JP2017129887A - Polarization element and manufacturing method of polarization element - Google Patents

Polarization element and manufacturing method of polarization element Download PDF

Info

Publication number
JP2017129887A
JP2017129887A JP2017091172A JP2017091172A JP2017129887A JP 2017129887 A JP2017129887 A JP 2017129887A JP 2017091172 A JP2017091172 A JP 2017091172A JP 2017091172 A JP2017091172 A JP 2017091172A JP 2017129887 A JP2017129887 A JP 2017129887A
Authority
JP
Japan
Prior art keywords
polarizing element
substrate
tapered surface
grid pattern
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017091172A
Other languages
Japanese (ja)
Inventor
佐々木 浩司
Koji Sasaki
浩司 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2017091172A priority Critical patent/JP2017129887A/en
Publication of JP2017129887A publication Critical patent/JP2017129887A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polarization element that can provide a desired polarization property and has good transmissivity.SOLUTION: A polarization element includes a substrate transparent to light from a usage band, and a grid pattern made of translucent material in which a plurality of convex parts continuously arranged in a single direction in a plane of the substrate are formed on a surface of the substrate at a pitch smaller than wavelength of the light from the usage band. The convex part comprises a base having a rectangular cross section, and a tapered surface part formed at a leading end of the base. A fine particle layer made of inorganic material is laminated on at least one surface of the tapered surface part, and the fine particle layer does not protrude from a side face of the base.SELECTED DRAWING: Figure 1

Description

本発明は、偏光板や偏光フィルタ等に代表される偏光素子、及び偏光素子の製造方法に関する。   The present invention relates to a polarizing element typified by a polarizing plate and a polarizing filter, and a method for manufacturing the polarizing element.

液晶表示装置、特に透過型液晶表示装置では、その画像形成原理から液晶パネル表面に偏光板を配置することが必要不可欠である。近年、液晶表示装置は、高輝度・小型化が進められており、これに伴って偏光板にも高い耐熱性・耐光性が求められている。例えば、透過型液晶プロジェクターのような光量の大きな光源を使用する液晶表示装置の場合には、偏光板は強い輻射線を受ける。よって、これらに使用される偏光板には優れた耐熱性が必要となる。   In a liquid crystal display device, particularly a transmissive liquid crystal display device, it is indispensable to dispose a polarizing plate on the surface of the liquid crystal panel from the principle of image formation. In recent years, liquid crystal display devices have been promoted with high brightness and downsizing, and accordingly, high heat resistance and light resistance are also required for polarizing plates. For example, in the case of a liquid crystal display device that uses a light source with a large amount of light, such as a transmissive liquid crystal projector, the polarizing plate receives strong radiation. Therefore, the heat resistance required for the polarizing plate used for these is required.

従来の有機フィルムを用いた偏光板は、耐熱性・耐光性が不十分で、高輝度光源からの強い輻射熱に対し偏光特性の著しい劣化が確認されている。これに対し、金属の微細グリッドからなるワイヤグリッド型の偏光板が提案されている。ワイヤグリッド型の偏光板は、基板上に複数の金属細線を格子状に形成したもので、金属細線と平行する偏光成分を吸収または反射し、金属細線と直交する偏光成分を透過させることで所定の偏光特性を出現させる。   A conventional polarizing plate using an organic film has insufficient heat resistance and light resistance, and it has been confirmed that polarization characteristics are significantly deteriorated against strong radiant heat from a high brightness light source. On the other hand, a wire grid type polarizing plate made of a fine metal grid has been proposed. A wire grid type polarizing plate is formed by forming a plurality of fine metal wires in a lattice pattern on a substrate, and absorbs or reflects a polarized light component parallel to the fine metal wire, and transmits a polarized light component orthogonal to the fine metal wire. The polarization characteristics of

金属の微細グリッドは、基板上にアルミニウムなどの金属膜をスパッタ法や蒸着法などで成膜し、この金属膜上に干渉露光法などのフォトリソグラフィ技術によって高密度微細レジストパターンを形成する。しかし、高密度微細レジストパターンの露光時において、金属膜表面からの反射干渉光が生じることにより、レジストパターン形状は単純な矩形ではなく、高さ方向に対し幅が局所的にくびれたものとなる。この対策として、レジスト層の下に反射防止膜(BARC)を塗布することでくびれは低減される。しかし、完全にくびれを抑えることはできない。   In the metal fine grid, a metal film such as aluminum is formed on a substrate by sputtering or vapor deposition, and a high-density fine resist pattern is formed on the metal film by a photolithography technique such as interference exposure. However, when the high density fine resist pattern is exposed, reflected interference light from the surface of the metal film is generated, so that the resist pattern shape is not a simple rectangle, but the width is locally narrowed in the height direction. . As a countermeasure, the constriction is reduced by applying an antireflection film (BARC) under the resist layer. However, the constriction cannot be completely suppressed.

このレジストパターンにくびれが生じると、レジストパターンが倒れやすくなり、パターンが倒れてしまうと解像したことにならず、よってパターン倒れは解像性を劣化させることにも繋がる。すなわち、レジストパターンでは、倒れてしまうと全く加工マスクとはなりえず、所望の偏光特性を得ることができなくなる。   When the constriction occurs in the resist pattern, the resist pattern easily falls, and when the pattern falls, the resist pattern is not resolved, and therefore the pattern collapse leads to deterioration of resolution. In other words, if the resist pattern is tilted, it cannot be a processed mask at all, and desired polarization characteristics cannot be obtained.

また、レジストパターンのくびれの影響は、パターン倒れの問題だけでなく、レジストパターンをドライエッチング時のマスクとして用いる場合には、エッチングレートの変動などプロセス不安定性の要因となり、生産性が悪く、製造コストも高くなる。   In addition, the effect of the constriction of the resist pattern is not only a problem of pattern collapse, but also when the resist pattern is used as a mask during dry etching, it causes process instability such as fluctuation of the etching rate, resulting in poor productivity and manufacturing. Costs also increase.

特開2007−148344号公報JP 2007-148344 A

このような課題に対し、可視光に対し透明な基板上にSiO2等の可視光に対して透明な材料でパターン形成層を設け、格子状の凹凸部を形成した後、基板表面に対して斜め方向から当該凹凸部の頂部またはその少なくとも一側面部にアルミニウム系材料又は半導体材料からなる無機微粒子層を設けた偏光素子が提案されている(特許文献1参照)。この偏光板によれば、研磨シートによるラッピング、ラビングあるいは金型転写技術等によってテクスチャ構造の凹凸部を形成するため、パターンエッチングを行うことなく所望の微
細形状を有する無機微粒子層を形成することができる。
For such a problem, a pattern forming layer is provided with a material transparent to visible light such as SiO2 on a substrate transparent to visible light, and after forming a lattice-shaped uneven portion, the substrate is inclined with respect to the substrate surface. A polarizing element has been proposed in which an inorganic fine particle layer made of an aluminum-based material or a semiconductor material is provided on the top of the uneven portion or at least one side surface thereof from the direction (see Patent Document 1). According to this polarizing plate, an uneven portion having a texture structure is formed by lapping, rubbing or mold transfer technology using an abrasive sheet, and therefore, an inorganic fine particle layer having a desired fine shape can be formed without performing pattern etching. it can.

しかし、凹凸部の形状によっては、図8に示すように、基板50の表面に対して斜め方向から金属微粒子51を付着させると、凸部52と凸部52の間53に金属微粒子51が迫り出してしまい、光Lの透過率が下がってしまう。この傾向は、格子パターンが微細化するにしたがって顕著となる。偏光素子において透過率は、コントラストとともに特性評価の上で重要な要素であることから、所望の格子パターンを形成するとともに、透過率を損なうことのない偏光素子が望まれる。   However, depending on the shape of the concavo-convex portion, as shown in FIG. 8, when the metal fine particles 51 are attached to the surface of the substrate 50 from an oblique direction, the metal fine particles 51 approach the space 53 between the convex portions 52. As a result, the transmittance of the light L is lowered. This tendency becomes more prominent as the lattice pattern becomes finer. In the polarizing element, the transmittance is an important factor for evaluating characteristics as well as the contrast. Therefore, a polarizing element that forms a desired lattice pattern and does not impair the transmittance is desired.

本発明は上述の問題に鑑みてなされ、可視光域において所望の偏光特性が得られ、かつ光の透過率も良好な偏光素子及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a polarizing element capable of obtaining desired polarization characteristics in the visible light region and having good light transmittance and a method for manufacturing the same.

上述した課題を解決するために、本発明に係る偏光素子は、使用帯域の光に対して透明な基板と、上記基板表面に、該基板の面内一方向に連続する凸部が使用帯域の光の波長よりも小さいピッチで複数形成された、透光性材料からなるグリッドパターンとを有し、上記凸部は、断面矩形状の基部と、上記基部の先端に形成されるテーパ面部とからなり、該テーパ面部の少なくとも一面には、無機材料からなる微粒子層が積層され、上記微粒子層は上記基部の側面よりはみださないものである。   In order to solve the above-described problems, a polarizing element according to the present invention includes a substrate transparent to light in a use band, and a convex portion continuous in one direction in the plane of the substrate on the substrate surface. A plurality of grid patterns made of a translucent material formed at a pitch smaller than the wavelength of light, and the convex portion includes a base portion having a rectangular cross section and a tapered surface portion formed at the tip of the base portion. Thus, a fine particle layer made of an inorganic material is laminated on at least one surface of the tapered surface portion, and the fine particle layer does not protrude beyond the side surface of the base portion.

また、本発明に係る偏光素子の製造方法は、透光性基板に、上記透光性基板の面内一方向に連続し、断面矩形状の基部及び上記基部の先端に形成されるテーパ面部とからなる凸部が使用帯域の光の波長よりも小さいピッチで複数形成されたグリッドパターンを形成する工程と、上記テーパ面部に無機微粒子を斜め方向から積層させて、上記基部の側面よりはみださない微粒子層を形成する工程とを有する。   Further, the manufacturing method of the polarizing element according to the present invention includes a translucent substrate, a base portion having a rectangular cross section that is continuous in one in-plane direction of the translucent substrate, and a tapered surface portion formed at the tip of the base portion. And a step of forming a grid pattern in which a plurality of convex portions are formed at a pitch smaller than the wavelength of light in the use band, and inorganic fine particles are laminated on the tapered surface portion from an oblique direction so as to protrude beyond the side surface of the base portion. Forming a fine particle layer.

本発明によれば、偏光素子は、グリッドパターンを構成する凸部に積層された微粒子層がテーパ面部に堆積され基部の側面よりはみ出すことがない。すなわち、グリッドパターンは、凸部間に微粒子層がはみ出すことがないことから、凸部間を透過する光を遮ることがなく、基板の透過率を高く維持することができる。   According to the present invention, in the polarizing element, the fine particle layer laminated on the convex portion constituting the grid pattern is deposited on the tapered surface portion and does not protrude from the side surface of the base portion. That is, since the fine particle layer does not protrude between the convex portions in the grid pattern, the light transmitted between the convex portions is not blocked, and the transmittance of the substrate can be maintained high.

また、偏光素子は、基板に金属膜を設けることなく、直接グリッドパターンを設けているため、干渉露光法などのフォトリソグラフィ技術によってレジストパターンを形成しても、パターン倒れやくびれの発生もないことから、エッチングにより高精度に微細なグリッドパターンを形成することができる。   In addition, since the polarizing element is directly provided with a grid pattern without providing a metal film on the substrate, there is no occurrence of pattern collapse or constriction even if a resist pattern is formed by photolithography technology such as interference exposure. Thus, a fine grid pattern can be formed with high accuracy by etching.

さらに、偏光素子は、等方性エッチングと異方性エッチングを切り替えることにより、基部と、基部の上面に設けられたテーパ面部を有する凸部を形成する。この凸部は、基部を設けることにより、所定の高さを備える。したがって、偏光素子は、高いコントラストを有するグリッドパターンを形成することができる。   Furthermore, the polarizing element forms a convex portion having a base portion and a tapered surface portion provided on the upper surface of the base portion by switching between isotropic etching and anisotropic etching. The convex portion has a predetermined height by providing a base. Therefore, the polarizing element can form a grid pattern having high contrast.

本発明が適用された偏光素子を示す図であり、(a)は断面図、(b)は平面図である。It is a figure which shows the polarizing element to which this invention was applied, (a) is sectional drawing, (b) is a top view. グリッドパターン3の凸部を示す断面図であり、(a)は微粒子層の積層前、(b)は微粒子層の積層後を示す図である。It is sectional drawing which shows the convex part of the grid pattern 3, (a) is a figure before lamination | stacking of a fine particle layer, (b) is a figure which shows after lamination | stacking of a fine particle layer. 本発明が適用された偏光素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the polarizing element to which this invention was applied. 微粒子層の積層方法を示す図である。It is a figure which shows the lamination | stacking method of a fine particle layer. グリッドパターンの凸部の高さT及び下部幅W1と、偏光素子の530〜580nm帯域の光の平均透過率との関係を示すグラフである。It is a graph which shows the relationship between the height T and the lower part width W1 of the convex part of a grid pattern, and the average transmittance | permeability of the light of the 530-580 nm band of a polarizing element. 偏光素子の530〜580nm帯域の光の平均透過率と、凸部の下部幅W1/凸部のピッチPとの関係を示すグラフである。It is a graph which shows the relationship between the average transmittance | permeability of the light of a 530-580 nm band of a polarizing element, and the pitch P of the lower part width W1 / convex part of a convex part. 偏光素子の530〜580nm帯域の光の平均透過率と、凸部10のテーパ面部10bの角度Aとの関係を示すグラフである。4 is a graph showing the relationship between the average transmittance of light in the 530 to 580 nm band of the polarizing element and the angle A of the tapered surface portion 10b of the convex portion 10; グリッドパターンを示すSEM画像である。It is a SEM image which shows a grid pattern. 従来の凹凸部に微粒子層を形成したグリッドパターンを示す断面図である。It is sectional drawing which shows the grid pattern which formed the fine particle layer in the conventional uneven | corrugated | grooved part.

以下、本発明が適用された偏光素子、及び偏光素子の製造方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, a polarizing element to which the present invention is applied and a method for manufacturing the polarizing element will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

[偏光素子1の構成]
本発明が適用された偏光素子1は、図1(a)及び図1(b)に示すように、使用帯域の光に対して透明な基板2と、基板2の表面に透光性材料で形成されたグリッドパターン3と、グリッドパターン3の凸部10上面に形成された無機材料からなる微粒子層4とを有する。偏光素子1は、基板2上に形成された島状の無機微粒子の面内軸方向での光学異方性による光吸収率の違いを利用して所期の偏光特性を出現させる共鳴吸収型の無機偏光素子である。
[Configuration of Polarizing Element 1]
As shown in FIG. 1A and FIG. 1B, a polarizing element 1 to which the present invention is applied includes a substrate 2 that is transparent to light in a use band, and a transparent material on the surface of the substrate 2. It has the formed grid pattern 3 and the fine particle layer 4 made of an inorganic material formed on the upper surface of the convex portion 10 of the grid pattern 3. The polarizing element 1 is a resonance absorption type that uses the difference in optical absorptance due to the optical anisotropy in the in-plane axial direction of the island-shaped inorganic fine particles formed on the substrate 2 to make the desired polarization characteristics appear. It is an inorganic polarizing element.

基板2は、使用帯域、例えば可視光に対して透明な無機材料、有機材料のいずれも用いることができるが、ガラスやセラミック材料等で構成することにより耐熱性が高まることから好適である。また、水晶やサファイアなど熱伝導率の高い材料を用いることにより、放熱性を高め、耐熱性を向上させることができる。本実施形態では、基板2として、ガラス、特に水晶が好適に用いられる。   The substrate 2 can be used in any band, for example, an inorganic material or an organic material that is transparent to visible light, but is preferably made of glass or a ceramic material because heat resistance is increased. Further, by using a material having high thermal conductivity such as quartz or sapphire, heat dissipation can be improved and heat resistance can be improved. In the present embodiment, glass, particularly quartz is preferably used as the substrate 2.

グリッドパターン3は、基板2の表面にエッチング処理等の微細加工を施すことにより、所定の格子状に形成される。このグリッドパターン3は、微粒子層4の下地層を形成するもので、グリッドパターン3の加工サイズやパターン形状によって微粒子層4の形状に依存する偏光素子1の光学特性が決定される。グリッドパターン3は、格子状に形成されることで、その凸部10の上面に形成される微粒子層4に形状異方性を付与している。   The grid pattern 3 is formed in a predetermined lattice shape by performing fine processing such as etching on the surface of the substrate 2. The grid pattern 3 forms an underlayer of the fine particle layer 4, and the optical characteristics of the polarizing element 1 depending on the shape of the fine particle layer 4 are determined by the processing size and pattern shape of the grid pattern 3. The grid pattern 3 is formed in a lattice shape, thereby imparting shape anisotropy to the fine particle layer 4 formed on the upper surface of the convex portion 10.

グリッドパターン3は、基板2の面内一方向、図1(B)中では矢印Y方向に連続する凸部10が使用帯域の光の波長よりも小さいピッチで、図1(B)中矢印X方向に亘って複数形成されることにより構成される。図2に示すように、凸部10は、図1(B)中矢印X方向の断面視で、略矩形状の基部10aと、基部10aの先端に形成され、凸部10の両側から頂部に向かうテーパ面部10bとからなり、テーパ面部10bの少なくとも一面に無機材料からなる微粒子層4が積層されている。   The grid pattern 3 has a pitch that is smaller than the wavelength of the light in the band of use, with the convex portions 10 continuing in one direction in the plane of the substrate 2, in FIG. It is configured by forming a plurality over the direction. As shown in FIG. 2, the convex portion 10 is formed in a substantially rectangular base portion 10 a and the tip of the base portion 10 a in a cross-sectional view in the arrow X direction in FIG. The fine particle layer 4 made of an inorganic material is laminated on at least one surface of the tapered surface portion 10b.

偏光素子1は、凸部10のテーパ面部10bに微粒子層4を形成することで、基板2の表面に無機微粒子が島状に分布される。この微粒子層4は、例えばアルミニウム微粒子からなり、後述するように、基板2の表面に対して斜め方向から成膜するイオンビームスパッタ法で形成される。これにより、微粒子層4は、凸部10のテーパ面部10bの少なくとも一面にアルミニウム微粒子が積層される。   In the polarizing element 1, the inorganic fine particles are distributed in the form of islands on the surface of the substrate 2 by forming the fine particle layer 4 on the tapered surface portion 10 b of the convex portion 10. The fine particle layer 4 is made of, for example, aluminum fine particles, and is formed by an ion beam sputtering method in which a film is formed obliquely with respect to the surface of the substrate 2 as will be described later. Thereby, in the fine particle layer 4, aluminum fine particles are laminated on at least one surface of the tapered surface portion 10b of the convex portion 10.

このとき、凸部10は、微粒子層4がテーパ面部10bに堆積され基部10aの側面よりはみ出すことがない。すなわち、グリッドパターン3は、凸部10の上部ライン幅/下部ライン幅が1.0未満となり、凸部10間に微粒子層4がはみ出すことがないことから、凸部10間を透過する光を遮ることがなく、基板2の透過率を高く維持することができる。また、凸部10は、基部10aを設けることにより、所定の高さを備える。したがって、グリッドパターン3は、高いコントラストを有する。   At this time, the convex portion 10 does not protrude from the side surface of the base portion 10a because the fine particle layer 4 is deposited on the tapered surface portion 10b. That is, in the grid pattern 3, the upper line width / lower line width of the convex portion 10 is less than 1.0, and the fine particle layer 4 does not protrude between the convex portions 10, so that light transmitted between the convex portions 10 is transmitted. The transmittance of the substrate 2 can be kept high without being blocked. Moreover, the convex part 10 is provided with predetermined | prescribed height by providing the base 10a. Therefore, the grid pattern 3 has a high contrast.

グリッドパターン3は、所期の偏光特性(消光比)や対象とする可視光波長領域に応じて加工サイズ、パターン形状が適宜設定される。具体的に、グリッドパターン3は、凸部10のピッチP:100nm〜250nm
凸部10の下部幅W1:50nm〜200nm
凸部10の下部幅W1/凸部10のピッチP:0.55以上
凸部10の高さT:20nm〜200nm
テーパ面部10bのテーパ角度A:30°〜75°
凸部10の上部及び微粒子層4からなる上部幅W2/凸部10の下部幅W1:1.0未満である。また、微粒子層4の膜厚は例えば100nm以下である。
The grid pattern 3 is appropriately set in processing size and pattern shape in accordance with an intended polarization characteristic (extinction ratio) and a target visible light wavelength region. Specifically, the grid pattern 3 has a pitch P of the convex portions 10 of 100 nm to 250 nm.
Lower width W1 of the convex part 10: 50 nm to 200 nm
Lower width W1 of the convex portion 10 / Pitch P of the convex portion 10: 0.55 or more Height T of the convex portion 10: 20 nm to 200 nm
Taper angle A of the tapered surface portion 10b: 30 ° to 75 °
The upper width W2 of the upper portion of the convex portion 10 and the fine particle layer 4 / the lower width W1 of the convex portion 10 is less than 1.0. The film thickness of the fine particle layer 4 is, for example, 100 nm or less.

[偏光素子1の製造方法]
次いで、偏光素子の製造方法について説明する。先ず、図3(a)に示すように、水晶等の透光性の基板2を用意する。次いで、図3(b)に示すように、基板2の表面にグリッドパターン3を形成する。グリッドパターン3の形成方法としては、例えば、グリッドパターン3に応じたレジストマスクを貼着し、露光、現像した後、エッチングを行う。このとき、異方等方性エッチングを行った後、等方性エッチングを行うことにより、断面略矩形状の基部10aと、基部10aの上部に一対のテーパが所定の角度Aで形成されたテーパ面部10bが形成される。
[Production Method of Polarizing Element 1]
Next, a method for manufacturing a polarizing element will be described. First, as shown in FIG. 3A, a translucent substrate 2 such as quartz is prepared. Next, as shown in FIG. 3B, a grid pattern 3 is formed on the surface of the substrate 2. As a method of forming the grid pattern 3, for example, a resist mask corresponding to the grid pattern 3 is attached, exposed, developed, and then etched. At this time, after performing anisotropic isotropic etching, isotropic etching is performed, whereby a base portion 10a having a substantially rectangular cross section and a taper in which a pair of tapers are formed at a predetermined angle A on the upper portion of the base portion 10a. Surface portion 10b is formed.

テーパ面部10bの角度付けは、エッチングガスのガス圧を制御することにより行う。後述するように、テーパ面部10bは、35°〜70°の角度範囲とすることが好ましい。角度付けとガス圧の制御は、基板2の材料やエッチングガスの種類等に応じて、真空度やガス流量等の最適条件を実験的に求めることができる。   The taper surface portion 10b is angled by controlling the gas pressure of the etching gas. As will be described later, the tapered surface portion 10b is preferably in an angle range of 35 ° to 70 °. The control of the angling and the gas pressure can experimentally determine the optimum conditions such as the degree of vacuum and the gas flow rate according to the material of the substrate 2 and the type of etching gas.

エッチング条件の一例を示すと、フッ素系ガスとしてCF4を用いて、ガス流量:25sccm、power:120W、Bias:60W、エッチング時間120secである。また、これにより形成される凸部10の高さTは15〜30nmである。   As an example of the etching conditions, CF4 is used as the fluorine-based gas, the gas flow rate is 25 sccm, the power is 120 W, the bias is 60 W, and the etching time is 120 seconds. Moreover, the height T of the convex part 10 formed by this is 15-30 nm.

次いで、図3(c)に示すように、テーパ面部10bに微粒子層4を形成する。微粒子層4は、図4に示すように、斜め方向からのイオンビームスパッタによって形成される。図4において、21は基板2が載置されるステージ、22はターゲット、23はビームソース(イオン源)を示す。   Next, as shown in FIG. 3C, the fine particle layer 4 is formed on the tapered surface portion 10b. As shown in FIG. 4, the fine particle layer 4 is formed by ion beam sputtering from an oblique direction. In FIG. 4, 21 is a stage on which the substrate 2 is placed, 22 is a target, and 23 is a beam source (ion source).

ステージ21は、基板2がグリッドパターン3の格子方向(長手方向)がAl等の無機微粒子の入射方向に対して直交する向きに配置される。またステージ21は、ターゲット22の法線方向に対して所定角度傾斜させることにより、グリッドパターン3に対する無機微粒子の入射角度(基板2の法線と無機微粒子の入射方向Lとのなす角)θは、基部10aの高さやテーパ面部10bの角度に応じてテーパ面部10bのみに微粒子層4が形成されるように設定され、例えば87°〜60°とされている。これより入射角度が小さすぎるとテーパ面部10bだけでなく、基部10aの裾野部分にも多くの無機微粒子が付着され、透過率特性が低下する。   In the stage 21, the substrate 2 is arranged so that the lattice direction (longitudinal direction) of the grid pattern 3 is orthogonal to the incident direction of inorganic fine particles such as Al. Further, the stage 21 is inclined at a predetermined angle with respect to the normal direction of the target 22 so that the incident angle of the inorganic fine particles with respect to the grid pattern 3 (the angle formed between the normal of the substrate 2 and the incident direction L of the inorganic fine particles) θ is The fine particle layer 4 is set so as to be formed only on the tapered surface portion 10b according to the height of the base portion 10a and the angle of the tapered surface portion 10b, for example, 87 ° to 60 °. If the incident angle is too small, a large amount of inorganic fine particles are attached not only to the tapered surface portion 10b but also to the skirt portion of the base portion 10a, and the transmittance characteristics deteriorate.

ビームソース23から引き出されたイオンは、ターゲット22へ照射される。イオンビームの照射によりターゲット22から叩き出された無機微粒子は、基板2の表面に斜め方向から所定の入射角度θで入射してテーパ面部10bに付着する。   Ions extracted from the beam source 23 are irradiated to the target 22. The inorganic fine particles knocked out from the target 22 by the irradiation of the ion beam are incident on the surface of the substrate 2 from the oblique direction at a predetermined incident angle θ and adhere to the tapered surface portion 10b.

このように、基板2をターゲット22に対して傾斜させ無機微粒子の入射方向を規定することにより、無機微粒子からなる微粒子層4を凸部10のテーパ面部10b上に選択的に形成することができる。その結果、形状異方性を有する微粒子層4を所望の微細形状で基板2の表面に島状に分布させることができる。また、このとき微粒子層4は、基部10aの高さやテーパ面部10bの角度に応じて入射角度θ、例えば87°〜60°に設定することにより、凸部10のテーパ面部10bに形成され、かつ基部10aよりも側方にはみ出ることなく形成される。   Thus, by tilting the substrate 2 with respect to the target 22 and defining the incident direction of the inorganic fine particles, the fine particle layer 4 made of inorganic fine particles can be selectively formed on the tapered surface portion 10 b of the convex portion 10. . As a result, the fine particle layer 4 having shape anisotropy can be distributed in an island shape on the surface of the substrate 2 in a desired fine shape. At this time, the fine particle layer 4 is formed on the tapered surface portion 10b of the convex portion 10 by setting the incident angle θ, for example, 87 ° to 60 °, according to the height of the base portion 10a and the angle of the tapered surface portion 10b. It is formed without protruding to the side of the base portion 10a.

微粒子層4は、イオンビームスパッタ法の他、例えば斜め蒸着法によって形成してもよい。しかし、イオンビームスパッタ法によって形成することにより、蒸着法に比べて入射粒子のエネルギーが高く、デバイスの信頼性の確保の上で重要となる金属微粒子の基板2に対する付着強度を向上させることができる。また、蒸着できる物質はその蒸気圧などの物質の特性により大きく制限されるが、スパッタ法はそのような制限がないので、物質の選択の幅が広がるという点でもイオンビームスパッタ法が有利である。   The fine particle layer 4 may be formed by, for example, an oblique deposition method in addition to the ion beam sputtering method. However, by forming by ion beam sputtering, the energy of incident particles is higher than that of vapor deposition, and the adhesion strength of metal fine particles to the substrate 2 which is important for ensuring device reliability can be improved. . In addition, the material that can be deposited is largely limited by the characteristics of the material such as its vapor pressure. However, since the sputtering method does not have such a limitation, the ion beam sputtering method is advantageous in that the range of selection of the material is widened. .

なお、基板2には、グリッドパターン3が形成された面と反対側の面に、入射光に対する反射成分を抑制する図示しない反射防止膜を設けてもよい。反射防止膜としては、単層もしくは多層の蒸着による一般的な反射防止膜材料で構わない。   The substrate 2 may be provided with an antireflection film (not shown) that suppresses a reflection component with respect to incident light on the surface opposite to the surface on which the grid pattern 3 is formed. The antireflection film may be a general antireflection film material formed by single-layer or multi-layer deposition.

また、偏光素子1は、微粒子層4上に保護層を形成してもよい。保護層は、SiO2、Al2O3、MgF2などの一般的な材料を用いることができる。これらは、スパッタ、気相成長法、蒸着法などの一般的な真空成膜やゾル状の物質を基板2上にコートし熱硬化させることで薄膜化が可能である。   In the polarizing element 1, a protective layer may be formed on the fine particle layer 4. A general material such as SiO2, Al2O3, MgF2 can be used for the protective layer. These can be thinned by applying general vacuum film formation such as sputtering, vapor phase epitaxy, and vapor deposition, or coating a sol-like substance on the substrate 2 and thermosetting it.

[偏光素子の効果]
このような偏光素子1は、基板2の表面に形成された無機材料からなる微粒子層4が、図1(b)に示すように面内X、Y方向に関して異方的な形状を有して分布している。これらの微粒子層4は、その長軸方向(Y方向)に電磁進行方向を持つ偏光成分を吸収し、短軸方向(X方向)に電磁進行方向をもつ偏光成分を透過させる。
[Effect of polarizing element]
In such a polarizing element 1, the fine particle layer 4 made of an inorganic material formed on the surface of the substrate 2 has an anisotropic shape in the in-plane X and Y directions as shown in FIG. Distributed. These fine particle layers 4 absorb a polarized component having an electromagnetic traveling direction in the major axis direction (Y direction) and transmit a polarized component having an electromagnetic traveling direction in the minor axis direction (X direction).

また、偏光素子1は、グリッドパターン3を構成する凸部10の微粒子層4がテーパ面部10bに堆積され基部10aの側面よりはみ出すことがない。すなわち、グリッドパターン3は、凸部10間に微粒子層4がはみ出すことがないことから、凸部10間を透過する光を遮ることがなく、基板2の透過率を高く維持することができる。   Further, in the polarizing element 1, the fine particle layer 4 of the convex portion 10 constituting the grid pattern 3 is deposited on the tapered surface portion 10b and does not protrude from the side surface of the base portion 10a. That is, since the fine particle layer 4 does not protrude between the convex portions 10 in the grid pattern 3, the light transmitted through the convex portions 10 is not blocked, and the transmittance of the substrate 2 can be maintained high.

また、偏光素子1は、基板2に金属膜を設けることなく、直接グリッドパターン3を設けているため、干渉露光法などのフォトリソグラフィ技術によってレジストパターンを形成しても、パターン倒れやくびれの発生もないことから、エッチングにより高精度に微細なグリッドパターン3を形成することができる。   Further, since the polarizing element 1 is provided with the grid pattern 3 directly without providing a metal film on the substrate 2, even if a resist pattern is formed by a photolithography technique such as an interference exposure method, pattern collapse or constriction occurs. Therefore, the fine grid pattern 3 can be formed with high accuracy by etching.

さらに、偏光素子1は、異方性エッチングと等方性エッチングを切り替えることにより、基部10aと、基部10aの上面に設けられたテーパ面部10bを有する凸部10を形成する。この凸部10は、基部10aを設けることにより、所定の高さを備える。したがって、偏光素子1は、高いコントラストを有するグリッドパターン3を形成することができる。   Furthermore, the polarizing element 1 forms the convex part 10 which has the base part 10a and the taper surface part 10b provided in the upper surface of the base part 10a by switching anisotropic etching and isotropic etching. The convex portion 10 has a predetermined height by providing the base portion 10a. Therefore, the polarizing element 1 can form the grid pattern 3 having high contrast.

ここで、図5にグリッドパターン3の凸部10の高さT及び下部幅W1と、偏光素子1のGREEN帯域(530〜580nm)の光の平均透過率との関係を示す。図5に示すように、凸部10の下部幅W1を95nm以上とし、また、凸部10の高さTを45nm以上とすることにより、偏光素子1の平均透過率を約96%に上げることができる。なお、図5に示す平均透過率の測定に係る偏光素子1は、グリッドピッチPが148nm、凸部10のテーパ面部10bの角度が60°、無機微粒子層4の厚さが20nm、保護層(SiO2)が20nmである。   Here, FIG. 5 shows the relationship between the height T and the lower width W1 of the convex portion 10 of the grid pattern 3 and the average transmittance of light in the GREEN band (530 to 580 nm) of the polarizing element 1. As shown in FIG. 5, the average transmittance of the polarizing element 1 is increased to about 96% by setting the lower width W1 of the convex portion 10 to 95 nm or more and the height T of the convex portion 10 to 45 nm or more. Can do. In the polarizing element 1 relating to the measurement of the average transmittance shown in FIG. 5, the grid pitch P is 148 nm, the angle of the tapered surface portion 10b of the convex portion 10 is 60 °, the thickness of the inorganic fine particle layer 4 is 20 nm, and the protective layer ( SiO2) is 20 nm.

偏光素子1は、凸部10が設けられる一面において照射された光の約4%をロスすることから、凸部10と反対側の他面に反射防止膜を形成しロスを0%としても、透過率は最大96%となる。したがって、凸部10の下部幅W1を95nm以上とし、また、凸部10の高さTを45nm以上とすることにより、偏光素子1の平均透過率を最大限に高めることができる。   Since the polarizing element 1 loses about 4% of the light irradiated on one surface where the convex portion 10 is provided, an antireflection film is formed on the other surface opposite to the convex portion 10 and the loss is 0%. The maximum transmittance is 96%. Therefore, the average transmittance of the polarizing element 1 can be maximized by setting the lower width W1 of the convex portion 10 to 95 nm or more and the height T of the convex portion 10 to 45 nm or more.

図6に、偏光素子1のGREEN帯域(530〜580nm)の光の平均透過率と、凸部10の下部幅W1/凸部10のピッチPとの関係を示す。凸部10の下部幅W1/凸部10のピッチPを0.55以上とすることにより、平均透過率特性を94%以上とすることができる。   FIG. 6 shows the relationship between the average transmittance of light in the GREEN band (530 to 580 nm) of the polarizing element 1 and the lower width W 1 of the convex portion 10 / the pitch P of the convex portion 10. By setting the lower portion width W1 / convex portion 10 pitch P to 0.55 or more, the average transmittance characteristic can be 94% or more.

図7に、偏光素子1のGREEN帯域(530〜580nm)の光の平均透過率と、凸部10のテーパ面部10bの角度Aとの関係を示す。図7に示すように、図1に示す偏光素子1におけるテーパ面部10bの角度Aを、35°〜70°とすることにより、波長530〜580nmのGREEN帯域における平均透過率を95%以上とすることができる。   FIG. 7 shows the relationship between the average transmittance of light in the green band (530 to 580 nm) of the polarizing element 1 and the angle A of the tapered surface portion 10 b of the convex portion 10. As shown in FIG. 7, by setting the angle A of the tapered surface portion 10b in the polarizing element 1 shown in FIG. 1 to 35 ° to 70 °, the average transmittance in the GREEN band with a wavelength of 530 to 580 nm is set to 95% or more. be able to.

なお、先端にテーパ面部10bを設けずに断面矩形状の凸部を設けた場合、同条件では平均透過率が93%に留まった。これは、グリッドパターン3を構成する凸部10の微粒子層4が断面矩形状の凸部に堆積された結果、凸部側面より凸部間に微粒子層がはみ出し、凸部10間を透過する光を遮ることによる。   In addition, when the convex part with the rectangular cross section was provided without providing the tapered surface part 10b at the tip, the average transmittance remained at 93% under the same conditions. This is because the fine particle layer 4 of the convex portion 10 constituting the grid pattern 3 is deposited on the convex portion having a rectangular cross section, and as a result, the fine particle layer protrudes between the convex portions from the side surface of the convex portion and is transmitted between the convex portions 10. By blocking.

[モスアイ]
また、偏光素子1は、凸部10の基部10aを形成した際に、基板2の表面に凸部10間に凸部10よりも低背の突条部11が形成される。突条部11は、基板2に基部10aを形成した際に、基部10aの両側が削られることにより、凸部10間が凸部10に沿って形成されるものである。図8にグリッドパターン3のSEM画像を示す。
[Moss Eye]
Further, in the polarizing element 1, when the base portion 10 a of the convex portion 10 is formed, a protrusion 11 having a lower profile than the convex portion 10 is formed between the convex portions 10 on the surface of the substrate 2. When the base portion 10 a is formed on the substrate 2, the protruding portion 11 is formed along the convex portion 10 between the convex portions 10 by scraping both sides of the base portion 10 a. FIG. 8 shows an SEM image of the grid pattern 3.

この突条部11が形成されることにより、偏光素子1のグリッドパターン3は、凸部10と突条部11からなる突起配列が規則的に形成され、これによりモスアイ構造を構成する。したがって、偏光素子1は、厚み方向の屈折率が連続的に変化するため、基板2にあたる光を反射させることがほとんどなく、透過率を高く維持することができる。   By forming the protrusions 11, the grid pattern 3 of the polarizing element 1 is regularly formed with a protrusion array including the protrusions 10 and the protrusions 11, thereby forming a moth-eye structure. Accordingly, since the refractive index in the thickness direction of the polarizing element 1 continuously changes, the light that strikes the substrate 2 is hardly reflected and the transmittance can be kept high.

1 偏光素子、2 基板、3 グリッドパターン、4 微粒子層、10 凸部、10a 基部、10b テーパ面部、11 突条部 DESCRIPTION OF SYMBOLS 1 Polarizing element, 2 board | substrate, 3 grid pattern, 4 fine particle layer, 10 convex part, 10a base part, 10b taper surface part, 11 protrusion part

また、本発明に係る偏光素子の製造方法は、透光性基板に、上記透光性基板の面内一方向に連続し、断面矩形状の基部及び上記基部の先端に形成される所定の角度を有する一対のテーパからなるテーパ面部とからなる凸部が使用帯域の光の波長よりも小さいピッチで複数形成されたグリッドパターンを形成する工程と、上記テーパ面部の一方のテーパのみに無機微粒子を斜め方向から積層させて、上記基部の側面よりはみださない微粒子層を形成する工程とを有し、上記グリッドパターンを形成する工程では、上記透明性基板に上記基部を形成する際、上記基部の両側が削られることにより形成される凸部と平行に連続し、かつ、該凸部よりも低背となる突条部を形成することを含むFurther, the method for manufacturing a polarizing element according to the present invention includes a translucent substrate that is continuous in one in-plane direction of the translucent substrate, and has a base having a rectangular cross section and a predetermined angle formed at the tip of the base A step of forming a grid pattern in which a plurality of convex portions each having a taper surface portion having a taper having a pitch smaller than the wavelength of light in the use band is formed, and inorganic fine particles are applied only to one taper of the taper surface portion. obliquely by laminating, have a forming a fine particle layer that does not protrude from the side surface of the base portion, in the step of forming the grid pattern, when forming the base to the transparent substrate, the This includes forming a ridge that is continuous in parallel with the convex portion formed by cutting both sides of the base portion, and has a lower profile than the convex portion .

Claims (12)

使用帯域の光に対して透明な基板と、
上記基板表面に、該基板の面内一方向に連続する凸部が使用帯域の光の波長よりも小さいピッチで複数形成された、透光性材料からなるグリッドパターンとを有し、
上記凸部は、断面矩形状の基部と、上記基部の先端に形成されるテーパ面部とからなり、該テーパ面部の少なくとも一面には、無機材料からなる微粒子層が積層され、
上記微粒子層は上記基部の側面よりはみださない偏光素子。
A substrate transparent to the light in the use band;
On the surface of the substrate, a plurality of convex portions continuous in one in-plane direction of the substrate are formed at a pitch smaller than the wavelength of light in the use band, and a grid pattern made of a translucent material,
The convex portion comprises a base having a rectangular cross section and a tapered surface formed at the tip of the base, and a fine particle layer made of an inorganic material is laminated on at least one surface of the tapered surface,
The polarizing element does not protrude from the side surface of the base portion.
上記グリッドパターンは、上記凸部間に、上記凸部と並行に連続する上記凸部よりも低背の突条部を有し、モスアイ構造が形成されている請求項1記載の偏光素子。   2. The polarizing element according to claim 1, wherein the grid pattern has a ridge portion that is lower in height than the convex portion that is continuous in parallel with the convex portion and has a moth-eye structure between the convex portions. 上記透光性基板及び上記グリッドパターンは、無機材料によって形成される請求項1又は請求項2に記載の偏光素子。   The polarizing element according to claim 1, wherein the translucent substrate and the grid pattern are formed of an inorganic material. 上記透光性基板及び上記グリッドパターンは、水晶又はサファイアによって形成される請求項3記載の偏光素子。   The polarizing element according to claim 3, wherein the translucent substrate and the grid pattern are formed of quartz or sapphire. 上記凸部のピッチに対する上記凸部の幅の比が0.55以上である請求項1〜請求項4のいずれか1項に記載の偏光素子。   The polarizing element according to any one of claims 1 to 4, wherein a ratio of a width of the convex portion to a pitch of the convex portion is 0.55 or more. 上記テーパ面部の角度が、30度〜75度である請求項1〜請求項5のいずれか1項に記載の偏光素子。   The polarizing element according to claim 1, wherein an angle of the tapered surface portion is 30 to 75 degrees. 上記凸部の幅50nm〜200nm、上記凸部の高さ20nmから200nm、上記テーパ面部の角度30度〜75度、上記凸部のピッチ100nmから250nmである請求項1〜請求項6のいずれか1項に記載の偏光素子。   The width of the convex portion is 50 nm to 200 nm, the height of the convex portion is 20 nm to 200 nm, the angle of the tapered surface portion is 30 degrees to 75 degrees, and the pitch of the convex portions is 100 nm to 250 nm. The polarizing element according to item 1. 上記基板は、上記グリッドパターンが形成された面と反対側の面に、入射光に対する反射成分を抑制する反射防止膜が設けられている請求項1〜請求項6のいずれか1項に記載の偏光素子。   The said board | substrate is provided with the antireflection film which suppresses the reflective component with respect to incident light in the surface on the opposite side to the surface in which the said grid pattern was formed. Polarizing element. 透光性基板に、上記透光性基板の面内一方向に連続し、断面矩形状の基部及び上記基部の先端に形成されるテーパ面部とからなる凸部が使用帯域の光の波長よりも小さいピッチで複数形成されたグリッドパターンを形成する工程と、
上記テーパ面部に無機微粒子を斜め方向から積層させて、上記基部の側面よりはみださない微粒子層を形成する工程とを有する偏光素子の製造方法。
Convex portions that are continuous with the translucent substrate in one in-plane direction of the translucent substrate and are formed of a base portion having a rectangular cross section and a tapered surface portion formed at the tip of the base portion are longer than the wavelength of light in the use band. Forming a plurality of grid patterns formed at a small pitch;
And a step of laminating inorganic fine particles on the tapered surface portion from an oblique direction to form a fine particle layer that does not protrude from the side surface of the base portion.
上記基部の高さ及び上記テーパ面部の角度に応じて、上記テーパ面部のみに上記微粒子層が形成されるように上記無機微粒子の入射角度が設定される請求項9記載の偏光素子の製造方法。   The method for manufacturing a polarizing element according to claim 9, wherein the incident angle of the inorganic fine particles is set so that the fine particle layer is formed only on the tapered surface portion according to the height of the base portion and the angle of the tapered surface portion. 上記グリッドパターンは、上記凸部間に、上記凸部と並行に連続する上記凸部よりも低背の突条部を有し、モスアイ構造が形成される請求項9記載の偏光素子の製造方法。   The method for manufacturing a polarizing element according to claim 9, wherein the grid pattern has a ridge portion that is lower in height than the convex portion that is continuous in parallel with the convex portion between the convex portions, and a moth-eye structure is formed. . 異方性エッチングと等方性エッチングとを段階的に用いることにより上記凸部及び上記突条部を形成する請求項9記載の偏光素子の製造方法。   The method for manufacturing a polarizing element according to claim 9, wherein the protrusion and the protrusion are formed by using anisotropic etching and isotropic etching in stages.
JP2017091172A 2017-05-01 2017-05-01 Polarization element and manufacturing method of polarization element Pending JP2017129887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091172A JP2017129887A (en) 2017-05-01 2017-05-01 Polarization element and manufacturing method of polarization element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091172A JP2017129887A (en) 2017-05-01 2017-05-01 Polarization element and manufacturing method of polarization element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012032055A Division JP2013167824A (en) 2012-02-16 2012-02-16 Polarization element, and manufacturing method of polarization element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019056304A Division JP2019095817A (en) 2019-03-25 2019-03-25 Polarization element, and manufacturing method of polarization element

Publications (1)

Publication Number Publication Date
JP2017129887A true JP2017129887A (en) 2017-07-27

Family

ID=59396204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091172A Pending JP2017129887A (en) 2017-05-01 2017-05-01 Polarization element and manufacturing method of polarization element

Country Status (1)

Country Link
JP (1) JP2017129887A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156108A1 (en) * 2001-10-29 2004-08-12 Chou Stephen Y. Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
JP2008216957A (en) * 2007-02-06 2008-09-18 Sony Corp Polarizing element and liquid crystal projector
JP2009053574A (en) * 2007-08-29 2009-03-12 Nippon Zeon Co Ltd Polarization illumination device
JP2009139793A (en) * 2007-12-10 2009-06-25 Canon Inc Optical element and method of manufacturing the same
JP2010014822A (en) * 2008-07-01 2010-01-21 Nippon Zeon Co Ltd Method for producing grid polarizing film
JP2010169722A (en) * 2009-01-20 2010-08-05 Seiko Epson Corp Method of manufacturing optical element, and optical element
JP2010181831A (en) * 2009-02-09 2010-08-19 Nippon Zeon Co Ltd Grid polarizer and method for manufacturing the same
JP2011008172A (en) * 2009-06-29 2011-01-13 Seiko Epson Corp Polarizing element and manufacturing method therefor, projection type display, liquid crystal device, and electronic equipment
JP2011039351A (en) * 2009-08-14 2011-02-24 Seiko Epson Corp Polarization element, method for producing the same, projection-type display apparatus, liquid crystal device and electronic apparatus
JP2012032055A (en) * 2010-07-29 2012-02-16 Mitsubishi Heavy Ind Ltd Performance evaluation device of turbo refrigerator
JP2013167824A (en) * 2012-02-16 2013-08-29 Dexerials Corp Polarization element, and manufacturing method of polarization element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156108A1 (en) * 2001-10-29 2004-08-12 Chou Stephen Y. Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
JP2008216957A (en) * 2007-02-06 2008-09-18 Sony Corp Polarizing element and liquid crystal projector
JP2009053574A (en) * 2007-08-29 2009-03-12 Nippon Zeon Co Ltd Polarization illumination device
JP2009139793A (en) * 2007-12-10 2009-06-25 Canon Inc Optical element and method of manufacturing the same
JP2010014822A (en) * 2008-07-01 2010-01-21 Nippon Zeon Co Ltd Method for producing grid polarizing film
JP2010169722A (en) * 2009-01-20 2010-08-05 Seiko Epson Corp Method of manufacturing optical element, and optical element
JP2010181831A (en) * 2009-02-09 2010-08-19 Nippon Zeon Co Ltd Grid polarizer and method for manufacturing the same
JP2011008172A (en) * 2009-06-29 2011-01-13 Seiko Epson Corp Polarizing element and manufacturing method therefor, projection type display, liquid crystal device, and electronic equipment
JP2011039351A (en) * 2009-08-14 2011-02-24 Seiko Epson Corp Polarization element, method for producing the same, projection-type display apparatus, liquid crystal device and electronic apparatus
JP2012032055A (en) * 2010-07-29 2012-02-16 Mitsubishi Heavy Ind Ltd Performance evaluation device of turbo refrigerator
JP2013167824A (en) * 2012-02-16 2013-08-29 Dexerials Corp Polarization element, and manufacturing method of polarization element

Similar Documents

Publication Publication Date Title
JP2013167824A (en) Polarization element, and manufacturing method of polarization element
JP6285131B2 (en) Polarizing plate and manufacturing method of polarizing plate
JP6164339B2 (en) Polarizing element and transmissive liquid crystal projector
JP6580200B2 (en) Manufacturing method of bundle structure
JP5100146B2 (en) Optical element and optical element manufacturing method
JP2016212156A (en) Polarizing element
JP5929860B2 (en) Grid polarizing element manufacturing method
JP5930132B2 (en) Reflective photomask and method for manufacturing the same
JP5206029B2 (en) Liquid crystal display
JP5936727B2 (en) Polarizing element
JP2008268299A (en) Laminate wire grid polarizer
JP5490891B2 (en) Wave plate and method for manufacturing the wave plate
JP6527211B2 (en) Polarizing plate, and method of manufacturing polarizing plate
JP2011133912A (en) Method for producing optical apparatus
JP2017129887A (en) Polarization element and manufacturing method of polarization element
JP2019095817A (en) Polarization element, and manufacturing method of polarization element
JP2010060621A (en) Polarizing element and method for producing the same
CN111198413A (en) Polarizing plate and optical device having the same
JP2010210707A (en) Method of manufacturing polarizing element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181225