WO2004046798A1 - Magnetooptic element and process for fabricating the same and optical isolator incorporating it - Google Patents

Magnetooptic element and process for fabricating the same and optical isolator incorporating it Download PDF

Info

Publication number
WO2004046798A1
WO2004046798A1 PCT/JP2003/014312 JP0314312W WO2004046798A1 WO 2004046798 A1 WO2004046798 A1 WO 2004046798A1 JP 0314312 W JP0314312 W JP 0314312W WO 2004046798 A1 WO2004046798 A1 WO 2004046798A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
magneto
faraday rotator
optical
layer
Prior art date
Application number
PCT/JP2003/014312
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiki Kishimoto
Nobuo Nakamura
Original Assignee
Sumitomo Metal Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co., Ltd. filed Critical Sumitomo Metal Mining Co., Ltd.
Priority to JP2004570332A priority Critical patent/JPWO2004046798A1/en
Priority to US10/531,284 priority patent/US20060013076A1/en
Publication of WO2004046798A1 publication Critical patent/WO2004046798A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Definitions

  • Magneto-optical element method of manufacturing the same, and optical isolator incorporating the magneto-optical element
  • the present invention comprises a Faraday rotator and a polarizer used for optical communication, measurement, etc.
  • the present invention relates to a magneto-optical device applied to an optical isolator, an optical circulator, an optical attenuator, etc., a method of manufacturing the same, and an optical isolator in which the magneto-optical device is incorporated.
  • an optical isolator is used to prevent the reflected return light from returning to the semiconductor laser element and destabilizing the laser oscillation.
  • FIG. 2 The basic appearance of the conventional optical isolator is shown in Fig.2. That is, as shown in FIG. 2, the basic configuration of the optical isolator is the two polarizers 3 and 3 which form an angle of 45 ° with each other, and the respective optical elements and magnets of the Faraday rotator 2 disposed therebetween. It consists of four.
  • 5 indicates a substrate for mounting an optical isolator. Then, the forward light emitted from the semiconductor laser element passes through the polarizer 3 on the incident side, and then the polarization plane is rotated by 45 ° by the Faraday rotator 2, so that the light is not attenuated. It passes through the polarizer 3.
  • the polarization plane is further rotated by 45 ° in the Faraday rotator 2, so it is orthogonal to the polarization plane of the polarizer 3 on the incident side and is cut off. Be done.
  • This characteristic of blocking the reflected return light is called isolation, and one with 35 dB or more is usually desired.
  • it is necessary not only to secure characteristics at a single wavelength but also to secure desired characteristics in the entire multiplexed wavelength band.
  • a broadband optical isolator an optical isolator that can be used over the entire multiplexed wavelength band.
  • FIG. 4 An example of a broadband optical isolator is shown in FIG. That is, the broadband optical isolator shown in FIG. 4 is referred to as a semi-double type optical isolator, and the polarizer 3, the Faraday rotator 2, the polarizer 3 and the like disposed respectively in the passing direction of light. It consists of a Faraday rotator 2 and a polarizer 3 and magnets 4 arranged on both sides of these optical elements. Also, 5 in Fig. 4 also shows the optical isolator mounting substrate.
  • the polarization plane of incident light is 45 in the faraday rotor 2 due to the magneto-optical effect.
  • An iron garnet single crystal film containing a rare earth element and bismuth whose thickness is adjusted with respect to the traveling direction of light so as to rotate is used, and the polarizer 3 is a glass polarizer that absorbs unnecessary polarization components or Rutile and lithium niobate and other birefringent crystals are used.
  • the thickness of the glass polarizer is about 0.2 mm
  • the thickness of the Faraday rotator is about Because it is 0.4 mm
  • combining two glass polarizers and one Faraday rotator results in about 0.8 mm
  • three glass polarizers and two Faraday rotators It will be about 1.4 mm when it is put together. Then, when these bonded pieces were cut into small sizes of, for example, 0.5 ⁇ 0.5 mm, the thickness became longer, and there was a defect that the chips were likely to be scattered when cut.
  • the laminating method is likely to have variations, and as a result, the yield as a chip is deteriorated and the expected cost reduction is realized. It was actually difficult to do. Furthermore, it goes without saying that as the chip size is reduced, chip scattering is more likely to occur. In addition, there are other factors that make it difficult to achieve cost reduction sufficiently, such as the size of the commercially available glass polarizer being at most about 15 x 15 mm and the cost of the glass polarizer being high. Also existed.
  • a photo Yuc crystal refers to an artificial periodic structure composed of a high refractive index medium and a low refractive index medium and having the following function. That is, when two linearly polarized light beams orthogonal to each other are incident on this periodic structure, each polarized light has a relationship between the frequency and the wave vector, so that the photonic band gear can be obtained.
  • the frequency band where the density of states of photons is zero is unique to each polarization, the density of states for one polarization is zero in a certain frequency band, and the density of states for the other polarization is not zero. It functions as a polarizer in this frequency band because it can realize the case. Moreover, even if a photonic band gap does not occur, in a periodic structure smaller than the wavelength of incident light, birefringence called structural birefringence occurs, and even as this, as a polarizer due to the difference in refractive index depending on the polarization direction Some are functional, and these can also be regarded as photonic crystals.
  • photonic crystal polarization in which the above silica glass or silicon is applied as a substrate
  • the child and the Faraday rotator are bonded together with an adhesive to form a small optical isolator, or, for example, silica glass as the above substrate is bonded to the Faraday rotator with an adhesive to form a photonic crystal on the quartz glass substrate.
  • the use of photonic crystal polarizers and compact optical isolators is easily conceived by those skilled in the art based on the above-described conventional methods.
  • the thickness of the integrated element becomes thick, and there is a problem that the defect that the chip is easily scattered is still not overcome.
  • the insertion loss of the single-type optical isolator according to the conventional example shown in FIG. 2 is 0.2 to 0.2 dB, and the isolation is about 35 dB.
  • the insertion loss of the magneto-optical device described in Japanese Patent Application Laid-Open No. 07-040948 is 0.5 dB, the isolation is 30 dB, and the magneto-optical device has sufficient performance. Has not been realized.
  • a magneto-optical device is a magneto-optical device comprising a Faraday rotator and a polarizer integrally provided on a light transmitting surface of the Faraday rotator. It is characterized by comprising a Faraday rotator on which an anti-reflection film is formed, and a polarizer made of photonic crystal formed on one anti-reflection film.
  • the magneto-optical device for a semi-double type optical isolator comprises a Faraday rotator having an anti-reflection film formed on both sides and a polarizer made of a photonic crystal formed on one anti-reflection film.
  • the above-mentioned pair of magneto-optical elements are characterized in that the polarizer made of the forex crystal is attached to the front and back of one glass polarizer with the polarizer outside.
  • an anti-reflection film for a photonic crystal polarizer comprising a dielectric multilayer film whose outermost layer is a Sio 2 layer is formed on one surface side of a Faraday rotator.
  • That forming a dielectric antireflection film for pairs photonic crystal polarizer comprising a multilayer film, forming a second S io two layers of photo-Eck crystal formed S I_ ⁇ 2 layer of the antireflection film Forming a resist mask for forming a photo crystal on the second S io 2 layer surface formed and etching the second S io 2 layer exposed from the mask to form a photonic crystal periodically. Forming the groove, and removing the resist mask remaining on the photonic crystal polarizer, at least on the side of the Faraday rotator on which the polarizer is not formed. Forming an anti-reflection film for each of the steps of
  • an optical isolator comprises: an optical isolator mounting substrate; A glass polarizer disposed on a plate, the magneto-optical device of the present invention disposed on the substrate with the Faraday polarizer facing the glass polarizer, and a saturation magnetic field for the Faraday rotator. Characterized by comprising a magnet for giving
  • a broad-band semi-double type optical isolator includes a substrate for mounting an optical isolator, the magneto-optical device for a semi-double type optical isolator of the present invention disposed on the substrate, and a magneto-optical device for a semi-double type optical isolator.
  • Each of the Faraday elements is characterized by including a magnet for providing a saturation magnetic field to one rotor.
  • FIG. 1 is a schematic perspective view of a single type optical isolator in which a magneto-optical device according to the present invention is incorporated.
  • FIG. 2 is a schematic perspective view of a single type optical isolator according to a conventional example.
  • FIG. 3 is a schematic configuration perspective view of a broadband semi-double type optical isolator in which the magneto-optical device for semi-double type optical isolator according to the present invention is incorporated.
  • FIG. 4 is a schematic configuration perspective view of a broadband semi-double type optical isolator according to a conventional example.
  • 5 (A) to 5 (E) are process explanatory views showing the manufacturing process of the magneto-optical device according to the present invention.
  • 6 (A) to 6 (G) are explanatory views of steps showing another manufacturing process of the magneto-optical device according to the present invention.
  • FIG. 7 (A) to 7 (C) are process explanatory views showing manufacturing steps of a magneto-optical device for a semi-double type optical isolator according to the present invention.
  • FIG. 8 is a schematic configuration perspective view of a broadband semi-double type optical isolator to which a magnet with a concave shape in cross section is applied.
  • the present invention is based on the following technical findings found by the present inventors, that is, by forming a photonic crystal on one anti-reflection film surface of a Faraday rotator having anti-reflection films formed on both surfaces.
  • the photonic crystal used in the present invention is obtained by alternately laminating a transparent medium having a high refractive index and a medium having a low refractive index in a periodic groove or linear protrusion array while preserving the shape of the interface. It is Then, when light is made incident on this periodic structure, light of TE mode of polarized light parallel to the groove array and light of TM mode of polarized light orthogonal thereto are induced inside the periodic structure. If the frequency of light is in the TE or TM mode photonic bandgap, the mode can not propagate in the periodic structure, and incident light is reflected or diffracted. On the other hand, if the light frequency is in the photonic energy band, light passes through the periodic structure while preserving the wave vector.
  • the magneto-optical device 10 is composed of a Faraday rotator 2 having an anti-reflection film formed on both sides and a photo-yuck crystal polarizer 1 formed on one anti-reflection film of the Faraday rotator 2. As shown in FIG.
  • the glass polarizer 3 is disposed on the optical isolator mounting substrate 5 so as to face the Faraday rotator 2 of the magneto-optical device 10, and these magneto-optical devices are also provided.
  • Both 1 0 and 3 glass polarizers A single type optical isolator can be configured by arranging a pair of magnets 4 and 4 on the side.
  • a pair of magneto-optical elements 10 shown in FIG. 1 are bonded to the front and back surfaces of one glass polarizer 3 so that the photonic crystal polarizer 1 side is on the outside, and the magnetic double crystal for the semi-double type optical isolator
  • An optical element 11 is configured, and the magneto-optical element 11 for the semi-double type optical isolator is disposed on the optical isolator mounting substrate 5 as shown in FIG. 3, and the magneto-optical element for the semi-double type optical isolator
  • a broadband optical isolator can be configured by arranging a pair of magnets 4 and 4 on both sides of the element 11.
  • the photonic crystal polarizer 1 and the glass polarizer 3 of the magneto-optical device 10 are as shown in FIGS. 7 (A) to (B). Polarized light is rotated by 45 ° by the Faraday rotator 2 after passing through the photo crystal polarizer 1 of the magneto-optical element 10, and then the polarization plane transmitted through the glass polarizer 3 is shifted by 45 ° and stuck. Also, as shown in FIGS. 7 (B) to (C), polarized light passes through the glass polarizer 3 after passing through the glass polarizer 3 and the photonic crystal polarizer 1 of the other magneto-optical element 10 as well.
  • the optical isolator mounting substrate 5 and the pair of magnets 4 and 4 may be configured by one magnet 20 having a concave cross section as shown in FIG.
  • a Faraday rotator 2 of 20 ⁇ 20 mm square, whose Faraday rotation angle is adjusted to 45 °, is prepared.
  • an antireflective film 6 for a photonic crystal / polarizer comprising a dielectric multi-layered film whose outermost layer is a S i 0 2 layer was formed.
  • the Faraday rotator 2 Bi-substituted rare earth iron garnet was used.
  • the S i 0 2 layer of the outermost layer of the antireflective film 6 is a periodic structure. Considering the formation of a groove to be a seed for forming, as a simple antireflective film
  • the film thickness was set thicker than in the case of forming the S i 0 2 layer.
  • a groove here, a periodic groove with a period of 0.4 ⁇
  • the amorphous S i 0 2 layer and the amorphous S i layer were alternately laminated on the surface.
  • film formation was performed while preserving the periodic uneven shape (groove shape) of each layer.
  • 10 layers of S i 0 2 layers and 10 layers of S i layers are deposited each as shown in FIG.
  • the amorphous Si 2 O 2 layer and the amorphous Si i layer constitute the transparent high refractive index medium and the low refractive index medium of the photonic crystal polarizer.
  • the fabricated wafer (the structure shown in FIG. 5E) was cut into 1 mm square chips by a dicing machine.
  • a glass polarizer 3 (see FIG. 1) in which the relative angle of the polarization plane is 45 ° with respect to the polarization plane of the photo Ec crystal polarizer 1 and the above chip are placed on the optical isolator mounting substrate 5.
  • An optical isolator as shown in FIG. 1 was fabricated with the magnet 4 and optical measurement was performed.
  • the optical isolator was configured such that light enters from the glass polarizer 3 side in the forward direction.
  • the above-mentioned glass polarizer 3 is constituted separately from the Faraday rotator 2, but the opposite surface to the surface on which the photonic crystal polarizer 1 of the Faraday rotator 2 is formed.
  • the glass polarizer 3 may be integrally formed on the surface via an adhesive. In this case, on the surface of the Faraday rotator 2 to which the glass polarizer 3 is adhered, an antireflective film for anti-adhesive, not an antireflective film for air, is formed.
  • Table 1 shows the results of characteristic comparison with the isolator.
  • This embodiment differs from the first embodiment in which a photonic crystal which operates as a polarizer is applied by a photonic band gap, and a photonic crystal which operates as a polarizer by a structural birefringence although a photonic band gap does not occur. Is applied.
  • a Faraday rotator 2 of 20 ⁇ 2 O mm square, whose Faraday rotation angle is adjusted to 45 °, is prepared.
  • an antireflective film 6 for a pair of photonic crystal polarizers was formed, which was composed of a dielectric multilayer film in which the outermost layer was a SiO 2 layer.
  • the Faraday rotator 2 Bi-substituted rare earth iron garnet was used.
  • a thick second SiO 2 layer 7 was formed, and a resist layer was formed thereon.
  • a resist mask 8 of periodic grooves (here, periodic grooves having a distance of 0.1 m) was formed on the resist layer by photolithography. .
  • an imprint method may be applied to the formation of the resist mask 8 instead of the photolithography method.
  • the surface of the second S i 0 2 layer 7 on which the resist mask 8 is formed is etched to form a groove having a depth of 0.6 ⁇ ⁇ as shown in FIG. 6 (E).
  • i 0 2 layer 7 was formed.
  • the photonic crystal polarizer 1 is formed by the second S I_ ⁇ two layers 7 a periodic grooves as shown in FIG. 6 (E) is formed.
  • the air layer existing between the remaining second S i 0 2 layer 7 and the second S i 0 2 layer 7 is the transparent and highly-refractive light of the photo crystal polarizer 1. It constitutes a medium of index and a medium of low refractive index. This causes structural birefringence.
  • the fabricated wafer (the structure shown in FIG. 6G) was cut into 1 mm square chips with a die-in-liner machine.
  • a glass polarizer 3 (see FIG. 1) whose relative angle of polarization plane is 45 ° with respect to the polarization plane of the photonic crystal polarizer 1 and the above chip are placed on the substrate 5 for mounting the optical isolator
  • An optical isolator as shown in Fig. 1 was fabricated with magnet 4 and force and optical measurements were made.
  • the light isolator was configured such that light enters from the glass polarizer 3 side in the forward direction.
  • the glass polarizer 3 may be integrally formed on the surface of the Faraday rotator 2 opposite to the surface on which the photonic crystal polarizer 1 is formed via an adhesive. Les. In this case, on the surface of the Faraday rotator 2 to which the glass polarizer 3 is bonded, an antireflective film for an adhesive which is not an antireflective film for air is formed.
  • Table 2 shows the results of comparison of the characteristics with the light isolator according to the conventional example shown in FIG. 2 to which a pair of glass polarizers 3 is applied.
  • Example 2 In both Example 1 and Example 2, a glass polarizer 3 is applied as a polarizer forming a pair with the photonic crystal polarizer 1 as shown in FIG. 1, but a photonic crystal polarizer 1 is used.
  • the absorption type polarizer may be directly formed on the surface of the Faraday rotator 2 not formed with no adhesive. Further, in the case of forming an optical isolator, it is preferable from the viewpoint of suppressing the temperature rise of the element due to the absorption of light that the light is made to enter the forward direction when light is incident from the above-mentioned absorption type polarizer side.
  • a mask of periodic grooves with an interval of 0.2 ⁇ was formed by (including imprint).
  • the exposed part of the second S i 0 2 layer was etched to form a groove with a depth of 0.1 and the mask was removed.
  • the photonic crystal polarizer and the absorbing glass polarizer provided in the Faraday rotator are rotated by 45 ° by the Faraday rotator after the polarization that has passed through the photonic crystal polarizer is rotated by the absorbing glass polarizer.
  • the transmitting polarization plane was shifted by 45 ° and pasted.
  • the wafer obtained in this way (the structure shown in Fig. 7C) has a total thickness of 1.0 mm. This is only 71% of the thickness of 1.4 mm of the wafer obtained by using the conventional three glass polarizers and the two Faraday rotators.
  • the created wafer is cut into 0.5 mm square chips with a dicing machine, and then the chips and magnets are placed on the optical isolator mounting substrate, and the broadband semi-double type light shown in FIG. 3 is obtained. 7 2 9 isolators were obtained.
  • the chip fly-off at the time of cutting which occurred in the 0.5 mm square, which was the conventional problem, could be cut without any fly-off because the total thickness became 71% of the conventional thickness.
  • FIG. 5 (A) prepare a 2 0 X 2 Q mm Faraday rotator 2 whose Faraday rotation angle has been adjusted to 45 °, and place one of the light transmitting surfaces in Figure 5 (B).
  • an antireflective film 6 for a photonic crystal polarizer was formed which was composed of a dielectric multilayer film in which the outermost layer was a Sio 2 layer.
  • the Faraday rotator 2 Bi-substituted rare earth iron garnet was used.
  • a groove here, a periodic groove with a period of 0.4 / m cycle
  • the amorphous SiO 2 layer and the amorphous Si layer were alternately laminated on the surface.
  • the film formation was performed while preserving the periodic convex shape (groove shape) of each layer.
  • 10 layers of Si O 2 and 10 Si layers are deposited each as shown in FIG.
  • Photo Yuk crystal polarizer 1 After forming Photo Yuk crystal polarizer 1 as shown in (D), anti-reflection film 61 for air was formed on the surface of photonic crystal polarizer 1 as shown in FIG. 5 (E). Finally, an antireflective film 62 for adhesive is formed on the light transmission surface of the Faraday rotator 2 where the photonic crystal polarizer 1 is not laminated. A magneto-optical element constituted of the photonic crystal polarizer 1 was obtained. Also, the same magneto-optical device was obtained in the same manner.
  • the photonic crystal polarizer 1 and the absorption type glass polarizer provided in the Faraday rotator 2 are the absorption type after the polarized light passing through the photonic crystal polarizer 1 is rotated by 45 ° by the Faraday rotator 2.
  • the polarization planes that transmit light so as to be transmitted through the glass polarizer were stuck at 45 ° offset.
  • the wafer thus obtained (the structure shown in FIG. 7C) had a total thickness of 1.0 mm. This is only 71% of the thickness of 1.4 mm of the wafer obtained by using the conventional three glass polarizers and the two Faraday rotators.
  • the above prepared wafer is cut into 0.5 mm square chips by a die sintering machine, and then the chips and magnets are placed on the optical isolator mounting substrate, and the broadband semi-double shown in FIG. 3 is obtained. 7 2 9 optical isolators were obtained.
  • a large-area magneto-optical element can be obtained, and it has the effect that it is easy to mass-produce elements of desired size.
  • the thickness of the entire magneto-optical device in which the Faraday rotator and the photonic crystal polarizer are integrated becomes thinner as there is no substrate for the polarizer, the chips are scattered when cut into small chips. It has the effect of making difficult and inexpensive optical isolators.
  • optical isolators such as single-type and broadband optical isolators, optical circulators, optical attenuators, and optical switches.

Abstract

A magnetooptic element comprising a Faraday rotator and a polarizer provided integrally on the light transmitting plane thereof, characterized in that the Faraday rotator has an antireflection film formed on each of the opposite sides thereof and the polarizer comprises a photonic crystal formed on one antireflection film. Since a substrate for the polarizer does not exist, overall thickness of the magnetooptic element integrating the Faraday rotator and the photonic crystal polarizer is made smaller that much. Consequently, scattering of chips is not likely to occur when they are cut into smaller ones, and the effect of fabricating an inexpensive isolator is provided.

Description

明 細 書  Specification
磁気光学素子とその製造方法およびこの磁気光学素子が組み込まれた光ァイソ レータ  Magneto-optical element, method of manufacturing the same, and optical isolator incorporating the magneto-optical element
技術分野 Technical field
この発明は、 光通信や計測等に使用されるファラデ一回転子と偏光子とを備え The present invention comprises a Faraday rotator and a polarizer used for optical communication, measurement, etc.
、 例えば、 光アイソレータ、 光サーキユレータ、 光アツテネータ等に適用される 磁気光学素子とその製造方法およびこの磁気光学素子が組み込まれた光アイソレ ータに関するものである。 For example, the present invention relates to a magneto-optical device applied to an optical isolator, an optical circulator, an optical attenuator, etc., a method of manufacturing the same, and an optical isolator in which the magneto-optical device is incorporated.
背景技術 Background art
光通信や計測等に用いられる半導体レーザーモジュールには、 反射戻り光が半 導体レーザー素子に戻り、 レーザー発振が不安定になるのを防止するため光アイ ソレータが用いられている。  In semiconductor laser modules used for optical communication, measurement, etc., an optical isolator is used to prevent the reflected return light from returning to the semiconductor laser element and destabilizing the laser oscillation.
従来の光アイソレータの基本的な外観図を第 2図に示す。 すなわち、 光ァイソ レータの基本的構成は、 第 2図に示すように互いに 4 5 ° の角度をなす 2枚の偏 光子 3、 3とその間に配置されたファラデー回転子 2の各光学素子と磁石 4とか ら成る。 尚、 第 2図において 5は光アイソレータ設置用基板を示している。 そして、 半導体レーザー素子から出射した順方向の光は、 入射側の偏光子 3を 通過した後、 ファラデー回転子 2で偏光面が 4 5 ° 回転するため、 光が減衰する こと無しに出射側の偏光子 3を通過する。 一方、 反射戻り光は出射側の偏光子 3 を通過したとしてもファラデー回転子 2において、 さらに偏光面が 4 5 ° 回転す るため、 入射側の偏光子 3の偏光面と直交してしまい遮断される。 この反射戻り 光を遮断する特性をアイソレーションと呼ぴ、 通常 3 5 d B以上のものが望まれ ている。 また、 近年の波長多重方式による伝送では、 単一波長での特性の確保のみでな く多重化された波長帯域全体で所望の特性を確保することが必要となってきてい る。 多重化された波長帯域全体で使用しうる光アイソレータは第 2図に示した上 記光アイソレータ (シングルタイプ用光アイソレータ) とは異なり広帯域用光ァ イソレータと称されている。 The basic appearance of the conventional optical isolator is shown in Fig.2. That is, as shown in FIG. 2, the basic configuration of the optical isolator is the two polarizers 3 and 3 which form an angle of 45 ° with each other, and the respective optical elements and magnets of the Faraday rotator 2 disposed therebetween. It consists of four. In FIG. 2, 5 indicates a substrate for mounting an optical isolator. Then, the forward light emitted from the semiconductor laser element passes through the polarizer 3 on the incident side, and then the polarization plane is rotated by 45 ° by the Faraday rotator 2, so that the light is not attenuated. It passes through the polarizer 3. On the other hand, even if the reflected return light passes through the polarizer 3 on the output side, the polarization plane is further rotated by 45 ° in the Faraday rotator 2, so it is orthogonal to the polarization plane of the polarizer 3 on the incident side and is cut off. Be done. This characteristic of blocking the reflected return light is called isolation, and one with 35 dB or more is usually desired. Further, in recent wavelength division multiplexing transmission, it is necessary not only to secure characteristics at a single wavelength but also to secure desired characteristics in the entire multiplexed wavelength band. Unlike the above-described optical isolator (single-type optical isolator) shown in FIG. 2, an optical isolator that can be used over the entire multiplexed wavelength band is called a broadband optical isolator.
広帯域用光アイソレータとしては、 例えば、 第 4図に示すものがある。 すなわ ち、 第 4図に示された広帯域用光アイソレータはセミダブルタイプ光アイソレー タと称されるもので、 光の通過方向にそれぞれ配置された偏光子 3、 ファラデー 回転子 2、 偏光子 3、 ファラデー回転子 2、 偏光子 3と、 これ等光学素子の両脇 に配置された磁石 4とから成る。 また、 第 4図の 5も光アイソレータ設置用基板 を示している。  An example of a broadband optical isolator is shown in FIG. That is, the broadband optical isolator shown in FIG. 4 is referred to as a semi-double type optical isolator, and the polarizer 3, the Faraday rotator 2, the polarizer 3 and the like disposed respectively in the passing direction of light. It consists of a Faraday rotator 2 and a polarizer 3 and magnets 4 arranged on both sides of these optical elements. Also, 5 in Fig. 4 also shows the optical isolator mounting substrate.
尚、 これ等シングルタイプ用並びに広帯域用光アイソレータにおいて、 上記フ ァラデー回転子 2には、 磁気光学効果により入射光の偏光面が 4 5。 回転するよ うに光の進行方向に対する厚みが調整された希土類元素とビスマスを含む鉄ガー ネット単結晶膜が用いられ、 また、 偏光子 3には、 不要な偏光成分を吸収するガ ラス偏光子やルチルやニオブ酸リチウムといつた複屈折結晶が用レ、られている。 ところで、 通信機器の大きさを増すことなく通信容量を増大させるため、 近年、 同じ大きさの通信機内に組み込む半導体レーザーモジュール数を増やす試みがな されており、 その中に用いられる上記シングルタイプ用並びに広帯域用光アイソ レータについても小型化や低コスト化が望まれている。  In these single-type and broadband optical isolators, the polarization plane of incident light is 45 in the faraday rotor 2 due to the magneto-optical effect. An iron garnet single crystal film containing a rare earth element and bismuth whose thickness is adjusted with respect to the traveling direction of light so as to rotate is used, and the polarizer 3 is a glass polarizer that absorbs unnecessary polarization components or Rutile and lithium niobate and other birefringent crystals are used. By the way, in order to increase the communication capacity without increasing the size of the communication device, in recent years, an attempt has been made to increase the number of semiconductor laser modules incorporated in a communication device of the same size. Also, miniaturization and cost reduction are desired for broadband optical isolators.
そして、 これ等光アイソレータの小型化や低コスト化を実現する方法として、 従来、 特開平 0 8— 0 9 4 9 7 2号公報ゃ特開平 0 9— 1 9 7 3 4 5号公報に記 載された方法、 すなわち、 1 0 X 1 O mm以上の大きさの偏光子とファラデー回 転子を接着剤により張り合わせて一体化した素子を事前に作製しておき、 その後、 所望のサイズに切断して用いる方法が採られてきた。 この方法によれば、 取り扱いが容易な 1 O mm角以上の素子を用いて一括して 処理した後に所望の大きさに切断するため、 小さく切断された各光学素子を個々 に調整する方法に較べてコスト低減が図れると共に、 角度調整や位置調整の手間 が軽減されることでより小さなサイズのチップに切断でき、 小型の光アイソレー タを組み立てることが可能となる利点を有していた。 And, as a method for realizing the miniaturization and cost reduction of these optical isolators, it is described in Japanese Patent Application Laid-Open No. Hei 08-09 4 9 72 or A device in which a polarizer with a size of 10 X 1 O mm or more and a Faraday rotator are bonded together by an adhesive to be integrated is prepared in advance, and then cut into a desired size. Methods have been adopted. According to this method, compared to the method of individually adjusting each of the small-cut optical elements in order to cut it into a desired size after collectively processing using elements of 1 O mm square or more that are easy to handle. As a result, cost reduction can be achieved, and it is possible to cut into chips of smaller size by reducing the time for angle adjustment and position adjustment, which has the advantage of being able to assemble a small optical isolator.
しかし、 この方法において上記偏光子としてガラス偏光子を適用しかつガラス 偏光子とファラデー回転子を張り合わせて一体化した場合、 ガラス偏光子の厚み が約 0 . 2 mm、 ファラデー回転子の厚みが約 0 . 4 mmであることから、 2枚 のガラス偏光子と 1枚のファラデー回転子を張り合わせると約 0 . 8 mmになり、 また、 3枚のガラス偏光子と 2枚のファラデー回転子を張り合わせると約 1 . 4 mmになる。 そして、 これ等張り合わせたものを、 例えば 0 . 5 X 0 . 5 mmと いった小さなサイズに切断すると、 厚みの方が長くなり、 切断した際にチップが 飛散し易くなる欠点があつた。  However, in this method, when a glass polarizer is applied as the above-mentioned polarizer and the glass polarizer and the Faraday rotator are laminated and integrated, the thickness of the glass polarizer is about 0.2 mm, and the thickness of the Faraday rotator is about Because it is 0.4 mm, combining two glass polarizers and one Faraday rotator results in about 0.8 mm, and three glass polarizers and two Faraday rotators It will be about 1.4 mm when it is put together. Then, when these bonded pieces were cut into small sizes of, for example, 0.5 × 0.5 mm, the thickness became longer, and there was a defect that the chips were likely to be scattered when cut.
また、 この方法においては、 偏光子とファラデー回転子を 1枚 1枚張り合わせ ているため張り合わせ方にばらつきが生じ易く、 これによりチップとしての歩留 まりが悪くなって予想通りの低コスト化を実現することは実際には困難であった。 更に、 チップサイズを小さくすると、 チップの飛散がより起こり易くなることは いうまでもない。 また、 市販されているガラス偏光子のサイズが最大でも 1 5 X 1 5 mm程度であることと、 そのガラス偏光子が高価であるなど、 十分な低コス ト化を困難にさせる要因は他にも存在した。  In addition, in this method, since the polarizer and the Faraday rotator are laminated one by one, the laminating method is likely to have variations, and as a result, the yield as a chip is deteriorated and the expected cost reduction is realized. It was actually difficult to do. Furthermore, it goes without saying that as the chip size is reduced, chip scattering is more likely to occur. In addition, there are other factors that make it difficult to achieve cost reduction sufficiently, such as the size of the commercially available glass polarizer being at most about 15 x 15 mm and the cost of the glass polarizer being high. Also existed.
この様な技術的背景の下、 サイズ制限のある上記ガラス偏光子に代わつてフォ トエック結晶を用いた偏光子 (以後、 フォトニック結晶偏光子ともいう) の開発 も、 近年、 盛んに行われている。 フォトユック結晶とは、 高屈折率媒質と低屈折 率媒質から成る人工的な周期構造体で以下の機能を有するものをいう。 すなわち、 この周期構造体に、 互いに直交する 2つの直線偏光が入射すると、 それぞれの偏 光が独立に周波数と波動べクトルの関係を持っため、 フォトニックバンドギヤッ プ (Photonic band gap) すなわちフオトンの状態密度が零となる周波数帯域も それぞれの偏光に固有となり、 ある周波数帯域において一方の偏光に対する状態 密度が零であり、 他方の偏光に対する状態密度が零にならない場合を実現させる ことができることから、 この周波数帯域において偏光子として機能するものであ る。 また、 フォトニックバンドギャップが生じなくとも、 入射する光の波長より も小さな周期構造では、 構造複屈折と呼ばれる複屈折が生じ、 これによつても偏 光方向による屈折率の差より偏光子として機能するものもあり、 これ等もフォト ェック結晶とみなすことができる。 Under these technological backgrounds, development of a polarizer (hereinafter also referred to as “photonic crystal polarizer”) using a photoex crystal in place of the above-mentioned glass polarizer with size limitation has been actively carried out in recent years. There is. A photo Yuc crystal refers to an artificial periodic structure composed of a high refractive index medium and a low refractive index medium and having the following function. That is, when two linearly polarized light beams orthogonal to each other are incident on this periodic structure, each polarized light has a relationship between the frequency and the wave vector, so that the photonic band gear can be obtained. In other words, the frequency band where the density of states of photons is zero is unique to each polarization, the density of states for one polarization is zero in a certain frequency band, and the density of states for the other polarization is not zero. It functions as a polarizer in this frequency band because it can realize the case. Moreover, even if a photonic band gap does not occur, in a periodic structure smaller than the wavelength of incident light, birefringence called structural birefringence occurs, and even as this, as a polarizer due to the difference in refractive index depending on the polarization direction Some are functional, and these can also be regarded as photonic crystals.
そして、 これ等の周期構造体は一方の偏光を反射し、 他方の偏光を波動べタト ルを保存しながら透過させる。 実際、 フォトエック結晶を用いた偏光分離素子 (偏光子) として消光比 4 5 d Bが得られており [0 plus E (株) 新技術コミュ 二ケーシヨンズ発行、 1999年 12月号第 1557頁右段 10〜15行目参照] 、 2 5 d B程度が一般的な P B S (偏光ビームスプリッタ) に較べてはるかに優れた特性 が実現されている。  These periodic structures reflect one polarization and transmit the other polarization while preserving the wave vector. In fact, an extinction ratio of 45 dB was obtained as a polarization separation element (polarizer) using a photo Ec crystal [0 plus E, Inc. New Technology Community Publishing, December 1999, page 1557, right Stages 10 to 15] have a much better performance than conventional PBS (polarization beam splitter) with about 25 dB.
ところで、 このフォトニック結晶を用いた偏光分離素子の製造方法に関しては、 米国特許第 6, 3 0 9 , 5 8 0号公報に記載されたリソグラフィによる方法、 あ るいは特許第 3, 2 8 8, 9 7 6号公報に記載されているように微細構造を予め 形成した基板にスパッタリングにより周期構造を積層させる方法等、 さまざまな 構造や方法が報告されている。 し力 し、 これまでの報告は、 その用途が偏光分離 素子に限定されているため、 周期構造を形成させる基板として石英ガラスゃシリ コンを用いている (特許第 3, 2 8 8 , 9 7 6号公報の実施例 1参照) 。 このた め、 フォトニック結晶を用いた磁気光学デバイスにおいて、 ファラデー回転子と 偏光分離素子は別々にデバイスの中に組立てられている (特開 2 0 0 0— 2 4 1 7 6 2号公報の実施例 1、 実施例 2参照) 。  By the way, with respect to a method of manufacturing a polarization separation element using this photonic crystal, the method by lithography described in US Pat. No. 6,309,580 or patent No. 3, 2 8 8 Various structures and methods have been reported, such as a method in which a periodic structure is stacked on a substrate on which a fine structure has been formed in advance, as described in JP-A-976. In the previous reports, quartz glass or silicon was used as a substrate for forming a periodic structure because its use is limited to polarization separation elements (Patent Nos. 3, 2 8 8 and 9 7 See Example 1 of Japanese Patent Application Publication No. 6). For this reason, in a magneto-optical device using a photonic crystal, the Faraday rotator and the polarization separation element are separately assembled in the device (see Japanese Patent Application Laid-Open No. 2000-0241 172). Example 1, Example 2).
ここで、 小型のシングルタイプ用並びに広帯域用光アイソレータを実現させる ため、 基板として上記石英ガラスゃシリコンが適用されたフォトニック結晶偏光 子とファラデー回転子を接着剤で張り合わせて小型の光アイソレータを構成した り、 ファラデー回転子に対し例えば上記基板として石英ガラスを接着剤で張り合 わせこの石英ガラス基板上にフォトニック結晶を形成してフォトニック結晶偏光 子とし、 小型の光アイソレータとすることは上述した従来の方法に基づき当業者 なら容易に考え付くことである。 Here, in order to realize a small-sized single-type and wide-band optical isolator, photonic crystal polarization in which the above silica glass or silicon is applied as a substrate The child and the Faraday rotator are bonded together with an adhesive to form a small optical isolator, or, for example, silica glass as the above substrate is bonded to the Faraday rotator with an adhesive to form a photonic crystal on the quartz glass substrate. The use of photonic crystal polarizers and compact optical isolators is easily conceived by those skilled in the art based on the above-described conventional methods.
但し、 この様な考え方に基づいた方法では、 一体化した素子の厚みが厚くなり、 チップの飛散が起こり易いという欠点が依然として克服されない問題を有してい る。  However, in the method based on such a concept, the thickness of the integrated element becomes thick, and there is a problem that the defect that the chip is easily scattered is still not overcome.
尚、 ファラデー回転子と偏光子を接着剤により張り合わせる方法を採らずに両 者を一体化した例として、 ガラス偏光子と同じような特定の偏光のみを透過し、 それに直交する偏光を吸収するタイプの偏光子を用いたものが報告されている。 すなわち、 特開平 0 7— 0 4 9 4 6 8号公報には、 吸収型の偏光子をファラデー 回転子の表面に一体的に形成した磁気光学素子が開示されている。  As an example in which the Faraday rotator and the polarizer are integrated with each other without using a bonding method, only specific polarized light similar to a glass polarizer is transmitted, and polarized light orthogonal thereto is absorbed. One using a type of polarizer has been reported. That is, Japanese Patent Application Laid-Open No. 07-046468 discloses a magneto-optical device in which an absorption type polarizer is integrally formed on the surface of a Faraday rotator.
し力 し、 第 2図に示された従来例に係るシングルタイプ用光アイソレータの揷 入損失が 0 . 2〜0 . 3 d B、 アイソレーションが 3 5 d B程度であるのに較べ て、 特開平 0 7— 0 4 9 4 6 8号公報に記載された上記磁気光学素子の挿入損失 は 0 . 5 d B、 アイソレーションも 3 0 d Bであり、 十分な性能を有する磁気光 学素子は実現されていない。  The insertion loss of the single-type optical isolator according to the conventional example shown in FIG. 2 is 0.2 to 0.2 dB, and the isolation is about 35 dB. The insertion loss of the magneto-optical device described in Japanese Patent Application Laid-Open No. 07-040948 is 0.5 dB, the isolation is 30 dB, and the magneto-optical device has sufficient performance. Has not been realized.
本発明はこの様な問題に着目してなされたもので、 その課題とするところは、 必要とする光学特性を具備しかつ製造に際してチップの飛散が起こり難い磁気光 学素子とその製造方法を提供し、 合わせてこの磁気光学素子が組み込まれたシン グルタィプ用並びに広帯域用光アイソレータを提供することにある。 発明の開示  The present invention has been made in view of such problems, and the object of the present invention is to provide a magneto-optical element which has the required optical characteristics and is less likely to cause chip scattering during manufacturing, and a method of manufacturing the same. Another object of the present invention is to provide an optical isolator for single and wide band in which this magneto-optical device is incorporated. Disclosure of the invention
本発明に係る磁気光学素子は、 ファラデー回転子とこのファラデー回転子の光 透過面に一体的に設けられた偏光子とを備える磁気光学素子において、 両面に反 射防止膜が形成されたファラデー回転子と、 一方の反射防止膜上に形成されたフ オトニック結晶から成る偏光子とで構成されることを特徴とする。 A magneto-optical device according to the present invention is a magneto-optical device comprising a Faraday rotator and a polarizer integrally provided on a light transmitting surface of the Faraday rotator. It is characterized by comprising a Faraday rotator on which an anti-reflection film is formed, and a polarizer made of photonic crystal formed on one anti-reflection film.
また、 本発明に係るセミダブル型光アイソレータ用磁気光学素子は、 両面に反 射防止膜が形成されたファラデ一回転子と一方の反射防止膜上に形成されたフォ トニック結晶から成る偏光子とで構成される上記一対の磁気光学素子が、 そのフ オト-ック結晶から成る偏光子を外側にして 1枚のガラス偏光子の表裏面にそれ ぞれ張り合わされて成ることを特徴とする。  The magneto-optical device for a semi-double type optical isolator according to the present invention comprises a Faraday rotator having an anti-reflection film formed on both sides and a polarizer made of a photonic crystal formed on one anti-reflection film. The above-mentioned pair of magneto-optical elements are characterized in that the polarizer made of the forex crystal is attached to the front and back of one glass polarizer with the polarizer outside.
次に、 本発明に係る磁気光学素子の製造方法は、 ファラデー回転子の一面側に その最外層が S i o 2層である誘電体多層膜から成る対フォトニック結晶偏光子 用の反射防止膜を形成する工程と、 形成した反射防止膜の S i o 2層に周期的な 溝を形成する工程と、 溝が形成された反射防止膜の S i o 2層表面に、 ァモルフ ァス S i 02層とアモルファス S i層を交互にかつ上記溝の形状を各層に保存さ せながら積層してフォトニック結晶から成る偏光子を形成する工程と、 少なくと もファラデー回転子の上記偏光子が形成されていない面側に対空気用若しくは対 接着剤用の反射防止膜を形成する工程、 の各工程を具備することを特徴とし、 また、 本発明に係る磁気光学素子の他の製造方法は、 ファラデー回転子の一面 側にその最外層が S i o 2層である誘電体多層膜から成る対フォトニック結晶偏 光子用の反射防止膜を形成する工程と、 この反射防止膜の S i〇2層上にフォト エック結晶形成用の第二 S i o 2層を形成する工程と、 形成された第二 S i o 2 層面上にフォトユック結晶形成用のレジストマスクを形成しかつマスクから露出 する第二 S i o 2層をエッチング処理してフォトニック結晶を構成する周期的な 溝を形成する工程と、 このフォトニック結晶から成る偏光子上に残留するレジス トマスクを除去した後、 少なくともファラデー回転子の上記偏光子が形成されて いない面側に対空気用若しくは対接着剤用の反射防止膜を形成する工程、 の各ェ 程を具備することを特徴とする。 Next, in the method of manufacturing a magneto-optical device according to the present invention, an anti-reflection film for a photonic crystal polarizer comprising a dielectric multilayer film whose outermost layer is a Sio 2 layer is formed on one surface side of a Faraday rotator. forming, forming a periodic groove on S io 2 layer formed antireflection film, the S io 2-layer surface of the antireflection film in which a groove is formed, Amorufu § scan S i 0 2 layers And a step of forming a polarizer comprising a photonic crystal by alternately laminating the amorphous Si layer and storing the shape of the groove in each layer, and forming at least the polarizer of the Faraday rotator. Forming the anti-reflection film for air or adhesive on the non-surface side, and the other steps of manufacturing the magneto-optical device according to the present invention, further comprising the steps of: The outermost layer is the Sio 2 layer on one side of the child. That forming a dielectric antireflection film for pairs photonic crystal polarizer comprising a multilayer film, forming a second S io two layers of photo-Eck crystal formed S I_〇 2 layer of the antireflection film Forming a resist mask for forming a photo crystal on the second S io 2 layer surface formed and etching the second S io 2 layer exposed from the mask to form a photonic crystal periodically. Forming the groove, and removing the resist mask remaining on the photonic crystal polarizer, at least on the side of the Faraday rotator on which the polarizer is not formed. Forming an anti-reflection film for each of the steps of
次に、 本発明に係る光アイソレータは、 光アイソレータ設置用基板と、 この基 板上に配置されたガラス偏光子と、 このガラス偏光子に対しファラデ一回転子側 を対向させて上記基板上に配置された本発明の上記磁気光学素子と、 ファラデー 回転子に対し飽和磁界を与える磁石とを具備することを特徴とし、 Next, an optical isolator according to the present invention comprises: an optical isolator mounting substrate; A glass polarizer disposed on a plate, the magneto-optical device of the present invention disposed on the substrate with the Faraday polarizer facing the glass polarizer, and a saturation magnetic field for the Faraday rotator. Characterized by comprising a magnet for giving
また、 本発明に係る広帯域用セミダブル型光アイソレータは、 光アイソレータ 設置用基板と、 この基板上に配置された本発明の上記セミダブル型光アイソレー タ用磁気光学素子と、 セミダブル型光アイソレータ用磁気光学素子の各ファラデ 一回転子に対し飽和磁界を与える磁石とを具備す ¾ことを特徴とする。 図面の簡単な説明  Also, a broad-band semi-double type optical isolator according to the present invention includes a substrate for mounting an optical isolator, the magneto-optical device for a semi-double type optical isolator of the present invention disposed on the substrate, and a magneto-optical device for a semi-double type optical isolator. Each of the Faraday elements is characterized by including a magnet for providing a saturation magnetic field to one rotor. Brief description of the drawings
第 1図は本発明に係る磁気光学素子が組込まれたシングルタイプ用光アイソレ 一タの概略構成斜視図である。  FIG. 1 is a schematic perspective view of a single type optical isolator in which a magneto-optical device according to the present invention is incorporated.
第 2図は従来例に係るシングルタイプ用光アイソレータの概略構成斜視図であ る。  FIG. 2 is a schematic perspective view of a single type optical isolator according to a conventional example.
第 3図は本発明に係るセミダブル型光アイソレータ用磁気光学素子が組込まれ た広帯域用セミダブル型光アイソレータの概略構成斜視図である。  FIG. 3 is a schematic configuration perspective view of a broadband semi-double type optical isolator in which the magneto-optical device for semi-double type optical isolator according to the present invention is incorporated.
第 4図は従来例に係る広帯域用セミダブル型光アイソレータの概略構成斜視図 である。  FIG. 4 is a schematic configuration perspective view of a broadband semi-double type optical isolator according to a conventional example.
第 5図 (A) 〜 (E) は本発明に係る磁気光学素子の製造工程を示す工程説明 図である。  5 (A) to 5 (E) are process explanatory views showing the manufacturing process of the magneto-optical device according to the present invention.
第 6図 (A) 〜 (G) は本発明に係る磁気光学素子の他の製造工程を示す工程 説明図である。  6 (A) to 6 (G) are explanatory views of steps showing another manufacturing process of the magneto-optical device according to the present invention.
第 7図 (A) 〜 (C) は本発明に係るセミダブル型光アイソレータ用磁気光学 素子の製造工程を示す工程説明図である。  7 (A) to 7 (C) are process explanatory views showing manufacturing steps of a magneto-optical device for a semi-double type optical isolator according to the present invention.
第 8図は断面凹形状の磁石が適用された広帯域用セミダブル型光アイソレータ の概略構成斜視図である。 発明を実施するための最良の形態 FIG. 8 is a schematic configuration perspective view of a broadband semi-double type optical isolator to which a magnet with a concave shape in cross section is applied. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 図面を参照して本発明を詳細に説明する。  The invention will now be described in detail with reference to the drawings.
まず、 本発明は、 本発明者等が見出した以下の技術的知見、 すなわち、 両面に 反射防止膜が形成されたファラデ一回転子の一方の反射防止膜面にフォトニック 結晶を形成することによりファラデー回転子の表面に偏光子 (偏光分離素子) を 直接構成できること、 この手法を採用することにより従来のガラス偏光子を原因 とするサイズ制限のない小型のシングルタイプ用並びに広帯域用光アイソレータ を量産できるとする技術的知見に基づき完成されている。  First, the present invention is based on the following technical findings found by the present inventors, that is, by forming a photonic crystal on one anti-reflection film surface of a Faraday rotator having anti-reflection films formed on both surfaces. The ability to configure a polarizer (polarization separation element) directly on the surface of a Faraday rotator, and by adopting this method, mass-produce compact single type and broadband optical isolators without size limitations caused by conventional glass polarizers. It is completed based on the technical knowledge that it can do.
ここで、 本発明で用いるフォトニック結晶は、 周期的な溝あるいは線状突起列 に透明で高屈折率の媒質と低屈折率の媒質とを界面の形状を保存しながら交互に 積層させて得たものである。 そして、 この周期構造体に対し光を入射すると、 溝 列と平行な偏光の T Eモードとそれに直交する偏光の TMモードの光が上記周期 構造体の内部に誘起される。 し力 し、 光の周波数が、 T Eモードまたは TMモー ドのフォトニックバンドギャップの中にあれば、 そのモードは周期構造体の中で 伝搬することができず入射光は反射または回折される。 一方、 光の周波数がフォ トニックエネルギーバンド内にあれば、 周期構造体の中を光は波動べクトルを保 存しながら透過する。 従って、 面型の偏光子として動作するものである。 尚、 フ ォトエックバンドギャップが生じなくとも、 入射する光の波長よりも小さな周期 構造では、 構造複屈折と呼ばれる複屈折が生じ、 これによつても偏光方向による 屈折率の差より偏光子として機能する。 従って、 本発明で用いるフォトニック結 晶には、 リソグラフィにより周期的な溝を形成させて得たものも含まれる。 そして、 両面に反射防止膜が形成されたファラデー回転子 2とこのファラデー 回転子 2の一方の反射防止膜上に形成されたフォトユック結晶偏光子 1とで構成 される磁気光学素子 1 0を第 1図に示すように光アイソレータ設置用基板 5上に 配置し、 かつ、 上記磁気光学素子 1 0のファラデー回転子 2と対向するようにガ ラス偏光子 3を配置すると共に、 これ等磁気光学素子 1 0とガラス偏光子 3の両 側に一対の磁石 4、 4を配置することによりシングルタイプ用光アイソレータを 構成することができる。 Here, the photonic crystal used in the present invention is obtained by alternately laminating a transparent medium having a high refractive index and a medium having a low refractive index in a periodic groove or linear protrusion array while preserving the shape of the interface. It is Then, when light is made incident on this periodic structure, light of TE mode of polarized light parallel to the groove array and light of TM mode of polarized light orthogonal thereto are induced inside the periodic structure. If the frequency of light is in the TE or TM mode photonic bandgap, the mode can not propagate in the periodic structure, and incident light is reflected or diffracted. On the other hand, if the light frequency is in the photonic energy band, light passes through the periodic structure while preserving the wave vector. Therefore, it operates as a planar polarizer. Incidentally, even if there is no photonic band gap, in a periodic structure smaller than the wavelength of incident light, birefringence called structural birefringence occurs, and this also causes a difference in refractive index depending on the polarization direction as a polarizer. Function. Therefore, the photonic crystals used in the present invention include those obtained by forming periodic grooves by lithography. The magneto-optical device 10 is composed of a Faraday rotator 2 having an anti-reflection film formed on both sides and a photo-yuck crystal polarizer 1 formed on one anti-reflection film of the Faraday rotator 2. As shown in FIG. 1, the glass polarizer 3 is disposed on the optical isolator mounting substrate 5 so as to face the Faraday rotator 2 of the magneto-optical device 10, and these magneto-optical devices are also provided. Both 1 0 and 3 glass polarizers A single type optical isolator can be configured by arranging a pair of magnets 4 and 4 on the side.
また、 1枚のガラス偏光子 3の表裏面に第 1図に示された一対の磁気光学素子 1 0をそのフォトニック結晶偏光子 1側が外側となるようにそれぞれ張り合わせ てセミダブル型光アイソレータ用磁気光学素子 1 1を構成し、 かつ、 このセミダ ブル型光アイソレータ用磁気光学素子 1 1を第 3図に示すように光アイソレータ 設置用基板 5上に配置すると共に、 このセミダブル型光アイソレータ用磁気光学 素子 1 1の両側に一対の磁石 4、 4を配置することにより広帯域用光アイソレー タを構成することができる。 尚、 このセミダプル型光アイソレータ用磁気光学素 子 1 1において、 磁気光学素子 1 0のフォトニック結晶偏光子 1とガラス偏光子 3については、 第 7図 (A) 〜 (B ) に示すように偏光が磁気光学素子 1 0のフ オトエック結晶偏光子 1を通過後にファラデー回転子 2で 4 5 ° 回転した後、 ガ ラス偏光子 3を透過するように透過する偏光面を 4 5 ° ずらして張り合わされ、 またガラス偏光子 3と他方の磁気光学素子 1 0のフォトニック結晶偏光子 1につ いても、 第 7図 (B ) ~ ( C ) に示すように偏光がガラス偏光子 3を通過後に磁 気光学素子 1 0のファラデー回転子 2で 4 5 ° 回転した後、 フォトニック結晶偏 光子 1を透過するように透過する偏光面を 4 5 ° ずらして張り合わされている。 また、 光アイソレータ設置用基板 5と一対の磁石 4、 4については、 第 8図に 示すように断面凹形状の 1つの磁石体 2 0で構成してもよい。  In addition, a pair of magneto-optical elements 10 shown in FIG. 1 are bonded to the front and back surfaces of one glass polarizer 3 so that the photonic crystal polarizer 1 side is on the outside, and the magnetic double crystal for the semi-double type optical isolator An optical element 11 is configured, and the magneto-optical element 11 for the semi-double type optical isolator is disposed on the optical isolator mounting substrate 5 as shown in FIG. 3, and the magneto-optical element for the semi-double type optical isolator A broadband optical isolator can be configured by arranging a pair of magnets 4 and 4 on both sides of the element 11. In the magneto-optical device 11 for this semi-double type optical isolator, the photonic crystal polarizer 1 and the glass polarizer 3 of the magneto-optical device 10 are as shown in FIGS. 7 (A) to (B). Polarized light is rotated by 45 ° by the Faraday rotator 2 after passing through the photo crystal polarizer 1 of the magneto-optical element 10, and then the polarization plane transmitted through the glass polarizer 3 is shifted by 45 ° and stuck. Also, as shown in FIGS. 7 (B) to (C), polarized light passes through the glass polarizer 3 after passing through the glass polarizer 3 and the photonic crystal polarizer 1 of the other magneto-optical element 10 as well. After being rotated by 45 ° by the Faraday rotator 2 of the magneto-optical element 10, the polarization plane that transmits the photonic crystal polarizer 1 is adhered so as to be shifted by 45 °. Further, the optical isolator mounting substrate 5 and the pair of magnets 4 and 4 may be configured by one magnet 20 having a concave cross section as shown in FIG.
以下、 本発明の実施例により本究明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail by way of examples of the present invention.
[実施例 1 ]  [Example 1]
まず、 第 5図 (A) に示すようにファラデー回転角が 4 5 ° に調整された 2 0 X 2 0 mm角のファラデー回転子 2を用意し、 一方の光透過面に第 5図 (B ) に 示すように最外層が S i 0 2層である誘電体多層膜からなる対フォトニック結晶 偏光子用の反射防止膜 6を形成した。 ファラデー回転子 2には、 B i置換希土類 鉄ガーネットを用いた。 尚、 反射防止膜 6の最外層の S i 02層は周期構造体を 形成する際のシードとなる溝を形成することを考慮し、 単なる反射防止膜としてFirst, as shown in FIG. 5 (A), a Faraday rotator 2 of 20 × 20 mm square, whose Faraday rotation angle is adjusted to 45 °, is prepared. As shown in the above, an antireflective film 6 for a photonic crystal / polarizer comprising a dielectric multi-layered film whose outermost layer is a S i 0 2 layer was formed. As the Faraday rotator 2, Bi-substituted rare earth iron garnet was used. In addition, the S i 0 2 layer of the outermost layer of the antireflective film 6 is a periodic structure. Considering the formation of a groove to be a seed for forming, as a simple antireflective film
S i 0 2層を形成する場合より膜厚を厚く設定した。 The film thickness was set thicker than in the case of forming the S i 0 2 layer.
その後、 第 5図 (C ) に示すように S i 0 2層に電子ビームリソグラフィとド ライエッチングによりシードとなる溝 (ここでは 0 . 4 μ ιη周期の周期的な溝) を形成した上で、 その表面にアモルファス S i 0 2層とアモルファス S i層を交 互に積層した。 このとき、 各層の周期的な凹凸の形状 (溝形状) を保存しながら 成膜を行なった。 そして、 S i 0 2層と S i層を各 1 0層ずつ堆積して第 5図 After that, as shown in FIG. 5 (C), a groove (here, a periodic groove with a period of 0.4 μι) is formed as a seed by electron beam lithography and dry etching in the S i 0 2 layer. The amorphous S i 0 2 layer and the amorphous S i layer were alternately laminated on the surface. At this time, film formation was performed while preserving the periodic uneven shape (groove shape) of each layer. Then, 10 layers of S i 0 2 layers and 10 layers of S i layers are deposited each as shown in FIG.
(D) に示すようにフォトユック結晶偏光子 1を形成した後、 第 5図 (E ) に示 すようにフォトニック結晶偏光子 1の表面に対空気の反射防止膜 6 1を形成した。 最後に、 ファラデー回転子 2のフォトエック結晶偏光子 1が積層されていない方 の光透過面にも対空気の反射防止膜 6 2を形成した。  After forming Photo Yuk crystal polarizer 1 as shown in (D), anti-reflection film 61 for air was formed on the surface of photonic crystal polarizer 1 as shown in FIG. 5 (E). Finally, the anti-reflection film 62 for air was also formed on the light transmission surface of the Faraday rotator 2 where the photo crystal polarizer 1 of the Faraday rotator 2 is not laminated.
尚、 この実施例においては、 上記アモルファス S i 0 2層とアモルファス S i 層が、 フォトニック結晶偏光子の透明で高屈折率の媒質と低屈折率の媒質を構成 している。 In this embodiment, the amorphous Si 2 O 2 layer and the amorphous Si i layer constitute the transparent high refractive index medium and the low refractive index medium of the photonic crystal polarizer.
次に、 作製されたウェハ (第 5図 Eに示す構造体) をダイシングマシンで l m m角のチップに切断した。 その後、 フォトエック結晶偏光子 1の偏光面に対しそ の偏光面の相対角度が 4 5 ° となっているガラス偏光子 3 (第 1図参照) と上記 チップを光アイソレータ設置用基板 5上に磁石 4と共に配置し、 第 1図に示すよ うな光アイソレータを作製し、 かつ、 光学測定を行った。 また、 光アイソレータ は、 ガラス偏光子 3側から光を入射したときを順方向となるように構成した。 尚、 第 1図においては上記ガラス偏光子 3がファラデー回転子 2と別体で構成されて いるが、 ファラデ一回転子 2のフォトニック結晶偏光子 1が形成された面とは反 対側の面に接着剤を介し上記ガラス偏光子 3を一体的に形成してもよい。 この場 合、 ガラス偏光子 3が接着されるファラデー回転子 2の面には、 対空気用の反射 防止膜ではなレ、対接着剤用の反射防止膜が形成される。  Next, the fabricated wafer (the structure shown in FIG. 5E) was cut into 1 mm square chips by a dicing machine. After that, a glass polarizer 3 (see FIG. 1) in which the relative angle of the polarization plane is 45 ° with respect to the polarization plane of the photo Ec crystal polarizer 1 and the above chip are placed on the optical isolator mounting substrate 5. An optical isolator as shown in FIG. 1 was fabricated with the magnet 4 and optical measurement was performed. In addition, the optical isolator was configured such that light enters from the glass polarizer 3 side in the forward direction. In FIG. 1, the above-mentioned glass polarizer 3 is constituted separately from the Faraday rotator 2, but the opposite surface to the surface on which the photonic crystal polarizer 1 of the Faraday rotator 2 is formed. The glass polarizer 3 may be integrally formed on the surface via an adhesive. In this case, on the surface of the Faraday rotator 2 to which the glass polarizer 3 is adhered, an antireflective film for anti-adhesive, not an antireflective film for air, is formed.
以下、 一対のガラス偏光子 3が適用されている第 2図に示す従来例に係る光ァ イソレータとの特性比較結果を第 1表に示す。 Hereinafter, a light source according to the conventional example shown in FIG. 2 to which a pair of glass polarizers 3 is applied. Table 1 shows the results of characteristic comparison with the isolator.
そして、 第 1表に記載された結果から確認されるように、 従来法では不可能で あった 2 0 X 2 O mm角のファラデー回転子から作製された実施例 1に係る光ァ イソレータでも、 従来のものと同程度の光学特性 (但し、 1 . 5 5 μ ηιの波長域 での値である) が得られることが分かる。  And, as confirmed from the results shown in Table 1, even the optical isolator according to Example 1 manufactured from a Faraday rotator of 20 X 2 O mm square, which was impossible by the conventional method, It can be seen that optical characteristics similar to those of the conventional one (however, values in the wavelength region of 1.5 5 μι) can be obtained.
1 ¾t
Figure imgf000012_0001
[実施例 2 ]
1 3⁄4 t
Figure imgf000012_0001
[Example 2]
この実施例は、 フォトニックバンドギヤップにより偏光子として動作するフォ トニック結晶を適用した実施例 1とは異なり、 フォトニックバンドギヤップは生 じないが、 構造複屈折により偏光子として動作するフォトニック結晶を適用した ものである。  This embodiment differs from the first embodiment in which a photonic crystal which operates as a polarizer is applied by a photonic band gap, and a photonic crystal which operates as a polarizer by a structural birefringence although a photonic band gap does not occur. Is applied.
まず、 第 6図 (A) に示すようにファラデー回転角が 4 5 ° に調整された 2 0 X 2 O mm角のファラデー回転子 2を用意し、 一方の光透過面に第 6図 (B ) に 示すように最外層が S i O 2層である誘電体多層膜からなる対フォトニック結晶 偏光子用の反射防止膜 6を形成した。 ファラデー回転子 2には、 B i置換希土類 鉄ガーネットを用いた。 First, as shown in FIG. 6 (A), a Faraday rotator 2 of 20 × 2 O mm square, whose Faraday rotation angle is adjusted to 45 °, is prepared. As shown in the above, an antireflective film 6 for a pair of photonic crystal polarizers was formed, which was composed of a dielectric multilayer film in which the outermost layer was a SiO 2 layer. As the Faraday rotator 2, Bi-substituted rare earth iron garnet was used.
その後、 第 6図 (C) に示すように上記 S i 0 2層の表面にさらに 0 . After that, as shown in FIG. 6 (C), the surface of the above S i 0 2 layer is further exposed to 0.
厚の第二 S i O 2層 7を形成し、 その上にレジスト層を形成した。 A thick second SiO 2 layer 7 was formed, and a resist layer was formed thereon.
次に、 このレジスト層に対しフォトリソグラフィ処理により第 6図 (D) に示 すように周期的な溝 (ここでは 0 . 1 5 m間隔の周期的な溝) のレジストマス ク 8を形成した。 尚、 レジストマスク 8の形成には、 上記フォトリソグラフィ法 ではなくインプリント法を適用してもよい。 次に、 上記レジストマスク 8が形成された第二 S i 0 2層 7の表面をエツチン グ処理し、 第 6図 (E) に示すように 0 . 6 μ πι深さの溝を第二 S i 0 2層 7に 形成した。 尚、 第 6図 (E) に示すように周期的な溝が形成された第二 S i〇2 層 7によりフォトニック結晶偏光子 1が構成されている。 Next, as shown in FIG. 6 (D), a resist mask 8 of periodic grooves (here, periodic grooves having a distance of 0.1 m) was formed on the resist layer by photolithography. . Note that an imprint method may be applied to the formation of the resist mask 8 instead of the photolithography method. Next, the surface of the second S i 0 2 layer 7 on which the resist mask 8 is formed is etched to form a groove having a depth of 0.6 μπ 溝 as shown in FIG. 6 (E). i 0 2 layer 7 was formed. Incidentally, the photonic crystal polarizer 1 is formed by the second S I_〇 two layers 7 a periodic grooves as shown in FIG. 6 (E) is formed.
次に、 第 6図 (F ) に示すように上記レジストマスク 8を除去した後、 第 6図 (G) に示すように周期的な溝が形成された第二 S i 0 2層 7表面に対空気の反 射防止膜 6 1を形成し、 最後に、 ファラデー回転子 2のフォトユック結晶偏光子 1が形成されていない方の光透過面にも対空気の反射防止膜 6 2を形成した。 尚、 この実施例 2においては、 残留する上記第二 S i 0 2層 7とこれ等第二 S i 0 2層 7間に存在する空気層が、 フォトユック結晶偏光子 1の透明で高屈折率 の媒質と低屈折率の媒質を構成している。 これにより構造複屈折が生じる。 次に、 作製されたウェハ (第 6図 Gに示す構造体) をダイシンダマシンで、 1 mm角のチップに切断した。 その後、 フォトニック結晶偏光子 1の偏光面に対し その偏光面の相対角度が 4 5 ° となっているガラス偏光子 3 (第 1図参照) と上 記チップを光アイソレータ設置用基板 5上に磁石 4と共に配置し、 第 1図に示す ような光アイソレータを作製し、 力つ、 光学測定を行った。 また、 光アイソレー タは、 ガラス偏光子 3側から光を入射したときを順方向となるように構成した。 尚、 実施例 1と同様に、 ファラデー回転子 2のフォトニック結晶偏光子 1が形成 された面とは反対側の面に接着剤を介し上記ガラス偏光子 3を一体的に形成して もよレ、。 この場合、 ガラス偏光子 3が接着されるファラデー回転子 2の面には、 対空気用の反射防止膜ではない対接着剤用の反射防止膜が形成される。 Next, after removing the resist mask 8 as shown in FIG. 6 (F), as shown in FIG. 6 (G), on the surface of the second S i 0 2 layer 7 in which periodic grooves are formed. The anti-reflection film 61 for air was formed, and finally, the anti-reflection film 62 for air was also formed on the light transmission surface of the Faraday rotator 2 where the photo-yuc crystal polarizer 1 is not formed. . In the second embodiment, the air layer existing between the remaining second S i 0 2 layer 7 and the second S i 0 2 layer 7 is the transparent and highly-refractive light of the photo crystal polarizer 1. It constitutes a medium of index and a medium of low refractive index. This causes structural birefringence. Next, the fabricated wafer (the structure shown in FIG. 6G) was cut into 1 mm square chips with a die-in-liner machine. After that, a glass polarizer 3 (see FIG. 1) whose relative angle of polarization plane is 45 ° with respect to the polarization plane of the photonic crystal polarizer 1 and the above chip are placed on the substrate 5 for mounting the optical isolator An optical isolator as shown in Fig. 1 was fabricated with magnet 4 and force and optical measurements were made. In addition, the light isolator was configured such that light enters from the glass polarizer 3 side in the forward direction. As in the first embodiment, the glass polarizer 3 may be integrally formed on the surface of the Faraday rotator 2 opposite to the surface on which the photonic crystal polarizer 1 is formed via an adhesive. Les. In this case, on the surface of the Faraday rotator 2 to which the glass polarizer 3 is bonded, an antireflective film for an adhesive which is not an antireflective film for air is formed.
以下、 一対のガラス偏光子 3が適用されている第 2図に示す従来例に係る光ァ イソレータとの特性比較結果を第 2表に示す。  Table 2 below shows the results of comparison of the characteristics with the light isolator according to the conventional example shown in FIG. 2 to which a pair of glass polarizers 3 is applied.
そして、 第 2表に記載された結果から確認されるように、 従来法では不可能で あった 2 0 X 2 0 mm角のファラデ一回転子から作製された実施例 2に係る光ァ イソレータでも、 従来のものと同程度の光学特性 (伹し、 1 . 5 5 μ πιの波長域 での値である) が得られることが分かる。 And, as confirmed from the results shown in Table 2, even with the optical isolator according to Example 2 manufactured from a 20 × 20 mm square Faraday-one rotor, which was impossible by the conventional method, Optical characteristics of the same level as conventional ones (伹 1.55 μπι wavelength range It can be seen that the value of) is obtained.
第 2表
Figure imgf000014_0001
尚、 実施例 1と実施例 2の両方においてフォトニック結晶偏光子 1と対をなす 偏光子として第 1図に示すようにガラス偏光子 3が適用されているが、 フォトニ ック結晶偏光子 1が形成されていないファラデー回転子 2表面に吸収型偏光子を 接着剤を介さずに直接形成する構成にしてもよい。 また、 光アイソレータを構成 する場合は、 上記吸収型偏光子側から光を入射したとき順方向となるように構成 することが、 光の吸収による素子の温度上昇を抑制できる観点から望ましい。
Table 2
Figure imgf000014_0001
In both Example 1 and Example 2, a glass polarizer 3 is applied as a polarizer forming a pair with the photonic crystal polarizer 1 as shown in FIG. 1, but a photonic crystal polarizer 1 is used. The absorption type polarizer may be directly formed on the surface of the Faraday rotator 2 not formed with no adhesive. Further, in the case of forming an optical isolator, it is preferable from the viewpoint of suppressing the temperature rise of the element due to the absorption of light that the light is made to enter the forward direction when light is incident from the above-mentioned absorption type polarizer side.
[実施例 3] [Example 3]
従来のガラス偏光子を使用する場合に、 サイズ上の制限のため使用不可能であ つた 20 X 2 Omm角で厚さ 0. 4 mmのファラデー回転子 (B i置換希土類鉄 ガーネット) を用意し、 このファラデー回転子の片面に S i 02と A 1203とを 積層して厚さ 0. の 3層構造の S i 02用反射防止膜を施した。 尚、 ファ ラデー回転子の他面には、 対接着剤用の同様の反射防止膜を施した。 When using a conventional glass polarizer, prepare a Faraday rotator (B i substituted rare earth iron garnet) of 20 × 2 O mm square and 0.4 mm thick, which could not be used due to size limitations. It was subjected to S i 0 2 and a 1 2 0 3 and S i 0 2 for the three-layered antireflection film of the stacked thickness in 0.5 to one side of the Faraday rotator. The other surface of the faraday rotor was coated with a similar antireflective coating for adhesive.
次に、 S i 02用反射防止膜面に蒸着法により厚さ 0. 8 Atinの第二 S i 02 層を形成し、 この第二 S i 02層上にレジスト層を形成した後、 リソグラフィNext, a second S i 0 2 layer having a thickness of 0. 8 ATIN by evaporation to S i 0 2 antireflection film surface, after forming a resist layer on the second S i 0 2 layer on , Lithography
(インプリントも含む) により 0. 2 μΐη間隔の周期的な溝のマスクを形成した。 次に、 上記第二 S i 02層の露出部をエッチングして深さ 0. の溝を形 成し、 マスクを除去した。 A mask of periodic grooves with an interval of 0.2 μΐ was formed by (including imprint). Next, the exposed part of the second S i 0 2 layer was etched to form a groove with a depth of 0.1 and the mask was removed.
次に、 深さ 0. 6 / mの溝が形成された第二 S i 02層表面に厚さ 0. 2 zm の対空気用反射防止膜を施して、 ファラデー回転子とフォトニック結晶偏光子と で構成される磁気光学素子を得た。 尚、 この磁気光学素子の厚さは 0 . 4 mmで あった。 引き続き同様にして同じ厚さの磁気光学素子を得た。 Next, on the surface of the second S i 0 2 layer in which a groove with a depth of 0.6 / m is formed, an antireflective film for air with a thickness of 0.2 zm is applied to form a Faraday rotator and photonic crystal polarization. With the child The magneto-optical device composed of The thickness of this magneto-optical element was 0.4 mm. Subsequently, in the same manner, a magneto-optical device of the same thickness was obtained.
次に、 得られた上記磁気光学素子 1枚と、 厚さ 0 . 2 mmの吸収型ガラス偏光 子とを接着剤によって張り合わせた。 この際、 ファラデー回転子に設けられたフ ォトニック結晶偏光子と吸収型ガラス偏光子は、 フォトニック結晶偏光子を通過 した偏光がファラデー回転子で 4 5 ° 回転した後、 吸収型ガラス偏光子を透過す る様に透過する偏光面を 4 5 ° ずらして張り合わせた。  Next, one piece of the obtained magneto-optical element and an absorption type glass polarizer with a thickness of 0.2 mm were bonded with an adhesive. At this time, the photonic crystal polarizer and the absorbing glass polarizer provided in the Faraday rotator are rotated by 45 ° by the Faraday rotator after the polarization that has passed through the photonic crystal polarizer is rotated by the absorbing glass polarizer. In order to transmit light, the transmitting polarization plane was shifted by 45 ° and pasted.
その後、 上記吸収型ガラス偏光子のもう 1面に、 もう一つの磁気光学素子を接 着剤で張り合わせた。 この際、 吸収型ガラス偏光子とファラデー回転子に設けら れたフォトニック結晶偏光子は、 吸収型ガラス偏光子を通過した偏光がファラデ 一回転子で 4 5 ° 回転した後、 フォトニック結晶偏光子を透過する様に透過する 偏光面を 4 5 ° ずらして張り合わせた。  After that, another magneto-optical element was attached to the other surface of the above absorption type glass polarizer with an adhesive. Under the present circumstances, the photonic crystal polarizer provided in the absorption-type glass polarizer and the Faraday rotator rotates the polarization which has passed through the absorption-type glass polarizer by 45.degree. The polarization planes that transmit light so as to be transmitted through the child were stuck at 45 ° offset.
この様にして得られたゥュハ (第 7図 Cに示された構造体) は、 全厚で 1 . 0 mmとなった。 尚、 これは従来の 3枚のガラス偏光子と 2枚のファラデー回転子 とを用いて得られるウェハの厚み 1 . 4 mmの 7 1 %に過ぎなかった。  The wafer obtained in this way (the structure shown in Fig. 7C) has a total thickness of 1.0 mm. This is only 71% of the thickness of 1.4 mm of the wafer obtained by using the conventional three glass polarizers and the two Faraday rotators.
次に、 作成した上記ウェハをダイシングマシンで 0 · 5 mm角のチップに切断 し、 その後、 光アイソレータ設置用基板に上記チップと磁石とを配置し、 第 3図 に示した広帯域用セミダブル型光アイソレータを 7 2 9個得た。 尚、 従来問題で あった 0 . 5 mm角に起きる切断時のチップの飛びは、 全厚が従来の 7 1 %にな つたため全く飛びを起こさずに切断できた。  Next, the created wafer is cut into 0.5 mm square chips with a dicing machine, and then the chips and magnets are placed on the optical isolator mounting substrate, and the broadband semi-double type light shown in FIG. 3 is obtained. 7 2 9 isolators were obtained. The chip fly-off at the time of cutting which occurred in the 0.5 mm square, which was the conventional problem, could be cut without any fly-off because the total thickness became 71% of the conventional thickness.
そして、 無作為に 2 0個の広帯域用セミダブル型光アイソレータを取り、 かつ、 光学測定 (伹し、 1 . 5 3〜1 . 5 9 μ πιの波長域での値である) を行い、 第 4 図に示した従来のセミダブル型光アイソレータとの比較を行った。  Then, randomly take 20 broadband semi-double type optical isolators, and perform optical measurement (a value in the wavelength range of 1.53 to 1.59 μπι), 4 A comparison was made with the conventional semi-double optical isolator shown in the figure.
結果を第 3表に示す。 尚、 第 3表の値は平均値である。 第 3表
Figure imgf000016_0001
The results are shown in Table 3. The values in Table 3 are averages. Table 3
Figure imgf000016_0001
第 3表に記載された結果から確認されるように、 これまでガラス偏光子のサイ ズ制限のために不可能であったウェハから作成した広帯域用光アイソレータでも、 従来のものと同程度の性能が得られることが分かる。  As confirmed from the results shown in Table 3, even with a broadband optical isolator made from a wafer that was not possible due to the size limitation of the glass polarizer up to this point, the same performance as the conventional one is obtained. It can be seen that
[実施例 4 ] [Example 4]
第 5図 (A) に示すようにファラデー回転角が 4 5 ° に調整された 2 0 X 2 Q mm角のファラデー回転子 2を用意し、 一方の光透過面に第 5図 (B ) に示すよ うに最外層が S i o 2層である誘電体多層膜からなる対フォトニック結晶偏光子 用の反射防止膜 6を形成した。 ファラデー回転子 2には、 B i置換希土類鉄ガー ネットを用いた。 尚、 反射防止膜 6の最外層の S i 0 2層は周期構造体を形成す る際のシードとなる溝を形成することを考慮し単なる反射防止膜として S i 0 2 層を形成する場合より fl莫厚を厚く設定した。 As shown in Figure 5 (A), prepare a 2 0 X 2 Q mm Faraday rotator 2 whose Faraday rotation angle has been adjusted to 45 °, and place one of the light transmitting surfaces in Figure 5 (B). As shown, an antireflective film 6 for a photonic crystal polarizer was formed which was composed of a dielectric multilayer film in which the outermost layer was a Sio 2 layer. As the Faraday rotator 2, Bi-substituted rare earth iron garnet was used. In the case of forming a S i 0 2 layer S i 0 2 layers of outermost layer in consideration of forming a groove serving as a seed during that form a periodic structure as a simple anti-reflection film of the antireflection film 6 The fl thickness was set thicker.
その後、 第 5図 (C ) に示すように S i 02層に電子ビームリソグラフィとド ライエッチングによりシードとなる溝 (ここでは 0 . 4 / m周期の周期的な溝) を形成した上で、 その表面にアモルファス S i O 2層とアモルファス S i層を交 互に積層した。 このとき、 各層の周期的な回凸の形状 (溝形状) を保存しながら 成膜を行なった。 そして、 S i O 2層と S i層を各 1 0層ずつ堆積して第 5図 After that, as shown in FIG. 5 (C), after forming a groove (here, a periodic groove with a period of 0.4 / m cycle) to be a seed by electron beam lithography and dry etching in the S i 0 2 layer, The amorphous SiO 2 layer and the amorphous Si layer were alternately laminated on the surface. At this time, the film formation was performed while preserving the periodic convex shape (groove shape) of each layer. Then, 10 layers of Si O 2 and 10 Si layers are deposited each as shown in FIG.
(D) に示すようにフォトユック結晶偏光子 1を形成した後、 第 5図 (E ) に示 すようにフォトニック結晶偏光子 1の表面に対空気の反射防止膜 6 1を形成した。 最後に、 ファラデー回転子 2のフォトニック結晶偏光子 1が積層されていない方 の光透過面にも対接着剤用の反射防止膜 6 2を形成し、 ファラデー回転子 2とフ オトニック結晶偏光子 1とで構成される磁気光学素子を得た。 また、 引き続き同 様にして同じ磁気光学素子を得た。 After forming Photo Yuk crystal polarizer 1 as shown in (D), anti-reflection film 61 for air was formed on the surface of photonic crystal polarizer 1 as shown in FIG. 5 (E). Finally, an antireflective film 62 for adhesive is formed on the light transmission surface of the Faraday rotator 2 where the photonic crystal polarizer 1 is not laminated. A magneto-optical element constituted of the photonic crystal polarizer 1 was obtained. Also, the same magneto-optical device was obtained in the same manner.
次に、 得られた上記磁気光学素子 1枚と、 厚さ 0 . 2 mmの吸収型ガラス偏光 子とを接着剤によって張り合わせた。 この際、 ファラデー回転子 2に設けられた フォトニック結晶偏光子 1と吸収型ガラス偏光子は、 フォトニック結晶偏光子 1 を通過した偏光がファラデー回転子 2で 4 5 ° 回転した後、 吸収型ガラス偏光子 を透過する様に透過する偏光面を 4 5 ° ずらして張り合わせた。  Next, one piece of the obtained magneto-optical element and an absorption type glass polarizer with a thickness of 0.2 mm were bonded with an adhesive. At this time, the photonic crystal polarizer 1 and the absorption type glass polarizer provided in the Faraday rotator 2 are the absorption type after the polarized light passing through the photonic crystal polarizer 1 is rotated by 45 ° by the Faraday rotator 2. The polarization planes that transmit light so as to be transmitted through the glass polarizer were stuck at 45 ° offset.
その後、 上記吸収型ガラス偏光子のもう 1面に、 もう一つの磁気光学素子を接 着剤で張り合わせた。 この際、 吸収型ガラス偏光子とファラデー回転子 2に設け られたフォトエック結晶偏光子 1は、 吸収型ガラス偏光子を通過した偏光がファ ラデー回転子 2で 4 5 ° 回転した後、 フォトニック結晶偏光子 1を透過する様に 透過する偏光面を 4 5 ° ずらして張り合わせた。  After that, another magneto-optical element was attached to the other surface of the above absorption type glass polarizer with an adhesive. At this time, after the polarized light passing through the absorbing glass polarizer is rotated by 45 ° by the Faraday rotator 2, the absorbing glass polarizer and the photo Ec crystal polarizer 1 provided on the Faraday rotator 2 are photonically The polarization planes transmitting light so as to transmit the crystal polarizer 1 were stuck at 45 ° offset.
この様にして得られたウェハ (第 7図 Cに示された構造体) は、 全厚で 1 . 0 mmとなった。 尚、 これは従来の 3枚のガラス偏光子と 2枚のファラデー回転子 とを用いて得られるウェハの厚み 1 . 4 mmの 7 1 %に過ぎなかった。  The wafer thus obtained (the structure shown in FIG. 7C) had a total thickness of 1.0 mm. This is only 71% of the thickness of 1.4 mm of the wafer obtained by using the conventional three glass polarizers and the two Faraday rotators.
次に、 作成した上記ウェハをダイシンダマシンで、 0 . 5 mm角のチップに切 断し、 その後、 光アイソレータ設置用基板に上記チップと磁石とを配置し、 第 3 図に示した広帯域用セミダブル型光アイソレータを 7 2 9個得た。 尚、 従来問題 であった 0 . 5 mm角に起きる切断時のチップの飛びは、 全厚が従来の 7 1 %に なったため全く飛びを起こさずに切断できた。  Next, the above prepared wafer is cut into 0.5 mm square chips by a die sintering machine, and then the chips and magnets are placed on the optical isolator mounting substrate, and the broadband semi-double shown in FIG. 3 is obtained. 7 2 9 optical isolators were obtained. The chip fly-off at the time of cutting that occurred in the 0.5 mm square, which was a conventional problem, could be cut without any fly-off because the total thickness became 71% of the conventional thickness.
そして、 無作為に 2 0個の広帯域用セミダブル型光アイソレータを取り、 かつ、 光学測定 (但し、 1 . 5 3〜1 . 5 9 yu mの波長域での値である) を行い、 第 4 図に示した従来のセミダブノレ型光アイソレータとの比較を行った。  Then, randomly take 20 broadband semi-double type optical isolators, and perform optical measurement (however, it is a value in the wavelength range of 1.53 to 1.59 yum). A comparison was made with the conventional semi-dubnore type optical isolator shown in the figure.
結果を第 4表に示す。 尚、 第 4表の値は平均値である。 第 4表
Figure imgf000018_0001
The results are shown in Table 4. The values in Table 4 are averages. Table 4
Figure imgf000018_0001
第 4表に記載された結果から確認されるように、 これまでガラス偏光子のサイ ズ制限のために不可能であったウェハから作成した広帯域用光アイソレータでも, 従来のものと同程度の性能が得られることが分かる。 産業の利用可能性  As confirmed from the results shown in Table 4, even with a broadband optical isolator made from a wafer that was not possible due to the size limitation of glass polarizers up to now, the same performance as the conventional one It can be seen that Industrial availability
本発明によれば大面積の磁気光学素子が得られ、 力つ、 所望のサイズの素子を 大量に作製することが容易である効果を有している。 また、 偏光子用の基板が存 在しない分、 ファラデー回転子とフォトニック結晶偏光子を一体化した磁気光学 素子全体の厚みが薄くなるため、 小さなチップに切断した際にチップの飛散が起 こり難く、 かつ、 安価な光アイソレータを製造できる効果を有する。  According to the present invention, a large-area magneto-optical element can be obtained, and it has the effect that it is easy to mass-produce elements of desired size. In addition, since the thickness of the entire magneto-optical device in which the Faraday rotator and the photonic crystal polarizer are integrated becomes thinner as there is no substrate for the polarizer, the chips are scattered when cut into small chips. It has the effect of making difficult and inexpensive optical isolators.
従って、 シングルタイプ用並びに広帯域用光アイソレータ、 光サーキユレータ 、 光アツテネータ、 光スィッチ等の産業分野への利用に適している。  Therefore, it is suitable for industrial applications such as single-type and broadband optical isolators, optical circulators, optical attenuators, and optical switches.

Claims

請 求 の 範 囲 一回転子とこのファラデー回転子の光透過面に一体的に設けられ た偏光子とを備える磁気光学素子において、 In a magneto-optical device comprising a rotor and a polarizer integrally provided on the light transmitting surface of the Faraday rotator,
両面に反射防止膜が形成されたファラデー回転子と、 一方の反射防止膜上に形 成されたフォトニック結晶から成る偏光子とで構成されることを特徴とする磁気 光学素子。  What is claimed is: 1. A magneto-optical device comprising: a Faraday rotator having an antireflective film formed on both sides thereof; and a polarizer made of a photonic crystal formed on one antireflective film.
2 . 1枚のガラス偏光子の表裏面に、 請求の範囲第 1項に記載の一対の磁気光 学素子がそのフォトニック結晶から成る偏光子を外側にしてそれぞれ張り合わさ れて成ることを特徴とするセミダブル型光アイソレータ用磁気光学素子。 2. A feature is that a pair of magneto-optical elements according to claim 1 is laminated on the front and back surfaces of a single glass polarizer with the polarizer made of the photonic crystal on the outside. Magneto-optical device for semi-double type optical isolators.
3 . 上記フォトエック結晶が、 周期的な溝あるいは線状突起列に、 透明で高屈 折率の媒質と低屈折率の媒質とを界面の形状を保存しながら交互に積層させて得 たものであることを特徴とする請求の範囲第 1項または第 2項に記載の磁気光学 素子。 3. The above photoex crystal is obtained by alternately laminating a transparent, high refractive index medium and a low refractive index medium in a periodic groove or linear protrusion array while preserving the shape of the interface. The magneto-optical device according to claim 1 or 2, characterized in that
4 . 上記フォトエック結晶が、 リソグラフィにより周期的な溝を形成させて得 たものであることを特徴とする請求の範囲第 1項または第 2項に記載の磁気光学 素子。 4. The magneto-optical device according to claim 1 or 2, wherein the photo Ec crystal is obtained by forming periodic grooves by lithography.
5 . 上記フォトニック結晶から成る偏光子の表面に反射防止膜が形成されてい ることを特徴とする請求の範囲第 1項〜第 4項のいずれかに記載の磁気光学素子。 5. The magneto-optical device according to any one of claims 1 to 4, wherein an antireflective film is formed on the surface of the polarizer made of the photonic crystal.
6 . 上記フォトニック結晶から成る偏光子が形成される反射防止膜の最外層が S i 02層であることを特徴とする請求の範囲第 1項〜第 5項のいずれかに記載 の磁気光学素子。 6. The outermost layer of the antireflective film on which the polarizer made of the above-mentioned photonic crystal is formed is an S i 0 2 layer according to any one of claims 1 to 5, characterized in that Magneto-optical element.
7 . 請求の範囲第 6項に記載の磁気光学素子の製造方法において、 7. A method of manufacturing a magneto-optical device according to claim 6.
ファラデー回転子の一面側にその最外層が S i 02層である誘電体多層膜から 成る対フォトニック結晶偏光子用の反射防止膜を形成する工程と、 Forming an anti-reflection film for a photonic crystal polarizer consisting of a dielectric multi-layered film whose outermost layer is a S i 0 2 layer on one surface side of the Faraday rotator;
形成した反射防止膜の S i 02層に周期的な溝を形成する工程と、 Forming periodic grooves in the S i 0 2 layer of the formed antireflective film;
溝が形成された反射防止膜の S i O 2層表面に、 アモルファス S i o 2層とァ モルファス S i層を交互にかつ上記溝の形状を各層に保存させながら積層してフ ォトユック結晶から成る偏光子を形成する工程と、 An amorphous Si 2 layer and an amorphous Si 2 layer are alternately laminated on the surface of the SiO 2 layer of the anti-reflection film in which the groove is formed, and the groove shape is stored in each layer, and it is made of photo crystal. Forming a polarizer;
少なくともファラデー回転子の上記偏光子が形成されていない面側に対空気用 若しくは対接着剤用の反射防止膜を形成する工程、  Forming an antireflective film for air or adhesive on at least the side of the Faraday rotator on which the polarizer is not formed;
の各工程を具備することを特徴とする磁気光学素子の製造方法。 A method of manufacturing a magneto-optical device comprising the steps of
8 . 請求の範囲第 6項に記載の磁気光学素子の製造方法において、 8. A method of manufacturing a magneto-optical device according to claim 6,
ファラデー回転子の一面側にその最外層が S i〇2層である誘電体多層膜から 成る対フォトニック結晶偏光子用の反射防止膜を形成する工程と、 A step of the outermost layer on one side of the Faraday rotator to form an antireflection film for pairs photonic crystal polarizer made of a dielectric multilayer film is S I_〇 two layers,
この反射防止膜の S i o 2層上にフォトニック結晶形成用の第二 S i o 2層を 形成する工程と、 Forming a second S io 2 layers for the photonic crystal formed in the S io 2 layer on the antireflective film,
形成された第二 S i o 2層面上にフォトニック結晶形成用のレジストマスクを 形成しかつマスクから露出する第二 S i 02層をエッチング処理してフォトエツ ク結晶を構成する周期的な溝を形成する工程と、 Periodic grooves a second S i 0 2-layer constructed by etching a Fotoetsu click crystals exposing the resist mask for photonic crystal formed on the second S io 2-layer surface on which is formed from a formed and mask Forming step;
このフォトユック結晶から成る偏光子上に残留するレジストマスクを除去した 後、 少なくともファラデー回転子の上記偏光子が形成されていない面側に対空気 用若しくは対接着剤用の反射防止膜を形成する工程、  After removing the resist mask remaining on the polarizer made of this Photo Yuc crystal, an antireflective film for air or adhesive is formed on at least the side of the Faraday rotator on which the polarizer is not formed. Process,
の各工程を具備することを特徴とする磁気光学素子の製造方法。 A method of manufacturing a magneto-optical device comprising the steps of
9 . 光アイソレータ設置用基板と、 この基板上に配置されたガラス偏光子と、 このガラス偏光子に対しファラデ一回転子側を対向させて上記基板上に配置され た請求の範囲第 1項に記載の磁気光学素子と、 上記フ了ラデ一回転子に対し飽和 磁界を与える磁石とを具備することを特徴とする光アイソレータ。 9. A substrate for mounting an optical isolator, a glass polarizer disposed on the substrate, and a polarizer disposed on the substrate, with the side of the Faraday rotator facing the glass polarizer. An optical isolator comprising: the magneto-optical device according to any of the above; and a magnet for providing a saturation magnetic field to the complete ladder.
1 0 . 断面間形状の磁石と、 この磁石の凹部内に配置されたガラス偏光子と、 このガラス偏光子に対しファラデー回転子側を対向させて上記凹部内に配置され た請求の範囲第 1項に記載の磁気光学素子とを具備することを特徴とする光アイ ソレータ。 10. A cross-section shaped magnet, a glass polarizer disposed in a recess of the magnet, and a glass polarizer having a Faraday rotator facing the same, and disposed in the recess. An optical isolator comprising the magneto-optical device according to the above item.
1 1 . 光アイソレータ設置用基板と、 この基板上に配置された請求の範囲第 2 項に記載のセミダブル型光アイソレータ用磁気光学素子と、 セミダブル型光アイ ソレータ用磁気光学素子の各ファラデー回転子に対し飽和磁界を与える磁石とを 具備することを特徴とする広帯域用セミダブル型光アイソレータ。 1 1. A substrate for mounting an optical isolator, a magneto-optical device for a semi-double type optical isolator according to claim 2 disposed on the substrate, and each Faraday rotator of a magneto-optical device for a semi-double type optical isolator And a magnet for providing a saturation magnetic field.
1 2 . 断面囬形状の磁石と、 この磁石の凹部内に配置された請求の範囲第 2項 に記載のセミダブル型光アイソレータ用磁気光学素子とを具備することを特徴と する広帯域用セミダブル型光アイソレータ。 1 2. A broad band semi-double type light comprising: a magnet having a cross-sectional 囬 shape; and the magneto-optical element for a semi-double type optical isolator according to claim 2 disposed in a recess of the magnet. Isolator.
PCT/JP2003/014312 2002-11-15 2003-11-11 Magnetooptic element and process for fabricating the same and optical isolator incorporating it WO2004046798A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004570332A JPWO2004046798A1 (en) 2002-11-15 2003-11-11 Magneto-optical element, manufacturing method thereof, and optical isolator incorporating the magneto-optical element
US10/531,284 US20060013076A1 (en) 2002-11-15 2003-11-11 Magnetooptic element and process for fabricating the same and optical isolator incorporating it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002331774 2002-11-15
JP2002-331774 2002-11-15
JP2003108543 2003-04-14
JP2003-108543 2003-04-14

Publications (1)

Publication Number Publication Date
WO2004046798A1 true WO2004046798A1 (en) 2004-06-03

Family

ID=32328299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014312 WO2004046798A1 (en) 2002-11-15 2003-11-11 Magnetooptic element and process for fabricating the same and optical isolator incorporating it

Country Status (3)

Country Link
US (1) US20060013076A1 (en)
JP (1) JPWO2004046798A1 (en)
WO (1) WO2004046798A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965436B2 (en) * 2007-04-26 2011-06-21 Hewlett-Packard Development Company, L.P. Micron-size optical faraday rotator
DE102009016950A1 (en) 2009-04-09 2010-10-14 Jt Optical Engine Gmbh + Co. Kg Optical isolator
DE102009016949B4 (en) * 2009-04-09 2021-02-04 Trumpf Laser Gmbh Faraday rotator and arrangement
JP5227926B2 (en) * 2009-09-16 2013-07-03 株式会社日立メディアエレクトロニクス Optical pickup device and optical disk device
US9581742B2 (en) * 2012-11-20 2017-02-28 Corning Incorporated Monolithic, linear glass polarizer and attenuator
GB2588262B (en) * 2019-05-24 2023-01-18 Rockley Photonics Ltd Optical isolator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785456A1 (en) * 1996-01-17 1997-07-23 Hewlett-Packard Company Optical isolator
JP2002303732A (en) * 2001-04-04 2002-10-18 Autocloning Technology:Kk Magneto-optical crystal plate with polarizing element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US20020154403A1 (en) * 2001-04-23 2002-10-24 Trotter, Donald M. Photonic crystal optical isolator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785456A1 (en) * 1996-01-17 1997-07-23 Hewlett-Packard Company Optical isolator
JP2002303732A (en) * 2001-04-04 2002-10-18 Autocloning Technology:Kk Magneto-optical crystal plate with polarizing element

Also Published As

Publication number Publication date
JPWO2004046798A1 (en) 2006-04-27
US20060013076A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP2005037900A (en) Polarizing optical element and display device using the element
JP4402728B2 (en) Polarizing glass, optical isolator, and manufacturing method of polarizing glass
WO2002025325A1 (en) Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
KR100287596B1 (en) Photo Isolator
WO2004046798A1 (en) Magnetooptic element and process for fabricating the same and optical isolator incorporating it
JP4688024B2 (en) Faraday rotator manufacturing method and optical isolator incorporating the rotator
US6590694B2 (en) Faraday rotator
JP2006208710A (en) Optical isolator element, its manufacturing method, and fiber with optical isolator
US20020149832A1 (en) Faraday rotator
JP2004061870A (en) Optical element and optical module using the same
JP2000131522A (en) Polarizer and its production and waveguide type optical device using the same
JP2004341076A (en) Optical isolator and laser diode module
JP3616349B2 (en) Magneto-optic crystal plate with polarizing element
JP2718112B2 (en) Birefringent diffraction grating polarizer and method of manufacturing the same
JP2008139578A (en) Waveguide type optical isolator
JP2003315737A (en) Optical isolator
JP6713949B2 (en) Polarizing member and optical isolator
JP2687923B2 (en) Optical nonreciprocal circuit and manufacturing method thereof
JP2839042B2 (en) Optical isolator
CN115933062A (en) Full-polarized light isolator
JP2002090543A (en) Polarization functional element, optical isolator element, optical isolator and laser diode module
JPH0749468A (en) Optical isolator
JPH08166561A (en) Optical element for optical isolator and optical isolator
JPH11133230A (en) Polarizer and its production
JP2003241143A (en) Optical isolator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004570332

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006013076

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10531284

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10531284

Country of ref document: US