layer 13 side. The height of the second dielectric was 100 nm and the width was 42 nm. Further, the wave plate 3 is a zero order uniaxial quarter wave plate of quartz. The light emitted from the light-emitting element 1 is assumed to be completely non-polarized, the light distribution is Lambertian, and the reflectance of the light-emitting element 1 is assumed to be 100%.
 図8では、Eは、ワイヤグリッド偏光子単独の評価結果、Fは光源10の評価結果、Gは、図1で示した関連技術の光源の評価結果、Hは、発光素子1の出射光が全て偏光された出射されたときの結果である。 In FIG. 8, E is the evaluation result of the wire grid polarizer alone, F is the evaluation result of the light source 10, G is the evaluation result of the light source of the related technology shown in FIG. 1, and H is the output light of the light emitting element 1. This is the result when all polarized light is emitted.
 図8に示されたように、本実施形態の光源10は、図1で示した関連技術の光源に比べて、積算透過率が1%程度向上している。 As shown in FIG. 8, the integrated light transmittance of the light source 10 of this embodiment is improved by about 1% compared to the light source of the related art shown in FIG.
 以上説明したように本実施形態によれば、第1誘電体層12にテーパーが設けられているので、TM偏光の透過率を向上させることが可能になるので、非偏光を特定の偏光状態の光に変換する際の光の取り出し効率を高くすることが可能になる。 As described above, according to the present embodiment, since the first dielectric layer 12 is tapered, it is possible to improve the transmittance of TM polarized light. It is possible to increase the light extraction efficiency when converting to light.
 また、本実施形態では、金属層13の上の第2誘電体層14を設けているので、偏光子4を波長板3に密着させても、TE偏光の反射率の低下の抑制、または、TE偏光の反射率の向上が可能になる。したがって、漏れ光を抑制しつつ、TE偏光の反射率の低下の抑制、または、TE偏光の反射率の向上が可能になるので、非偏光を特定の偏光状態の光に変換する際の光の取り出し効率を高くすることが可能になる。 In the present embodiment, since the second dielectric layer 14 is provided on the metal layer 13, even if the polarizer 4 is brought into close contact with the wave plate 3, it is possible to suppress the decrease in the reflectance of TE-polarized light, or The reflectance of TE polarized light can be improved. Accordingly, it is possible to suppress a decrease in the reflectance of TE-polarized light or to improve the reflectance of TE-polarized light while suppressing leakage light, so that the light when converting non-polarized light into light of a specific polarization state can be obtained. The extraction efficiency can be increased.
 次に本発明の第2の実施形態について説明する。 Next, a second embodiment of the present invention will be described.
 図9は、本発明の第2の実施形態の光源を模式的に示す斜視図である。図9に示す本実施形態の光源10Aは、図4に示した光源10に対して、波長板3の代わりに偏光解消素子3Aを有する。 FIG. 9 is a perspective view schematically showing a light source according to the second embodiment of the present invention. A light source 10A of this embodiment shown in FIG. 9 has a depolarizing element 3A instead of the wave plate 3 with respect to the light source 10 shown in FIG.
 偏光解消素子3Aは、光の偏光状態を変化させる偏光状態変換素子の一例である。より具体的には、偏光解消素子3Aは、入射された光を非偏光にして出射するものである。 The depolarization element 3A is an example of a polarization state conversion element that changes the polarization state of light. More specifically, the depolarizing element 3A emits incident light as non-polarized light.
 偏光解消素子3Aの材料としては、厚みが面内の位置に応じて異なる、サファイアや水晶のような無機の異方性結晶や、ポリカーボネートのような異方性フィルムが挙げられる。 Examples of the material for the depolarizing element 3A include inorganic anisotropic crystals such as sapphire and quartz, and anisotropic films such as polycarbonate, whose thickness varies depending on the position in the plane.
 なお、図9では、発光素子1と偏光解消素子3Aとが密着しているが、実際には、密着していなくてもよい。 In FIG. 9, the light emitting element 1 and the depolarizing element 3 </ b> A are in close contact with each other, but actually, they may not be in close contact.
 以上のように構成された光源10Aにおいて、発光素子1から出射された非偏光は、偏光解消素子3Aを介して偏光子4の凸部15が形成された面に入射する。なお、非偏光は偏光解消素子3Aを通過しても非偏光であるので、偏光子4に入射する光も非偏光である。 In the light source 10A configured as described above, the non-polarized light emitted from the light emitting element 1 enters the surface on which the convex portion 15 of the polarizer 4 is formed via the depolarizing element 3A. Since non-polarized light is non-polarized even after passing through the depolarizer 3A, the light incident on the polarizer 4 is also non-polarized.
 偏光子4に入射した非偏光のうち、各凸部15の延伸方向であるY方向に垂直な偏光成分であるTM偏光は、各凸部15を透過し、さらに基板11を透過して出射される。 Of the non-polarized light that has entered the polarizer 4, TM polarized light, which is a polarization component perpendicular to the Y direction that is the extending direction of each convex portion 15, is transmitted through each convex portion 15 and further transmitted through the substrate 11 and emitted. The
 一方、偏光子4に入射した非偏光のうち、各凸部15の延伸方向であるY方向に平行な偏光成分であるTE偏光は、各凸部15の金属層13で反射する。この反射したTE偏光は、波長板3を通過して非偏光となり、発光素子1で反射し、さらに波長板3を通過して、非偏光のまま偏光子4に再入射する。したがって、再入射した光のうちTM偏光は、偏光子4を透過して出射され、再入射した光のうちTE偏光は再度反射される。 On the other hand, among the non-polarized light incident on the polarizer 4, TE polarized light that is a polarization component parallel to the Y direction that is the extending direction of each convex portion 15 is reflected by the metal layer 13 of each convex portion 15. The reflected TE-polarized light passes through the wave plate 3 to become non-polarized light, is reflected by the light emitting element 1, passes through the wave plate 3, and re-enters the polarizer 4 without being polarized. Therefore, TM polarized light out of the re-incident light is transmitted through the polarizer 4, and TE polarized light out of the re-incident light is reflected again.
 図10は、本実施形態の光源10Aにおける積算透過率の評価結果を示す図である。なお、偏光解消素子3Aは、入射光を完全な非偏光にするものと仮定し、他の各部材の構成は、第1の実施形態と同様としている。また、図10において、Eは、ワイヤグリッド偏光子単独の評価結果、Fは光源10Aの評価結果、Gは、図1で示した関連技術の光源の評価結果、Hは、発光素子1の出射光が全て偏光された出射されたときの結果である。 FIG. 10 is a diagram showing an evaluation result of the integrated transmittance in the light source 10A of the present embodiment. The depolarizing element 3A is assumed to make incident light completely non-polarized, and the configuration of other members is the same as that of the first embodiment. 10, E is the evaluation result of the wire grid polarizer alone, F is the evaluation result of the light source 10A, G is the evaluation result of the light source of the related technology shown in FIG. 1, and H is the output of the light emitting element 1. This is the result when all the incident light is emitted in a polarized state.
 図10に示すように、本実施形態の光源10は、図1で示した関連技術の光源に比べて、積算透過率が向上していることがわかる。 As shown in FIG. 10, it can be seen that the integrated light transmittance of the light source 10 of this embodiment is improved as compared with the light source of the related art shown in FIG.
 次に本発明の他の実施形態について説明する。 Next, another embodiment of the present invention will be described.
 図11は、本発明の第3の実施形態の光学素子の側面および上面を示す図である。図11に示すように本実施形態の光学素子200は、基板201と、基板201上に設けられた誘電体部202と、誘電体部202上に設けられた金属部203とを有する。なお、誘電体部202は、第1の誘電体部の一例であり、誘電体部202および金属部203は構造体204を構成する。また、本実施形態では、基板201の上面をXY平面とし、XY平面と直交する方向をZ方向とする。 FIG. 11 is a diagram showing a side surface and an upper surface of an optical element according to the third embodiment of the present invention. As shown in FIG. 11, the optical element 200 of the present embodiment includes a substrate 201, a dielectric part 202 provided on the substrate 201, and a metal part 203 provided on the dielectric part 202. The dielectric portion 202 is an example of a first dielectric portion, and the dielectric portion 202 and the metal portion 203 constitute a structure 204. In the present embodiment, the upper surface of the substrate 201 is the XY plane, and the direction orthogonal to the XY plane is the Z direction.
 誘電体部202は、基板201から金属部203に向かって小さくなる構造を有する。 The dielectric part 202 has a structure that decreases from the substrate 201 toward the metal part 203.
 より具体的には、誘電体部202の基板201と接する面である底面は、矩形であり、誘電体部202のY方向に沿った側面がテーパー構造を有する。 More specifically, the bottom surface that is a surface in contact with the substrate 201 of the dielectric portion 202 is rectangular, and the side surface along the Y direction of the dielectric portion 202 has a tapered structure.
 また、金属部203のY方向(反射偏光方向)の長さをW1、金属部203のX方向(透過偏光方向)の長さをW2とする。 Further, the length of the metal part 203 in the Y direction (reflection polarization direction) is W1, and the length of the metal part 203 in the X direction (transmission polarization direction) is W2.
 また、誘電体部202の金属部203と接する面である上面のY方向の長さをW1、誘電体部202の上面のX方向の長さをW2とする。このとき、長さW1が光学素子200に入射される光の波長λより長く、長さW2が波長λよりも短いと、光学素子200における機能領域210が偏光子として機能する。つまり、機能領域210に入射した入射光のうちY方向と直交する偏光成分であるTM偏光が基板201を透過し、その入射光のうちY方向と平行な偏光成分であるTE偏光は金属部203で反射する。 Also, the length in the Y direction of the upper surface, which is the surface in contact with the metal portion 203 of the dielectric portion 202, is W1, and the length in the X direction of the upper surface of the dielectric portion 202 is W2. At this time, when the length W1 is longer than the wavelength λ of the light incident on the optical element 200 and the length W2 is shorter than the wavelength λ, the functional region 210 in the optical element 200 functions as a polarizer. That is, TM polarized light, which is a polarization component orthogonal to the Y direction, of incident light incident on the functional region 210 is transmitted through the substrate 201, and TE polarized light, which is a polarization component parallel to the Y direction, of the incident light is the metal portion 203. Reflect on.
 機能領域210は、誘電体部202の上面の中心からY方向に±W1/2以内、かつ、誘電体部202の上面の中心からX方向に±(W2/2+S)以内の範囲である。なお、Sは、光学素子200に入射される光の波長λの半分λ/2である。 The functional region 210 is a range within ± W1 / 2 in the Y direction from the center of the upper surface of the dielectric part 202 and within ± (W2 / 2 + S) in the X direction from the center of the upper surface of the dielectric part 202. Note that S is half λ / 2 of the wavelength λ of light incident on the optical element 200.
 本実施形態でも、第1および第2の実施形態と同様に、光学素子200が偏光子として機能し、誘電体部202が基板201から金属部203に向かって小さくなる構造を有しているので、TM偏光のフレネル反射を抑制することが可能になり、非偏光を特定の偏光状態の光に変換する際の光の取り出し効率を高くすることが可能になる。 Also in this embodiment, since the optical element 200 functions as a polarizer and the dielectric portion 202 decreases from the substrate 201 toward the metal portion 203 as in the first and second embodiments. , It becomes possible to suppress Fresnel reflection of TM polarized light, and to increase the light extraction efficiency when converting non-polarized light into light of a specific polarization state.
 なお、光学素子200の形状は、図11に示したような形状に限らず、適宜変更可能である。以下では、図12~図19は、光学素子200の他の形状の一例を示す図である。 It should be noted that the shape of the optical element 200 is not limited to the shape shown in FIG. In the following, FIGS. 12 to 19 are diagrams showing examples of other shapes of the optical element 200. FIG.
 図12の例では、誘電体部202は、基板201上のX方向を向いた側面に加えて、基板201上のY方向を向いた側面もテーパー構造を有する。 In the example of FIG. 12, in addition to the side surface facing the X direction on the substrate 201, the side surface facing the Y direction on the substrate 201 has a tapered structure.
 図13の例では、誘電体202の底面および上面が楕円形状をしている。なお、誘電体202の底面および上面では、直軸がY方向に沿って設けられている。 In the example of FIG. 13, the bottom surface and the top surface of the dielectric 202 are elliptical. Note that, on the bottom surface and the top surface of the dielectric 202, the straight axis is provided along the Y direction.
 図14の例では、誘電体202の側面が底面からある位置まで基板201に対して直交し、その位置からテーパー構造が設けられている。 In the example of FIG. 14, the side surface of the dielectric 202 is perpendicular to the substrate 201 from the bottom surface to a certain position, and a tapered structure is provided from that position.
 図15の例では、誘電体202の側面が階段形状になっている。 In the example of FIG. 15, the side surface of the dielectric 202 has a staircase shape.
 図16~図19の例では、構造体204が複数設けられている。 In the examples of FIGS. 16 to 19, a plurality of structures 204 are provided.
 図16の例では、構造体204が一次元方向に並設されている。この場合、光学素子200の機能領域210は、各構造体204の機能領域を合わせたものとなるため、線光源からの光のように、構造体204が並設されている1次元方向に対して広がりを有する光に対しても、光学素子200を偏光子として機能させることが可能になる。また、構造体204が一つの場合に比べて、TM偏光のフレネル反射の低減率を高くすることが可能になる。さらに、図17に示すように、Y方向の光の広がりに対して構造体204のY方向を十分長くすれば、面光源からの光のように、2次元方向に対して広がりを有する光に対しても、光学素子200を偏光子として機能させることが可能になる。 In the example of FIG. 16, the structures 204 are arranged in a one-dimensional direction. In this case, the functional area 210 of the optical element 200 is a combination of the functional areas of the structures 204, and therefore, in the one-dimensional direction in which the structures 204 are juxtaposed, such as light from a line light source. Thus, the optical element 200 can be made to function as a polarizer even for light having a large spread. In addition, it is possible to increase the reduction rate of the TM polarized Fresnel reflection as compared with the case where there is one structure 204. Furthermore, as shown in FIG. 17, if the Y direction of the structure 204 is sufficiently long with respect to the spread of light in the Y direction, light having a spread in the two-dimensional direction, such as light from a surface light source, is obtained. In contrast, the optical element 200 can function as a polarizer.
 なお、図16および図17の例では、各構造体204の誘電体202の底面の間に間隙がないように、各構造体204が並設されていたが、図18に示すように、誘電体202の底面の間に間隙があってもよい。 In the examples of FIGS. 16 and 17, the structures 204 are arranged in parallel so that there is no gap between the bottom surfaces of the dielectrics 202 of the structures 204. However, as shown in FIG. There may be a gap between the bottom surfaces of the body 202.
 また、図16および図17の例では、構造体204として、図11や図12に示す構造のものを用いているが、構造体204は図13、図14、図15に示す構造のものであっても良い。 In the examples of FIGS. 16 and 17, the structure 204 shown in FIGS. 11 and 12 is used as the structure 204. However, the structure 204 has the structure shown in FIGS. 13, 14, and 15. There may be.
 図19の例では、図12で示した構造体204が2次元方向に並設されている。この場合、偏光子として機能する機能領域210と、偏光子として機能しない非機能領域211とが交互に設けられることになるので、光源からの光の入射位置に応じて、偏光および非偏光の一方を選択的に出力することが可能になる。 In the example of FIG. 19, the structures 204 shown in FIG. 12 are juxtaposed in a two-dimensional direction. In this case, since the functional area 210 that functions as a polarizer and the non-functional area 211 that does not function as a polarizer are alternately provided, one of polarized light and non-polarized light depends on the incident position of light from the light source. Can be selectively output.
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。例えば、上記実施の形態における数値、材質などは例示的なものであり、適宜変更して実施することが可能である。 In each embodiment described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration. For example, the numerical values, materials, and the like in the above-described embodiments are illustrative, and can be changed as appropriate.
 例えば、図4に示した発光素子1の上面に光を非偏光にして反射する機能を持たせることで、偏光解消素子3Aを含まない構成とすることができる。 For example, by providing the light emitting element 1 shown in FIG. 4 with a function of reflecting light with non-polarized light, the depolarizing element 3A can be omitted.
 この出願は、2011年9月27日に出願された日本出願特願2011-211505号公報を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-21505 filed on Sep. 27, 2011, the entire disclosure of which is incorporated herein.
 1    発光素子
 2    偏光光学素子
 3    波長板
 3A   偏光解消素子
 4    ワイヤグリッド偏光子
 11、201   基板
 12   第1誘電体層
 13   金属層
 14   第2誘電体層
 15   凸部
 202  誘電体部
 203  金属部
 204  構造体
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Polarization optical element 3 Wave plate 3A Depolarization element 4 Wire grid polarizer 11, 201 Substrate 12 1st dielectric layer 13 Metal layer 14 2nd dielectric layer 15 Convex part 202 Dielectric part 203 Metal part 204 Structure body

Claims (17)

  1.  基板と、
     前記基板上に設けられた第1の誘電体部と、
     前記第1の誘電体部上に設けられた金属部と、を備え、
     前記第1の誘電体部は、前記基板から前記金属部に向かって小さくなるように設けられる、偏光子。
    A substrate,
    A first dielectric portion provided on the substrate;
    A metal part provided on the first dielectric part,
    The first dielectric part is a polarizer provided so as to become smaller from the substrate toward the metal part.
  2.  請求項1に記載の偏光子において、
     前記第1の誘電体部の側面に、前記基板から前記金属部に向かって傾斜面が形成されている、偏光子。
    The polarizer according to claim 1,
    The polarizer which the inclined surface is formed in the side surface of the said 1st dielectric material part toward the said metal part from the said board | substrate.
  3.  請求項2に記載の偏光子において、
     前記傾斜面は、前記第1の誘電体部の側面のうち、少なくとも互いに対向する2つの側面に形成されている、偏光子。
    The polarizer according to claim 2,
    The inclined surface is a polarizer that is formed on at least two side surfaces facing each other among the side surfaces of the first dielectric part.
  4.  請求項2に記載の偏光子において、
     前記傾斜面は、前記第1の誘電体部の全ての側面に形成されている、偏光子。
    The polarizer according to claim 2,
    The inclined surface is a polarizer formed on all side surfaces of the first dielectric portion.
  5.  請求項1ないし4のいずれか1項に記載の偏光子において、
     前記第1の誘電体部と前記金属部とを備える構造体が前記基板上に複数形成されている、偏光子。
    The polarizer according to any one of claims 1 to 4,
    A polarizer, wherein a plurality of structures each including the first dielectric part and the metal part are formed on the substrate.
  6.  請求項5に記載の偏光子において、
     前記複数の構造体は、前記基板上の1次元方向に並設されている、偏光子。
    The polarizer according to claim 5,
    The plurality of structures are polarizers arranged in a one-dimensional direction on the substrate.
  7.  請求項5に記載の偏光子において、
     前記複数の構造体は、前記基板上の2次元方向に並設されている、偏光子。
    The polarizer according to claim 5,
    The plurality of structures are polarizers arranged side by side in a two-dimensional direction on the substrate.
  8.  請求項5ないし7のいずれか1項に記載の偏光子において、
     前記複数の構造体は、前記第1の誘電体の前記基板と接する面が間隙なく並設されている、偏光子。
    The polarizer according to any one of claims 5 to 7,
    The plurality of structures are polarizers in which surfaces of the first dielectric that are in contact with the substrate are juxtaposed without a gap.
  9.  請求項1ないし8のいずれか1項に記載の偏光子において、
     前記構造体は、前記金属部上に設けられた第2の誘電体部をさらに有する、偏光子。
    The polarizer according to any one of claims 1 to 8,
    The structure is a polarizer, further including a second dielectric portion provided on the metal portion.
  10.  請求項1ないし9に記載の偏光子において、
     前記第1の誘電体部の前記金属部と接する面と、前記金属部の前記第1の誘電体部と接する面とが同じ大きさである、偏光子。
    The polarizer according to any one of claims 1 to 9,
    A polarizer, wherein a surface of the first dielectric part in contact with the metal part and a surface of the metal part in contact with the first dielectric part have the same size.
  11.  基板と、
     前記基板上に設けられた第1の誘電体部と、
     前記第1の誘電体部上に設けられた金属部と、を備え、
     前記第1の誘電体部は、前記基板から前記金属部に向かって傾斜面を有し、
     前記第1の誘電体部の側面は、前記基板から前記金属部に向かって傾斜するように形成された傾斜面であり、
     前記第1の誘電体部の前記金属部が設けられた面は、前記第1の誘電部の前記基板が設けられた面より小さい、偏光子。
    A substrate,
    A first dielectric portion provided on the substrate;
    A metal part provided on the first dielectric part,
    The first dielectric part has an inclined surface from the substrate toward the metal part,
    The side surface of the first dielectric part is an inclined surface formed to be inclined from the substrate toward the metal part,
    The surface of the first dielectric part provided with the metal part is smaller than the surface of the first dielectric part provided with the substrate.
  12.  請求項1ないし11のいずれか1項に記載の偏光子と、
     前記構造体上に設けられ、入射光の偏光状態を変化させて出射する偏光状態変換素子と、を有する偏光光学素子。
    The polarizer according to any one of claims 1 to 11,
    A polarization optical element having a polarization state conversion element that is provided on the structure and emits light by changing a polarization state of incident light.
  13.  請求項12に記載の偏光光学素子において、
     前記構造体と前記偏光状態変換素子とが密着している、偏光光学素子。
    The polarizing optical element according to claim 12,
    A polarizing optical element in which the structure and the polarization state conversion element are in close contact.
  14.  請求項12または13に記載の偏光光学素子において、
     前記偏光状態変換素子は、前記入射光に位相差を与えて出射する波長板である、偏光光学素子。
    The polarizing optical element according to claim 12 or 13,
    The polarization state conversion element is a polarization optical element that is a wavelength plate that emits a phase difference to the incident light.
  15.  請求項12または13に記載の偏光光学素子において、
     前記偏光状態変換素子は、前記入射光を非偏光にして出射する偏光解消素子である、偏光光学素子。
    The polarizing optical element according to claim 12 or 13,
    The polarization state conversion element is a polarization optical element that is a depolarization element that emits the incident light in a non-polarized state.
  16.  請求項12ないし15のいずれか1項に記載の偏光光学素子と、
     前記偏光光学素子に光を出射する発光素子と、を有する光源。
    The polarizing optical element according to any one of claims 12 to 15,
    A light source that emits light to the polarizing optical element.
  17.  請求項16に記載の光源を有する画像表示装置。 An image display device having the light source according to claim 16.
PCT/JP2012/069768 2011-09-27 2012-08-02 Polarizer, polarizing optical element, light source, and image display device WO2013046921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011211505 2011-09-27
JP2011-211505 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013046921A1 true WO2013046921A1 (en) 2013-04-04

Family

ID=47994974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069768 WO2013046921A1 (en) 2011-09-27 2012-08-02 Polarizer, polarizing optical element, light source, and image display device

Country Status (2)

Country Link
JP (1) JPWO2013046921A1 (en)
WO (1) WO2013046921A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045466A (en) * 2014-08-26 2016-04-04 大日本印刷株式会社 Light adjustment device and installation method of light adjustment device
JP6230689B1 (en) * 2016-12-28 2017-11-15 デクセリアルズ株式会社 Polarizing plate, method for producing the same, and optical instrument
JP6302040B1 (en) * 2016-12-28 2018-03-28 デクセリアルズ株式会社 Polarizing plate, method for producing the same, and optical instrument
JP2018109754A (en) * 2016-12-28 2018-07-12 デクセリアルズ株式会社 Polarizing plate, manufacturing method therefor, and optical device
JP2018189980A (en) * 2018-07-19 2018-11-29 デクセリアルズ株式会社 Polarizing plate
JP2019536080A (en) * 2016-11-22 2019-12-12 モックステック・インコーポレーテッド Wire grid polarizer with high reflectivity on both sides
JP2021033049A (en) * 2019-08-23 2021-03-01 デクセリアルズ株式会社 Polarizer and optical instrument
WO2021241439A1 (en) * 2020-05-25 2021-12-02 デクセリアルズ株式会社 Polarization plate, manufacturing method therefor, and optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519818A (en) * 2000-01-11 2003-06-24 モックステック Embedded wire grid polarizer for the visible spectrum
JP2006330178A (en) * 2005-05-24 2006-12-07 Sony Corp Optical device and method for manufacturing optical device
JP2009087921A (en) * 2007-06-11 2009-04-23 Rohm & Haas Denmark Finance As Backlight containing formed birefringence reflecting polarizer
JP2009134251A (en) * 2007-08-08 2009-06-18 Rohm & Haas Denmark Finance As Optical element comprising restrained asymmetrical diffuser
JP2011028008A (en) * 2009-07-27 2011-02-10 Hitachi Displays Ltd Liquid crystal display device
JP2011186252A (en) * 2010-03-09 2011-09-22 Ricoh Co Ltd Polarization converting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519818A (en) * 2000-01-11 2003-06-24 モックステック Embedded wire grid polarizer for the visible spectrum
JP2006330178A (en) * 2005-05-24 2006-12-07 Sony Corp Optical device and method for manufacturing optical device
JP2009087921A (en) * 2007-06-11 2009-04-23 Rohm & Haas Denmark Finance As Backlight containing formed birefringence reflecting polarizer
JP2009134251A (en) * 2007-08-08 2009-06-18 Rohm & Haas Denmark Finance As Optical element comprising restrained asymmetrical diffuser
JP2011028008A (en) * 2009-07-27 2011-02-10 Hitachi Displays Ltd Liquid crystal display device
JP2011186252A (en) * 2010-03-09 2011-09-22 Ricoh Co Ltd Polarization converting element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045466A (en) * 2014-08-26 2016-04-04 大日本印刷株式会社 Light adjustment device and installation method of light adjustment device
JP7187745B2 (en) 2016-11-22 2022-12-13 モックステック・インコーポレーテッド Wire grid polarizer with high reflectivity on both sides
JP2019536080A (en) * 2016-11-22 2019-12-12 モックステック・インコーポレーテッド Wire grid polarizer with high reflectivity on both sides
CN108254821A (en) * 2016-12-28 2018-07-06 迪睿合株式会社 Polarizer and its manufacturing method and optical device
CN108254821B (en) * 2016-12-28 2022-01-11 迪睿合株式会社 Polarizing plate, method for manufacturing same, and optical device
JP2018106130A (en) * 2016-12-28 2018-07-05 デクセリアルズ株式会社 Polarizing plate and method for manufacturing the same, and optical instrument
CN108254822A (en) * 2016-12-28 2018-07-06 迪睿合株式会社 Polarizer and its manufacturing method and optical device
JP2018109754A (en) * 2016-12-28 2018-07-12 デクセリアルズ株式会社 Polarizing plate, manufacturing method therefor, and optical device
JP2018106129A (en) * 2016-12-28 2018-07-05 デクセリアルズ株式会社 Polarizing plate and method for manufacturing the same, and optical instrument
US10209421B2 (en) 2016-12-28 2019-02-19 Dexerials Corporation Polarizing plate, method of manufacturing the same, and optical apparatus
JP6302040B1 (en) * 2016-12-28 2018-03-28 デクセリアルズ株式会社 Polarizing plate, method for producing the same, and optical instrument
JP6230689B1 (en) * 2016-12-28 2017-11-15 デクセリアルズ株式会社 Polarizing plate, method for producing the same, and optical instrument
CN108254822B (en) * 2016-12-28 2022-05-27 迪睿合株式会社 Polarizing plate, method for manufacturing same, and optical device
JP2018189980A (en) * 2018-07-19 2018-11-29 デクセリアルズ株式会社 Polarizing plate
CN110998384A (en) * 2018-07-19 2020-04-10 迪睿合株式会社 Polarizing plate
WO2020017455A1 (en) * 2018-07-19 2020-01-23 デクセリアルズ株式会社 Polarizer
JP2021033049A (en) * 2019-08-23 2021-03-01 デクセリアルズ株式会社 Polarizer and optical instrument
JP7356291B2 (en) 2019-08-23 2023-10-04 デクセリアルズ株式会社 Polarizing plates and optical equipment
WO2021241439A1 (en) * 2020-05-25 2021-12-02 デクセリアルズ株式会社 Polarization plate, manufacturing method therefor, and optical device
JP7394020B2 (en) 2020-05-25 2023-12-07 デクセリアルズ株式会社 Polarizing plate and its manufacturing method, and optical equipment

Also Published As

Publication number Publication date
JPWO2013046921A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
WO2013046921A1 (en) Polarizer, polarizing optical element, light source, and image display device
US7573546B2 (en) Wire grid polarizer having dual layer structure and method of fabricating the same
US7965035B2 (en) Light-emitting device, method for manufacturing light-emitting device, and image display apparatus
JP6023775B2 (en) Display module and light guide device
JP5737284B2 (en) Optical element, light source device, and projection display device
JP5605426B2 (en) Optical element, light source device and projection display device
JP2005077819A (en) Polarized beam splitter, optical system using it, and image display
JP2010210824A (en) Optical element and illumination device
WO2012172858A1 (en) Optical element, light-source apparatus, and projection-type display apparatus
JP2004139001A (en) Optical element, optical modulating element and image display apparatus
JP2009223074A (en) Polarization converting element
JP4661038B2 (en) LIGHT SOURCE DEVICE, LIGHT SOURCE DEVICE MANUFACTURING METHOD, PROJECTION TYPE DISPLAY DEVICE
WO2013132813A1 (en) Optical element, optical device, and display device
WO2013157211A1 (en) Projection device
JP2008046609A (en) Polarization recovery plate
JP5051830B2 (en) Polarized illumination device and projection-type image display device
WO2014010200A1 (en) Optical element, optical device, and display device
JP4537115B2 (en) Polarization separation prism
JP2011077444A (en) Light source device, polarization conversion element, and display device
JP2011090036A (en) Optical element and light source device
JP7439592B2 (en) Wavelength conversion elements, light source devices, and projectors
WO2014013712A1 (en) Optical device and display device using same
JP2007114375A (en) Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
JP5741575B2 (en) Wave plate, light emitting element, and image display apparatus using the light emitting element
JP5188524B2 (en) Polarization separation element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834831

Country of ref document: EP

Kind code of ref document: A1