JPH1123841A - Polarizer and optical isolator - Google Patents

Polarizer and optical isolator

Info

Publication number
JPH1123841A
JPH1123841A JP9175860A JP17586097A JPH1123841A JP H1123841 A JPH1123841 A JP H1123841A JP 9175860 A JP9175860 A JP 9175860A JP 17586097 A JP17586097 A JP 17586097A JP H1123841 A JPH1123841 A JP H1123841A
Authority
JP
Japan
Prior art keywords
polarizer
dielectric layer
transparent
transparent dielectric
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9175860A
Other languages
Japanese (ja)
Inventor
Toru Fukano
徹 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9175860A priority Critical patent/JPH1123841A/en
Publication of JPH1123841A publication Critical patent/JPH1123841A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polarizer small in wavelength dependency, suitable for miniaturization and excellent in optical characteristics such as insertion loss by specifying the interval between layers of a metallic particle and the distribution density of the metallic particles existing on the same layer. SOLUTION: This polarizer is provided with a transparent substrate 2 consisting of transparent material such as glass, etc., a transparent dielectric layer (polarization layer) 3 consisting of the transparent material such as glass diffusing the metallic particles 4a onto plural layers, a layer of transparent dielectric layer 3a and a diffused metallic particle part 4 diffusing a piece of metallic particle 4a of a rotary elliptic body shape. Then, the gap of the metallic particle 4a, that is, the thickness of a layer of transparent dielectric layer 3a is made 50 nm or above, preferably 100 nm or above, and the distribution density of the metallic particles 4a existing on the same layer in the diffused metallic particle part 4 is made 3-37 pieces/μm<2> . This distribution density is measured so that the diffused metallic particle part 4 is cut off by a plane containing the major axis of at least a piece of metallic particle 4a and parallel to the diffused metallic particle part 4, and the number of pieces of the metallic particles 4a in its surface are counted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信システム、
光記録再生装置、光センサー応用装置等に使用される偏
光子及び光アイソレータに関する。
TECHNICAL FIELD The present invention relates to an optical communication system,
The present invention relates to a polarizer and an optical isolator used for an optical recording / reproducing device, an optical sensor application device, and the like.

【0002】[0002]

【従来の技術】従来の偏光子としては以下の(1)〜
(5)のようなものがあった。
2. Description of the Related Art Conventional polarizers include the following (1) to (5).
There was something like (5).

【0003】(1)着色剤を溶かし込んだ溶液をセル内
に入れたもの、あるいは透明なプラスチックに着色剤を
混入させたもので、光吸収性に異方性を持たせたもの。
(1) A cell in which a solution in which a coloring agent is dissolved is placed in a cell, or a coloring agent is mixed in a transparent plastic, and has anisotropy in light absorption.

【0004】(2)複屈折性の大きい透明な結晶からな
る基板上に誘電体薄膜を多数積層し、誘電体薄膜による
多層干渉効果により、偏光方向がそれぞれ異なる常光線
か異常光線のいずれかを効率良く吸収又は透過させる、
グラントムソンプリズム等の偏光プリズム。
(2) A large number of dielectric thin films are laminated on a substrate made of a transparent crystal having a large birefringence, and either an ordinary ray or an extraordinary ray having a different polarization direction is generated by the multilayer interference effect of the dielectric thin film. Absorb or transmit efficiently,
Polarizing prism such as Glan-Thompson prism.

【0005】(3)複屈折性の大きい透明な結晶からな
る基板表面におけるブリュースター角条件を利用して、
偏光方向が90°異なる偏光成分を分離する偏光ビーム
スプリッター。
(3) By utilizing the Brewster angle condition on the surface of a substrate made of a transparent crystal having a large birefringence,
A polarization beam splitter that separates polarization components having polarization directions different by 90 °.

【0006】(4)透明なフィルム内で高分子材料を一
定方向に配向させ、高分子の光吸収性の異方性、屈折率
異方性等を利用して特定方向の偏光成分を吸収又は透過
させる偏光フィルム。
(4) A polymer material is oriented in a certain direction in a transparent film, and a polarization component in a specific direction is absorbed or absorbed by utilizing anisotropy of light absorptivity and anisotropy of refractive index of the polymer. A polarizing film that transmits light.

【0007】(5)透明なガラスからなる透明固体媒質
中に、回転楕円体状の銀粒子等の金属粒子をその長軸又
は短軸を特定方向に揃えて分散させることにより、光吸
収性に異方性を持たせたもの(特公平2−40619号
公報参照)。
(5) By dispersing metal particles such as spheroidal silver particles in a transparent solid medium made of transparent glass with their major axis or minor axis aligned in a specific direction, light absorption is improved. One having anisotropy (see Japanese Patent Publication No. 2-40619).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、(1)
のような着色イオンを利用したものは波長依存性が大き
く、波長毎に最適な光吸収性を示す着色イオンを選択す
る必要があった。また、(2),(3)のように複屈折
性の大きい結晶を利用したものは波長依存性は小さい
が、結晶の加工が困難であり、そのため偏光子の寸法が
制限され小型化し難いという問題点があった。(4)の
ようなフィルム内の高分子の配向を利用したものは特定
方向への均一な配向が難しく、また配向性が良くても複
屈折性の結晶と比較した場合大きな消光比が得難いとい
う問題がある。
However, (1)
Those using colored ions such as described above have a large wavelength dependence, and it is necessary to select a colored ion exhibiting optimal light absorption for each wavelength. In the case of using a crystal having a large birefringence as in (2) and (3), although the wavelength dependence is small, it is difficult to process the crystal, so that the size of the polarizer is limited and it is difficult to reduce the size. There was a problem. It is difficult for a film utilizing the orientation of a polymer in a film as in (4) to achieve uniform orientation in a specific direction, and it is difficult to obtain a large extinction ratio when compared with a birefringent crystal even if the orientation is good. There's a problem.

【0009】また、(5)の回転楕円体状の金属粒子を
透明固体媒質中に分散させたタイプは、波長依存性が小
さく小型化に適しているが、下記の理由で金属粒子の分
散状態の制御が難しいため、偏光子として必要な挿入損
失の0.3dB以下、更に通信用として十分な挿入損失
0.1dB以下を実現することができなかった。
The type (5) in which spheroidal metal particles are dispersed in a transparent solid medium has a small wavelength dependence and is suitable for miniaturization, but the dispersion state of the metal particles is as follows. Therefore, it was difficult to realize an insertion loss of 0.3 dB or less required for a polarizer and a sufficient insertion loss of 0.1 dB or less for communication.

【0010】そして、(5)の偏光子は以下のような工
程(a)〜(d)で製造される。
The polarizer (5) is manufactured by the following steps (a) to (d).

【0011】(a)銀及びハロゲン化物(塩化物,臭化
物,ヨウ化物等)よりなるガラス用バッチを溶融してガ
ラス基板等の形状に成型する。
(A) A glass batch composed of silver and a halide (chloride, bromide, iodide, etc.) is melted and formed into a shape such as a glass substrate.

【0012】(b)所定の温度等の条件で熱処理を行い
ガラス中にハロゲン化銀粒子を析出させる。
(B) Heat treatment is performed at a predetermined temperature or the like to precipitate silver halide grains in the glass.

【0013】(c)ガラス基板を所定の温度に加熱した
状態で張力を加えて延伸し、ハロゲン化銀粒子を伸長さ
せ、かつ張力の方向へ整列させる。
(C) The glass substrate is stretched by applying tension while being heated to a predetermined temperature, thereby extending the silver halide grains and aligning them in the direction of the tension.

【0014】(d)ガラス基板を所定の温度に加熱した
状態で還元雰囲気中に暴露し、ハロゲン化銀の一部を金
属銀に還元する。
(D) The glass substrate is exposed to a reducing atmosphere while being heated to a predetermined temperature, and a part of the silver halide is reduced to metallic silver.

【0015】しかしながら、上記製法では、ハロゲン化
銀から金属銀に還元するために、還元雰囲気中で熱処理
を行っているが、この方法でガラス内の金属銀の量を正
確に制御することは困難であり、そのため所望の安定し
た挿入損失等の光学的特性を得ることができなかった。
また、熱処理時にガラスの厚さ方向に温度分布が生じ易
く、厚さ方向の中心部に金属化しなかったハロゲン化銀
が残留し、これが光の透過率を低下させていた。更に、
ハロゲン化銀粒子は還元される際に、1/3程度の体積
収縮を伴うため、還元後のガラス表面がポーラスにな
り、光の透過率低下やクラックの原因となるなど信頼性
の点で問題があった。
However, in the above-described production method, heat treatment is performed in a reducing atmosphere in order to reduce silver halide to metallic silver, but it is difficult to accurately control the amount of metallic silver in the glass by this method. Therefore, desired optical characteristics such as stable insertion loss could not be obtained.
In addition, temperature distribution tends to occur in the thickness direction of the glass during the heat treatment, and silver halide that has not been metallized remains at the center in the thickness direction, which reduces the light transmittance. Furthermore,
When reduced, silver halide grains undergo volume shrinkage of about 1/3, so that the glass surface after reduction becomes porous and causes problems such as reduced light transmittance and cracks in terms of reliability. was there.

【0016】そこで、ガラス等の基板上に真空蒸着法等
により不連続な島状の金属層と、ガラス等の誘電体層を
交互に積層し、加熱延伸によって金属層に光吸収性の異
方性を付与したものが提案されている(電子情報通信学
会誌 1990年秋季全国大会C−212参照)。この
偏光子では、金属層の各島が金属粒子の役割を果たし、
金属粒子を分散させたのと同様の構成となる。しかしな
がら、上記の製法では、金属層の各島の分散状態の制御
が難しいという問題がある。
Therefore, a discontinuous island-shaped metal layer and a dielectric layer made of glass or the like are alternately laminated on a substrate made of glass or the like by a vacuum evaporation method or the like. The one with the property added has been proposed (see the IEICE Fall 1990 National Convention C-212). In this polarizer, each island of the metal layer acts as a metal particle,
The configuration is the same as that in which the metal particles are dispersed. However, the above-described manufacturing method has a problem that it is difficult to control the dispersion state of each island of the metal layer.

【0017】また、分散金属粒子の面内における金属粒
子の分布密度、及び特に分散金属粒子の厚さ方向での間
隔が挿入損失に大きな影響を及ぼしていると考えられる
が、従来このような分布に関し言及した例はなかった。
It is considered that the distribution density of the metal particles in the plane of the dispersed metal particles, and particularly the spacing in the thickness direction of the dispersed metal particles, greatly affects the insertion loss. No examples were mentioned.

【0018】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的は波長依存性が小さく小型化
に適しており、また挿入損失等の光学的特性に優れた偏
光子とすることにある。
Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to provide a polarizer which has a small wavelength dependence and is suitable for miniaturization, and has excellent optical characteristics such as insertion loss. It is in.

【0019】[0019]

【課題を解決するための手段】本発明の偏光子は、透明
基板の少なくとも一主面上に、光吸収異方性を有する金
属粒子が複数の層状に分散された透明誘電体層を設けて
なる偏光子であって、前記金属粒子の層間の間隔が50
nm以上であり、かつ同一の層状に存在する金属粒子の
分布密度が3〜37個/μm2 であることを特徴とし、
透明誘電体層の厚さ、即ち分散金属粒子の厚さ方向の間
隔、及び金属粒子の分布密度を特定することにより、挿
入損失等の光学的特性に優れたものとなる。
The polarizer of the present invention has a transparent dielectric layer in which metal particles having light absorption anisotropy are dispersed in a plurality of layers on at least one principal surface of a transparent substrate. A polarizer, wherein the distance between the layers of the metal particles is 50.
nm or more, and the distribution density of the metal particles present in the same layer is 3 to 37 particles / μm 2 ,
By specifying the thickness of the transparent dielectric layer, that is, the interval in the thickness direction of the dispersed metal particles, and the distribution density of the metal particles, optical characteristics such as insertion loss can be improved.

【0020】好ましくは、前記透明誘電体層の厚さは1
00nm以上であり、前記分布密度は5〜33個/μm
2 である。
Preferably, the thickness of the transparent dielectric layer is 1
00 nm or more, and the distribution density is 5 to 33 / μm.
2

【0021】また、本発明の光アイソレータは、ファラ
デー回転子の光入射側及び/又は光出射側に、本発明の
偏光子を配設したことを特徴とし、挿入損失及び消光比
等において優れたものとなる。
Further, the optical isolator of the present invention is characterized in that the polarizer of the present invention is disposed on the light incident side and / or the light output side of the Faraday rotator, and is excellent in insertion loss, extinction ratio and the like. It will be.

【0022】[0022]

【発明の実施の形態】本発明の偏光子1の斜視図を図1
に示す。同図において、2はガラス等の透明材料からな
る透明基板、3は金属粒子4aを複数の層状に分散させ
た、ガラス等の透明材料からなる透明誘電体層(偏光
層)、3aは一層の透明誘電体層、4は回転楕円体状の
1個の金属粒子4aを分散させた分散金属粒子部で、換
言すれば金属粒子4aが面内方向に断続的に形成された
一つの層状の部分である。
FIG. 1 is a perspective view of a polarizer 1 of the present invention.
Shown in In the figure, reference numeral 2 denotes a transparent substrate made of a transparent material such as glass, and 3 denotes a transparent dielectric layer (polarizing layer) made of a transparent material such as glass in which metal particles 4a are dispersed in a plurality of layers. The transparent dielectric layer 4 is a dispersed metal particle portion in which one spheroidal metal particle 4a is dispersed, in other words, one layered portion in which the metal particles 4a are formed intermittently in the in-plane direction. It is.

【0023】前記金属粒子4aは、Cu,Au,Ag,
Pt,Rh,Ir,Fe,Ni,Cr等が好ましく、こ
れらは光吸収性が良好である。そして、これらの分散金
属粒子部4と透明誘電体層3aはスパッタリング法等の
薄膜形成法によって成膜される。また、透明誘電体層3
上に更に誘電体多層干渉膜からなる反射防止膜等を形成
してもよく、更には透明誘電体層3を透明基板2の両面
に設けても構わない。
The metal particles 4a are made of Cu, Au, Ag,
Pt, Rh, Ir, Fe, Ni, Cr and the like are preferable, and these have good light absorption. Then, the dispersed metal particle portions 4 and the transparent dielectric layer 3a are formed by a thin film forming method such as a sputtering method. Further, the transparent dielectric layer 3
An antireflection film or the like made of a dielectric multilayer interference film may be further formed thereon, and the transparent dielectric layer 3 may be provided on both surfaces of the transparent substrate 2.

【0024】本発明において、前記透明基板2は具体的
にはSiO2 ,B2 3 ,Na2 O,K2 O,BaO,
As2 3 等を主成分とするBK7ガラス(ホーヤガラ
ス(株)製商品名)やパイレックスガラス(コーニング
グラスワークス社製商品名)、石英ガラス等が好適であ
る。また、透明誘電体層3aは透明基板2と同じ材質の
ものとするのが良く、材質が異なると熱膨張係数の違い
から膜応力が発生し、その結果、透明基板2と透明誘電
体層3間で剥離が生じ、金属粒子4aに光吸収異方性を
付与することができなくなる。
In the present invention, the transparent substrate 2 is specifically made of SiO 2 , B 2 O 3 , Na 2 O, K 2 O, BaO,
BK7 glass (trade name, manufactured by Hoya Glass Co., Ltd.), Pyrex glass (trade name, manufactured by Corning Glass Works Co., Ltd.), quartz glass, and the like containing As 2 O 3 or the like as a main component are preferable. The transparent dielectric layer 3a is preferably made of the same material as the transparent substrate 2. If the material is different, a film stress occurs due to a difference in thermal expansion coefficient. As a result, the transparent substrate 2 and the transparent dielectric layer 3 The metal particles 4a cannot be provided with light absorption anisotropy.

【0025】前記金属粒子4aの層間の間隔、即ち一層
の透明誘電体層3aの厚さは50nm以上であり、好ま
しくは100nm以上とするが、これは以下の理由によ
る。尚、前記の厚さは延伸後のものであり、延伸前はそ
の3倍程度の厚さである。
The distance between the metal particles 4a, that is, the thickness of one transparent dielectric layer 3a is 50 nm or more, preferably 100 nm or more, for the following reasons. In addition, the above-mentioned thickness is after the stretching, and is about three times the thickness before the stretching.

【0026】分散金属粒子部4の同一層状部での金属粒
子4aの分布を制御するには、透明誘電体層3aの膜厚
を厚くすることが必要であるが、厚膜化すると加熱延伸
時に、透明誘電体層3a中に含まれるAr等のスパッタ
ガスが膨張し、積層界面において気泡が発生する。更に
延伸を行うと気泡が引き裂かれ、最外層の透明誘電体層
3a表面に亀裂が生じる。従来このような現象に対処す
るために、300℃以上ガラス転移点(約580℃)以
下の温度範囲で熱処理を施すことにより脱ガスを行い、
亀裂の発生を抑制していたが、透明誘電体層3aの厚さ
が延伸前に150nm以上では脱ガスが不可能であっ
た。
In order to control the distribution of the metal particles 4a in the same layered portion of the dispersed metal particle portion 4, it is necessary to increase the thickness of the transparent dielectric layer 3a. Then, the sputter gas such as Ar contained in the transparent dielectric layer 3a expands, and bubbles are generated at the lamination interface. When the stretching is further performed, the bubbles are torn, and cracks are generated on the surface of the outermost transparent dielectric layer 3a. Conventionally, in order to cope with such a phenomenon, degassing is performed by performing a heat treatment in a temperature range of 300 ° C. or more and a glass transition point (about 580 ° C.) or less,
Although the generation of cracks was suppressed, degassing was impossible if the thickness of the transparent dielectric layer 3a was 150 nm or more before stretching.

【0027】そこで、スパッタリング装置内で、透明誘
電体層3aの成膜毎に熱処理を行うことにより、透明誘
電体層3aを延伸前に150nm以上に厚膜化すること
が可能となり、延伸前に150nm以上とすると延伸後
に50nm程度となり、脱ガスが可能なうえ挿入損失が
0.3dB以下、更に厚膜化すると0.1dB以下とな
ることが判明した。また、本発明の偏光子1は、上記の
通り、その製造工程で300℃以上ガラス転移点(約5
80℃)以下の温度範囲で脱ガス処理するのが良いが、
それは、スパッタガスは300℃付近から放出され始
め、400℃以上で多く放出され、ガラス転移点付近に
なるとガラスの粘性が高くなり通気性が悪くなるからで
ある。
Therefore, by performing a heat treatment every time the transparent dielectric layer 3a is formed in the sputtering apparatus, it is possible to increase the thickness of the transparent dielectric layer 3a to 150 nm or more before stretching. When it is 150 nm or more, it becomes about 50 nm after stretching, and it is found that degassing is possible and the insertion loss becomes 0.3 dB or less, and when the film is further thickened, it becomes 0.1 dB or less. In addition, as described above, the polarizer 1 of the present invention has a glass transition point (about 5
Degassing is better in the temperature range below 80 ° C).
This is because the sputter gas starts to be emitted at around 300 ° C., is emitted more at 400 ° C. or higher, and near the glass transition point, the viscosity of the glass increases and the air permeability deteriorates.

【0028】前記透明誘電体層3aの厚さの上限は特に
限定するものではないが、あまり厚すぎると加熱による
脱ガス処理に時間がかかることと、挿入損失の改善効果
が頭打ちになることから、好ましくは200nm以下と
する。
The upper limit of the thickness of the transparent dielectric layer 3a is not particularly limited. However, if the thickness is too large, the time required for degassing by heating will be long, and the effect of improving the insertion loss will level off. , Preferably 200 nm or less.

【0029】また、本発明は、分散金属粒子部4におい
て、同一の層状に存在する金属粒子4aの分布密度を3
〜37個/μm2 とするものであり、3個/μm2 未満
では消光比が20dB未満と劣化し、37個/μm2
では挿入損失が0.3dBを超える。より好ましくは、
5〜33個/μm2 とする。ここで、前記分布密度は、
少なくとも1個の金属粒子4aの長軸を含む平面であっ
て分散金属粒子部4に平行な面でもって分散金属粒子部
4を切断し、その面内の金属粒子4aの個数を計数する
ことにより、測定できる。
Further, according to the present invention, the distribution density of the metal particles 4a existing in the same
Is intended to -37 pieces / [mu] m 2, the extinction ratio is less than 3 / [mu] m 2 degrades less than 20 dB, the insertion loss exceeds 0.3dB at 37 / [mu] m 2 greater. More preferably,
5 to 33 pieces / μm 2 . Here, the distribution density is
By cutting the dispersed metal particle portion 4 along a plane including the major axis of at least one metal particle 4a and parallel to the dispersed metal particle portion 4, counting the number of metal particles 4a in the plane , Can be measured.

【0030】更に、回転楕円体状の金属粒子4aのアス
ペクト比(長軸/短軸比)は3〜30がよく、その場合
所望の消光比(光波長1310nm,1550nmで2
0dB以上)が得られ、より好ましくは15〜20とす
る。
Furthermore, the aspect ratio (major axis / minor axis ratio) of the spheroidal metal particles 4a is preferably 3 to 30, and in this case, the desired extinction ratio (2 at light wavelengths of 1310 nm and 1550 nm) is preferable.
0 dB or more), more preferably 15 to 20.

【0031】また、本発明の透明誘電体層3において、
分散金属粒子部4と透明誘電体層3aとの組を5組〜2
0組積層するのがよく、5組未満では消光比が20dB
未満となり、20組を超えると挿入損失が増加し易い。
光アイソレータに用いる場合は、消光比40dB以上が
好適であり、その場合10組〜20組がよい。
Further, in the transparent dielectric layer 3 of the present invention,
5 sets of the dispersed metal particle portion 4 and the transparent dielectric layer 3a
It is preferable to stack 0 sets, and if less than 5 sets, the extinction ratio is 20 dB.
When the number exceeds 20, the insertion loss tends to increase.
When used for an optical isolator, the extinction ratio is preferably 40 dB or more, and in that case, 10 to 20 sets are preferable.

【0032】このような本発明の偏光子1は、図1に示
すように機能する。回転楕円体状の金属粒子4aの長軸
方向を仮にx方向、金属粒子4aの短軸方向を仮にy方
向、光の入射方向をz方向にとり、xyの直交する2方
向に偏光成分を有する入射光L1を偏光子1に入射する
と、金属粒子4aの長軸方向(x方向)に平行な偏光を
多くしかも長波長帯にて吸収するため、出射光L2はあ
る波長帯域でy方向に平行な偏光のみとなり、偏光子と
して作用する。
The polarizer 1 of the present invention functions as shown in FIG. The major axis direction of the spheroidal metal particles 4a is assumed to be an x direction, the minor axis direction of the metal particles 4a is assumed to be a y direction, and the light incident direction is assumed to be a z direction. When the light L1 is incident on the polarizer 1, a large amount of polarized light parallel to the long axis direction (x direction) of the metal particles 4a is absorbed in the long wavelength band, so that the outgoing light L2 is parallel to the y direction in a certain wavelength band. It becomes only polarized light and acts as a polarizer.

【0033】また、本発明の偏光子1はファラデー回転
子と共に用いて光アイソレータに応用できる。この場
合、Ni−Fe合金等からなる円筒状のホルダ内に、Y
IG(イットリウム鉄ガーネット:3Y2 3 ・5Fe
2 3 )等からなる円板状のファラデー回転子を設置
し、そのファラデー回転子の光入射側及び/又は光出射
側に、本発明の偏光子1を配置する。前記ホルダ内のフ
ァラデー回転子の周囲には、その偏光方向を磁場により
回転させるための永久磁石、電磁石等が設けられる。
The polarizer 1 of the present invention can be applied to an optical isolator when used with a Faraday rotator. In this case, Y is placed in a cylindrical holder made of a Ni—Fe alloy or the like.
IG (yttrium iron garnet: 3Y 2 O 3 .5Fe
A disk-shaped Faraday rotator made of 2 O 3 ) or the like is provided, and the polarizer 1 of the present invention is arranged on the light incident side and / or the light emission side of the Faraday rotator. Around the Faraday rotator in the holder, a permanent magnet, an electromagnet, and the like for rotating the polarization direction by a magnetic field are provided.

【0034】そして、例えばファラデー回転子の光入射
側及び光出射側に、本発明の偏光子1を配置した場合に
ついて、その機能を説明する。光入射側の偏光子Aと光
出射側の偏光子Bとでは偏光方向が45°異なるように
し、またファラデー回転子による偏光方向の変化の方向
を、偏光子Aの偏光方向Aから偏光子Bの偏光方向Bへ
向かって45°変化するように構成すると、光アイソレ
ータとなる。
The function of the case where the polarizer 1 of the present invention is arranged on, for example, the light incident side and the light output side of the Faraday rotator will be described. The polarizer A on the light incident side and the polarizer B on the light output side are set so that the polarization directions are different by 45 °, and the direction of change of the polarization direction by the Faraday rotator is changed from the polarization direction A of the polarizer A to the polarizer B. The optical isolator is configured to change by 45 ° toward the polarization direction B.

【0035】光アイソレータに入射したランダム偏光の
光は、偏光子Aによって一方向の偏光方向Aの光とな
り、ファラデー回転子によって偏光方向が45°変化
し、偏光方向Bの光となり、その結果偏光子Bをそのま
ま通過し出射する。出射側から戻ってきたランダム偏光
の光は、偏光子Bによって偏光方向Aと偏光方向が45
°異なる偏光方向Bの光となり、更にファラデー回転子
によって偏光方向が45°変化し、偏光方向Aと偏光方
向が90°異なる光となり、偏光子Aを通過することが
できない。従って、光アイソレータとして機能すること
になる。
The light of random polarization incident on the optical isolator is converted into light in one direction of polarization A by the polarizer A, the direction of polarization is changed by 45 ° by the Faraday rotator, and becomes light in the direction of polarization B. The light passes through the child B as it is and is emitted. The light of random polarization returned from the emission side is polarized by the polarizer B so that the polarization direction A and the polarization direction are 45 degrees.
The light becomes a light having a polarization direction B different from that of the light, and further, the polarization direction is changed by 45 ° by the Faraday rotator, and the light becomes a light having a polarization direction different from the polarization direction A by 90 °, and cannot pass through the polarizer A. Therefore, it functions as an optical isolator.

【0036】このような光アイソレータは、本発明の偏
光子1が内蔵されているため、挿入損失及び消光比等の
光学的特性において優れたものとなる。
Since such an optical isolator incorporates the polarizer 1 of the present invention, it has excellent optical characteristics such as insertion loss and extinction ratio.

【0037】かくして、本発明は、波長依存性が小さ
く、即ち比較的広帯域で偏光子として使用でき、小型化
に適しており、また挿入損失、消光比等の光学的特性に
優れるという作用効果を有する。
Thus, the present invention has the effect of having a small wavelength dependence, that is, it can be used as a polarizer in a relatively wide band, is suitable for miniaturization, and has excellent optical characteristics such as insertion loss and extinction ratio. Have.

【0038】更に、下記の工程(1)〜(6)による本
発明の偏光子1の製法を、以下に説明する。
Further, a method for producing the polarizer 1 of the present invention by the following steps (1) to (6) will be described below.

【0039】(1)BK7ガラス等の透明基板2を用意
し、その一主面上に島状に金属粒子4aが分布する分散
金属粒子部4をスパッタリング法、多元スパッタリング
法により形成する。このとき、成膜時間は完全な膜がで
きる前に成膜を止めるために約5分程度と短時間に設定
し、透明基板2を約500℃に加熱した状態で成膜する
と、金属粒子4aが島状に分布するものとなり、そして
島状の金属粒子4aの平面形状はほぼ円形である。
(1) A transparent substrate 2 such as BK7 glass is prepared, and a dispersed metal particle portion 4 in which metal particles 4a are distributed in an island shape on one main surface thereof is formed by a sputtering method or a multi-source sputtering method. At this time, the film formation time is set to a short time of about 5 minutes to stop film formation before a complete film is formed, and when the film is formed while the transparent substrate 2 is heated to about 500 ° C., the metal particles 4a Are distributed in an island shape, and the planar shape of the island-shaped metal particles 4a is substantially circular.

【0040】(2)分散金属粒子部4において金属粒子
4aを所望の大きさに成長させるために、透明基板2を
ガラス転移点以下の温度で熱処理を行う。
(2) In order to grow the metal particles 4a to a desired size in the dispersed metal particle part 4, the transparent substrate 2 is subjected to a heat treatment at a temperature lower than the glass transition point.

【0041】(3)多元スパッタリング法により、透明
基板2と同じ材質の透明誘電体層3aを成膜する。
(3) A transparent dielectric layer 3a of the same material as the transparent substrate 2 is formed by a multi-source sputtering method.

【0042】(4)300℃〜ガラス転移点以下の温度
に加熱し、透明誘電体層3aに混入したAr等のスパッ
タガスの脱ガス処理を行う。
(4) Heating to a temperature of 300 ° C. to the glass transition point or lower, a degassing process of a sputtering gas such as Ar mixed in the transparent dielectric layer 3a is performed.

【0043】(5)所望の消光比及び挿入損失が得られ
るまで、分散金属粒子部4と透明誘電体層3aの成膜及
び(2),(4)の熱処理を複数回繰返し、透明誘電体
層3を形成する。
(5) The formation of the dispersed metal particles 4 and the transparent dielectric layer 3a and the heat treatment of (2) and (4) are repeated a plurality of times until the desired extinction ratio and insertion loss are obtained. The layer 3 is formed.

【0044】(6)透明基板2全体を加熱した状態で特
定方向に延伸し、島状の金属粒子4aを回転楕円体状と
なし、偏光子1を完成する。
(6) The entire transparent substrate 2 is stretched in a specific direction while being heated, and the island-shaped metal particles 4a are formed into a spheroidal shape, thereby completing the polarizer 1.

【0045】尚、本発明は上記の実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲内で種々
の変更は何等差し支えない。
It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention.

【0046】[0046]

【実施例】本発明の実施例を以下に説明する。Embodiments of the present invention will be described below.

【0047】(実施例)図1の偏光子1を以下の工程
(1)〜(6)により作製した。
(Example) The polarizer 1 of FIG. 1 was manufactured by the following steps (1) to (6).

【0048】(1)透明基板2には76mm×10mm
×1mmのBK7ガラス、成膜装置として多元マグネト
ロンスパッタ装置、スパッタリングガスにはAr、ター
ゲットには分散金属粒子部4をなす銅と透明誘電体層3
aをなすBK7ガラスをそれぞれ使用した。スパッタ条
件はRFパワー20W、スパッタ圧2.0×10-3to
rr、Arガスの流量10ccm、成膜時間約5分と
し、透明基板2を約500℃に加熱した状態で、分散金
属粒子部4の厚さが24nmになるように設定しスパッ
タリングを行った。
(1) 76 mm × 10 mm on the transparent substrate 2
BK7 glass of × 1 mm, a multi-source magnetron sputtering device as a film forming device, Ar as a sputtering gas, and copper and transparent dielectric layer 3 forming dispersed metal particle portions 4 as targets.
The BK7 glass constituting a was used. The sputtering conditions were RF power of 20 W and sputtering pressure of 2.0 × 10 −3 to.
The flow rate of rr and Ar gas was 10 ccm, the film formation time was about 5 minutes, and the transparent substrate 2 was heated to about 500 ° C., and the dispersion metal particles 4 were set to have a thickness of 24 nm and sputtering was performed.

【0049】ここで、分散金属粒子部4の厚さは上記ス
パッタ条件にて別途20分間成膜したものの膜厚を測定
し、その成膜速度を算出し、それを基準にして導きだし
た。
Here, the thickness of the dispersed metal particle portion 4 was derived by measuring the film thickness of a film formed separately for 20 minutes under the above sputtering conditions, calculating the film forming speed, and using the calculated value as a reference.

【0050】(2)銅からなる金属粒子4aを成長させ
るために、分散金属粒子部4の形成直後に500℃、6
0分の熱処理を行った。
(2) In order to grow the metal particles 4 a made of copper, immediately after forming the dispersed metal particle portions 4,
A heat treatment for 0 minutes was performed.

【0051】(3)金属粒子4aを透明誘電体層3a中
に埋め込むために、分散金属粒子部4上に透明基板2材
料と同じBK7ガラスをスパッタリング法により、各々
90nm,120nm,150nm,300nm,45
0nm,600nm,750nm成膜した7つのサンプ
ルを作製した。
(3) In order to embed the metal particles 4a in the transparent dielectric layer 3a, the same BK7 glass as the material of the transparent substrate 2 is sputtered on the dispersed metal particle portions 4 by 90 nm, 120 nm, 150 nm, 300 nm and 300 nm, respectively. 45
Seven samples with 0 nm, 600 nm, and 750 nm were formed.

【0052】(4)580℃、1時間の熱処理をし、A
rの脱ガス処理を行った。
(4) Heat treatment at 580 ° C. for 1 hour
r was degassed.

【0053】(5)(1)〜(4)の工程を5回繰返
し、分散金属粒子部4と透明誘電体層3aの組を5組積
層した透明誘電体層3を形成した。
(5) The steps (1) to (4) were repeated five times to form a transparent dielectric layer 3 in which five sets of the dispersed metal particle portion 4 and the transparent dielectric layer 3a were laminated.

【0054】(6)そして、各サンプルを625℃にて
45kg/mm2 の応力で一方向に50mm延伸を行
い、金属粒子4aをアスペクト比が約20の回転楕円体
状となし、延伸後の透明誘電体層3aの膜厚が30n
m,40nm,50nm,100nm,150nm,2
00nm,250nmである、7つの偏光子1を作製し
た。尚、これらの偏光子1はいずれも金属粒子4aの分
布密度が20個/μm2 であった。
(6) Each sample was stretched 50 mm in one direction at 625 ° C. with a stress of 45 kg / mm 2 , and the metal particles 4a were formed into a spheroidal shape having an aspect ratio of about 20, and The thickness of the transparent dielectric layer 3a is 30n
m, 40 nm, 50 nm, 100 nm, 150 nm, 2
Seven polarizers 1 of 00 nm and 250 nm were produced. In each of these polarizers 1, the distribution density of the metal particles 4a was 20 particles / μm 2 .

【0055】作製した7つの偏光子1の表面には亀裂が
発生せず、光学的特性はいずれも消光比約22dBで、
挿入損失は図2に示すように、一層の透明誘電体層3a
が50nm以上で挿入損失が際立って改善された。
No crack was generated on the surface of the seven polarizers 1 produced, and the optical characteristics were all about 22 dB in extinction ratio.
The insertion loss is, as shown in FIG. 2, one transparent dielectric layer 3a.
Above 50 nm, the insertion loss was significantly improved.

【0056】また、製造工程による違いを評価するため
に、以下の製法により偏光子を作製した。工程(1)、
(2)は本実施例と同様とし、以下工程(3a)〜(6
a)により作製した。
Further, in order to evaluate the difference due to the manufacturing process, a polarizer was manufactured by the following manufacturing method. Step (1),
(2) is the same as in this embodiment, and the following steps (3a) to (6)
Prepared according to a).

【0057】(3a)金属粒子4aを透明誘電体層3a
中に埋め込むために、分散金属粒子部4上に透明基板2
材料と同じBK7ガラスをスパッタリング法により、3
00nm成膜した。
(3a) Transparent dielectric layer 3a
The transparent substrate 2 is placed on the dispersed metal particles 4
The same BK7 glass as the material is sputtered to 3
A film was formed to a thickness of 00 nm.

【0058】(4a)(1),(2),(3a)の工程
を5回繰返し、分散金属粒子部4と透明誘電体層3aの
組を5組積層した透明誘電体層3を有するサンプルを3
個作製した。
(4a) A sample having a transparent dielectric layer 3 in which the steps of (1), (2), and (3a) are repeated five times and five sets of the dispersed metal particle portion 4 and the transparent dielectric layer 3a are laminated. 3
This was produced.

【0059】(5a)3個のサンプルに対して、それぞ
れ580℃にて12時間、18時間、24時間の3通り
の熱処理を施し、Arの脱ガス処理を行った。
(5a) The three samples were subjected to three types of heat treatment at 580 ° C. for 12 hours, 18 hours, and 24 hours, respectively, and degassing of Ar was performed.

【0060】(6a)そして、各サンプルを625℃に
て45kg/mm2 の応力で一方向に50mm延伸を行
い、金属粒子4aをアスペクト比が約20の回転楕円体
状となし、延伸後の透明誘電体層3aの膜厚が100n
mである偏光子1を作製した。
(6a) Each sample was stretched 50 mm in one direction at 625 ° C. with a stress of 45 kg / mm 2 , and the metal particles 4a were formed into a spheroidal shape having an aspect ratio of about 20. The thickness of the transparent dielectric layer 3a is 100 n
The polarizer 1 of m was produced.

【0061】その結果、作製した3つの偏光子1は、熱
処理時間に関係なくいずれのサンプルもその表面に亀裂
が発生し、光学的特性は消光比約22dB、挿入損失
1.0dBと劣化した。
As a result, the three polarizers 1 produced cracks on the surfaces of all the samples irrespective of the heat treatment time, and the optical characteristics deteriorated to an extinction ratio of about 22 dB and an insertion loss of 1.0 dB.

【0062】更に、金属粒子4aの金属としてAu,A
g,Pt,Fe,Ni,Cr,Rh,Irを用いて、上
記と同様にして偏光子1を作製したが、本実施例と同様
の効果が得られた。
Further, Au, A is used as the metal of the metal particles 4a.
Polarizer 1 was produced in the same manner as described above using g, Pt, Fe, Ni, Cr, Rh, and Ir, but the same effect as in the present example was obtained.

【0063】[0063]

【発明の効果】本発明の偏光子は、一層の透明誘電体層
の厚さが50nm以上であり、かつ分散金属粒子部の同
一層に存在する金属粒子の分布密度が3〜37個/μm
2 であることにより、小型化に適しており、挿入損失等
の光学的特性に優れ、また偏光子の表面に亀裂等が発生
しないという作用効果を有する。
According to the polarizer of the present invention, the thickness of one transparent dielectric layer is 50 nm or more, and the distribution density of metal particles present in the same layer of the dispersed metal particle portion is 3 to 37 particles / μm.
By being 2, it is suitable for miniaturization, has excellent optical characteristics such as insertion loss, and has the effect of preventing cracks and the like from occurring on the surface of the polarizer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の偏光子の基本構成の斜視図である。FIG. 1 is a perspective view of a basic configuration of a polarizer of the present invention.

【図2】本発明の偏光子の一層の透明誘電体層の膜厚と
挿入損失との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the thickness of one transparent dielectric layer of the polarizer of the present invention and the insertion loss.

【符号の説明】[Explanation of symbols]

1:偏光子 2:透明基板 3:透明誘電体層 3a:一層の透明誘電体層 4:分散金属粒子部 4a:金属粒子 1: polarizer 2: transparent substrate 3: transparent dielectric layer 3a: one transparent dielectric layer 4: dispersed metal particle part 4a: metal particle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明基板の少なくとも一主面上に、光吸収
異方性を有する金属粒子が複数の層状に分散された透明
誘電体層を設けてなる偏光子であって、前記金属粒子の
層間の間隔が50nm以上であり、かつ同一の層状に存
在する金属粒子の分布密度が3〜37個/μm2 である
ことを特徴とする偏光子。
1. A polarizer comprising: a transparent dielectric layer in which metal particles having light absorption anisotropy are dispersed in a plurality of layers on at least one principal surface of a transparent substrate; A polarizer, wherein the distance between the layers is 50 nm or more, and the distribution density of metal particles present in the same layer is 3 to 37 particles / μm 2 .
【請求項2】ファラデー回転子の光入射側及び/又は光
出射側に、請求項1の偏光子を配設したことを特徴とす
る光アイソレータ。
2. The optical isolator according to claim 1, wherein the polarizer according to claim 1 is disposed on a light incident side and / or a light output side of the Faraday rotator.
JP9175860A 1997-07-01 1997-07-01 Polarizer and optical isolator Pending JPH1123841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9175860A JPH1123841A (en) 1997-07-01 1997-07-01 Polarizer and optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9175860A JPH1123841A (en) 1997-07-01 1997-07-01 Polarizer and optical isolator

Publications (1)

Publication Number Publication Date
JPH1123841A true JPH1123841A (en) 1999-01-29

Family

ID=16003473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9175860A Pending JPH1123841A (en) 1997-07-01 1997-07-01 Polarizer and optical isolator

Country Status (1)

Country Link
JP (1) JPH1123841A (en)

Similar Documents

Publication Publication Date Title
US5864427A (en) Polarizer and production method thereof
US7050231B2 (en) Faraday rotator with metal reflection film
US5999315A (en) Polarizer and a production method thereof and an optical isolator
JP2697354B2 (en) Manufacturing method of optical isolator
US7961394B2 (en) Polarizing glass, optical isolator, and method for producing polarizing glass
JPH11249095A (en) Faraday rotator
JP2786078B2 (en) Faraday rotator and optical isolator
JP3722603B2 (en) Manufacturing method of polarizer
US6590694B2 (en) Faraday rotator
US6785037B2 (en) Faraday rotator
JPH1123841A (en) Polarizer and optical isolator
JPH0756018A (en) Production of polarizer
JPH06273621A (en) Polarizer and its production
JP3784198B2 (en) Optical isolator
JPH08146351A (en) Element for optical isolator and its production
JP3602913B2 (en) Polarizing element, optical isolator using the same, and method of manufacturing the same
JP2000137118A (en) Polarizer and optical isolator
JP2000193823A (en) Polarizer, and optical isolator using it
JP2003156623A (en) Optical isolator and method for processing polarizing glass
WO2004046798A1 (en) Magnetooptic element and process for fabricating the same and optical isolator incorporating it
JPH11248935A (en) Polarizer and its manufacture
JPH09178939A (en) Polarizer and its production
JPH11344617A (en) Polarizer
JPH11248936A (en) High extinction ratio polarizer
JPH1054910A (en) Polarizing element, its production and optical isolator