JP2006003447A - Polarized light separating element and manufacturing method thereof - Google Patents

Polarized light separating element and manufacturing method thereof Download PDF

Info

Publication number
JP2006003447A
JP2006003447A JP2004177323A JP2004177323A JP2006003447A JP 2006003447 A JP2006003447 A JP 2006003447A JP 2004177323 A JP2004177323 A JP 2004177323A JP 2004177323 A JP2004177323 A JP 2004177323A JP 2006003447 A JP2006003447 A JP 2006003447A
Authority
JP
Japan
Prior art keywords
metal
polarization separation
diffraction grating
film
separation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004177323A
Other languages
Japanese (ja)
Inventor
Masateru Hara
昌輝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004177323A priority Critical patent/JP2006003447A/en
Publication of JP2006003447A publication Critical patent/JP2006003447A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarized light separating element capable of relatively easily forming a large-area diffraction grating with a simple step without requiring a high-level technology such as high-precision mask alignment, and to provide a manufacturing method of the polarized light separating element. <P>SOLUTION: The polarized light separating element is constituted such that a rugged pattern 2 constituting the diffraction grating is formed on the surface of a base material 1 made of material having light transmissivity in the usage wavelength range and at least two or more surfaces of protruded parts 3 of the rugged pattern 2 are covered with a film 4 made of material comprising a metal or a metal compound. Therein, the large-area diffraction grating can be simply and precisely formed according to oblique vapor deposition in twice. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属製回折格子(Wire Grid:ワイヤーグリッド)を作製して成る偏光分離素子及びその製造方法に関し、例えばプラスティックフィルム基材上にワイヤーグリッド偏光子(Wire Grid Polarizer)を比較的大面積にわたって容易に製造することによって、安価な偏光分離素子の提供を可能とする偏光分離素子及びその製造方法に関する。   The present invention relates to a polarization separation element formed by producing a metal diffraction grating (Wire Grid) and a method for manufacturing the same, and for example, a wire grid polarizer (Wire Grid Polarizer) on a plastic film substrate has a relatively large area. The present invention relates to a polarization separation element and a method for manufacturing the polarization separation element that can provide an inexpensive polarization separation element.

偏光分離素子としては、薄膜のブリュースター反射角を利用したものが多く用いられているが、これは、薄膜を多層に積層した積層膜を必要とし、また入射角の精度を必要とするため、製造工程が煩雑でコストの低減化を図り難く、また光学装置に組み込む場合は入射角度を設定角度に精度良く配置する必要があり、配置調整によって偏光分離特性に大きく影響するため、組み立て精度を必要とするという問題がある。
このような従来の偏光分離素子に対し、金属より成る回折格子(ワイヤーグリッド)を光の波長よりも小さな間隔で配列することによって偏光分離を行うワイヤーグリッド型偏光分離素子が提案されている。
As the polarization separation element, a device utilizing the Brewster reflection angle of a thin film is often used, but this requires a laminated film in which thin films are laminated in multiple layers, and also requires accuracy of the incident angle. The manufacturing process is complicated and it is difficult to reduce the cost, and when it is incorporated in an optical device, it is necessary to accurately place the incident angle at the set angle, and the alignment adjustment greatly affects the polarization separation characteristics, so assembly accuracy is required. There is a problem that.
In contrast to such a conventional polarization separation element, a wire grid type polarization separation element that performs polarization separation by arranging diffraction gratings (wire grids) made of metal at intervals smaller than the wavelength of light has been proposed.

このようなワイヤーグリッド偏光分離素子としては、ガラス基板上に電子線リソグラフィ法或いは干渉露光法によってマスクパターンニングとドライエッチングを用いてガラス基板上に金属膜より成る回折格子を形成した偏光分離素子が知られている(例えば特許文献1及び2参照)。
この偏光分離素子は、ガラス基板上に90nm幅のAlのワイヤー(ピッチ144nm、高さ100〜200nm)を形成して回折格子を構成している。また、石英基板上に、金属或いは金属化合物より成る回折格子が形成されて成る偏光分離素子も提案されている(例えば特許文献3参照。)。
また、斜め蒸着法でナノサイズの金属ワイヤー(ナノワイヤー)を作製しようとする試みもなされている。例えば、ガラス基板の段差部分に蒸着する方法で側壁へのナノサイズのラインを実現している例(例えば非特許文献1参照。)や、InP基板に斜め蒸着法でPdやAuなどのナノワイヤーを形成した例も報告されている(例えば非特許文献2参照。)。
また、多層フィルムを用いた偏光分離素子も商品化されている(例えば米国3M社製、DBEF:商品名、非特許文献3参照。)。
As such a wire grid polarization separation element, there is a polarization separation element in which a diffraction grating made of a metal film is formed on a glass substrate by mask patterning and dry etching by electron beam lithography or interference exposure on a glass substrate. Known (for example, see Patent Documents 1 and 2).
This polarization separation element forms a diffraction grating by forming a 90 nm-width Al wire (pitch 144 nm, height 100 to 200 nm) on a glass substrate. There has also been proposed a polarization separation element in which a diffraction grating made of a metal or a metal compound is formed on a quartz substrate (see, for example, Patent Document 3).
Attempts have also been made to produce nano-sized metal wires (nanowires) by oblique vapor deposition. For example, a nano-sized line on the side wall is realized by vapor deposition on a stepped portion of a glass substrate (see Non-Patent Document 1, for example), or a nanowire such as Pd or Au is formed on an InP substrate by oblique vapor deposition. There is also a report of an example of forming (see Non-Patent Document 2, for example).
In addition, a polarization separation element using a multilayer film has been commercialized (for example, see DBEF: trade name, Non-Patent Document 3 manufactured by 3M USA).

米国特許第6122103号公報US Pat. No. 6,122,103 米国特許第6243199号公報US Pat. No. 6,243,199 特開2004−45672号公報JP 2004-45672 A D.E.Prober et al, “Fabrication of 300-Å metal lines with substrate-step techniques.”, Applied.Physics.Letters,.Vol.37(1), (1980)pp.94-96D.E.Prober et al, “Fabrication of 300-Å metal lines with substrate-step techniques.”, Applied.Physics.Letters, .Vol.37 (1), (1980) pp.94-96 J.Jorritsma, “General technique for fabricating large arrays of nanowires.”, Nanotechnology,Vol.7, No.3, (1996)pp.263-265J. Jorritsma, “General technique for reducing large arrays of nanowires.”, Nanotechnology, Vol. 7, No. 3, (1996) pp.263-265 米国3M社ホームページ[平成16年月日検索]、インターネット<URL:http://www.mmm.co.jp/display/dbef/>USA 3M company homepage [2004 date search], Internet <URL: http://www.mmm.co.jp/display/dbef/>

従来の技術による偏光分離素子は、大面積・安価・軽量なデバイスの提供という点では課題を残している。どの場合も、基板には重量のあるものを使用しており、大面積のディスプレイ(例えば液晶ディスプレイなど)に用いる輝度向上用の偏光分離素子として使用するには重量の点で問題があり、小型軽量化が困難となる。
また、上述の多層フィルムを用いた偏光分離素子の場合は、軽量・大面積化可能という点で優れているが、その数百層にも及ぶ多層構造のために大変高価となり、この偏光分離素子を組み込む光学装置やディスプレイ装置のコスト高を招来するという問題がある。
The conventional polarization separation element has a problem in terms of providing a large-area, inexpensive, and lightweight device. In any case, a heavy substrate is used, and there is a problem in terms of weight when used as a polarization separation element for improving luminance used in a large area display (for example, a liquid crystal display). Weight reduction becomes difficult.
In the case of the polarization separation element using the above-mentioned multilayer film, it is excellent in terms of light weight and large area, but it becomes very expensive due to the multilayer structure of several hundred layers, and this polarization separation element There is a problem of incurring high costs for optical devices and display devices incorporating the above.

ところで、上記特許文献1及び2に記載されているように、ワイヤーグリッド偏光分離素子は、その金属回折格子の高さやピッチによって特性が大きく変わることが知られている。そのため、リソグラフィや金属膜のドライエッチングにより正確なパターンニングが求められている。これらのプロセスを大面積に行うことはコストの面でも技術的な面でも困難である。例えばプラスティックフィルム上に、金属膜をドライエッチングでパターンニングするのは、ガラスや石英基板上に形成する場合よりも格段に技術的難易度が上がる。
また、上記非特許文献1及び2に開示の斜め蒸着で作製する試みは、ナノサイズのワイヤーを作製することを実現してはいるが、完成したナノワイヤーの形状を制御性良く形成する方法については検討されていないのが現状である。
By the way, as described in Patent Documents 1 and 2, it is known that the characteristics of the wire grid polarization separation element vary greatly depending on the height and pitch of the metal diffraction grating. Therefore, accurate patterning is required by lithography or metal film dry etching. It is difficult to perform these processes in a large area in terms of cost and technology. For example, patterning a metal film on a plastic film by dry etching is much more technically difficult than forming it on a glass or quartz substrate.
In addition, the attempt to manufacture by oblique vapor deposition disclosed in Non-Patent Documents 1 and 2 described above has realized that a nano-sized wire is manufactured, but a method of forming a completed nanowire shape with good controllability. Is currently not being considered.

以上述べた課題に鑑みて、本発明は、技術的工夫により簡単な工程で大面積にわたる回折格子の形成をマスク合わせ精度などの高度な技術を要することなく比較的容易に行うことが可能な偏光分離変換素子及びその製造方法を提供することを目的とする。   In view of the above-described problems, the present invention is a polarization capable of forming a diffraction grating over a large area relatively easily without requiring an advanced technique such as mask alignment accuracy in a simple process by technical ingenuity. An object of the present invention is to provide a separation conversion element and a method for manufacturing the same.

上記課題を解決するために、本発明による偏光分離素子は、使用波長範囲において光透過性を有する材料より成る基材の表面に、回折格子を構成する凹凸パターンが設けられ、この凹凸パターンの凸部の少なくとも2つ以上の面が、金属或いは金属化合物より成る材料膜で被覆されて成ることを特徴とする。
また、本発明は、上述の偏光分離素子において、材料膜が、多層構造とされ、その最表面に、多層構造中に設けられる最も厚い金属或いは金属化合物より成る材料層に比して、酸化し難い金属或は金属化合物が成膜されて成ることを特徴とする。
In order to solve the above problems, the polarization separation element according to the present invention is provided with a concavo-convex pattern constituting a diffraction grating on the surface of a base material made of a light-transmitting material in the operating wavelength range. It is characterized in that at least two surfaces of the part are covered with a material film made of a metal or a metal compound.
Further, according to the present invention, in the polarization separation element described above, the material film has a multilayer structure, and is oxidized on the outermost surface as compared with the thickest metal layer or metal compound layer provided in the multilayer structure. A difficult metal or metal compound is formed into a film.

また、本発明による偏光分離素子の製造方法は、使用波長範囲において光透過性を有する材料より成る基材の表面に、回折格子を構成する凹凸パターンを形成し、この凹凸パターンの凸部の少なくとも2つ以上の面に、金属或は金属化合物膜より成る材料層を斜め入射の蒸着法により成膜することを特徴とする。
更に、本発明は、上述の偏光分離素子の製造方法において、上記基材上の凹凸パターンを、インプリント法により形成することを特徴とする。
In the method for manufacturing a polarization separation element according to the present invention, a concavo-convex pattern constituting a diffraction grating is formed on the surface of a base material made of a light-transmitting material in a used wavelength range, and at least convex portions of the concavo-convex pattern are formed. A material layer made of a metal or metal compound film is formed on two or more surfaces by an oblique incidence vapor deposition method.
Furthermore, the present invention is characterized in that, in the above-described method for manufacturing a polarization separation element, the uneven pattern on the substrate is formed by an imprint method.

上述の本発明の偏光分離素子によれば、回折格子を構成する凹凸パターンの凸部上の2つ以上の面に金属或いは金属化合物より成る材料膜を被覆することによって、安価で軽量化及び大面積化が可能な実用的な偏光分離素子を提供することができる。
また、材料膜を多層構造として、最表面に、比較的酸化し難い金属或いは金属化合物を成膜することによって、金属製の回折格子が酸化することを抑制し、寿命の長期化を図ることができる。
According to the above-described polarization separation element of the present invention, two or more surfaces on the convex portions of the concavo-convex pattern constituting the diffraction grating are coated with a material film made of a metal or a metal compound, thereby reducing the cost and weight. It is possible to provide a practical polarization separation element that can be increased in area.
In addition, by forming a material film as a multilayer structure and forming a metal or metal compound that is relatively difficult to oxidize on the outermost surface, it is possible to prevent the metal diffraction grating from being oxidized and to prolong the life. it can.

また、本発明の偏光分離素子の製造方法によれば、大面積のプラスティックフィルム等の基材に、回折格子の幅、ピッチなどの形状を制御性良く作製することができて、偏光分離素子の生産性の向上、コストの低減化を図ることができる。
更に、本発明の偏光分離素子の製造方法において、凹凸パターンをインプリント法により形成することによって、所望の間隔の回折格子を容易且つ精度良く形成することができ、目的とする偏光分離機能を有する偏光分離素子を容易に製造することができる。
In addition, according to the method for manufacturing a polarization separation element of the present invention, the shape of the diffraction grating, such as the width and pitch, can be produced on a substrate such as a large-area plastic film with good controllability. Productivity can be improved and costs can be reduced.
Furthermore, in the method for manufacturing a polarization separation element of the present invention, a diffraction grating having a desired interval can be easily and accurately formed by forming a concavo-convex pattern by an imprint method, and has a desired polarization separation function. A polarization separation element can be easily manufactured.

以下、本発明を実施するための最良の形態の例について図面を参照しながら説明する。
図1Aは、本発明による偏光分離素子の一例の要部の概略断面図、図1Bは本発明による偏光分離素子の一例の要部の概略斜視図である。
本発明による偏光分離素子は、図1A及びBに示すように、使用波長範囲において光透過性を有する例えばプラスティックフィルムなどの基材1の上に、回折格子10を構成する凹凸パターン2が設けられ、この凹凸パターン2の凸部3の2つ以上の面に、金属或いは金属化合物より成る材料膜4が形成された構成とする。
Hereinafter, an example of the best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1A is a schematic cross-sectional view of an essential part of an example of a polarization beam splitting element according to the present invention, and FIG. 1B is a schematic perspective view of an essential part of an example of a polarization beam splitting element according to the present invention.
As shown in FIGS. 1A and 1B, the polarization separation element according to the present invention is provided with a concavo-convex pattern 2 constituting a diffraction grating 10 on a base material 1 such as a plastic film having light transmittance in a used wavelength range. The material film 4 made of a metal or a metal compound is formed on two or more surfaces of the convex portion 3 of the concave / convex pattern 2.

このように、プラスティックフィルム等の基材の上に回折格子を構成する凹凸パターンが形成され、その凸部上の2つ以上の面に金属膜が被覆された回折格子を設けることによって、例えば可視光の波長より周期の短い回折格子10を設ける場合、基材1の上方から入射する可視光に対して、偏光分離素子として機能する。
本発明においては、基材としてプラスティックを用いることも可能であり、回折格子を金属膜で被覆する構成にすることで、回折格子の形状を制御し易くなり、結果的に回折格子の周期構造などの形状を精度良く製造することができる。
また、金属膜をドライエッチング法でエッチングして回折格子を作製する従来方法と比較して、技術的に容易でコスト的にも安価に偏光分離素子を製造することが可能となる。
In this way, by forming a concavo-convex pattern constituting a diffraction grating on a base material such as a plastic film, and providing a diffraction grating in which two or more surfaces on the convex portion are coated with a metal film, for example, visible When the diffraction grating 10 having a shorter period than the wavelength of light is provided, it functions as a polarization separation element for visible light incident from above the substrate 1.
In the present invention, it is also possible to use a plastic as a base material, and by configuring the diffraction grating with a metal film, it becomes easier to control the shape of the diffraction grating, resulting in a periodic structure of the diffraction grating, etc. Can be manufactured with high accuracy.
In addition, it is possible to manufacture a polarization separation element that is technically easy and inexpensive in comparison with a conventional method in which a metal film is etched by a dry etching method to produce a diffraction grating.

図2A〜Cに、本発明による偏光分離素子の製造方法の一例の製造工程を示す。
プラスティックフィルム等より成る基材1の表面に、例えば可視光の波長より周期の短い回折格子を構成する凹凸パターン2が形成される。この凹凸パターン2の作製には、インプリント法の使用が好適である。インプリント法を適用する場合は、ナノサイズからミクロンサイズ程度まで所望の間隔の回折格子を容易に形成することができる。この例においては、断面が矩形形状の凹凸パターンを形成した例を示す。
次に、図2Bに示すように、凹凸パターン2の凸部3に対し、矢印S1で示すように斜め方向から金属或いは金属化合物より成る材料膜4を、真空蒸着法で成膜する。このときの蒸着方向S1としては、一点鎖線vで示す基材1の表面に対する法線方向と所定の角度をなす方向とする。
続いて、図2Cに示すように、同様に基材1の表面に対して法線方向vと所定の角度をなし、上記矢印S1で示す方向とは対称な方向(図示の例においては左側)から、矢印S2で示すように、材料膜4を蒸着法で成膜する。
なお、これらの各蒸着方向は、凸部3の稜線がなす直線、すなわち図示の例において図2の紙面と直交する方向に対して、材料膜4の金属粒子の入射面が略垂直に交わる方向に選定することによって、凸部3の間の凹部への被着を回避することができる。
以上の製造工程により、回折格子の凸部の上面及び左右両側面の3つの面が金属膜により被覆される。この結果、基材1の回折格子上方から入射する可視光に対し、偏光分離機能を有する偏光分離素子を得ることができる。
2A to 2C show a manufacturing process of an example of a method for manufacturing a polarization beam splitting element according to the present invention.
On the surface of the base material 1 made of a plastic film or the like, for example, a concavo-convex pattern 2 constituting a diffraction grating having a period shorter than the wavelength of visible light is formed. For the production of the concave / convex pattern 2, it is preferable to use an imprint method. When the imprint method is applied, diffraction gratings having a desired interval can be easily formed from nano size to micron size. In this example, an example in which an uneven pattern having a rectangular cross section is formed is shown.
Next, as shown in FIG. 2B, a material film 4 made of a metal or a metal compound is formed on the convex portion 3 of the concave / convex pattern 2 from an oblique direction as shown by an arrow S1 by a vacuum deposition method. The vapor deposition direction S1 at this time is a direction that forms a predetermined angle with the normal direction with respect to the surface of the substrate 1 indicated by the alternate long and short dash line v.
Subsequently, as shown in FIG. 2C, similarly, a normal angle v is formed with respect to the surface of the substrate 1, and a direction symmetrical to the direction indicated by the arrow S1 (left side in the illustrated example). Thus, as shown by the arrow S2, the material film 4 is formed by vapor deposition.
Each of these deposition directions is a direction in which the incident surface of the metal particles of the material film 4 intersects substantially perpendicularly with respect to a straight line formed by the ridge line of the convex portion 3, that is, a direction orthogonal to the paper surface of FIG. By selecting this, it is possible to avoid deposition on the concave portions between the convex portions 3.
Through the above manufacturing process, the upper surface of the convex portion of the diffraction grating and the three surfaces on the left and right sides are covered with the metal film. As a result, a polarization separation element having a polarization separation function can be obtained for visible light incident from above the diffraction grating of the substrate 1.

図3に、回折格子の断面を三角形状とした本発明による偏光分離素子の一例の要部の概略断面図を示す。図3において、図1と対応する部分には同一符号を付して重複説明を省略する。
この場合、基材1の表面の三角形の断面形状の凹凸パターンの作製方法としては、インプリント法を適用して精度良く形成することができる。例えば、インプリントに用いるモールドとして、Siに異方性ウェットエッチングを行って得られる断面三角形状のモールドを使用することによって、精度良く回折格子の間隔を制御することができる。
そしてこのように三角形状断面の凹凸パターンを形成したプラスティックフィルム等より成る基材1に対して、前述の図2A〜Cにおいて説明した例と同様に、回折格子を構成する凹凸パターン2の凸部3の稜線に対して左右両方向から金属或いは金属化合物より成る材料膜4を斜め蒸着することで、目的とする偏光分離機能を有する偏光分離素子を得ることができる。
このように、プラスティックフィルム等の基材への加工が可能であれば、図1において示す矩形形状に限定されることなく、他の多角形状断面、曲線状断面などを有する回折格子を構成することもできる。
FIG. 3 shows a schematic cross-sectional view of a main part of an example of the polarization separation element according to the present invention in which the diffraction grating has a triangular cross section. In FIG. 3, parts corresponding to those in FIG.
In this case, the imprint method can be applied with high accuracy as a method for producing a concavo-convex pattern having a triangular cross-sectional shape on the surface of the substrate 1. For example, as a mold used for imprinting, by using a mold having a triangular cross section obtained by performing anisotropic wet etching on Si, the interval between diffraction gratings can be accurately controlled.
And the convex part of the uneven | corrugated pattern 2 which comprises a diffraction grating similarly to the example demonstrated in above-mentioned FIG.2A-C with respect to the base material 1 which consists of a plastic film etc. which formed the uneven | corrugated pattern of triangular cross section in this way By obliquely depositing the material film 4 made of a metal or a metal compound from both the left and right directions with respect to the ridgeline 3, a polarization separation element having a desired polarization separation function can be obtained.
Thus, if processing to a substrate such as a plastic film is possible, it is not limited to the rectangular shape shown in FIG. 1, and a diffraction grating having another polygonal cross section, a curved cross section, or the like is configured. You can also.

以下、本発明の具体的な実施例について説明する。
(1)実施例1
先ず、プラスティックフィルム上に断面矩形形状の回折格子を作製した例について説明する。この例においては、
図2において説明した例と同様の製造工程で製造した。すなわち、厚さ120μmのPMMA(polymethylmethacrylate:ポリメチルメタクリレート)フィルムより成る基材1の表面に、インプリント法で幅60nm、高さ100nmの凸部3を有する凹凸パターン2をピッチ200nmで作製した。この凹凸は、ドライエッチング法で作製することもできる。
Hereinafter, specific examples of the present invention will be described.
(1) Example 1
First, an example in which a diffraction grating having a rectangular cross section is formed on a plastic film will be described. In this example,
It was manufactured in the same manufacturing process as the example described in FIG. That is, the uneven | corrugated pattern 2 which has the convex part 3 with a width of 60 nm and a height of 100 nm was produced with the pitch of 200 nm on the surface of the base material 1 which consists of a 120-micrometer-thick PMMA (polymethylmethacrylate) film by the imprint method. The unevenness can also be produced by a dry etching method.

次に、凸部3の高さ方向(すなわち基材1の表面に対する法線方向)に対して60°をなす方向で、凹凸パターン2の延在する方向とは略直交する方向から、Al金属粒子を真空蒸着法で飛ばして材料膜4を成膜した。この例においては、材料膜4の膜厚は、凸部3の側壁において、膜厚が30nm程度になるように成膜した。
この場合の法線方向に対する蒸着方向の角度は、凹凸パターン2の凹部に材料膜4が付着しないように選定した。また、材料膜4の入射方向は、凸部3の稜線方向と略垂直になる方向とした。
Next, from the direction that is 60 ° with respect to the height direction of the convex portion 3 (that is, the normal direction to the surface of the substrate 1) and that is substantially perpendicular to the direction in which the concave and convex pattern 2 extends, the Al metal The material film 4 was formed by flying particles by a vacuum deposition method. In this example, the material film 4 was formed on the side wall of the convex portion 3 so that the film thickness was about 30 nm.
In this case, the angle of the vapor deposition direction with respect to the normal direction was selected so that the material film 4 did not adhere to the concave portions of the concave / convex pattern 2. Further, the incident direction of the material film 4 was set to a direction substantially perpendicular to the ridge line direction of the convex portion 3.

続いて、凸部3の高さ方向に対して1回目の蒸着方向とは反対側に60°をなし、凹凸パターン2の延在する方向と略直交する方向でから、同様にAl粒子を真空蒸着法で飛ばして材料膜4を成膜した。この時の材料膜4の膜厚も、凸部の反対側の側壁において材料膜4の膜厚が30nm程度となるように成膜した。   Subsequently, 60 ° is formed on the opposite side of the first vapor deposition direction with respect to the height direction of the convex portion 3, and the Al particles are similarly vacuumed from a direction substantially orthogonal to the extending direction of the concave / convex pattern 2. The material film 4 was formed by skipping by vapor deposition. The film thickness of the material film 4 at this time was also formed so that the film thickness of the material film 4 was about 30 nm on the side wall opposite to the convex portion.

以上の製造工程によりPMMAフィルム表面の回折格子凸部の上部及び両側壁にAlより成る材料膜を被覆させた構造を作製できて、ワイヤーグリッド型構成の偏光分離素子を得ることができた。この例においては、PMMAフィルムに入射する光のうち凸部の稜線に平行なS偏光成分は反射され、垂直なP偏光成分は透過した。S偏光の反射率は可視光範囲で95%以上、P偏光の透過率は可視光範囲で80%以上であり、偏光分離素子として良好に機能した。
このように、本発明製造方法では、斜め蒸着法により材料膜を形成することで、自在な形状が加工できるプラスティックフィルムを用いて容易にワイヤーグリッド型の偏光分離素子を形成することが可能になった。これにより、大面積で軽量且つ安価な偏光分離素子の実現が可能になる。
Through the above manufacturing process, a structure in which the material film made of Al was coated on the upper part and both side walls of the diffraction grating convex portion on the surface of the PMMA film could be manufactured, and a polarization separating element having a wire grid type configuration could be obtained. In this example, of the light incident on the PMMA film, the S-polarized component parallel to the ridge line of the convex portion was reflected and the vertical P-polarized component was transmitted. The reflectance of S-polarized light was 95% or more in the visible light range, and the transmittance of P-polarized light was 80% or more in the visible light range.
As described above, in the manufacturing method of the present invention, it is possible to easily form a wire grid type polarization separation element using a plastic film that can be processed into any shape by forming a material film by oblique vapor deposition. It was. This makes it possible to realize a polarization splitting element that is large, lightweight, and inexpensive.

次に、断面三角形状の回折格子を有する偏光分離素子を得る例について説明する。
(2)実施例2
この例においては、前述の図3において説明した構造の偏光分離素子を製造した。この場合、厚さ120μmのPMMAフィルムより成る基材1の表面に、インプリント法で頂角が70°の二等辺三角形の断面を有する回折格子の凹凸パターンを作製した。インプリントの転写に用いたモールドは、Si(100)面の異方性ウェットエッチングを利用して作製されたものである。この断面の山と谷の高さの差は150nmであった。回折格子のピッチは215nmであった。
Next, an example of obtaining a polarization separation element having a diffraction grating having a triangular cross section will be described.
(2) Example 2
In this example, the polarization separation element having the structure described with reference to FIG. 3 was manufactured. In this case, a concavo-convex pattern of a diffraction grating having an isosceles triangular cross section with an apex angle of 70 ° was formed on the surface of the substrate 1 made of a PMMA film having a thickness of 120 μm by an imprint method. The mold used for imprint transfer is manufactured using anisotropic wet etching of the Si (100) surface. The difference in height between the peaks and valleys in this cross section was 150 nm. The pitch of the diffraction grating was 215 nm.

次に、基材1の表面に対する法線から略60°をなし、また二等辺三角形の頂点が延在する稜線と略直交する方向から、Alより成る材料膜4を斜め蒸着法により成膜した。その後、上記実施例1と同様に、1回目の蒸着方向とは法線を挟んで対称な方向から同様にAl材料膜を成膜した。これらの膜厚は略35nmになるように
設定された。これにより、断面略二等辺三角形状の凹凸パターンの稜線の左右に金属が被着されて回折格子が構成されたワイヤーグリッド型構成の偏光分離素子を得ることができた。この例においては、S偏光の反射率は可視光範囲で85%以上、P偏光の透過率は可視光範囲で70%以上であった。
Next, a material film 4 made of Al is formed by an oblique deposition method from a direction that is approximately 60 ° from the normal to the surface of the base material 1 and that is substantially orthogonal to the ridge line in which the vertex of the isosceles triangle extends. . Thereafter, in the same manner as in Example 1, an Al material film was similarly formed from a direction symmetric with respect to the normal direction with respect to the first deposition direction. These film thicknesses were set to be approximately 35 nm. As a result, it was possible to obtain a polarization separating element having a wire grid type configuration in which a diffraction grating was configured by depositing metal on the left and right sides of the ridge line of the concavo-convex pattern having a substantially isosceles cross section. In this example, the reflectance of S-polarized light was 85% or more in the visible light range, and the transmittance of P-polarized light was 70% or more in the visible light range.

断面三角形状の回折格子は、偏光分離素子としての性能は矩形の断面の場合よりも劣るが、フィルムへのインプリントが矩形の場合よりもはるかに容易であるため、製造上の利点がある。これは、断面三角形状とする場合は押し込み圧力が低くて済み、しかも離型が容易ということによる。
このように、本発明製造方法によれば、より製造が容易な形状として偏光分離素子を構成することが可能となり、これにより、大面積で軽量な偏光分離素子の生産性の向上、またコストの更なる低減化を図ることが可能となる。
A diffraction grating having a triangular cross section has a manufacturing advantage because the performance as a polarization separating element is inferior to that of a rectangular cross section, but imprinting on a film is much easier than in the case of a rectangular cross section. This is because in the case of a triangular cross section, the indentation pressure is low and the mold release is easy.
As described above, according to the manufacturing method of the present invention, it is possible to configure the polarization separation element in a shape that is easier to manufacture, thereby improving the productivity of a large-area and lightweight polarization separation element and reducing the cost. Further reduction can be achieved.

なお、本発明は以上説明した各例に何ら限定されるものではなく、各部の寸法や材料、プロセス条件等は本発明の主旨を逸脱しない限りにおいて変更が可能である。例えば、上述の例においては、基材としてPMMAなどのプラスティックフィルムを用いる例を説明したが、その他PET(polyethylene terephthalate:ポリエチレンテレフタレート)など、使用波長範囲において所望の光透過性を有する材料であればよく、また、必ずしも可撓性を有する材料とは限らず、各種の材料が使用可能である。   The present invention is not limited to the examples described above, and the dimensions, materials, process conditions, and the like of each part can be changed without departing from the gist of the present invention. For example, in the above-described example, an example in which a plastic film such as PMMA is used as the base material has been described. However, any other material having a desired light transmission property in the use wavelength range such as PET (polyethylene terephthalate) can be used. In addition, the material is not necessarily flexible, and various materials can be used.

更に、材料膜としても、Alに限定されることなく、その他各種の金属或いはTiN、TaN、TiSi2 などの金属化合物を用いることができる。特に、酸化しやすいAlなどの材料膜を用いる場合、これを保護するために、例えばAl膜の上層にAuやPtなどの酸化しにくい金属薄膜を積層することによって、材料膜の光学的特性の劣化を抑制し、寿命の長期化を図ることが可能となる。また、Al等より成る材料膜の下側に下地層を設けることもできるなど、その他本発明構成を逸脱しない範囲において、種々の変形、変更が可能であることはいうまでもない。 Furthermore, the material film is not limited to Al, and various other metals or metal compounds such as TiN, TaN, TiSi 2 can be used. In particular, in the case of using a material film such as Al that is easily oxidized, in order to protect this, for example, by laminating a metal thin film such as Au or Pt that is difficult to oxidize on the Al film, the optical characteristics of the material film are improved. It is possible to suppress deterioration and prolong the service life. In addition, it goes without saying that various modifications and changes can be made without departing from the configuration of the present invention, such as the provision of a base layer below the material film made of Al or the like.

本発明による偏光分離素子の一例の要部の概略断面図である。It is a schematic sectional drawing of the principal part of an example of the polarization splitting element by this invention. Aは本発明による偏光分離素子の製造方法の一例の一工程図である。Bは本発明による偏光分離素子の製造方法の一例の一工程図である。Cは本発明による偏光分離素子の製造方法の一例の一工程図である。FIG. 4A is a process diagram of an example of a method for manufacturing a polarization separation element according to the present invention. FIG. 4B is a process diagram of an example of a method of manufacturing a polarization separation element according to the present invention. C is a process diagram of an example of a method of manufacturing a polarization beam splitting element according to the present invention. FIG. 本発明による偏光分離素子の一例の要部の概略断面図である。It is a schematic sectional drawing of the principal part of an example of the polarization splitting element by this invention.

符号の説明Explanation of symbols

1.基材、2.凹凸パターン、3.凸部、4.材料膜、10.回折格子 1. Base material, 2. 2. Uneven pattern; Convex part, 4. Material film, 10. Diffraction grating

Claims (4)

使用波長範囲において光透過性を有する材料より成る基材の表面に、回折格子を構成する凹凸パターンが設けられ、
上記凹凸パターンの凸部の少なくとも2つ以上の面が、金属或いは金属化合物より成る材料膜で被覆されて成る
ことを特徴とする偏光分離素子。
A concave / convex pattern constituting a diffraction grating is provided on the surface of a base material made of a material having light permeability in the wavelength range used,
A polarization separation element, wherein at least two surfaces of the convex portions of the concave / convex pattern are covered with a material film made of a metal or a metal compound.
上記材料膜が、多層構造とされ、その最表面に、上記多層構造中に設けられる最も厚い金属或いは金属化合物より成る材料層に比して、酸化し難い金属或は金属化合物が成膜されて成る
ことを特徴とする請求項1記載の偏光分離素子。
The material film has a multi-layer structure, and a metal or metal compound that is difficult to oxidize is formed on the outermost surface of the material film as compared to the thickest metal or metal compound layer provided in the multi-layer structure. The polarization separation element according to claim 1, wherein the polarization separation element is formed.
使用波長範囲において光透過性を有する材料より成る基材の表面に、回折格子を構成する凹凸パターンを形成し、
上記凹凸パターンの凸部の少なくとも2つ以上の面に、金属或は金属化合物膜より成る材料層を斜め入射の蒸着法により成膜する
ことを特徴とする偏光分離素子の製造方法。
On the surface of the base material made of a material having optical transparency in the wavelength range used, an uneven pattern constituting the diffraction grating is formed,
A method for manufacturing a polarized light separating element, wherein a material layer made of a metal or a metal compound film is formed on at least two surfaces of convex portions of the concave / convex pattern by an oblique incidence vapor deposition method.
上記基材上の凹凸パターンを、インプリント法により形成する
ことを特徴とする請求項3記載の偏光分離素子の製造方法。


4. The method for manufacturing a polarization separation element according to claim 3, wherein the uneven pattern on the substrate is formed by an imprint method.


JP2004177323A 2004-06-15 2004-06-15 Polarized light separating element and manufacturing method thereof Pending JP2006003447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177323A JP2006003447A (en) 2004-06-15 2004-06-15 Polarized light separating element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177323A JP2006003447A (en) 2004-06-15 2004-06-15 Polarized light separating element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006003447A true JP2006003447A (en) 2006-01-05

Family

ID=35771914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177323A Pending JP2006003447A (en) 2004-06-15 2004-06-15 Polarized light separating element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006003447A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171151A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Polarized light separating element
JP2007183524A (en) * 2006-01-06 2007-07-19 Cheil Industries Inc Polarizing optical element and liquid crystal display device using it
JP2008181112A (en) * 2006-12-26 2008-08-07 Toray Ind Inc Reflection type polarizer, method of manufacturing the same and liquid crystal display device using the same
JP2008268297A (en) * 2007-04-16 2008-11-06 Asahi Kasei Corp Thin polarizing plate
JP2008268298A (en) * 2007-04-16 2008-11-06 Asahi Kasei Corp Polarizing plate with high degree of polarization
KR100868846B1 (en) 2006-03-09 2008-11-14 주식회사 엘지화학 Nano Wire Grid Polarizer and Fabrication Method Thereof
JP2009157071A (en) * 2007-12-26 2009-07-16 Cheil Industries Inc Wire grid polarizer and its manufacturing method
KR100912261B1 (en) 2006-12-07 2009-08-17 제일모직주식회사 Wire grid polarizer and method of manufacturing thereof
WO2009123290A1 (en) 2008-04-03 2009-10-08 旭硝子株式会社 Wire grid polarizer and method for manufacturing the same
WO2009125751A1 (en) * 2008-04-08 2009-10-15 旭硝子株式会社 Manufacturing method for a wire grid polarizer
JP2009300655A (en) * 2008-06-12 2009-12-24 Asahi Kasei E-Materials Corp Absorption type wire grid polarizer
WO2010005059A1 (en) 2008-07-10 2010-01-14 旭硝子株式会社 Wire grid type polarizer, and method for manufacturing the polarizer
JP2010085722A (en) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd Optical element and pattern formation method
JP2010169722A (en) * 2009-01-20 2010-08-05 Seiko Epson Corp Method of manufacturing optical element, and optical element
WO2010090268A1 (en) 2009-02-05 2010-08-12 旭硝子株式会社 Wire grid polarizer and manufacturing method therefor
US20100227054A1 (en) * 2009-03-06 2010-09-09 Seiko Epson Corporation Method of manufacturing polarization element
JP2010210706A (en) * 2009-03-06 2010-09-24 Seiko Epson Corp Polarizing element
JP2010210705A (en) * 2009-03-06 2010-09-24 Seiko Epson Corp Polarizing element and method of manufacturing the same, projection type display device, liquid crystal device, and electronic device
JP2010243872A (en) * 2009-04-08 2010-10-28 Seiko Epson Corp Method of manufacturing polarizing element
WO2010126110A1 (en) * 2009-04-30 2010-11-04 旭硝子株式会社 Wire-grid polarizer and method of fabricating same
JP2010286844A (en) * 2010-07-29 2010-12-24 Asahi Kasei E-Materials Corp Wire grid polarizer
JP2011118343A (en) * 2009-10-30 2011-06-16 Seiko Epson Corp Polarizing element, method for manufacturing the same, liquid crystal device and electronic device
JP2012002971A (en) * 2010-06-16 2012-01-05 Seiko Epson Corp Polarizing element and method for manufacturing the same, liquid crystal device and electronic equipment
US8133428B2 (en) 2007-09-28 2012-03-13 Asahi Glass Company, Limited Photocurable composition, process for producing fine patterned product and optical element
US8154690B2 (en) 2006-06-28 2012-04-10 Cheil Industries, Inc. Polarized-light splitting device, display including the same, method of manufacturing the same, and apparatus for manufacturing the same
KR101467281B1 (en) * 2008-03-19 2014-12-02 엘지이노텍 주식회사 Apparatus for nano metal wire grid by oblique deposition and method for protection coating thereof
JP2015528581A (en) * 2012-08-10 2015-09-28 テマセク ポリテクニックTemasek Polytechnic Optical diffraction grating
JP2015180947A (en) * 2007-02-06 2015-10-15 ソニー株式会社 Polarizing element and transmissive liquid crystal projector
WO2016163390A1 (en) * 2015-04-07 2016-10-13 綜研化学株式会社 Optical element and polarizing plate
CN107894627A (en) * 2017-12-28 2018-04-10 深圳市华星光电技术有限公司 Wiregrating polaroid, display panel and display device
KR102166765B1 (en) * 2019-05-30 2020-10-16 한국과학기술원 The Optical Filter Intergrated With A Nano-Wire Gride Polarization Fliter and An Infrared Cut Filter
WO2020262616A1 (en) * 2019-06-28 2020-12-30 デクセリアルズ株式会社 Polarizing element, method for producing polarizing element and head-up display device
KR102261988B1 (en) * 2019-11-29 2021-06-08 한국과학기술원 The Optical filter and The fabrication Method of The Same
JP2021113968A (en) * 2019-06-28 2021-08-05 デクセリアルズ株式会社 Polarization element, method for manufacturing polarization element, and head-up display device
CN113242990A (en) * 2018-12-17 2021-08-10 应用材料公司 PVD directional deposition for packaging
WO2023120736A1 (en) * 2021-12-24 2023-06-29 デクセリアルズ株式会社 Wire grid polarizer, method for manufacturing wire grid polarizer, projection display device, and vehicle

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230102A (en) * 1984-04-28 1985-11-15 Japan Spectroscopic Co Infrared wire grating polarizer for vapor deposition in both ways and its manufacture
JPH04211202A (en) * 1990-03-19 1992-08-03 Canon Inc Reflection type diffraction grating and device by use of same deffraction grating
JPH04256904A (en) * 1991-02-08 1992-09-11 Shojiro Kawakami Polarizing element
JPH07294730A (en) * 1994-04-27 1995-11-10 Kyocera Corp Production of polarizing element
JPH0815514A (en) * 1994-06-24 1996-01-19 Canon Inc Reflection type diffraction grating
JPH09146007A (en) * 1995-11-17 1997-06-06 Olympus Optical Co Ltd Optical system
JPH1073722A (en) * 1996-08-30 1998-03-17 Sony Corp Polarizing optical element and its production
JP2000147229A (en) * 1998-11-17 2000-05-26 Corning Inc Duplication of pattern of nanometer scale
JP2001330728A (en) * 2000-05-22 2001-11-30 Jasco Corp Wire grid type polarizer and its manufacturing method
JP2002098820A (en) * 2000-09-21 2002-04-05 Nippon Sheet Glass Co Ltd Reflection type diffraction grating
JP2002328222A (en) * 2001-04-26 2002-11-15 Nippon Sheet Glass Co Ltd Polarizing element and method for manufacturing the same
JP2003066229A (en) * 2001-08-28 2003-03-05 Kyocera Corp Stripe polarizer
JP2003215318A (en) * 2002-01-24 2003-07-30 Shigeto Omori Optical element for illumination, its manufacturing method, and video display device
JP2003315518A (en) * 2002-04-19 2003-11-06 Nippon Sheet Glass Co Ltd Diffraction optical element
JP2005517973A (en) * 2002-02-12 2005-06-16 ユナキス・バルツェルス・アクチェンゲゼルシャフト Ingredients containing submicron hollow spaces
JP2006514751A (en) * 2002-08-21 2006-05-11 ナノオプト コーポレーション Method and system for providing polarization of a beam

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230102A (en) * 1984-04-28 1985-11-15 Japan Spectroscopic Co Infrared wire grating polarizer for vapor deposition in both ways and its manufacture
JPH04211202A (en) * 1990-03-19 1992-08-03 Canon Inc Reflection type diffraction grating and device by use of same deffraction grating
JPH04256904A (en) * 1991-02-08 1992-09-11 Shojiro Kawakami Polarizing element
JPH07294730A (en) * 1994-04-27 1995-11-10 Kyocera Corp Production of polarizing element
JPH0815514A (en) * 1994-06-24 1996-01-19 Canon Inc Reflection type diffraction grating
JPH09146007A (en) * 1995-11-17 1997-06-06 Olympus Optical Co Ltd Optical system
JPH1073722A (en) * 1996-08-30 1998-03-17 Sony Corp Polarizing optical element and its production
JP2000147229A (en) * 1998-11-17 2000-05-26 Corning Inc Duplication of pattern of nanometer scale
JP2001330728A (en) * 2000-05-22 2001-11-30 Jasco Corp Wire grid type polarizer and its manufacturing method
JP2002098820A (en) * 2000-09-21 2002-04-05 Nippon Sheet Glass Co Ltd Reflection type diffraction grating
JP2002328222A (en) * 2001-04-26 2002-11-15 Nippon Sheet Glass Co Ltd Polarizing element and method for manufacturing the same
JP2003066229A (en) * 2001-08-28 2003-03-05 Kyocera Corp Stripe polarizer
JP2003215318A (en) * 2002-01-24 2003-07-30 Shigeto Omori Optical element for illumination, its manufacturing method, and video display device
JP2005517973A (en) * 2002-02-12 2005-06-16 ユナキス・バルツェルス・アクチェンゲゼルシャフト Ingredients containing submicron hollow spaces
JP2003315518A (en) * 2002-04-19 2003-11-06 Nippon Sheet Glass Co Ltd Diffraction optical element
JP2006514751A (en) * 2002-08-21 2006-05-11 ナノオプト コーポレーション Method and system for providing polarization of a beam

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650931B2 (en) * 2004-12-14 2011-03-16 大日本印刷株式会社 Polarization separation element
JP2006171151A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Polarized light separating element
JP2007183524A (en) * 2006-01-06 2007-07-19 Cheil Industries Inc Polarizing optical element and liquid crystal display device using it
KR100868846B1 (en) 2006-03-09 2008-11-14 주식회사 엘지화학 Nano Wire Grid Polarizer and Fabrication Method Thereof
US8154690B2 (en) 2006-06-28 2012-04-10 Cheil Industries, Inc. Polarized-light splitting device, display including the same, method of manufacturing the same, and apparatus for manufacturing the same
KR100912261B1 (en) 2006-12-07 2009-08-17 제일모직주식회사 Wire grid polarizer and method of manufacturing thereof
JP2008181112A (en) * 2006-12-26 2008-08-07 Toray Ind Inc Reflection type polarizer, method of manufacturing the same and liquid crystal display device using the same
USRE48640E1 (en) 2007-02-06 2021-07-13 Dexerials Corporation Polarizing element and liquid crystal projector
JP2021063997A (en) * 2007-02-06 2021-04-22 ソニー株式会社 Polarizer and transmissive liquid crystal projector
JP2015180947A (en) * 2007-02-06 2015-10-15 ソニー株式会社 Polarizing element and transmissive liquid crystal projector
JP2016167094A (en) * 2007-02-06 2016-09-15 ソニー株式会社 Polarization element and transmissive liquid crystal projector
USRE46560E1 (en) 2007-02-06 2017-09-26 Sony Corporation Polarizing element and liquid crystal projector
JP2008268297A (en) * 2007-04-16 2008-11-06 Asahi Kasei Corp Thin polarizing plate
JP2008268298A (en) * 2007-04-16 2008-11-06 Asahi Kasei Corp Polarizing plate with high degree of polarization
US8133428B2 (en) 2007-09-28 2012-03-13 Asahi Glass Company, Limited Photocurable composition, process for producing fine patterned product and optical element
JP2009157071A (en) * 2007-12-26 2009-07-16 Cheil Industries Inc Wire grid polarizer and its manufacturing method
KR101467281B1 (en) * 2008-03-19 2014-12-02 엘지이노텍 주식회사 Apparatus for nano metal wire grid by oblique deposition and method for protection coating thereof
WO2009123290A1 (en) 2008-04-03 2009-10-08 旭硝子株式会社 Wire grid polarizer and method for manufacturing the same
JP5365626B2 (en) * 2008-04-08 2013-12-11 旭硝子株式会社 Manufacturing method of wire grid type polarizer
WO2009125751A1 (en) * 2008-04-08 2009-10-15 旭硝子株式会社 Manufacturing method for a wire grid polarizer
US8445058B2 (en) 2008-04-08 2013-05-21 Asahi Glass Company, Limited Process for producing wire-grid polarizer
JP2009300655A (en) * 2008-06-12 2009-12-24 Asahi Kasei E-Materials Corp Absorption type wire grid polarizer
TWI479206B (en) * 2008-07-10 2015-04-01 Asahi Glass Co Ltd Wire grid type polarizing element and its manufacturing method
JP5459210B2 (en) * 2008-07-10 2014-04-02 旭硝子株式会社 Wire grid polarizer and method of manufacturing the same
WO2010005059A1 (en) 2008-07-10 2010-01-14 旭硝子株式会社 Wire grid type polarizer, and method for manufacturing the polarizer
JP2010085722A (en) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd Optical element and pattern formation method
JP2010169722A (en) * 2009-01-20 2010-08-05 Seiko Epson Corp Method of manufacturing optical element, and optical element
WO2010090268A1 (en) 2009-02-05 2010-08-12 旭硝子株式会社 Wire grid polarizer and manufacturing method therefor
US8730575B2 (en) 2009-02-05 2014-05-20 Asahi Glass Company, Limited Wire-grid polarizer and process for producing the same
US20100227054A1 (en) * 2009-03-06 2010-09-09 Seiko Epson Corporation Method of manufacturing polarization element
JP2010210707A (en) * 2009-03-06 2010-09-24 Seiko Epson Corp Method of manufacturing polarizing element
JP2010210706A (en) * 2009-03-06 2010-09-24 Seiko Epson Corp Polarizing element
CN101900849A (en) * 2009-03-06 2010-12-01 精工爱普生株式会社 Polarizer and manufacture method thereof, projection type image display apparatus, liquid-crystal apparatus, electronic equipment
US8488070B2 (en) 2009-03-06 2013-07-16 Seiko Epson Corporation Polarizing element and method for manufacturing the same, projection type display, liquid crystal device, and electronic apparatus
JP2010210705A (en) * 2009-03-06 2010-09-24 Seiko Epson Corp Polarizing element and method of manufacturing the same, projection type display device, liquid crystal device, and electronic device
JP2010243872A (en) * 2009-04-08 2010-10-28 Seiko Epson Corp Method of manufacturing polarizing element
JPWO2010126110A1 (en) * 2009-04-30 2012-11-01 旭硝子株式会社 Wire grid polarizer and method of manufacturing the same
WO2010126110A1 (en) * 2009-04-30 2010-11-04 旭硝子株式会社 Wire-grid polarizer and method of fabricating same
US8687151B2 (en) 2009-10-30 2014-04-01 Seiko Epson Corporation Polarization element comprising a plurality of metal protruding sections formed in a striped manner having first and second heat radiation sections tilted in opposite directions
JP2011118343A (en) * 2009-10-30 2011-06-16 Seiko Epson Corp Polarizing element, method for manufacturing the same, liquid crystal device and electronic device
USRE47179E1 (en) 2010-06-16 2018-12-25 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
USRE45993E1 (en) 2010-06-16 2016-05-03 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
USRE49885E1 (en) 2010-06-16 2024-03-26 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
JP2012002971A (en) * 2010-06-16 2012-01-05 Seiko Epson Corp Polarizing element and method for manufacturing the same, liquid crystal device and electronic equipment
JP2010286844A (en) * 2010-07-29 2010-12-24 Asahi Kasei E-Materials Corp Wire grid polarizer
EP2883089A4 (en) * 2012-08-10 2016-04-06 Temasek Polytechnic Optical grating
JP2015528581A (en) * 2012-08-10 2015-09-28 テマセク ポリテクニックTemasek Polytechnic Optical diffraction grating
WO2016163390A1 (en) * 2015-04-07 2016-10-13 綜研化学株式会社 Optical element and polarizing plate
CN107894627A (en) * 2017-12-28 2018-04-10 深圳市华星光电技术有限公司 Wiregrating polaroid, display panel and display device
CN113242990A (en) * 2018-12-17 2021-08-10 应用材料公司 PVD directional deposition for packaging
US11851740B2 (en) 2018-12-17 2023-12-26 Applied Materials, Inc. PVD directional deposition for encapsulation
EP3899616A4 (en) * 2018-12-17 2022-08-17 Applied Materials, Inc. Pvd directional deposition for encapsulation
KR102166765B1 (en) * 2019-05-30 2020-10-16 한국과학기술원 The Optical Filter Intergrated With A Nano-Wire Gride Polarization Fliter and An Infrared Cut Filter
WO2020242236A1 (en) * 2019-05-30 2020-12-03 한국과학기술원 Nano wire grid polarization and infrared ray blocking integrated optical filter
JP2021113968A (en) * 2019-06-28 2021-08-05 デクセリアルズ株式会社 Polarization element, method for manufacturing polarization element, and head-up display device
CN114072707A (en) * 2019-06-28 2022-02-18 迪睿合株式会社 Polarizing element, method for manufacturing polarizing element, and head-up display device
EP3992679A4 (en) * 2019-06-28 2023-08-09 Dexerials Corporation Polarizing element, method for producing polarizing element and head-up display device
WO2020262616A1 (en) * 2019-06-28 2020-12-30 デクセリアルズ株式会社 Polarizing element, method for producing polarizing element and head-up display device
CN114072707B (en) * 2019-06-28 2024-08-16 迪睿合株式会社 Polarizing element, method for manufacturing polarizing element, and head-up display device
KR102261988B1 (en) * 2019-11-29 2021-06-08 한국과학기술원 The Optical filter and The fabrication Method of The Same
WO2023120736A1 (en) * 2021-12-24 2023-06-29 デクセリアルズ株式会社 Wire grid polarizer, method for manufacturing wire grid polarizer, projection display device, and vehicle
WO2023120735A1 (en) * 2021-12-24 2023-06-29 デクセリアルズ株式会社 Wire grid polarizer, method for manufacturing wire grid polarizer, projection display device, vehicle, and photo-curable acrylic resin for imprinting

Similar Documents

Publication Publication Date Title
JP2006003447A (en) Polarized light separating element and manufacturing method thereof
US9988724B2 (en) Inorganic polarizing plate having trapezoid shaped metal layers and production method thereof
JP6550681B2 (en) Polarizer with variable distance between wires
JP4612844B2 (en) Three-dimensional periodic structure and functional element having the same
US7727410B2 (en) Process for formation of three-dimensional photonic crystal
JP2006106758A (en) Wire grid polarizer and manufacturing method therefor
JP6232731B2 (en) Manufacturing method of imprint mold
EP2788811A1 (en) Control of light wavefronts
JP2006330221A (en) Polarizer
JP2010032659A (en) Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor
JP2010117634A (en) Wire grid polarizer, and method of manufacturing the same
CN115461651A (en) Reflective optical super-surface film
JP4677276B2 (en) Method for producing three-dimensional photonic crystal
US7463814B2 (en) Method for fabricating three-dimensional photonic crystal
US8574792B2 (en) Photomask including super lens and manufacturing method thereof
KR20220146493A (en) Pellicle film, pellicle, film, graphene sheet and manufacturing method thereof
US20090168170A1 (en) Wire grid polarizer and method for fabricating the same
JP2010117646A (en) Functional grid structure and method of manufacturing the same
JP2009192586A (en) Wire grid polarizer and display device using the same
KR20180022105A (en) Nano antenna structure and manufacturing method of the same
JP6136445B2 (en) Reflective phase shift mask and manufacturing method
KR100647513B1 (en) Nano-pattern mold for wire grid polarizers and method for forming thereof
TWI743680B (en) Polarizer substrate and manufacturing method thereof
JP2007193252A (en) Method of manufacturing three-dimensional photonic crystal
JP2007316270A (en) Manufacturing method of optical component, retardation element and polarizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A977 Report on retrieval

Effective date: 20091027

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

A131 Notification of reasons for refusal

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601