JP3722603B2 - Manufacturing method of polarizer - Google Patents

Manufacturing method of polarizer Download PDF

Info

Publication number
JP3722603B2
JP3722603B2 JP29757397A JP29757397A JP3722603B2 JP 3722603 B2 JP3722603 B2 JP 3722603B2 JP 29757397 A JP29757397 A JP 29757397A JP 29757397 A JP29757397 A JP 29757397A JP 3722603 B2 JP3722603 B2 JP 3722603B2
Authority
JP
Japan
Prior art keywords
metal particles
polarizer
metal
layer
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29757397A
Other languages
Japanese (ja)
Other versions
JPH11133230A (en
Inventor
徹 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29757397A priority Critical patent/JP3722603B2/en
Publication of JPH11133230A publication Critical patent/JPH11133230A/en
Application granted granted Critical
Publication of JP3722603B2 publication Critical patent/JP3722603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光通信システム、光記録再生装置、光センサー応用装置等に使用される偏光子の製造方法に関する。
【0002】
【従来の技術】
従来の偏光子としては以下の(1)〜(5)のようなものがあった。
【0003】
(1)着色剤を溶かし込んだ溶液をセル内に入れたもの、あるいは透明なプラスチックに着色剤を混入させたもので、光吸収性に異方性を持たせたもの。
【0004】
(2)複屈折性の大きい透明な結晶からなる基板上に誘電体薄膜を多数積層し、誘電体薄膜による多層干渉効果により、偏光方向がそれぞれ異なる常光線か異常光線のいずれかを効率良く吸収又は透過させる、グラントムソンプリズム等の偏光プリズム。
【0005】
(3)複屈折性の大きい透明な結晶からなる基板表面におけるブリュースター角条件を利用して、偏光方向が90°異なる偏光成分を分離する偏光ビームスプリッター。
【0006】
(4)透明なフィルム内で高分子材料を一定方向に配向させ、高分子の光吸収性の異方性、屈折率異方性等を利用して特定方向の偏光成分を吸収又は透過させる偏光フィルム。
【0007】
(5)透明なガラスからなる透明固体媒質中に、回転楕円体状の銀粒子等の金属粒子をその長軸又は短軸を特定方向に揃えて分散させることにより、光吸収性に異方性を持たせたもの(特公平2−40619号公報参照)。
【0008】
【発明が解決しようとする課題】
しかしながら、(1)のような着色イオンを利用したものは波長依存性が大きく、波長毎に最適な光吸収性を示す着色イオンを選択する必要があった。また、(2),(3)のように複屈折性の大きい結晶を利用したものは波長依存性は小さいが、結晶の加工が困難であり、そのため偏光子の寸法が制限され小型化し難いという問題点があった。(4)のようなフィルム内の高分子の配向を利用したものは特定方向への均一な配向が難しく、また配向性が良くても複屈折性の結晶と比較した場合大きな消光比が得難いという問題がある。
【0009】
また、(5)の回転楕円体状の金属粒子を透明固体媒質中に分散させたタイプは、波長依存性が小さく小型化に適しているが、下記の理由で金属粒子の分散状態の制御が難しいため、偏光子として必要な挿入損失の0.3dB以下、更に通信用として十分な挿入損失0.1dB以下を実現することができなかった。
【0010】
そして、(5)の偏光子は以下のような工程(a)〜(d)で製造される。
【0011】
(a)銀及びハロゲン化物(塩化物,臭化物,ヨウ化物等)よりなるガラス用バッチを溶融してガラス基板等の形状に成型する。
【0012】
(b)所定の温度等の条件で熱処理を行いガラス中にハロゲン化銀粒子を析出させる。
【0013】
(c)ガラス基板を所定の温度に加熱した状態で張力を加えて延伸し、ハロゲン化銀粒子を伸長させ、かつ張力の方向へ整列させる。
【0014】
(d)ガラス基板を所定の温度に加熱した状態で還元雰囲気中に暴露し、ハロゲン化銀の一部を金属銀に還元する。
【0015】
しかしながら、上記製法では、ハロゲン化銀から金属銀に還元するために、還元雰囲気中で熱処理を行っているが、この方法でガラス内の金属銀の量を正確に制御することは困難であり、そのため所望の安定した挿入損失等の光学的特性を得ることができなかった。また、熱処理時にガラスの厚さ方向に温度分布が生じ易く、厚さ方向の中心部に金属化しなかったハロゲン化銀が残留し、これが光の透過率を低下させていた。更に、ハロゲン化銀粒子は還元される際に、1/3程度の体積収縮を伴うため、還元後のガラス表面がポーラスになり、光の透過率低下やクラックの原因となるなど信頼性の点で問題があった。
【0016】
そこで、ガラス等の基板上に真空蒸着法等により不連続な島状の金属層と、ガラス等の透明誘電体層を交互に積層し、加熱延伸によって金属層に光吸収異方性を付与したものが提案されている(電子情報通信学会誌 1990年秋季全国大会C−212参照)。この偏光子では、金属層の各島が金属粒子の役割を果たし、金属粒子を分散させたのと同様の構成となる。しかしながら、上記の製法では、金属層の各島の分散状態の制御が難しく、通信用に使用するための十分な挿入損失0.1dB以下を実現するのが困難であるという問題がある。
【0017】
また、金属粒子の面内における金属粒子の分布密度(個数密度)、金属粒子の厚さ方向での間隔、更に延伸後に回転楕円体状になった金属粒子の短軸方向の間隔が挿入損失に大きな影響を及ぼしていると考えられるが、従来このような分布に関し言及した例はなかった。また、従来の延伸方法では、原理的に延伸後の金属粒子の短軸方向の間隔が狭くなってしまい、その結果挿入損失が大きくなり実用に供し得ないものであった。
【0018】
そして、延伸後の短軸方向の間隔を広げる方法として、延伸前の金属粒子の個数密度を大きく減少させることが考えられるが、その場合高消光比を得るには金属層及び透明誘電体層の積層数を多くする必要があり、その結果挿入損失するとともに作製時間が長くかかり高コスト化するという問題点があった。
【0019】
従って、本発明は上記事情に鑑みて完成されたものであり、その目的は金属層及び透明誘電体層の積層数が少ないにもかかわらず、消光比及び挿入損失等の光学的特性に優れ、また安価に製造可能なものとすることにある。
【0021】
【課題を解決するための手段】
発明の偏光子の製造方法は、透明基板の少なくとも一主面上に、金属粒子層と透明誘電体層とを交互に積層し、この積層体を加熱するとともに金属粒子層の面内の特定方向に延伸して、金属粒子を回転楕円体状に整形する偏光子の製造方法であって、前記積層体を所定の第1方向に延伸して前記金属粒子を回転楕円体状となし、次いで熱処理して前記金属粒子を再粒子化させ、その後前記第1方向にほぼ直交する第2方向に延伸することを特徴とし、こような構成により、金属粒子の短軸方向の平均間隔を自在に制御可能であり、また金属粒子の分布密度を大きくしても前記平均間隔を従来通りとできる。即ち、従来金属粒子を配置できなかった長軸方向の隙間に配置可能となり、その結果、挿入損失を増加させずに、従来と同じ積層数でより高い消光比が得られる。
【0022】
本発明の製造方法において、好ましくは、前記第1方向への延伸距離をL1 、前記第2方向への延伸距離をL2 とすると、1≦L1 /L2 ≦3である。
【0023】
更に、本発明の偏光子の製造方法により作製した偏光子において好ましくは、前記透明誘電体層の厚さは50nm以上であり、前記金属粒子の分布密度は5〜33個/μmである。
【0024】
また、本発明の偏光子を用いた光アイソレータは、ファラデー回転子の光入射側及び/又は光出射側に、本発明の偏光子を配設して構成され、挿入損失及び消光比等において優れたものとなる。
【0025】
【発明の実施の形態】
本発明の偏光子の製造方法により作製した偏光子P1の斜視図を図1に示す。同図において、1はガラス等の透明材料からなる透明基板、2は金属粒子2aを分散させた金属粒子層、3はガラス等の透明材料からなる透明誘電体層、4は金属粒子層2と透明誘電体層3とが交互に積層されて成る偏光層である。
ある。
【0026】
ここで、金属粒子層2は完全に密な層ではなく、全体を積層後に透明誘電体層中に金属粒子が分散されたような状態となっており、換言すれば金属粒子2aが面内方向に断続的に形成された層状の部分である。
【0027】
前記金属粒子2aは、Cu,Au,Ag,Pt,Rh,Ir,Fe,Ni,Cr等が好ましく、これらは光吸収性が良好である。そして、これらの金属粒子層2と透明誘電体層3はスパッタリング法等の薄膜形成法によって成膜される。また、透明誘電体層3上に更に誘電体多層干渉膜からなる反射防止膜等を形成してもよく、更には偏光層4を透明基板1の両面に設けても構わない。
【0028】
本発明において、前記透明基板1は具体的にはSiO2 ,B2 3 ,Na2 O,K2 O,BaO,As2 3 等を主成分とするBK7ガラス(ホーヤガラス(株)製商品名)やパイレックスガラス(コーニンググラスワークス社製商品名)、石英ガラス等が好適である。また、透明誘電体層3は透明基板1と同じ材質のものとするのが良く、材質が異なると熱膨張係数の違いから膜応力が発生し、その結果、透明基板1と透明誘電体層3間で剥離が生じ、金属粒子2aに光吸収異方性を付与することができなくなる。
【0029】
前記金属粒子層2の面内における金属粒子2aの短軸方向の平均間隔は100nm以上であり、100nm未満では金属粒子2aが一つの粒子としてではなく、金属粒子2aの大きな集団として光を吸収するようになり、挿入損失が大きくなる。より好ましくは200nm以上である。一方、前記平均間隔が500nmよりも大きくなると、金属粒子2aの数が少なくなり、消光比が劣化し易いため、500nm以下が好ましい。
【0030】
また、前記金属粒子層2の間隔、即ち一層の透明誘電体層3の厚さは50nm以上がよく、より好ましくは100nm以上とするが、これは以下の理由による。尚、前記の厚さは延伸後のものであり、延伸前はその3倍程度の厚さである。
【0031】
金属粒子層2の同一層状部での金属粒子2aの分布を制御するには、透明誘電体層3の膜厚を厚くすることが必要であるが、厚膜化すると加熱延伸時に、透明誘電体層3中に含まれるAr等のスパッタガスが膨張し、積層界面において気泡が発生する。更に延伸を行うと気泡が引き裂かれ、最外層の透明誘電体層3表面に亀裂が生じる。従来このような現象に対処するために、300℃以上ガラス転移点(約580℃)以下の温度範囲で熱処理を施すことにより脱ガスを行い、亀裂の発生を抑制していたが、透明誘電体層3の厚さが延伸前に150nm以上では脱ガスが不可能であった。
【0032】
そこで、スパッタリング装置内で、透明誘電体層3の成膜毎に熱処理を行うことにより、透明誘電体層3を延伸前に150nm以上に厚膜化することが可能となり、延伸前に150nm以上とすると延伸後に50nm程度となり、脱ガスが可能なうえ挿入損失が0.3dB以下、更に厚膜化すると0.1dB以下となることが判明した。また、本発明の偏光子P1は、上記の通り、その製造工程で300℃以上ガラス転移点(約580℃)以下の温度範囲で脱ガス処理するのが良いが、それは、スパッタガスは300℃付近から放出され始め、400℃以上で多く放出され、ガラス転移点付近になるとガラスの粘性が高くなり通気性が悪くなるからである。
【0033】
前記透明誘電体層3の厚さの上限は特に限定するものではないが、あまり厚すぎると加熱による脱ガス処理に時間がかかることと、挿入損失の改善効果が頭打ちになることから、好ましくは200nm以下とする。
【0034】
また、金属粒子層2において、同一の層状に存在する金属粒子2aの分布密度(個数密度)は3〜37個/μmがよく、3個/μm未満では消光比が劣化し易く、37個/μm超では挿入損失が0.3dBを超え易い。より好ましくは、5〜33個/μmとする。ここで、前記分布密度は、少なくとも1個の金属粒子2aの長軸を含む平面であって金属粒子層2に平行な面でもって金属粒子層2を切断し、その面内の金属粒子2aの個数を計数することにより、測定できる。
【0035】
更に、回転楕円体状の金属粒子2aのアスペクト比(長軸/短軸比)は3〜30がよく、その場合所望の消光比(光波長1310nm,1550nmで20dB以上)が得られ、より好ましくは15〜20とする。
【0036】
このような本発明の偏光子の製造方法により作製した偏光子P1は、図1に示すように機能する。回転楕円体状の金属粒子2aの長軸方向を仮にx方向、金属粒子2aの短軸方向を仮にy方向、光の入射方向をz方向にとり、xyの直交する2方向に偏光成分を有する入射光L1を偏光子P1に入射すると、金属粒子2aの長軸方向(x方向)に平行な偏光を多くしかも長波長帯にて吸収するため、出射光L2はある波長帯域でy方向に平行な偏光のみとなり、偏光子として作用する。
【0037】
また、本発明の偏光子の製造方法により作製した偏光子P1はファラデー回転子と共に用いて光アイソレータに応用できる。この場合、Ni−Fe合金等からなる円筒状のホルダ内に、YIG(イットリウム鉄ガーネット:3Y・5Fe)等からなる円板状のファラデー回転子を設置し、そのファラデー回転子の光入射側及び/又は光出射側に、本発明の偏光子P1を配置する。前記ホルダ内のファラデー回転子の周囲には、その偏光方向を磁場により回転させるための永久磁石、電磁石等が設けられる。
【0038】
そして、例えばファラデー回転子の光入射側及び光出射側に、本発明の偏光子の製造方法により作製した偏光子P1を配置した場合について、その機能を説明する。光入射側の偏光子Aと光出射側の偏光子Bとでは偏光方向が45°異なるようにし、またファラデー回転子による偏光方向の変化の方向を、偏光子Aの偏光方向Aから偏光子Bの偏光方向Bへ向かって45°変化するように構成すると、光アイソレータとなる。
【0039】
光アイソレータに入射したランダム偏光の光は、偏光子Aによって一方向の偏光方向Aの光となり、ファラデー回転子によって偏光方向が45°変化し、偏光方向Bの光となり、その結果偏光子Bをそのまま通過し出射する。出射側から戻ってきたランダム偏光の光は、偏光子Bによって偏光方向Aと偏光方向が45°異なる偏光方向Bの光となり、更にファラデー回転子によって偏光方向が45°変化し、偏光方向Aと偏光方向が90°異なる光となり、偏光子Aを通過することができない。従って、光アイソレータとして機能することになる。
【0040】
このような光アイソレータは、本発明の偏光子の製造方法により作製した偏光子P1が内蔵されているため、挿入損失及び消光比等の光学的特性において優れたものとなる。
【0041】
かくして、本発明は、金属粒子層及び透明誘電体層の積層数が少なくても、消光比及び挿入損失等の光学的特性に優れ、また安価に製造可能になるという作用効果を有する。
【0042】
更に、本発明の偏光子P1の製法を下記の工程(1)〜(8)及び図2により、以下に説明する。尚、図2は1層の金属粒子層2の平面図である。
【0043】
(1)BK7ガラス等の透明基板1を用意し、その一主面上に島状に金属粒子2aが分布するよう金属粒子層2をスパッタリング法、多元スパッタリング法により形成する。このとき、成膜時間は完全な膜ができる前に成膜を止めるために約5分程度と短時間に設定し、透明基板1を約500℃に加熱した状態で成膜すると、金属粒子2aが島状に分布するものとなり、そして島状の金属粒子2aの平面形状はほぼ円形である。
【0044】
(2)金属粒子層2において金属粒子2aを所望の大きさに成長させるために、透明基板1をガラス転移点以下の温度で熱処理を行う。
【0045】
(3)多元スパッタリング法により、透明基板1と同じ材質の透明誘電体層3を成膜する。
【0046】
(4)300℃〜ガラス転移点以下(580℃程度)の温度に加熱し、透明誘電体層3に混入したAr等のスパッタガスの脱ガス処理を行う。
【0047】
(5)所望の消光比及び挿入損失が得られるまで、金属粒子層2と透明誘電体層3の成膜及び(2),(4)の熱処理を複数回繰返し、透明誘電体層3を形成する。
【0048】
(6)この積層体を加熱した状態で金属粒子層2の面内の第1方向に延伸して、金属粒子2aを回転楕円体状に整形する(図2(a)〜(b))。
【0049】
(7)積層体を300℃〜ガラス転移点程度以下(630℃程度)で熱処理して、金属粒子2aを凝集、再粒子化させほぼ円形に形成する(図2(b)〜(c))。
【0050】
(8)更に、積層体を加熱した状態で前記第1方向にほぼ直交する第2方向に延伸し、金属粒子2aを回転楕円体状に整形する(図2(c)〜(d))。
【0051】
本発明の上記製造方法において、第1方向と第2方向は厳密に直交する必要はなく、好ましくはそれらのなす角が90°±30°程度の範囲内であれば十分本発明の効果が得られる。より好ましくは、90°±10°程度がよい。
【0052】
また、第1方向への延伸距離をL1 、第2方向への延伸距離をL2 とすると、1≦L1 /L2 ≦3がよい。これは、L1 が金属粒子2aの短軸方向の間隔を規定するものであることから、L1 /L2 <1の場合L1 の延伸距離が不十分となり、その結果金属粒子2aの短軸方向の間隔が狭くなり、挿入損失が増加し易い。また、L1 /L2 >3の場合、金属粒子2aの短軸方向の間隔が広がりすぎるため、分布密度が低下し消光比が劣化し易い。
【0053】
上記の延伸工程における加熱温度は、透明基板1及び透明誘電体層3がガラスの場合、625〜630℃程度がよい。
【0054】
ここで、光学的特性を向上させて金属粒子2aの短軸方向の間隔を広げるメカニズムを以下に説明する。
【0055】
従来の製造方法では、延伸を行うと透明基板1の厚さが約1/3になり、透明基板1幅も約1/3となる。延伸後の透明基板1の体積は変化しないため、長さは9倍になる。このとき、延伸後の金属粒子2aは、その長軸方向の間隔は延伸前の9倍と広がっているが、短軸方向の間隔は延伸前の1/3となり、そのため挿入損失が大きくなる。また、短軸方向の間隔を十分なものとしようとすると、金属粒子の数を減らす必要があり、その場合長軸方向の間隔が広がりすぎ、消光比が低下する。そして、高消光比にするために積層数を増加させねばならず、作製に時間がかかり高コスト化していた。
【0056】
そこで、本発明では、第1方向に延伸して金属粒子2aの長軸方向の間隔を十分に広げ、その後熱処理して金属粒子2aを凝集、再粒子化して光吸収異方性を除去し、更に第1方向とほぼ直交する第2方向に延伸する。その結果、金属粒子2aの絶対的な個数を増加させ光学的特性を向上させつつ金属粒子2aの短軸方向の間隔を広げることができる。
【0057】
尚、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更は何等差し支えない。
【0058】
【実施例】
本発明の実施例を以下に説明する。
【0059】
(実施例1)
図1の偏光子P1を以下の工程(1)〜(8)により作製した。
【0060】
(1)透明基板1には76mm×10mm×1mmのBK7ガラス、成膜装置として多元マグネトロンスパッタ装置、スパッタリングガスにはAr、ターゲットには金属粒子層2をなすCuと透明誘電体層3をなすBK7ガラスをそれぞれ使用した。スパッタ条件はRFパワー20W、スパッタ圧2.0×10-3torr、Arガスの流量10ccm、成膜時間約5分とし、透明基板1を約500℃に加熱した状態で、金属(Cu)粒子層2の厚さが24nmになるように設定しスパッタリングを行った。
【0061】
ここで、金属粒子層2の厚さは上記スパッタ条件にて別途20分間成膜したものの膜厚を測定し、その成膜速度を算出し、それを基準にして導きだした。
【0062】
(2)Cuからなる金属粒子2aを成長させるために、金属粒子層2の形成直後に500℃、60分の熱処理を行った。
【0063】
(3)金属粒子2aを透明誘電体層3中に埋め込むために、金属粒子層2上に透明基板1材料と同じBK7ガラスをスパッタリング法により、300nm成膜した。
【0064】
(4)580℃、1時間の熱処理をし、Arの脱ガス処理を行った。
【0065】
(5)(1)〜(4)の工程を5回繰返し、金属粒子層2と透明誘電体層3の組を5組積層した積層体を形成した。
【0066】
(6)そして、この積層体を625℃にて第1方向に45kg/mm2 の応力、延伸距離L1 =50mmで延伸を行い、金属粒子2aを回転楕円体状となし、延伸後の透明誘電体層3の膜厚は100nmであった。
【0067】
そして、この場合、前記第1方向への延伸距離L1 を50mm,75mm,100mm,125mm,150mmとした5つのサンプルを作製した。
【0068】
(7)これらのサンプルに対し、625℃で1時間の熱処理を施し、金属粒子を凝集させ、再粒子化させた。
【0069】
(8)さらに、前記第1方向と直交する第2方向に、625℃,45kg/mm2 の応力で延伸距離L2 =50mmで延伸を行い、5種の偏光子P1を作製した。この場合、各偏光子P1の金属粒子2aの分布密度は15個/μm2 (L1 =50mm),12個/μm2 (L1 =75mm),9個/μm2 (L1 =100mm),6個/μm2 (L1 =125mm),3個/μm2 (L1 =150mm)であった。
【0070】
そして、これら5種の偏光子P1について、透過型電子顕微鏡による金属粒子層2の観察及び光波長1310nmで光学的特性の測定を行い、それぞれの金属粒子2aの短軸方向の平均間隔及び挿入損失を、表1に示す。
【0071】
【表1】

Figure 0003722603
【0072】
表1より、金属粒子2aの短軸方向の平均間隔が100nmで挿入損失が0.08dB、200nm以上で0.04dB以下と優れた値を示した。また、200nmで消光比約20dBであった。
【0073】
(実施例2)
図1の偏光子P1を以下の工程(1)〜(8)により作製した。
【0074】
(1)透明基板1には76mm×10mm×1mmのBK7ガラス、成膜装置として多元マグネトロンスパッタ装置、スパッタリングガスにはAr、ターゲットには金属粒子層2をなすCuと透明誘電体層3をなすBK7ガラスをそれぞれ使用した。スパッタ条件はRFパワー20W、スパッタ圧2.0×10-3torr、Arガスの流量10ccm、成膜時間約5分とし、透明基板1を約500℃に加熱した状態で、金属(Cu)粒子層2の厚さが12nmになるように設定しスパッタリングを行った。
【0075】
ここで、金属粒子層2の厚さは上記スパッタ条件にて別途20分間成膜したものの膜厚を測定し、その成膜速度を算出し、それを基準にして導きだした。また、金属粒子層2の成膜量を小さくしたのは、金属粒子2aの分布密度(個数密度)を増加させるためである。
【0076】
(2)Cuからなる金属粒子2aを成長させるために、金属粒子層2の形成直後に500℃、60分の熱処理を行った。
【0077】
(3)金属粒子2aを透明誘電体層3中に埋め込むために、金属粒子層2上に透明基板1材料と同じBK7ガラスをスパッタリング法により、300nm成膜した。
【0078】
(4)580℃、1時間の熱処理をし、Arの脱ガス処理を行った。
【0079】
(5)(1)〜(4)の工程を5回繰返し、金属粒子層2と透明誘電体層3の組を5組積層した積層体を形成した。
【0080】
(6)そして、この積層体を625℃にて45kg/mm2 の応力で第1方向に延伸を行い、金属粒子2aを回転楕円体状となし、延伸後の透明誘電体層3の膜厚は100nmであった。この場合、前記第1方向への延伸距離L1 は100mmであった。
【0081】
(7)625℃で1時間の熱処理を施し、金属粒子2aを凝集させ、再度粒子化させた。
【0082】
(8)さらに、前記第1方向と直交する第2方向に、625℃,45kg/mm2 の応力で延伸距離L2 =50mmで延伸を行い、偏光子P1を作製した。
【0083】
この偏光子P1における金属粒子2aの分布密度は約30個/μm2 、金属粒子2aの短軸方向の平均間隔は200nmであり、光波長1310nmでの消光比は40dB、挿入損失0.04dBであった。
【0084】
更に、金属粒子2aの金属としてAu,Ag,Pt,Fe,Ni,Cr,Rh,Irを用いて、上記と同様にして偏光子P1を作製したが、本実施例と同様の効果が得られた。
【0085】
【発明の効果】
本発明の偏光子の製造方法は、第1方向に延伸して金属粒子の長軸方向の間隔を十分に広げ、その後熱処理して金属粒子を凝集、再粒子化して光吸収異方性を除去し、更に第1方向とほぼ直交する第2方向に延伸すことで、金属粒子の絶対的な個数を増加させ光学的特性を向上させつつ金属粒子の短軸方向の間隔を広げることができることにより、金属粒子層及び透明誘電体層の積層数が少なくても消光比及び挿入損失等の光学的特性に優れ、また安価に製造できるという作用効果を有する。
【図面の簡単な説明】
【図1】 本発明の偏光子の製造方法により作製した偏光子P1の基本構成の斜視図である。
【図2】本発明の偏光子P1の製造工程のうち延伸工程を示すもので、金属粒子層の平面図である。
【符号の説明】
1:透明基板
2:金属粒子層
2a:金属粒子
3:透明誘電体層
4:偏光層[0001]
BACKGROUND OF THE INVENTION
The present invention is an optical communication system, an optical recording and reproducing apparatus, a method of manufacturing a polarizing element for use in an optical sensor applications device.
[0002]
[Prior art]
Conventional polarizers include the following (1) to (5).
[0003]
(1) A solution in which a colorant is dissolved is put in a cell, or a transparent plastic is mixed with a colorant, and the light absorption property is made anisotropic.
[0004]
(2) A large number of dielectric thin films are laminated on a substrate made of a transparent crystal having a large birefringence, and the multi-layer interference effect of the dielectric thin films efficiently absorbs either ordinary rays or extraordinary rays having different polarization directions. Or a polarizing prism such as a Glan-Thompson prism that transmits light.
[0005]
(3) A polarization beam splitter that separates polarization components having different polarization directions by 90 ° using a Brewster angle condition on a substrate surface made of a transparent crystal having a large birefringence.
[0006]
(4) Polarized light in which a polymer material is oriented in a certain direction in a transparent film and absorbs or transmits a polarized light component in a specific direction using the light absorption anisotropy and refractive index anisotropy of the polymer. the film.
[0007]
(5) In a transparent solid medium made of transparent glass, metal particles such as spheroid silver particles are dispersed with their major axis or minor axis aligned in a specific direction, thereby anisotropy in light absorption. (See Japanese Patent Publication No. 2-40619).
[0008]
[Problems to be solved by the invention]
However, those using colored ions as in (1) have a large wavelength dependence, and it is necessary to select colored ions that exhibit optimum light absorption for each wavelength. In addition, crystals using large birefringence crystals such as (2) and (3) have a small wavelength dependence, but it is difficult to process the crystals. Therefore, the size of the polarizer is limited and it is difficult to reduce the size. There was a problem. Those using the orientation of the polymer in the film as in (4) are difficult to achieve uniform orientation in a specific direction, and even if the orientation is good, it is difficult to obtain a large extinction ratio when compared to a birefringent crystal. There's a problem.
[0009]
In addition, the type (5) in which the spheroidal metal particles are dispersed in a transparent solid medium has a small wavelength dependency and is suitable for miniaturization. However, the dispersion state of the metal particles can be controlled for the following reasons. Since it is difficult, it has been impossible to realize an insertion loss of 0.3 dB or less necessary for a polarizer and a sufficient insertion loss of 0.1 dB or less for communication.
[0010]
And the polarizer of (5) is manufactured by the following steps (a) to (d).
[0011]
(A) A glass batch made of silver and a halide (chloride, bromide, iodide, etc.) is melted and formed into a shape of a glass substrate or the like.
[0012]
(B) Heat treatment is performed under conditions such as a predetermined temperature to precipitate silver halide grains in the glass.
[0013]
(C) The glass substrate is stretched by applying a tension while being heated to a predetermined temperature, the silver halide grains are elongated, and aligned in the direction of the tension.
[0014]
(D) The glass substrate is exposed to a reducing atmosphere while being heated to a predetermined temperature, and a part of the silver halide is reduced to metallic silver.
[0015]
However, in the above production method, in order to reduce silver halide to metallic silver, heat treatment is performed in a reducing atmosphere, but it is difficult to accurately control the amount of metallic silver in the glass by this method, Therefore, the desired stable optical characteristics such as insertion loss cannot be obtained. In addition, a temperature distribution tends to occur in the thickness direction of the glass during the heat treatment, and silver halide that has not been metallized remains in the central portion in the thickness direction, which reduces the light transmittance. Furthermore, since silver halide grains are reduced in volume by about 1/3 when they are reduced, the glass surface after reduction becomes porous, which causes a decrease in light transmittance and causes cracks. There was a problem.
[0016]
Therefore, discontinuous island-shaped metal layers and transparent dielectric layers such as glass were alternately laminated on a substrate such as glass by vacuum deposition or the like, and light absorption anisotropy was imparted to the metal layer by heat stretching. Some have been proposed (see Journal of the IEICE 1990 National Convention C-212). In this polarizer, each island of the metal layer plays the role of metal particles, and has the same configuration as the metal particles dispersed. However, in the above manufacturing method, there is a problem that it is difficult to control the dispersion state of each island of the metal layer, and it is difficult to realize a sufficient insertion loss of 0.1 dB or less for use in communication.
[0017]
In addition, the distribution density (number density) of the metal particles in the plane of the metal particles, the spacing in the thickness direction of the metal particles, and the spacing in the minor axis direction of the metal particles that have become spheroids after stretching are the insertion loss. Although it seems to have a great influence, there has been no example of mentioning such a distribution. Further, in the conventional stretching method, the distance between the minor axes of the stretched metal particles is narrowed in principle, and as a result, the insertion loss increases and cannot be put to practical use.
[0018]
And, as a method of widening the interval in the minor axis direction after stretching, it is conceivable to greatly reduce the number density of the metal particles before stretching. In that case, in order to obtain a high extinction ratio, the metal layer and the transparent dielectric layer It is necessary to increase the number of stacked layers. As a result, there is a problem that the insertion loss is lost and the manufacturing time is long and the cost is increased.
[0019]
Therefore, the present invention has been completed in view of the above circumstances, and its purpose is excellent in optical characteristics such as extinction ratio and insertion loss, although the number of metal layers and transparent dielectric layers is small. Also, it is to be able to be manufactured at low cost.
[0021]
[Means for Solving the Problems]
In the method for producing a polarizer of the present invention, a metal particle layer and a transparent dielectric layer are alternately laminated on at least one main surface of a transparent substrate, the laminate is heated, and in-plane identification of the metal particle layer is performed. A method of manufacturing a polarizer that stretches in a direction to shape metal particles into a spheroid shape, wherein the laminate is stretched in a predetermined first direction to form the metal particles in a spheroid shape, and then re granulated said metal particles to heat treatment, then the is characterized in that stretching in a second direction substantially perpendicular to the first direction, the configuration as this, freely average spacing in the short-axis direction of the metal particles In addition, even if the distribution density of the metal particles is increased, the average interval can be made as usual. That is, the metal particles can be arranged in the gap in the long axis direction where the conventional metal particles could not be arranged. As a result, a higher extinction ratio can be obtained with the same number of layers as the conventional one without increasing the insertion loss.
[0022]
In the production method of the present invention, preferably, 1 ≦ L1 / L2 ≦ 3, where L1 is a stretching distance in the first direction and L2 is a stretching distance in the second direction.
[0023]
Furthermore, in the polarizer produced by the method for producing a polarizer of the present invention, preferably, the thickness of the transparent dielectric layer is 50 nm or more, and the distribution density of the metal particles is 5 to 33 particles / μm 2 .
[0024]
Further, the optical isolator using the polarizer of the present invention is configured by disposing the polarizer of the present invention on the light incident side and / or light emitting side of the Faraday rotator, and is excellent in insertion loss, extinction ratio, and the like. It will be.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
A perspective view of a polarizer P1 produced by the method for producing a polarizer of the present invention is shown in FIG. In the figure, 1 is a transparent substrate made of a transparent material such as glass, 2 is a metal particle layer in which metal particles 2a are dispersed, 3 is a transparent dielectric layer made of a transparent material such as glass, and 4 is a metal particle layer 2 It is a polarizing layer formed by alternately laminating transparent dielectric layers 3.
is there.
[0026]
Here, the metal particle layer 2 is not a completely dense layer but is in a state in which the metal particles are dispersed in the transparent dielectric layer after the entire layer is laminated. In other words, the metal particle 2a is in the in-plane direction. It is a layered portion formed intermittently.
[0027]
The metal particles 2a are preferably Cu, Au, Ag, Pt, Rh, Ir, Fe, Ni, Cr or the like, and these have good light absorption. The metal particle layer 2 and the transparent dielectric layer 3 are formed by a thin film forming method such as a sputtering method. Further, an antireflection film or the like made of a dielectric multilayer interference film may be further formed on the transparent dielectric layer 3, and the polarizing layer 4 may be provided on both surfaces of the transparent substrate 1.
[0028]
In the present invention, the transparent substrate 1 is specifically SiO 2, B 2 O 3, Na 2 O, K 2 O, BaO, As 2 O 3 or the like BK7 glass as a main component (manufactured by Hoya Glass Co. (Trade name), Pyrex glass (trade name manufactured by Corning Glass Works), quartz glass and the like are suitable. The transparent dielectric layer 3 is preferably made of the same material as that of the transparent substrate 1. If the materials are different, a film stress is generated due to a difference in thermal expansion coefficient. As a result, the transparent substrate 1 and the transparent dielectric layer 3 Peeling occurs between them, and it becomes impossible to impart light absorption anisotropy to the metal particles 2a.
[0029]
The average interval in the short axis direction of the metal particles 2a in the plane of the metal particle layer 2 is 100 nm or more, and if it is less than 100 nm, the metal particles 2a absorb light as a large group of metal particles 2a, not as one particle. As a result, the insertion loss increases. More preferably, it is 200 nm or more. On the other hand, when the average interval is larger than 500 nm, the number of metal particles 2a is reduced, and the extinction ratio is easily deteriorated.
[0030]
Further, the interval between the metal particle layers 2, that is, the thickness of the single transparent dielectric layer 3, is preferably 50 nm or more, more preferably 100 nm or more, for the following reason. In addition, the said thickness is a thing after extending | stretching, and is about 3 times the thickness before extending | stretching.
[0031]
In order to control the distribution of the metal particles 2a in the same layered portion of the metal particle layer 2, it is necessary to increase the film thickness of the transparent dielectric layer 3. However, if the film thickness is increased, Sputtering gas such as Ar contained in the layer 3 expands and bubbles are generated at the laminated interface. When the film is further stretched, the bubbles are torn and a crack is generated on the surface of the outermost transparent dielectric layer 3. Conventionally, in order to cope with such a phenomenon, degassing is performed by performing heat treatment in a temperature range of 300 ° C. or more and a glass transition point (about 580 ° C.) or less, and the generation of cracks is suppressed. Degassing was impossible when the thickness of layer 3 was 150 nm or more before stretching.
[0032]
Therefore, by performing a heat treatment for each film formation of the transparent dielectric layer 3 in the sputtering apparatus, the transparent dielectric layer 3 can be thickened to 150 nm or more before stretching, and 150 nm or more before stretching. Then, it became about 50 nm after stretching, and it was found that degassing was possible and insertion loss was 0.3 dB or less, and that when the film thickness was further increased, 0.1 dB or less. In addition, as described above, the polarizer P1 of the present invention is preferably degassed in the temperature range of 300 ° C. or more and a glass transition point (about 580 ° C.) or less in the manufacturing process. This is because the glass starts to be released from the vicinity, is released at a temperature of 400 ° C. or more, and near the glass transition point, the viscosity of the glass increases and the air permeability deteriorates.
[0033]
The upper limit of the thickness of the transparent dielectric layer 3 is not particularly limited, but it is preferable that if it is too thick, it takes time for degassing treatment by heating, and the effect of improving the insertion loss reaches its peak. 200 nm or less.
[0034]
Further, the metallic particles layer 2, the distribution density of metal particles 2a that exists in the same layer (number density) of 3-37 pieces / [mu] m 2 C., easily deteriorate extinction ratio is less than 3 / [mu] m 2, If it exceeds 37 / μm 2 , the insertion loss tends to exceed 0.3 dB. More preferably, it is 5 to 33 / μm 2 . Here, the distribution density is a plane including the major axis of at least one metal particle 2a and is cut by a plane parallel to the metal particle layer 2, and the metal particles 2a in the plane are cut. It can be measured by counting the number.
[0035]
Furthermore, the aspect ratio (major axis / minor axis ratio) of the spheroid-shaped metal particles 2a is preferably 3 to 30, in which case a desired extinction ratio (20 dB or more at a light wavelength of 1310 nm and 1550 nm) is obtained, and more preferable. Is 15-20.
[0036]
The polarizer P1 produced by such a method for producing a polarizer of the present invention functions as shown in FIG. An incident light having polarization components in two directions orthogonal to xy, assuming that the major axis direction of the spheroid-shaped metal particle 2a is the x direction, the minor axis direction of the metal particle 2a is the y direction, and the light incident direction is the z direction. When the light L1 is incident on the polarizer P1, a large amount of polarized light parallel to the long axis direction (x direction) of the metal particles 2a is absorbed in the long wavelength band, so that the outgoing light L2 is parallel to the y direction in a certain wavelength band. It becomes only polarized light and acts as a polarizer.
[0037]
The polarizer P1 produced by the method for producing a polarizer of the present invention can be applied to an optical isolator by using it together with a Faraday rotator. In this case, a disk-shaped Faraday rotator made of YIG (yttrium iron garnet: 3Y 2 O 3 .5Fe 2 O 3 ) or the like is installed in a cylindrical holder made of Ni—Fe alloy or the like, and the Faraday rotation is performed. The polarizer P1 of the present invention is disposed on the light incident side and / or the light emitting side of the child. Around the Faraday rotator in the holder, a permanent magnet, an electromagnet or the like for rotating the polarization direction by a magnetic field is provided.
[0038]
For example, when the polarizer P1 produced by the method for producing a polarizer of the present invention is disposed on the light incident side and the light emitting side of the Faraday rotator, the function will be described. The polarization direction of the polarizer A on the light incident side is different from that of the polarizer B on the light output side by 45 °, and the direction of change of the polarization direction by the Faraday rotator is changed from the polarization direction A of the polarizer A to the polarizer B. If it is configured to change by 45 ° toward the polarization direction B, an optical isolator is obtained.
[0039]
Randomly polarized light incident on the optical isolator is converted into light in one polarization direction A by the polarizer A, and the polarization direction is changed by 45 ° by the Faraday rotator, and becomes light in the polarization direction B. Pass through and exit. Randomly polarized light returned from the emission side is converted into light having a polarization direction B that is 45 ° different from the polarization direction A by the polarizer B, and the polarization direction is changed 45 ° by the Faraday rotator. The light has a polarization direction different by 90 ° and cannot pass through the polarizer A. Therefore, it functions as an optical isolator.
[0040]
Such an optical isolator is excellent in optical characteristics such as insertion loss and extinction ratio because the polarizer P1 produced by the method for producing a polarizer of the present invention is incorporated.
[0041]
Thus, the present invention has an effect of being excellent in optical characteristics such as extinction ratio and insertion loss and being inexpensively manufactured even when the number of metal particle layers and transparent dielectric layers is small.
[0042]
Furthermore, the manufacturing method of the polarizer P1 of this invention is demonstrated below with the following process (1)-(8) and FIG. FIG. 2 is a plan view of one metal particle layer 2.
[0043]
(1) A transparent substrate 1 such as BK7 glass is prepared, and a metal particle layer 2 is formed by sputtering or multi-source sputtering so that metal particles 2a are distributed in an island shape on one main surface. At this time, the film formation time is set to a short time of about 5 minutes in order to stop the film formation before a complete film is formed, and when the transparent substrate 1 is heated to about 500 ° C., the metal particles 2a Are distributed in an island shape, and the planar shape of the island-shaped metal particles 2a is substantially circular.
[0044]
(2) In order to grow the metal particles 2a to a desired size in the metal particle layer 2, the transparent substrate 1 is heat-treated at a temperature below the glass transition point.
[0045]
(3) A transparent dielectric layer 3 made of the same material as the transparent substrate 1 is formed by multi-source sputtering.
[0046]
(4) Heat to a temperature of 300 ° C. to below the glass transition point (about 580 ° C.), and perform a degassing process of a sputtering gas such as Ar mixed in the transparent dielectric layer 3.
[0047]
(5) The transparent dielectric layer 3 is formed by repeating the deposition of the metal particle layer 2 and the transparent dielectric layer 3 and the heat treatment of (2) and (4) a plurality of times until a desired extinction ratio and insertion loss are obtained. To do.
[0048]
(6) The laminate is heated and stretched in the first direction in the plane of the metal particle layer 2 to shape the metal particles 2a into a spheroid (FIGS. 2A to 2B).
[0049]
(7) The laminated body is heat-treated at about 300 ° C. to about a glass transition point (about 630 ° C.) to agglomerate and repartition the metal particles 2a to form a substantially circular shape (FIGS. 2B to 2C). .
[0050]
(8) Further, the laminated body is heated and stretched in a second direction substantially orthogonal to the first direction to shape the metal particles 2a into a spheroid (FIGS. 2C to 2D).
[0051]
In the above production method of the present invention, the first direction and the second direction do not need to be strictly orthogonal, and the effects of the present invention can be obtained sufficiently if the angle formed by them is preferably in the range of about 90 ° ± 30 °. It is done. More preferably, 90 ° ± 10 ° is preferable.
[0052]
Further, if the extension distance in the first direction is L1, and the extension distance in the second direction is L2, 1 ≦ L1 / L2 ≦ 3 is preferable. This is because L1 defines the distance in the minor axis direction of the metal particles 2a, so that when L1 / L2 <1, the stretching distance of L1 becomes insufficient, and as a result, the distance in the minor axis direction of the metal particles 2a. Becomes narrow and insertion loss tends to increase. In the case of L1 / L2> 3, the interval in the minor axis direction of the metal particles 2a is too wide, so that the distribution density is lowered and the extinction ratio is likely to be deteriorated.
[0053]
When the transparent substrate 1 and the transparent dielectric layer 3 are glass, the heating temperature in the stretching step is preferably about 625 to 630 ° C.
[0054]
Here, a mechanism for improving the optical characteristics to widen the interval in the minor axis direction of the metal particles 2a will be described below.
[0055]
In the conventional manufacturing method, when stretching is performed, the thickness of the transparent substrate 1 becomes about 1/3, and the width of the transparent substrate 1 also becomes about 1/3. Since the volume of the transparent substrate 1 after stretching does not change, the length becomes 9 times. At this time, the stretched metal particles 2a have a long-axis spacing that is 9 times that before stretching, but the short-axis spacing is 1/3 that before stretching, which increases insertion loss. In addition, if an attempt is made to make the interval in the short axis direction sufficient, it is necessary to reduce the number of metal particles. In this case, the interval in the long axis direction becomes too wide and the extinction ratio is lowered. And in order to make it a high extinction ratio, the number of laminations had to be increased, and production took time and cost was increased.
[0056]
Therefore, in the present invention, the metal particles 2a are stretched in the first direction to sufficiently widen the interval in the major axis direction, and thereafter heat treated to aggregate and re-particle the metal particles 2a to remove light absorption anisotropy, Furthermore, it extends in a second direction substantially perpendicular to the first direction. As a result, it is possible to increase the distance in the minor axis direction of the metal particles 2a while increasing the absolute number of the metal particles 2a and improving the optical characteristics.
[0057]
In addition, this invention is not limited to said embodiment, A various change does not interfere in the range which does not deviate from the summary of this invention.
[0058]
【Example】
Examples of the present invention will be described below.
[0059]
(Example 1)
The polarizer P1 of FIG. 1 was produced by the following steps (1) to (8).
[0060]
(1) BK7 glass of 76 mm × 10 mm × 1 mm is formed on the transparent substrate 1, a multi-element magnetron sputtering device is used as the film forming device, Ar is used as the sputtering gas, Cu forming the metal particle layer 2 and the transparent dielectric layer 3 are formed on the target Each BK7 glass was used. Sputtering conditions were RF power of 20 W, sputtering pressure of 2.0 × 10 −3 torr, Ar gas flow rate of 10 ccm, film forming time of about 5 minutes, and transparent substrate 1 heated to about 500 ° C., with metal (Cu) particles Sputtering was performed by setting the thickness of the layer 2 to 24 nm.
[0061]
Here, the thickness of the metal particle layer 2 was derived by measuring the film thickness of another film formed for 20 minutes under the above sputtering conditions, calculating the film formation speed, and using it as a reference.
[0062]
(2) In order to grow the metal particles 2a made of Cu, a heat treatment was performed at 500 ° C. for 60 minutes immediately after the formation of the metal particle layer 2.
[0063]
(3) In order to embed the metal particles 2 a in the transparent dielectric layer 3, the same BK7 glass as the material of the transparent substrate 1 was formed on the metal particle layer 2 by sputtering to a thickness of 300 nm.
[0064]
(4) A heat treatment was performed at 580 ° C. for 1 hour to degas Ar.
[0065]
(5) The steps (1) to (4) were repeated five times to form a laminate in which five sets of the metal particle layer 2 and the transparent dielectric layer 3 were laminated.
[0066]
(6) The laminate was stretched at 625 ° C. in the first direction with a stress of 45 kg / mm 2 and a stretching distance L 1 = 50 mm to form the metal particles 2a as a spheroid, and the transparent dielectric after stretching The film thickness of the body layer 3 was 100 nm.
[0067]
In this case, five samples were prepared with the extending distance L1 in the first direction set to 50 mm, 75 mm, 100 mm, 125 mm, and 150 mm.
[0068]
(7) These samples were subjected to a heat treatment at 625 ° C. for 1 hour to agglomerate and re-particle the metal particles.
[0069]
(8) Further, in the second direction orthogonal to the first direction, stretching was performed at a stretching distance L2 = 50 mm with a stress of 625 ° C. and 45 kg / mm 2 , thereby producing five types of polarizers P1. In this case, the distribution density of the metal particles 2a of each polarizer P1 is 15 particles / μm 2 (L1 = 50 mm), 12 particles / μm 2 (L1 = 75 mm), 9 particles / μm 2 (L1 = 100 mm), 6 particles. / Μm 2 (L1 = 125 mm) and 3 / μm 2 (L1 = 150 mm).
[0070]
For these five types of polarizers P1, the metal particle layer 2 is observed with a transmission electron microscope and the optical properties are measured at a light wavelength of 1310 nm. The average distance and insertion loss in the minor axis direction of each metal particle 2a are measured. Is shown in Table 1.
[0071]
[Table 1]
Figure 0003722603
[0072]
From Table 1, the average interval in the minor axis direction of the metal particles 2a was 100 nm and the insertion loss was 0.08 dB, and an excellent value of 200 nm to 0.04 dB was shown. Further, the extinction ratio was about 20 dB at 200 nm.
[0073]
(Example 2)
The polarizer P1 of FIG. 1 was produced by the following steps (1) to (8).
[0074]
(1) BK7 glass of 76 mm × 10 mm × 1 mm is formed on the transparent substrate 1, a multi-element magnetron sputtering device is used as the film forming device, Ar is used as the sputtering gas, Cu forming the metal particle layer 2 and the transparent dielectric layer 3 are formed on the target Each BK7 glass was used. Sputtering conditions were RF power of 20 W, sputtering pressure of 2.0 × 10 −3 torr, Ar gas flow rate of 10 ccm, film forming time of about 5 minutes, and transparent substrate 1 heated to about 500 ° C., with metal (Cu) particles Sputtering was performed by setting the thickness of the layer 2 to 12 nm.
[0075]
Here, the thickness of the metal particle layer 2 was derived by measuring the film thickness of another film formed for 20 minutes under the above sputtering conditions, calculating the film formation speed, and using it as a reference. The reason why the amount of film formation of the metal particle layer 2 is reduced is to increase the distribution density (number density) of the metal particles 2a.
[0076]
(2) In order to grow the metal particles 2a made of Cu, a heat treatment was performed at 500 ° C. for 60 minutes immediately after the formation of the metal particle layer 2.
[0077]
(3) In order to embed the metal particles 2 a in the transparent dielectric layer 3, the same BK7 glass as the material of the transparent substrate 1 was formed on the metal particle layer 2 by sputtering to a thickness of 300 nm.
[0078]
(4) A heat treatment was performed at 580 ° C. for 1 hour to degas Ar.
[0079]
(5) The steps (1) to (4) were repeated five times to form a laminate in which five sets of the metal particle layer 2 and the transparent dielectric layer 3 were laminated.
[0080]
(6) Then, this laminate is stretched in the first direction at 625 ° C. with a stress of 45 kg / mm 2 to form the metal particles 2a in a spheroid shape, and the thickness of the transparent dielectric layer 3 after stretching. Was 100 nm. In this case, the extending distance L1 in the first direction was 100 mm.
[0081]
(7) Heat treatment was performed at 625 ° C. for 1 hour to agglomerate the metal particles 2a and form particles again.
[0082]
(8) Further, in a second direction orthogonal to the first direction, stretching was performed at a stretching distance L2 = 50 mm with a stress of 625 ° C. and 45 kg / mm 2 to produce a polarizer P1.
[0083]
The distribution density of the metal particles 2a in the polarizer P1 is about 30 particles / μm 2 , the average interval in the minor axis direction of the metal particles 2a is 200 nm, the extinction ratio at an optical wavelength of 1310 nm is 40 dB, and the insertion loss is 0.04 dB. there were.
[0084]
Further, the polarizer P1 was produced in the same manner as described above using Au, Ag, Pt, Fe, Ni, Cr, Rh, and Ir as the metal of the metal particle 2a, but the same effect as in the present example was obtained. It was.
[0085]
【The invention's effect】
The method for producing a polarizer of the present invention extends in the first direction to sufficiently widen the distance between the major axes of the metal particles, and then heat-treats to aggregate and repartition the metal particles to remove light absorption anisotropy. In addition, by extending in a second direction substantially perpendicular to the first direction, the absolute number of metal particles can be increased and the optical characteristics can be improved, while the interval in the minor axis direction of the metal particles can be increased. Therefore, even if the number of stacked metal particle layers and transparent dielectric layers is small, the optical properties such as the extinction ratio and insertion loss are excellent, and the effect is that the manufacturing can be performed at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view of a basic configuration of a polarizer P1 produced by the method for producing a polarizer of the present invention.
FIG. 2 is a plan view of a metal particle layer, showing a stretching process in the manufacturing process of the polarizer P1 of the present invention.
[Explanation of symbols]
1: Transparent substrate 2: Metal particle layer 2a: Metal particle 3: Transparent dielectric layer 4: Polarizing layer

Claims (2)

透明基板の少なくとも一主面上に、金属粒子層と透明誘電体層とを交互に積層し、この積層体を加熱するとともに金属粒子層の面内の特定方向に延伸して、金属粒子を回転楕円体状に整形する偏光子の製造方法であって、前記積層体を所定の第1方向に延伸して前記金属粒子を回転楕円体状となし、次いで熱処理して前記金属粒子を再粒子化させ、その後前記第1方向にほぼ直交する第2方向に延伸することを特徴とする偏光子の製造方法。  The metal particle layer and the transparent dielectric layer are alternately laminated on at least one main surface of the transparent substrate, and the laminate is heated and stretched in a specific direction in the plane of the metal particle layer to rotate the metal particles. A method of manufacturing a polarizer for shaping an ellipsoid, wherein the laminate is stretched in a predetermined first direction to form the metal particles into a spheroid shape, and then heat treated to re-particle the metal particles. And then stretching in a second direction substantially perpendicular to the first direction. 前記第1方向への延伸距離をL1、前記第2方向への延伸距離をL2とすると、1≦L1/L2≦3である請求項記載の偏光子の製造方法。The stretching distance L1 in the first direction, wherein the stretching distance in the second direction and L2, 1 ≦ L1 / L2 ≦ 3 a method of manufacturing a polarizer according to claim 1, wherein.
JP29757397A 1997-10-29 1997-10-29 Manufacturing method of polarizer Expired - Fee Related JP3722603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29757397A JP3722603B2 (en) 1997-10-29 1997-10-29 Manufacturing method of polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29757397A JP3722603B2 (en) 1997-10-29 1997-10-29 Manufacturing method of polarizer

Publications (2)

Publication Number Publication Date
JPH11133230A JPH11133230A (en) 1999-05-21
JP3722603B2 true JP3722603B2 (en) 2005-11-30

Family

ID=17848309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29757397A Expired - Fee Related JP3722603B2 (en) 1997-10-29 1997-10-29 Manufacturing method of polarizer

Country Status (1)

Country Link
JP (1) JP3722603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957062B2 (en) 2007-02-06 2011-06-07 Sony Corporation Polarizing element and liquid crystal projector
USRE45642E1 (en) 2007-02-06 2015-08-04 Sony Corporation Polarizing element and liquid crystal projector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234393A (en) * 2013-05-30 2014-12-15 京セラ株式会社 Decorative member, lamination structure using the same, and display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957062B2 (en) 2007-02-06 2011-06-07 Sony Corporation Polarizing element and liquid crystal projector
USRE45642E1 (en) 2007-02-06 2015-08-04 Sony Corporation Polarizing element and liquid crystal projector
USRE46560E1 (en) 2007-02-06 2017-09-26 Sony Corporation Polarizing element and liquid crystal projector
USRE48640E1 (en) 2007-02-06 2021-07-13 Dexerials Corporation Polarizing element and liquid crystal projector

Also Published As

Publication number Publication date
JPH11133230A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
US7050231B2 (en) Faraday rotator with metal reflection film
US5999315A (en) Polarizer and a production method thereof and an optical isolator
JP4402728B2 (en) Polarizing glass, optical isolator, and manufacturing method of polarizing glass
JP3722603B2 (en) Manufacturing method of polarizer
JP2786078B2 (en) Faraday rotator and optical isolator
US6590694B2 (en) Faraday rotator
JPH0756018A (en) Production of polarizer
US6785037B2 (en) Faraday rotator
JP2006292799A (en) Method for manufacturing faraday rotator and optical isolator into which with the rotator built
JPH10300931A (en) Polarizing plate
JPH06273621A (en) Polarizer and its production
JP3784198B2 (en) Optical isolator
JPH1123841A (en) Polarizer and optical isolator
JP3602913B2 (en) Polarizing element, optical isolator using the same, and method of manufacturing the same
JPH1054910A (en) Polarizing element, its production and optical isolator
JP2009217177A (en) Optical isolator
JP2000193823A (en) Polarizer, and optical isolator using it
JPH11248935A (en) Polarizer and its manufacture
JPH11248936A (en) High extinction ratio polarizer
JP2000137118A (en) Polarizer and optical isolator
JP3752059B2 (en) Manufacturing method of polarizing plate
JP2003156623A (en) Optical isolator and method for processing polarizing glass
JPH11183846A (en) Optical isolator
JPH10274711A (en) Polarizing element and optical isolator using the same
JPH1152129A (en) Polarizer and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees