JP4527986B2 - Wire grid polarizer - Google Patents

Wire grid polarizer Download PDF

Info

Publication number
JP4527986B2
JP4527986B2 JP2004001538A JP2004001538A JP4527986B2 JP 4527986 B2 JP4527986 B2 JP 4527986B2 JP 2004001538 A JP2004001538 A JP 2004001538A JP 2004001538 A JP2004001538 A JP 2004001538A JP 4527986 B2 JP4527986 B2 JP 4527986B2
Authority
JP
Japan
Prior art keywords
substrate
wire grid
light
birefringence
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004001538A
Other languages
Japanese (ja)
Other versions
JP2005195824A (en
Inventor
祐輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2004001538A priority Critical patent/JP4527986B2/en
Publication of JP2005195824A publication Critical patent/JP2005195824A/en
Application granted granted Critical
Publication of JP4527986B2 publication Critical patent/JP4527986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、ワイヤグリッド型偏光子に関するものである。   The present invention relates to a wire grid polarizer.

光に用いられる反射型偏光子には、複屈折を有する樹脂の積層体などからなる直線偏光子、コレステリック液晶に代表される円偏光子などいくつかの種類がある。現在、液晶ディスプレイの輝度向上フィルムとして使用されている複屈折樹脂積層体の反射型偏光子は、液晶バックライトからの光のうちP偏光成分、S偏光成分の一方を透過し、他方をバックライト側に反射する。バックライト側に戻った光は、バックライト部の部材の複屈折や、バックライト部での散乱・反射により偏光状態が解消された状態で、再び反射型偏光子へと戻ってくるため、一部が偏光子を透過するようになる。このサイクルを繰り返すことにより、光の利用効率を高めることが可能となる。しかしながら、現状ではこれらの反射型偏光子の偏光分離性能は低く、反射型偏光子単体では液晶ディスプレイのコントラストが不十分となるため、、偏光分離性能の高い吸収型偏光板と併用することが必要となる。このため、液晶ディスプレイを構成する部品数が増え、ディスプレイの製造コストを上昇させるばかりか、製品の厚さが増すなどの問題がある。   There are several types of reflective polarizers used for light, such as linear polarizers composed of a laminate of resins having birefringence, and circular polarizers typified by cholesteric liquid crystals. The reflective polarizer of the birefringent resin laminate that is currently used as a brightness enhancement film for liquid crystal displays transmits one of the P-polarized component and S-polarized component of the light from the liquid crystal backlight, and the other as the backlight. Reflect to the side. The light that has returned to the backlight side returns to the reflective polarizer again in a state where the polarization state has been eliminated by birefringence of the members of the backlight part and scattering / reflection at the backlight part. The part is transmitted through the polarizer. By repeating this cycle, the light utilization efficiency can be increased. However, at present, the polarization separation performance of these reflective polarizers is low, and the contrast of a liquid crystal display is insufficient with a reflective polarizer alone, so it is necessary to use it together with an absorption polarizing plate with high polarization separation performance It becomes. For this reason, there are problems such as an increase in the number of parts constituting the liquid crystal display and an increase in the manufacturing cost of the display and an increase in the thickness of the product.

一方、別方式の反射型偏光子として、ワイヤグリッド型偏光子があげられる。図1に一般的なワイヤグリッド型偏光子の模式図を示す。ワイヤグリッド型偏光子100は非偏光状態の入射光130に対して透明な基板120の上に金属細線110が互いに平行に並んだ構造を有する。図1において光の入射面はワイヤグリッド型偏光子と直交しており、かつ金属細線長手方向を法線とするような面である。直線状金属細線の間隔であるピッチpが入射光130の波長よりも十分短い時、入射光130のうち、金属細線110に直交する電場ベクトルを有する成分(すなわちP偏光)150は透過し、金属細線と平行な電場ベクトルを有する成分(すなわちS偏光)140は反射される。ワイヤグリッド型偏光子は高い偏光分離性能を有するため、赤外域において有用な偏光子として古くから利用されている(非特許文献1)。   On the other hand, as another type of reflective polarizer, there is a wire grid polarizer. FIG. 1 shows a schematic diagram of a general wire grid polarizer. The wire grid polarizer 100 has a structure in which fine metal wires 110 are arranged in parallel on a substrate 120 transparent to incident light 130 in a non-polarized state. In FIG. 1, the light incident surface is orthogonal to the wire grid polarizer and is a surface whose normal is the longitudinal direction of the fine metal wire. When the pitch p, which is the interval between the straight metal thin wires, is sufficiently shorter than the wavelength of the incident light 130, the component (that is, P-polarized light) 150 having an electric field vector orthogonal to the metal thin wire 110 of the incident light 130 is transmitted. A component (ie, S-polarized light) 140 having an electric field vector parallel to the thin line is reflected. Since the wire grid polarizer has high polarization separation performance, it has been used for a long time as a useful polarizer in the infrared region (Non-Patent Document 1).

ワイヤグリッド型偏光子が高い偏光分離性能を有する反射型偏光子であることは知られながらも、可視域で良好な偏光分離性能を示すためには100nm程度、あるいはそれ以下の寸法精度で金属細線を規則正しく配列させる必要があり、技術的に作製が困難であるといった問題があった。しかし、微細加工技術の進歩により、近年、可視光用ワイヤグリッド型偏光子が生産、販売されるようになった(非特許文献2)。   Although it is known that the wire grid type polarizer is a reflection type polarizer having high polarization separation performance, in order to show good polarization separation performance in the visible range, the metal fine wire has a dimensional accuracy of about 100 nm or less. There is a problem that it is necessary to arrange them regularly and technically difficult to manufacture. However, in recent years, wire grid polarizers for visible light have been produced and sold due to advances in microfabrication technology (Non-Patent Document 2).

ワイヤグリッド型偏光子の性能を決定する要因の一つがピッチp[nm]と入射光の波長λ[nm]との関係である。金属細線のピッチpが波長のほぼ2分の1から2倍の範囲では、特定波長の光に対し、偏光分離性能が著しく低下する。このような現象は一般に「レイリー共鳴」と呼ばれており、この共鳴が起こる最も長い波長(最大共鳴波長)λres-maxは以下の式1で表現されることが知られている(非特許文献3)。
λres-max=p(n+sinθ)・・・式1
(式1においてn、θはそれぞれ基板の屈折率、光の入射角を意味する。)
One of the factors that determine the performance of the wire grid polarizer is the relationship between the pitch p [nm] and the wavelength λ [nm] of incident light. When the pitch p of the fine metal wires is in the range of about one half to twice the wavelength, the polarization separation performance is remarkably deteriorated with respect to light of a specific wavelength. Such a phenomenon is generally called “Rayleigh resonance”, and the longest wavelength (maximum resonance wavelength) λ res-max at which this resonance occurs is known to be expressed by the following formula 1 (non-patent document). Reference 3).
λ res-max = p (n + sin θ) Equation 1
(In Formula 1, n and θ mean the refractive index of the substrate and the incident angle of light, respectively.)

レイリー共鳴が起こる波長前後においては、ワイヤグリッド型偏光子の性能が急激に落ちるため、可視光に対し十分な偏光分離性能を示すためには、最大共鳴波長λres-maxが可視光の波長よりも短くなるようにしなければならない。 Before and after the wavelength at which Rayleigh resonance occurs, the performance of the wire grid polarizer drops sharply. Therefore, in order to show sufficient polarization separation performance for visible light, the maximum resonance wavelength λ res-max is larger than the wavelength of visible light. Should also be shorter.

図2、図3にドイツのCST GmbH社製の電磁界シミュレーションソフト『MW−Studio』により計算した、一般ワイヤグリッド型偏光子の、P偏光、S偏光の透過効率と入射光波長の関係、および透過光の偏光度と波長の関係を示す。計算は光が金属細線側からワイヤグリッド型偏光子に入射する条件で、入射角θ=0°、ピッチp=200nm、ワイヤ幅w=100nm、ワイヤ厚みt=100nmとして、基板屈折率nが1.4および1.6のものについて行った。金属ワイヤの材料としては、導電率が高く、可視光の反射率が高い、銀を選定した。偏光度は、下記の式2に基づいて計算した。ここで、TpはP偏光の透過率を、TsはS偏光の透過率を表す。
偏光度=((Tp−Ts)/(Tp+Ts))0.5 ・・・式2
FIG. 2 and FIG. 3 show the relationship between the transmission efficiency of P-polarized light and S-polarized light and the incident light wavelength of a general wire grid polarizer calculated by electromagnetic field simulation software “MW-Studio” manufactured by CST GmbH in Germany. The relationship between the degree of polarization of transmitted light and the wavelength is shown. The calculation is performed under the condition that light enters the wire grid polarizer from the metal thin wire side, the incident angle θ = 0 °, the pitch p = 200 nm, the wire width w = 100 nm, the wire thickness t = 100 nm, and the substrate refractive index n is 1. .4 and 1.6. As a material for the metal wire, silver having high electrical conductivity and high visible light reflectance was selected. The degree of polarization was calculated based on Equation 2 below. Here, Tp represents the transmittance of P-polarized light, and Ts represents the transmittance of S-polarized light.
Polarization degree = ((Tp−Ts) / (Tp + Ts)) 0.5 Equation 2

図2に示すように、S偏光に比べて透過光であるP偏光は、基板の屈折率の影響を大きく受ける。そして、基板屈折率nが1.4および1.6のときの最大共鳴波長λres-maxは、それぞれ289nm、331nmと十分紫外領域に存在し、入射角θ=0°では、いずれの基板屈折率nにおいても、可視光に対する透過光の偏光度は95%を超え、良好な偏光分離性能を有することがわかる。 As shown in FIG. 2, P-polarized light that is transmitted light is greatly affected by the refractive index of the substrate as compared to S-polarized light. When the substrate refractive index n is 1.4 and 1.6, the maximum resonance wavelength λ res-max exists in a sufficiently ultraviolet region of 289 nm and 331 nm, respectively, and any substrate refraction occurs at an incident angle θ = 0 °. Even at the rate n, the degree of polarization of transmitted light with respect to visible light exceeds 95%, and it can be seen that it has good polarization separation performance.

しかし、入射角が増すと、式1にしたがって最大共鳴波長λres-maxは長波長側にシフトする。シミュレーション結果と式1から、様々なθにおけるλres-maxを算出し、図4に結果を示す。入射角度の増大にともなってλres-maxの値は増し、入射角度θ=30°では基板屈折率n=1.4、1.6においてそれぞれ、392nm、449nmとなり、基板屈折率1.6では可視光に対し十分な偏光分離性能が発揮されないといえる。 However, increasing the angle of incidence, the maximum resonance wavelength lambda res-max according to equation 1 is shifted to the long wavelength side. From the simulation result and Equation 1, λ res-max at various θs is calculated, and the result is shown in FIG. As the incident angle increases, the value of λ res-max increases. At the incident angle θ = 30 °, the substrate refractive indexes n = 1.4 and 1.6 are 392 nm and 449 nm, respectively. It can be said that sufficient polarization separation performance is not exhibited for visible light.

また、基板屈折率nを1.5としたときの入射角θと最大共鳴波長λres-maxの関係を、図4に示すが、最大共鳴波長λres-maxはθ=0°、30°のときそれぞれ310nm、421nmとなり、入射角θが30°の場合、短波長の可視光に対し偏光分離性能が急激に低下することがわかる。 FIG. 4 shows the relationship between the incident angle θ and the maximum resonance wavelength λ res-max when the substrate refractive index n is 1.5. The maximum resonance wavelength λ res-max is θ = 0 °, 30 °. When the incident angle θ is 30 °, the polarization separation performance is abruptly lowered for short-wavelength visible light.

最大共鳴波長λres-maxを短波長側にシフトさせるには、式1から、三つの方法がある。第一にピッチpを低減することがあげられるが、光を透過しない金属細線厚みtを維持しながらピッチpのみを小さくすることは超微細加工においては技術的に難しい。第二に、入射光をワイヤグリッド型偏光子に対して垂直に入射させる方法があるが、入射角を制限すると偏光子としての用途が著しく制限されてしまう。第三は、基板の屈折率nを低減させるものであるが、可視光に対し透明で安価な低屈折率材料は少なく、特に樹脂素材では少ない。 In order to shift the maximum resonance wavelength λ res-max to the short wavelength side, there are three methods from Equation 1. First, it is possible to reduce the pitch p. However, it is technically difficult to reduce only the pitch p while maintaining the thickness t of the thin metal wire that does not transmit light. Second, there is a method in which incident light is incident perpendicularly to the wire grid polarizer. However, if the incident angle is limited, the use as a polarizer is significantly limited. The third is to reduce the refractive index n of the substrate, but there are few low-refractive-index materials that are transparent to visible light and inexpensive, and particularly resin materials.

これらの問題を解決するために、特許文献1では、金属細線を取り囲む媒体の有効屈折率を減少するため、金属細線と基板の界面を低屈折材料であるフッ化マグネシウムで覆う、基板にリブを設け、リブ上に金属細線を形成させる、といった技術が提案されており、一定の条件下で、最大共鳴波長λres-maxを約450nmから約400nmまで低減させることに成功している。 In order to solve these problems, in Patent Document 1, in order to reduce the effective refractive index of the medium surrounding the fine metal wire, the substrate is covered with a low-refractive material magnesium fluoride that covers the interface between the fine metal wire and the substrate. A technique has been proposed in which a fine metal wire is formed on a rib, and the maximum resonance wavelength λ res-max has been successfully reduced from about 450 nm to about 400 nm under certain conditions.

また特許文献2には、共鳴エンハンストンネリングという物理現象を利用する技術が示されている。ここでは、図1に記載した一般的なワイヤグリッド型偏光子における金属細線を、66nmの厚みを有する金属細線と33nmの厚みの誘電細線とが交互に6〜18積層されたワイヤに置き換え、ピッチp、およびワイヤ幅wを、それぞれ130nm、52nmとしたものである。   Patent Document 2 discloses a technique that uses a physical phenomenon called resonance enhancement tunneling. Here, the fine metal wires in the general wire grid polarizer shown in FIG. 1 are replaced with wires in which thin metal wires having a thickness of 66 nm and dielectric fine wires having a thickness of 33 nm are alternately laminated, and the pitch is changed. p and wire width w are 130 nm and 52 nm, respectively.

しかし、特許文献1に記載されているフッ化マグネシウム層を設けるという方法や、基板にリブを設け、その上に金属細線を配置させるという方法は、いずれも工程が複雑になり、製造コストが増すといった問題がある。また、特許文献2の技術は、特許文献1に比べ、さらに高度な技術が要求され、多大なコストも必要となるため、汎用性のある技術とはいえない。   However, both the method of providing a magnesium fluoride layer described in Patent Document 1 and the method of providing a rib on a substrate and arranging a thin metal wire on the substrate make the process complicated and increase the manufacturing cost. There is a problem. Further, the technique of Patent Document 2 is not a versatile technique because it requires a more advanced technique than that of Patent Document 1 and requires a large amount of cost.

上記のような従来技術においては、ワイヤグリッド型偏光子の基板にはガラスなど複屈折のない光学的に均質な物質が使用されている。   In the prior art as described above, an optically homogeneous material having no birefringence such as glass is used for the substrate of the wire grid type polarizer.

偏光特性を持たない非偏光状態の光から円偏光を得る一般的な方法は、非偏光状態の光を直線偏光子で直線偏光とし、さらにこの直線偏光を1/4波長板に通すもので、直線偏光子と1/4波長板の2種類の光学素子が必要となる。非偏光状態の光を円偏光に変換する円偏光子は、タッチパネルを備えた液晶ディスプレイや、偏光測定の際の光学素子などとして使用されている。   A general method for obtaining circularly polarized light from light in a non-polarized state having no polarization characteristic is to convert the light in the non-polarized state into linearly polarized light with a linear polarizer, and further pass this linearly polarized light through a quarter-wave plate. Two types of optical elements, a linear polarizer and a quarter-wave plate, are required. A circular polarizer that converts light in a non-polarized state into circularly polarized light is used as a liquid crystal display provided with a touch panel, an optical element for measuring polarization, or the like.

J.P.Auton,Applied Optics.Vol.6.1023(1967)J. et al. P. Auton, Applied Optics. Vol. 6.1023 (1967) F.J.Kahn,Private Line Report on Projection Display.Vol.7.No.10.3(2001)F. J. et al. Kahn, Private Line Report on Projection Display. Vol. 7). No. 10.3 (2001) Philosophical Magazine,Vol.14.No.79.60(1907)Philosophy Magazine, Vol. 14 No. 79.60 (1907) 特表2003−502708Special table 2003-502708 特表2002−328234Special table 2002-328234 特開2001−74935JP 2001-74935 A 特開平9−90122JP-A-9-90122

本発明は、高価な素材や複雑な工程を用いずに、ワイヤグリッド型偏光子の偏光分離性能を向上させることを目的とする。また本発明は、任意の偏光を得ることのできる新規なワイヤグリッド型偏光子を提供することを目的とする。   An object of the present invention is to improve the polarization separation performance of a wire grid polarizer without using expensive materials or complicated processes. Another object of the present invention is to provide a novel wire grid polarizer capable of obtaining arbitrary polarized light.

本発明は、ワイヤグリッド型偏光子において、透明基板に樹脂などの複屈折を生じやすい素材を用い、延伸処理などにより複屈折を利用して屈折率の異方性を拡大させ、偏光子を透過する光に対しては基板の屈折率を低減させることで、偏光分離性能を高めるものである。   The present invention uses a material that easily generates birefringence, such as a resin, for a transparent substrate in a wire grid type polarizer, expands the refractive index anisotropy by using birefringence by a stretching process, and transmits the polarizer. The polarization separation performance is enhanced by reducing the refractive index of the substrate with respect to the light to be emitted.

即ち、本発明は、複屈折を有す透明な樹脂基板上に、直線状金属細線が、互いに平行に、同じ間隔をおいて配置されているワイヤグリッド型偏光子において、該基板面内で屈折率が最も低くなる方向と、金属細線の長手方向が直交することを特徴とするワイヤグリッド型偏光子に関する。更に、上記面内で屈折率が最も低くなる方向と、金属細線の長手方向が45°の傾きで交差していることを特徴とするワイヤグリッド型偏光子に関する。 That is, the present invention relates to a wire grid polarizer in which straight metal thin wires are arranged in parallel to each other on a transparent resin substrate having birefringence and at the same interval, and refracted within the substrate surface. The present invention relates to a wire grid polarizer characterized in that the direction in which the rate is the lowest and the longitudinal direction of the fine metal wires are orthogonal. Furthermore, the present invention relates to a wire grid polarizer, characterized in that the direction in which the refractive index is lowest in the plane and the longitudinal direction of the fine metal wires intersect with an inclination of 45 °.

本発明の一実施形態によると、ワイヤグリッド型偏光子の基板が複屈折を有し、基板の面内で屈折率が最も低くなる方向と、金属細線の長手方向がほぼ直交するように金属細線を配置させた場合に、最も高い偏光分離性能を得ることができる。   According to an embodiment of the present invention, the wire grid polarizer substrate has birefringence, and the direction in which the refractive index is the lowest in the plane of the substrate and the longitudinal direction of the metal wire are substantially orthogonal to each other. The highest polarization separation performance can be obtained when the is arranged.

また、本発明の別の実施形態によると、ワイヤグリッド型偏光子の基板が複屈折を有し、基板の面内で屈折率が最も低くなる方向と、金属細線の長手方向がほぼ45°の傾きを持つように金属細線を配置し、さらに基板厚みを適切な値にすることにより、ワイヤグリッドを透過した光を円偏光、あるいはS偏光状態にすることができ、実質上1つの光学素子で非偏光状態の光を円偏光に変換できる円偏光板や、透過光および反射光いずれもS偏光状態になる偏光子が得られる。   According to another embodiment of the present invention, the substrate of the wire grid polarizer has birefringence, the direction in which the refractive index is lowest in the plane of the substrate, and the longitudinal direction of the thin metal wire is approximately 45 °. By arranging the fine metal wires so as to have an inclination and setting the substrate thickness to an appropriate value, the light transmitted through the wire grid can be made into a circularly polarized state or an S-polarized state. A circularly polarizing plate that can convert light in a non-polarized state into circularly polarized light and a polarizer in which both transmitted light and reflected light are in the S-polarized state are obtained.

ワイヤグリッド型偏光子の基板として使用可能な複屈折を有する材料としては、液晶プロジェクタなど、耐熱性が要求される用途でワイヤグリッド型偏光子を用いる場合には、方解石に代表されるような可視光に対し透明性の高い無機複屈折結晶が使用できる。また、面内複屈折を持たないガラスなどの高耐熱性無機材料に電場、磁場などの外場を与え、外場誘起の複屈折を付与させることも可能である。   A birefringent material that can be used as a substrate for a wire grid polarizer is a visible material typified by calcite when a wire grid polarizer is used in applications that require heat resistance, such as liquid crystal projectors. An inorganic birefringent crystal that is highly transparent to light can be used. It is also possible to impart an external field-induced birefringence by applying an external field such as an electric field or a magnetic field to a high heat resistant inorganic material such as glass having no in-plane birefringence.

一方、耐熱性がさほど要求されない用途であれば、面内複屈折を有する透明体として樹脂が使用でき、好ましい樹脂としては、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ジエチレングリコールビスカーボネート(CR−39)、スチレン/アクリロニトリル共重合体(SAN)、スチレン/メタクリル酸共重合体(MS)、脂環式アクリル樹脂、脂環式ポリオレフィン樹脂などの高透明樹脂があげられ、通常はこれらを板やフィルムとして基板に用いる。   On the other hand, if the heat resistance is not so required, a resin can be used as a transparent body having in-plane birefringence. Preferred resins include polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), and polyethylene. Terephthalate (PET), polyethylene naphthalate (PEN), diethylene glycol biscarbonate (CR-39), styrene / acrylonitrile copolymer (SAN), styrene / methacrylic acid copolymer (MS), alicyclic acrylic resin, alicyclic And highly transparent resins such as polyolefin resin, which are usually used as a plate or film for a substrate.

一般に樹脂で板やフィルムを製造する場合、延伸工程が含まれるが、樹脂に応力がかかったり、延伸されたりすると複屈折が発生する。延伸により生じる複屈折は配向複屈折と呼ばれ、延伸時のせん断力でポリマー分子が特定方向に配向するために屈折率に異方性が生じるようになり、その値は次の式3で表される。
Δn=f・Δn0・・・式3
(ここで、Δnは配向複屈折率、Δn0は固有複屈折率、fは配向分布関数を意味する。)
In general, when a plate or film is produced with a resin, a stretching step is included, but birefringence occurs when the resin is stressed or stretched. Birefringence generated by stretching is called orientation birefringence, and polymer molecules are oriented in a specific direction by the shearing force at the time of stretching, so that anisotropy occurs in the refractive index. Is done.
Δn = f · Δn 0 Formula 3
(Where Δn is the orientation birefringence, Δn 0 is the intrinsic birefringence, and f is the orientation distribution function.)

Δn0は材料固有のものであり、例えば代表的な高透明性樹脂であるPMMA、PC、PS、PETのΔn0はそれぞれ、−0.0043、0.106、−0.10、0.105とまちまちである。Δn0が正の材料、つまり正の配向複屈折を有するものを一軸延伸した場合、基板面内での延伸方向の屈折率は延伸前の屈折率より高くなり、非延伸方向の屈折率が低くなる。逆にΔn0が負の配向複屈折を有する材料は基板面内での延伸方向の屈折率が低くなり、非延伸方向の屈折率が高くなる。 [Delta] n 0 is of intrinsic material, for example, a typical a highly transparent resin PMMA, PC, PS, PET Δn 0 each, -0.0043,0.106, -0.10,0.105 It is a town. When a material with positive Δn 0, that is, a material having positive orientation birefringence, is uniaxially stretched, the refractive index in the stretching direction within the substrate surface is higher than the refractive index before stretching, and the refractive index in the non-stretching direction is low. Become. In contrast, a material having orientation birefringence having a negative Δn 0 has a low refractive index in the stretching direction and a high refractive index in the non-stretching direction in the substrate plane.

すなわち、屈折率nの正の配向複屈折を有する材料をある方向に延伸させた場合(延伸方向をX軸と定義し、基板面内でX軸と直交する軸をY軸と定義する)、延伸後のX軸方向の屈折率nX、Y軸方向の屈折率nYはそれぞれ、n+ΔnX、n−ΔnYとなり、面内複屈折を有するようになる。ただし、ΔnX、ΔnYはそれぞれX軸方向、Y軸方向の屈折率の変化量(それぞれ正の値)で、ΔnX+ΔnY=Δnである。同様に負の配向複屈折率を有する材料をX軸方向に延伸させた場合、nX、nYはそれぞれn−ΔnX、n+ΔnYである。 That is, when a material having a positive orientation birefringence with a refractive index n is stretched in a certain direction (the stretching direction is defined as the X axis, and the axis perpendicular to the X axis in the substrate plane is defined as the Y axis), each refractive index n X in the X-axis direction after stretching, the refractive index n Y in the Y-axis direction, n + Δn X, n- Δn Y , and becomes to have a plane birefringence. Here, Δn X and Δn Y are the amounts of change in the refractive index in the X-axis direction and Y-axis direction (respectively positive values), and Δn X + Δn Y = Δn. Similarly, when a material having a negative orientation birefringence is stretched in the X-axis direction, n X and n Y are n−Δn X and n + Δn Y , respectively.

後述の電磁界シミュレーションの結果から明らかになるとおり、ワイヤグリッド型偏光子の偏光分離性能はP偏光方向の屈折率が低ければ向上する。正の配向複屈折を有する延伸された樹脂フィルム上にワイヤグリッドを形成させる場合には、延伸方向と金属細線の長手方向が直交するように金属細線を配列させることにより、P偏光から見た基板の屈折率は延伸前よりもΔnYだけ小さくなり、逆に、負の配向複屈折を有する材料の場合、延伸方向と金属細線の長手方向が平行になるように金属細線を配列させると、P偏光から見た基板の屈折率は延伸前よりもΔnXだけ小さくなる。したがって延伸されていない状態の同じ材料に金属細線を配列させた場合よりも、ワイヤグリッド型偏光子の偏光分離性能を向上させることが可能となる。特に、固有複屈折Δn0が大きなものほど、延伸による偏光分離性能の向上効果は大きい。 As will be apparent from the results of electromagnetic field simulation described later, the polarization separation performance of the wire grid polarizer is improved if the refractive index in the P-polarization direction is low. When forming a wire grid on a stretched resin film having positive orientation birefringence, the substrate viewed from the P-polarized light is arranged by arranging the metal fine wires so that the stretching direction and the longitudinal direction of the metal fine wires are orthogonal to each other. the refractive index of the reduced only [Delta] n Y than before stretching, conversely, if the material having a negative orientation birefringence, when the thin metal wire is arranged such that the longitudinal direction of the stretching direction and the metal thin wire are parallel, P The refractive index of the substrate viewed from the polarization becomes smaller by Δn X than before stretching. Therefore, it is possible to improve the polarization separation performance of the wire grid type polarizer as compared with the case where the thin metal wires are arranged on the same material that is not stretched. In particular, the greater the intrinsic birefringence Δn 0 , the greater the effect of improving the polarization separation performance by stretching.

たとえば、延伸前の屈折率が1.5の正の配向複屈折を有する樹脂を延伸することにより、基板面内X軸方向の屈折率が1.6、Y軸方向の屈折率が1.4になったとした時、屈折率1.4の基板を用いた時と同等の偏光分離性能を示すことになる。   For example, by stretching a resin having positive orientation birefringence with a refractive index of 1.5 before stretching, the refractive index in the in-plane X-axis direction is 1.6 and the refractive index in the Y-axis direction is 1.4. As a result, a polarization separation performance equivalent to that when a substrate having a refractive index of 1.4 is used is exhibited.

なお、上の記載では一軸延伸について述べたが、二軸延伸の場合には、基板面内で最も配向度が上がっている方向がX軸またはY軸となる。   In the above description, uniaxial stretching has been described. In the case of biaxial stretching, the direction in which the degree of orientation is highest in the substrate plane is the X axis or the Y axis.

ワイヤグリッド型偏光子の金属細線は厚み、幅ともに非常に微細であり、わずかな傷つきにより性能が低下することから、その損傷を防ぐために金属細線を樹脂やガラスなどの保護層で被覆することが好ましい。また、被覆は金属細線表面の防錆にも効果があり、特に銀などの錆びやすい金属を金属細線に使用する場合には、金属細線の導電率低下による性能低下を防止するためにも被覆をすることが好ましい。   The fine metal wires of the wire grid polarizer are very thin in both thickness and width, and the performance deteriorates due to slight scratches. To prevent the damage, the fine metal wires can be covered with a protective layer such as resin or glass. preferable. In addition, the coating is effective in preventing rust on the surface of the fine metal wire. Especially when using a rust-resistant metal such as silver for the fine metal wire, the coating is also used to prevent the performance degradation due to the decrease in the conductivity of the fine metal wire. It is preferable to do.

基板と保護層との界面でのP偏光の反射を低減させるため、保護層と基板の金属細線に直交する方向の屈折率は実質的に一致させることが好ましい。   In order to reduce the reflection of P-polarized light at the interface between the substrate and the protective layer, it is preferable that the refractive indexes in the direction perpendicular to the metal thin wires of the protective layer and the substrate are substantially matched.

また、基板や保護層に反射防止構造を設けることは、光の利用効率を高めるために好ましい。   In addition, it is preferable to provide an antireflection structure on the substrate or the protective layer in order to increase the light use efficiency.

金属細線の材料は特に限定されないが、可視光に対し高い反射率を示し、かつ高導電率を有する銀、アルミニウムなどの金属材料を用いることが好ましい。   The material of the fine metal wire is not particularly limited, but it is preferable to use a metal material such as silver or aluminum that exhibits high reflectivity with respect to visible light and has high conductivity.

金属細線の高さt(金属厚み)は、ワイヤグリッド型偏光子の偏光分離性能から必要な値が決まり、具体的には光の透過率が1%以下であれば良く、30nm以上の厚みであれば良好な性能を得ることができる。あまりに金属が薄いと、光の透過が無視できず、偏光分離性能が低下する。逆に金属が厚すぎると、光の利用効率が低下するため、厚みの上限は約300nmである。金属細線をアルミニウムで形成する場合、金属厚みは40〜200nm程度であることが望ましい。   The height t (metal thickness) of the fine metal wire is determined based on the polarization separation performance of the wire grid polarizer. Specifically, the light transmittance may be 1% or less, and the thickness is 30 nm or more. If it is, good performance can be obtained. If the metal is too thin, the transmission of light cannot be ignored, and the polarization separation performance is degraded. On the other hand, if the metal is too thick, the light utilization efficiency decreases, so the upper limit of the thickness is about 300 nm. When forming a metal fine wire with aluminum, it is desirable that metal thickness is about 40-200 nm.

金属細線のピッチpは、0°入射、真空の屈折率n=1において式1より導出される最大共鳴波長λres-maxが使用する光の波長以下になればよく、可視光に対しては400nmであれば問題がないことから、ピッチpは380nm以下であればよい。 Pitch p of the thin metal wire, 0 ° incidence, may if below the wavelength of light used is maximum resonance wavelength lambda res-max derived from the Formula 1 in the refractive index n = 1 of the vacuum, for the visible light Since there is no problem if it is 400 nm, the pitch p may be 380 nm or less.

ワイヤ幅wに関しては、wがピッチpの約半分程度のときにワイヤグリッド型偏光子の偏光分離性能が良くなり、0.3p<w<0.7pの範囲であることが好ましい。   Regarding the wire width w, the polarization separation performance of the wire grid polarizer is improved when w is about half of the pitch p, and it is preferable that the range is 0.3p <w <0.7p.

金属細線の断面形状は、特に限定されるものではなく、正方形、長方形、台形、円形、楕円形、その他様々な形状を持っていてもよい。   The cross-sectional shape of the thin metal wire is not particularly limited, and may have a square, rectangular, trapezoidal, circular, elliptical, or other various shapes.

ワイヤグリッド型偏光子の製造方法としては種々のものがあり、可視光用のワイヤグリッド型偏光子の製造方法としては、極紫外レーザーを用いた干渉露光法、電子線リソグラフィを用いた製造方法が一般的な方法といえる。これらは所望のピッチ、ワイヤ幅、厚みを有する金属細線をリソグラフィの技術で作製する方法である。   There are various methods for manufacturing a wire grid polarizer, and methods for manufacturing a wire grid polarizer for visible light include an interference exposure method using an extreme ultraviolet laser, and a manufacturing method using electron beam lithography. This is a general method. These are methods for producing a fine metal wire having a desired pitch, wire width and thickness by lithography.

また、他の技術としては、特許文献3に、透明な柔軟基板上に金属膜を形成し、基板と金属膜とを延伸することにより、金属膜に異方的な形状を与えることができ、ワイヤグリッド型偏光子としての機能を有すると記載されている。この方法を本発明で使用する場合、できるだけ屈折率が低く、延伸方向の複屈折率が下がる負の配向複屈折を有する材料を用いることが好ましい。   In addition, as another technique, in Patent Document 3, by forming a metal film on a transparent flexible substrate and stretching the substrate and the metal film, an anisotropic shape can be given to the metal film, It is described as having a function as a wire grid polarizer. When this method is used in the present invention, it is preferable to use a material having a negative orientation birefringence in which the refractive index is as low as possible and the birefringence in the stretching direction is lowered.

特許文献4にはSiO2基板上にピッチ1μm、線幅0.1μmで、金製の金属細線格子を形成させたのち、格子の表面にSiO2膜を形成し、さらに格子と平行な方向に全体を加熱延伸することでピッチ0.1μm、線幅0.01μmのワイヤグリッド型偏光子が作製できると記載されている。 Patent Document 4 pitches 1μm on a SiO 2 substrate, in a line width 0.1 [mu] m, after having formed a gold thin metal wire grid, a SiO 2 film is formed on the surface of the grating, the more lattice direction parallel It is described that a wire grid polarizer having a pitch of 0.1 μm and a line width of 0.01 μm can be produced by heating and stretching the whole.

面内複屈折を有する基板で電磁界シミュレーションの結果を記す。シミュレーションの条件は、基板が面内複屈折を有している点を除いては、従来技術の部分で説明したのと同じである。今後、簡単のため、面内複屈折を有する基板の最も屈折率が低い方向をx軸、最も屈折率が高い方向をy軸としたとき、この基板は(nx,ny)の複屈折率を有すると記載することにする。ここで、延伸方向を意味するX軸(および非延伸方向を意味するY軸)とx軸(およびy軸)は必ずしも一致しない。   The result of electromagnetic field simulation is described with a substrate having in-plane birefringence. The simulation conditions are the same as those described in the prior art, except that the substrate has in-plane birefringence. In the future, for simplicity, when the direction of the lowest refractive index of the substrate having in-plane birefringence is the x axis and the direction of the highest refractive index is the y axis, the substrate has a birefringence of (nx, ny). It will be described as having. Here, the X-axis (and the Y-axis meaning the non-stretching direction) and the x-axis (and y-axis) that mean the stretching direction do not necessarily match.

基板複屈折率が(1.4,1.6)である基板に対して、金属細線の長手方向がx軸と直交する場合(今後この配置を「x⊥配置」と記載する)と平行である場合(今後「x||配置」と記載する)について計算を行った。各配置を図5に示しておく。図5(a)がx⊥配置、図5(b)がx||配置である。 Parallel to the case where the longitudinal direction of the fine metal wires is perpendicular to the x-axis with respect to the substrate having a substrate birefringence of (1.4, 1.6) (hereinafter, this arrangement will be described as “x⊥ arrangement”). Calculations were made for certain cases (hereinafter described as “x || configuration”). Each arrangement is shown in FIG. FIG. 5A shows the x⊥ arrangement, and FIG. 5B shows the x || arrangement.

なお、金属細線のピッチ、線幅、厚みは先の計算と同じである。透過光の偏光度のシミュレーション結果を図6に示す。基板の複屈折率がx⊥配置の場合、およびx||配置の場合ともに289nm、331nmにおいてレイリー共鳴が起きることがわかるが、x⊥の方が、331nmにおけるレイリー共鳴の影響が軽微であり良好な性能を示す。 The pitch, line width, and thickness of the fine metal wires are the same as in the previous calculation. The simulation result of the polarization degree of transmitted light is shown in FIG. It can be seen that Rayleigh resonance occurs at 289 nm and 331 nm in the case where the birefringence of the substrate is in the x 、 arrangement and in the x || arrangement, but the effect of Rayleigh resonance at 331 nm is smaller and better in the case of x⊥. Performance.

これは、基板複屈折率が(nx,ny)のワイヤグリッド型偏光子で入射光が偏光分離される際、金属細線がx⊥配置のときに、透過光であるP偏光に影響を与える基板の屈折率はnxであるのに対し、x||配置の場合はnyであるためであると定性的に説明される。また、同じことは入射角度θが増大した場合にもいえ、x⊥配置の方が、透過光は高い偏光度を有する。 This is because a substrate that influences P-polarized light that is transmitted light when incident light is polarized and separated by a wire grid type polarizer having a substrate birefringence of (nx, ny) and the fine metal wires are arranged in x⊥. It is qualitatively explained that this is because the refractive index of nx is nx whereas the x || configuration is ny. The same is true when the incident angle θ is increased, but the transmitted light has a higher degree of polarization in the x⊥ arrangement.

反射光についてのシミュレーション結果として、図7に基板屈折率が均一でn=1.4および1.6の場合、基板複屈折率(1.4,1.6)でx⊥配置の場合、基板複屈折率(1.4,1.6)でx||配置の場合の4条件で計算した反射光の偏光度を示す。図7と図6を比べると、透過光にくらべて反射光の方が複屈折の影響をさらに大きく受けることがわかる。すなわち、複屈折率(nx,ny)のうちワイヤグリッドと直交する方向の屈折率がほぼその偏光特性を決めており、可視光の波長域でx⊥配置の方が高い偏光度を示すことがわかる。 As a simulation result of the reflected light, FIG. 7 shows a case where the substrate refractive index is uniform and n = 1.4 and 1.6, and the substrate birefringence (1.4, 1.6) is x⊥ arrangement. The degree of polarization of reflected light calculated under four conditions in the case of x || configuration with birefringence (1.4, 1.6) is shown. Comparing FIG. 7 and FIG. 6, it can be seen that the reflected light is more greatly affected by birefringence than the transmitted light. That is, of the birefringence (nx, ny), the refractive index in the direction orthogonal to the wire grid almost determines the polarization characteristics, and the x⊥ arrangement has a higher degree of polarization in the visible light wavelength range. Recognize.

図7から、基板屈折率n=1.6、および複屈折率(1.4,1.6)のx||配置の場合に310nm付近に偏光度が99%を超える波長領域が存在することが、注目すべき点としてあげられる。この結果はワイヤグリッド型偏光子のピッチ、ワイヤ幅、高さ、基板屈折率(あるいは複屈折率)を適切に設定することにより、ある特定の波長域で反射光の偏光度が上げられることを示している。 From FIG. 7, in the case of the substrate refractive index n = 1.6 and the birefringence (1.4, 1.6) x || arrangement, there is a wavelength region where the degree of polarization exceeds 99% in the vicinity of 310 nm. However, it is raised as a remarkable point. This result shows that the polarization degree of reflected light can be increased in a specific wavelength range by appropriately setting the pitch, wire width, height, and substrate refractive index (or birefringence) of the wire grid polarizer. Show.

次に、背景技術の部分で述べた反射光のリサイクルによる光の利用効率について比較する。光の利用効率については次の式4のように定義することにする。
光の利用効率=Tp×(Rs+Rp)・・・式4
(式4において、Rs、RpはそれぞれS偏光、P偏光の反射率である。)
Next, the light use efficiency by recycling the reflected light described in the background section will be compared. The light utilization efficiency is defined as in the following equation 4.
Light utilization efficiency = Tp × (Rs + Rp) Equation 4
(In Equation 4, Rs and Rp are the reflectances of S-polarized light and P-polarized light, respectively.)

図8に波長と光の利用効率の関係を示したが、x⊥配置の方がx||配置よりも光の利用効率という観点でも優れている。 FIG. 8 shows the relationship between the wavelength and the light utilization efficiency. The x⊥ arrangement is superior to the x || arrangement in terms of light utilization efficiency.

以上のように、基板複屈折率が(nx,ny)である場合には、1)P偏光の透過率、2)透過光の偏光度、3)反射光の偏光度、4)光の利用効率、という4つのワイヤグリッド型偏光子の性能を表す指標いずれにおいても、x⊥配置の方が優れていることがわかる。   As described above, when the substrate birefringence is (nx, ny), 1) the transmittance of P-polarized light, 2) the degree of polarization of transmitted light, 3) the degree of polarization of reflected light, and 4) the use of light. It can be seen that the x⊥ arrangement is superior in any of the indexes representing the performance of the four wire grid polarizers, ie, efficiency.

なお、金属細線格子の長手方向と面内複屈折を有する基板の最も屈折率が低い方向との直交性の確度は、ワイヤグリッド型偏光子に要求される偏光分離性能により決定され、高い偏光分離性能が要求されない用途に本発明のワイヤグリッド型偏光子を使用する場合には多少の誤差が許容される。   Note that the accuracy of orthogonality between the longitudinal direction of the metal wire grating and the direction of the lowest refractive index of the substrate having in-plane birefringence is determined by the polarization separation performance required for the wire grid polarizer, and high polarization separation. When the wire grid polarizer of the present invention is used for applications where performance is not required, some errors are allowed.

ここまでは、複屈折基板のx方向に対して金属細線の長手方向が垂直もしくは平行に配列した条件での直線偏光分離性能について説明したが、x軸に対して0°もしくは90°以外の角度で金属細線を配列させた場合は、金属細線が直線偏光子、基板が波長板の役目を果たすため、基板厚み(d)を制御することにより、透過光の偏光性能を様々に制御できる。   Up to this point, the linearly polarized light separation performance under the condition where the longitudinal direction of the fine metal wires is arranged perpendicularly or parallel to the x direction of the birefringent substrate has been described. In the case where the thin metal wires are arranged, the thin metal wire serves as a linear polarizer and the substrate serves as a wave plate. Therefore, by controlling the substrate thickness (d), the polarization performance of transmitted light can be variously controlled.

特にφ=45°のときは、(nx−ny)・d=λ/4+N・λ/2(λ:入射光の波長、N=0,1,2・・・)を満たす時、基板はいわゆるλ/4波長板として機能するため透過光は円偏光となる。また、(nx−ny)・d=λ/2+N・λ/2という条件を満たす場合、基板はλ/2波長板として機能し、透過光はS状態の直線偏光となる。図9にその模式図を示す。   In particular, when φ = 45 °, the substrate is so-called when (nx−ny) · d = λ / 4 + N · λ / 2 (λ: wavelength of incident light, N = 0, 1, 2,...) Is satisfied. Since it functions as a λ / 4 wavelength plate, the transmitted light is circularly polarized. Further, when the condition of (nx−ny) · d = λ / 2 + N · λ / 2 is satisfied, the substrate functions as a λ / 2 wavelength plate, and the transmitted light is S-state linearly polarized light. FIG. 9 shows a schematic diagram thereof.

通常、非偏光状態の光から円偏光を得る場合には、直線偏光を作る光学素子とλ/4板とを併用するが、複屈折を有する基板上に金属細線を45°で配列させ、さらに基板の面内複屈折と厚みを適切な値に制御し、λ/4板となるようにすることで、実質上1つの光学素子で円偏光が得ることができる。また、複屈折基板がλ/2板となるように面内複屈折及び厚みを制御すると、透過光、反射光ともS偏光状態の光が得られる特異な光学素子が得られる。   Usually, when obtaining circularly polarized light from light in a non-polarized state, an optical element that produces linearly polarized light and a λ / 4 plate are used in combination. Metal fine wires are arranged at 45 ° on a substrate having birefringence, and By controlling the in-plane birefringence and the thickness of the substrate to appropriate values so as to be a λ / 4 plate, substantially one optical element can obtain circularly polarized light. Further, when the in-plane birefringence and the thickness are controlled so that the birefringent substrate is a λ / 2 plate, a unique optical element capable of obtaining S-polarized light for both transmitted light and reflected light is obtained.

<実施例1>
以下のような手順で延伸によりPETフィルムに面内複屈折をもたせ、x⊥配置でアルミ細線を並べた。
<Example 1>
In-plane birefringence was imparted to the PET film by stretching in the following procedure, and the aluminum thin wires were arranged in an x⊥ arrangement.

厚み80μm、屈折率1.58のPETフィルムを110℃、3.5倍で幅自由1軸延伸した。延伸後の延伸方向の屈折率は1.60、非延伸方向の屈折率は1.52であった。   A PET film having a thickness of 80 μm and a refractive index of 1.58 was uniaxially stretched at 110 ° C. and 3.5 times in width. The refractive index in the stretching direction after stretching was 1.60, and the refractive index in the non-stretching direction was 1.52.

次に、延伸後のPETフィルムに120nm厚のアルミニウム層を抵抗加熱蒸着により成膜し、さらにスピンコートでフォトレジスト層を設けた。   Next, an aluminum layer having a thickness of 120 nm was formed on the stretched PET film by resistance heating vapor deposition, and a photoresist layer was provided by spin coating.

続いてArFレーザー(波長193nm)の二光束干渉露光により、PETフィルムの延伸方向と平行な方向に縞状パターン(ピッチ180nm、ライン:スペース≒1:1)を形成し、現像後、ドライエッチングでアルミを除去し、ワイヤグリッド型偏光子を得た。   Subsequently, a stripe pattern (pitch 180 nm, line: space≈1: 1) is formed in a direction parallel to the stretching direction of the PET film by two-beam interference exposure with an ArF laser (wavelength 193 nm), and after development, dry etching is performed. Aluminum was removed to obtain a wire grid polarizer.

このワイヤグリッド型偏光子のアルミ金属細線面から波長405nmの固体レーザー光および、波長635nmの半導体レーザー光をワイヤグリッド型偏光子に対して垂直に入射し、その偏光分離性能を測定した。405nm、635nmにおける透過光の偏光度はそれぞれ98.2%、99.6%であった。   A solid laser beam having a wavelength of 405 nm and a semiconductor laser beam having a wavelength of 635 nm were incident perpendicularly to the wire grid polarizer from the thin aluminum metal surface of the wire grid polarizer, and the polarization separation performance was measured. The polarization degrees of transmitted light at 405 nm and 635 nm were 98.2% and 99.6%, respectively.

<比較例1>
実施例1と同様の方法で面内複屈折をもたせたPETフィルムに、フィルムの延伸方向と直交する方向にアルミワイヤを配列させ(x||配置)、偏光度を測定したところ、405nm、635nmにおける偏光度はそれぞれ94.0%、99.1%であり、実施例1に比較して偏光分離性能が劣っていた。
<Comparative Example 1>
An aluminum wire was arranged in a direction orthogonal to the stretching direction of the film (x || arrangement) on a PET film having in-plane birefringence in the same manner as in Example 1, and the degree of polarization was measured. As a result, 405 nm and 635 nm were measured. The polarization degrees of were 94.0% and 99.1%, respectively, and the polarization separation performance was inferior to that of Example 1.

実施例1と比較例1の結果より、面内複屈折を有する基板に金属細線を配列させワイヤグリッド偏光子を作製する場合、基板の屈折率の低くなる方向とワイヤの長手方向とが直交している方が偏光分離性能が上がることが示された。   From the results of Example 1 and Comparative Example 1, when producing a wire grid polarizer by arranging metal thin wires on a substrate having in-plane birefringence, the direction in which the refractive index of the substrate decreases and the longitudinal direction of the wire are orthogonal to each other. It was shown that the polarization separation performance is improved.

本発明によれば、複雑な工程を経ることなくワイヤグリッド型偏光子の性能を向上することが可能である。本発明によるワイヤグリッド型偏光子を液晶ディスプレイに用いれば、光の利用効率を大幅に向上させることができ、モバイル系の情報端末の電池寿命を大幅に伸ばしたり、軽量化が可能となったりするばかりか、部品数の削減によるコストダウンや、製品の薄肉化が可能となる。このように、本発明は偏光を利用する幅広い産業分野において、高い利用価値を有するといえる。   According to the present invention, it is possible to improve the performance of a wire grid polarizer without going through a complicated process. If the wire grid polarizer according to the present invention is used in a liquid crystal display, the light use efficiency can be greatly improved, and the battery life of a mobile information terminal can be greatly extended or the weight can be reduced. In addition, the cost can be reduced by reducing the number of parts, and the product can be made thinner. Thus, it can be said that the present invention has a high utility value in a wide range of industrial fields using polarized light.

従来技術におけるワイヤグリッド型偏光子の模式図である。It is a schematic diagram of the wire grid type polarizer in a prior art. 従来技術におけるワイヤグリッド型偏光子のP偏光およびS偏光の透過効率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmission efficiency of P polarization | polarized-light and S polarization | polarized-light of a wire grid type polarizer in a prior art. 従来技術におけるワイヤグリッド型偏光子の偏光度の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the polarization degree of the wire grid type polarizer in a prior art. 従来技術における最大共鳴波長の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the maximum resonance wavelength in a prior art. (a)は複屈折基板上のワイヤグリッド型偏光子のx⊥配置を表し、(b)は複屈折基板上のワイヤグリッド型偏光子のx||配置を表す模式図である。(A) represents the x⊥ placement of the wire grid polarizer on a birefringent substrate, (b) is a schematic view showing an x || placement of the wire grid polarizer on a birefringent substrate. 本発明における複屈折基板上のワイヤグリッド型偏光子の透過光の偏光度の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the polarization degree of the transmitted light of the wire grid type polarizer on the birefringent substrate in this invention. 本発明における複屈折基板上のワイヤグリッド型偏光子の反射光の偏光度の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the polarization degree of the reflected light of the wire grid type polarizer on the birefringent substrate in this invention. 本発明における複屈折基板上のワイヤグリッド型偏光子の光の利用効率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the utilization efficiency of the light of the wire grid type polarizer on the birefringent substrate in this invention. 本発明における複屈折基板上のx軸に対してワイヤを45°の角度で配列した偏光子の特徴を示す模式図である。It is a schematic diagram which shows the characteristics of the polarizer which arranged the wire at an angle of 45 degrees with respect to the x-axis on the birefringent substrate in the present invention.

Claims (3)

複屈折を有す透明な樹脂基板上に、直線状金属細線が、互いに平行に、同じ間隔をおいて配置されているワイヤグリッド型偏光子において、該基板面内で屈折率が最も低くなる方向と、金属細線の長手方向が直交することを特徴とするワイヤグリッド型偏光子。   The direction in which the refractive index is the lowest in the plane of the substrate in a wire grid polarizer in which straight metal thin wires are arranged on a transparent resin substrate having birefringence in parallel and at the same interval. And a wire grid polarizer in which the longitudinal directions of the fine metal wires are orthogonal to each other. 複屈折を有す透明な樹脂基板上に、直線状金属細線が、互いに平行に、同じ間隔をおいて配置されているワイヤグリッド型偏光子において、該基板が1/2波長板であり、該基板面内で屈折率が最も低くなる方向と、金属細線の長手方向が45°の傾きで交差していることを特徴とするワイヤグリッド型偏光子。 In a wire grid polarizer in which straight metal fine wires are arranged on a transparent resin substrate having birefringence in parallel with each other and at the same interval, the substrate is a half-wave plate, A wire grid polarizer, characterized in that the direction in which the refractive index is lowest in the plane of the substrate and the longitudinal direction of the fine metal wires intersect with an inclination of 45 °. 透明な樹脂基板の複屈折が延伸により導入されることを特徴とする請求項1又は2に記載のワイヤグリッド型偏光子。 3. The wire grid polarizer according to claim 1, wherein birefringence of a transparent resin substrate is introduced by stretching.
JP2004001538A 2004-01-07 2004-01-07 Wire grid polarizer Expired - Lifetime JP4527986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001538A JP4527986B2 (en) 2004-01-07 2004-01-07 Wire grid polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004001538A JP4527986B2 (en) 2004-01-07 2004-01-07 Wire grid polarizer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010102836A Division JP5149327B2 (en) 2010-04-28 2010-04-28 Wire grid polarizer

Publications (2)

Publication Number Publication Date
JP2005195824A JP2005195824A (en) 2005-07-21
JP4527986B2 true JP4527986B2 (en) 2010-08-18

Family

ID=34817024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001538A Expired - Lifetime JP4527986B2 (en) 2004-01-07 2004-01-07 Wire grid polarizer

Country Status (1)

Country Link
JP (1) JP4527986B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8657448B2 (en) 2011-05-30 2014-02-25 Seiko Epson Corporation Polarization converting element, polarization converting unit, and projection-type imaging device
JP2017067940A (en) * 2015-09-29 2017-04-06 大日本印刷株式会社 Liquid crystal display

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351346B2 (en) 2004-11-30 2008-04-01 Agoura Technologies, Inc. Non-photolithographic method for forming a wire grid polarizer for optical and infrared wavelengths
JP2008522226A (en) 2004-11-30 2008-06-26 アグーラ テクノロジーズ インコーポレイテッド Application and fabrication technology of large-scale wire grid polarizer
US7570424B2 (en) 2004-12-06 2009-08-04 Moxtek, Inc. Multilayer wire-grid polarizer
US7800823B2 (en) 2004-12-06 2010-09-21 Moxtek, Inc. Polarization device to polarize and further control light
US7961393B2 (en) 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
JP5113998B2 (en) * 2005-09-26 2013-01-09 岡本硝子株式会社 Anisotropic glass manufacturing method, anisotropic glass, and polarizing element using the same
KR20070037864A (en) 2005-10-04 2007-04-09 엘지.필립스 엘시디 주식회사 Liquid crystal display panel and fabrication method thereof
JP4729423B2 (en) * 2006-03-28 2011-07-20 株式会社ミツトヨ Optical interferometer
WO2007116972A1 (en) 2006-04-07 2007-10-18 Asahi Glass Company, Limited Wire grid polarizer and method for producing the same
JP4793082B2 (en) * 2006-04-28 2011-10-12 コニカミノルタオプト株式会社 Roll-shaped reflective polarizing element, roll-shaped reflection / absorption-integrated polarizing element, roll-shaped viewing angle widening reflection / absorption-integrated polarizing element, and roll-shaped retardation compensation reflection / absorption-integrated polarizing element
JP4746475B2 (en) * 2006-04-28 2011-08-10 帝人デュポンフィルム株式会社 Reflective polarizing plate
JP4762804B2 (en) * 2006-06-28 2011-08-31 チェイル インダストリーズ インコーポレイテッド Polarized light separating element and manufacturing method thereof
JP5380796B2 (en) * 2006-07-07 2014-01-08 ソニー株式会社 Polarizing element and liquid crystal projector
US8755113B2 (en) 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
JP4695101B2 (en) 2007-01-24 2011-06-08 株式会社 日立ディスプレイズ Polarizer and liquid crystal display device using the same
JP4488033B2 (en) 2007-02-06 2010-06-23 ソニー株式会社 Polarizing element and liquid crystal projector
US7957062B2 (en) 2007-02-06 2011-06-07 Sony Corporation Polarizing element and liquid crystal projector
US7789515B2 (en) 2007-05-17 2010-09-07 Moxtek, Inc. Projection device with a folded optical path and wire-grid polarizer
US8248696B2 (en) 2009-06-25 2012-08-21 Moxtek, Inc. Nano fractal diffuser
CN101989012A (en) * 2009-08-03 2011-03-23 江苏丽恒电子有限公司 Liquid crystal on silicon imager
JP2011227243A (en) * 2010-04-19 2011-11-10 Asahi Kasei E-Materials Corp Wire grid polarization plate and its manufacturing method
US8611007B2 (en) 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
US8913321B2 (en) 2010-09-21 2014-12-16 Moxtek, Inc. Fine pitch grid polarizer
JP5735549B2 (en) * 2011-02-09 2015-06-17 日立マクセル株式会社 LCD projector
US8873144B2 (en) 2011-05-17 2014-10-28 Moxtek, Inc. Wire grid polarizer with multiple functionality sections
US8913320B2 (en) 2011-05-17 2014-12-16 Moxtek, Inc. Wire grid polarizer with bordered sections
US20130043956A1 (en) * 2011-08-15 2013-02-21 Honeywell International Inc. Systems and methods for a nanofabricated optical circular polarizer
US8922890B2 (en) 2012-03-21 2014-12-30 Moxtek, Inc. Polarizer edge rib modification
WO2014112525A1 (en) 2013-01-16 2014-07-24 シャープ株式会社 Mirror display, half mirror plate, and electronic device
CN105474291B (en) 2013-08-05 2018-06-22 夏普株式会社 Mirror display, half reflection runner plate and electronic equipment
CN103487987A (en) * 2013-09-30 2014-01-01 南京中电熊猫液晶显示科技有限公司 Polarized structure and liquid crystal display
US9348076B2 (en) 2013-10-24 2016-05-24 Moxtek, Inc. Polarizer with variable inter-wire distance
WO2015141350A1 (en) 2014-03-19 2015-09-24 シャープ株式会社 Mirror display and electronic device
US10254455B2 (en) 2014-06-05 2019-04-09 Sharp Kabushiki Kaisha Mirror display and mirror display unit
US10148942B2 (en) 2014-06-05 2018-12-04 Sharp Kabushiki Kaisha Mirror display system
JP5967150B2 (en) * 2014-07-18 2016-08-10 ウシオ電機株式会社 Polarized light irradiation device
JP6720625B2 (en) * 2016-03-25 2020-07-08 大日本印刷株式会社 Polarizer and method for manufacturing polarizer
JP6805555B2 (en) * 2016-06-03 2020-12-23 大日本印刷株式会社 Polarizing device, reflected light detection device
US10921638B2 (en) 2016-07-06 2021-02-16 Sharp Kabushiki Kaisha Display device, electronic apparatus, semi-transmissive reflection plate, and electrical apparatus
JP2019159080A (en) * 2018-03-13 2019-09-19 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device
CN112394563A (en) * 2019-08-19 2021-02-23 苏州大学 Polarization selective reflection structure and liquid crystal display system with same
JP2022098931A (en) 2020-12-22 2022-07-04 シャープ株式会社 Liquid crystal display device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228608A (en) * 1989-02-28 1990-09-11 Shimadzu Corp Grid polarizer
JPH10153706A (en) * 1996-11-25 1998-06-09 Ricoh Co Ltd Polarizer and its manufacture
JP2002514781A (en) * 1998-05-14 2002-05-21 モックステク Polarizer device for producing a generally polarized light beam
JP2002156524A (en) * 2000-11-20 2002-05-31 Nitto Denko Corp Circularly polarizing plate, organic el light emitting device and liquid crystal display device
JP2002258045A (en) * 2001-03-02 2002-09-11 Fuji Photo Film Co Ltd Optical retardation film, circularly/elliptically polarizing plate, and liquid crystal display device
JP2003262831A (en) * 2002-01-07 2003-09-19 Eastman Kodak Co Display device which uses wire grid polarized beam splitter provided with compensator
JP2004029168A (en) * 2002-06-21 2004-01-29 Seiko Epson Corp Polarization conversion element, illuminator and projector
JP2004061565A (en) * 2002-07-24 2004-02-26 Nitto Denko Corp Polarizer, polarizing plate, optical member and display device using the same
JP2004070095A (en) * 2002-08-08 2004-03-04 Hitachi Ltd Optical waveguide, optical unit, and video display unit using same
JP2004078202A (en) * 2002-07-19 2004-03-11 Sony Internatl Europ Gmbh Condensing, optical integration and optical redirecting device
JP2004271846A (en) * 2003-03-07 2004-09-30 Nitto Denko Corp High luminance polarizing plate, liquid crystal panel using same, and image display device
JP2005054171A (en) * 2003-07-24 2005-03-03 Nitto Denko Corp Process for producing polyvinyl alcohol-based film stained with iodine, process for producing polarizer, polarizer, polarizing plate, optical film, and image display device
JP2005084634A (en) * 2003-09-11 2005-03-31 Seiko Epson Corp Light source device, manufacturing method for light source device, and projection type display device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228608A (en) * 1989-02-28 1990-09-11 Shimadzu Corp Grid polarizer
JPH10153706A (en) * 1996-11-25 1998-06-09 Ricoh Co Ltd Polarizer and its manufacture
JP2002514781A (en) * 1998-05-14 2002-05-21 モックステク Polarizer device for producing a generally polarized light beam
JP2002156524A (en) * 2000-11-20 2002-05-31 Nitto Denko Corp Circularly polarizing plate, organic el light emitting device and liquid crystal display device
JP2002258045A (en) * 2001-03-02 2002-09-11 Fuji Photo Film Co Ltd Optical retardation film, circularly/elliptically polarizing plate, and liquid crystal display device
JP2003262831A (en) * 2002-01-07 2003-09-19 Eastman Kodak Co Display device which uses wire grid polarized beam splitter provided with compensator
JP2004029168A (en) * 2002-06-21 2004-01-29 Seiko Epson Corp Polarization conversion element, illuminator and projector
JP2004078202A (en) * 2002-07-19 2004-03-11 Sony Internatl Europ Gmbh Condensing, optical integration and optical redirecting device
JP2004061565A (en) * 2002-07-24 2004-02-26 Nitto Denko Corp Polarizer, polarizing plate, optical member and display device using the same
JP2004070095A (en) * 2002-08-08 2004-03-04 Hitachi Ltd Optical waveguide, optical unit, and video display unit using same
JP2004271846A (en) * 2003-03-07 2004-09-30 Nitto Denko Corp High luminance polarizing plate, liquid crystal panel using same, and image display device
JP2005054171A (en) * 2003-07-24 2005-03-03 Nitto Denko Corp Process for producing polyvinyl alcohol-based film stained with iodine, process for producing polarizer, polarizer, polarizing plate, optical film, and image display device
JP2005084634A (en) * 2003-09-11 2005-03-31 Seiko Epson Corp Light source device, manufacturing method for light source device, and projection type display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8657448B2 (en) 2011-05-30 2014-02-25 Seiko Epson Corporation Polarization converting element, polarization converting unit, and projection-type imaging device
JP2017067940A (en) * 2015-09-29 2017-04-06 大日本印刷株式会社 Liquid crystal display

Also Published As

Publication number Publication date
JP2005195824A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
JP4527986B2 (en) Wire grid polarizer
JP6674345B2 (en) Polarizer
TWI407198B (en) Liquid crystal display device
US8471983B2 (en) Polarizing element and liquid crystal display device
EP1845395A1 (en) Wire-grid polarizers, methods of fabrication thereof and their use in transmissive displays
TWI467252B (en) Wire grid type polarizer and manufacturing method thereof
TWI385446B (en) Backlight containing formed birefringence reflective polarizer
TWI435807B (en) Polarizing plate protection film, polarizing plate, and liquid crystal display device
CN104813202B (en) Optical film
KR100964964B1 (en) Optical Film and Method of Adjusting wavelength dipersion property of the same
WO2000008496A1 (en) Polarizer
JP2012230491A (en) Transparent conductive film for touch panel, and image display device
JP2012027221A (en) Wire grid polarizer
WO2004063779A1 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JP2008107720A (en) Polarizer and its manufacturing method
KR20120055129A (en) Antireflective polarizing plate and image display apparatus comprising the same
JP5069037B2 (en) Laminated wire grid polarizer
WO2023048086A1 (en) Wavelength plate, optical system, and display device
US9921348B2 (en) Multilayered optical film and display device
KR20220145347A (en) Achromatic optical device based on birefringent materials with positive and negative birefringent dispersions
JP5149327B2 (en) Wire grid polarizer
JP2009021408A (en) Organic el display device
JP2001083321A (en) Polarizer and method for its production
JP2002031721A (en) Composite polarizing plate
JP5291425B2 (en) Absorption-type wire grid polarizer and liquid crystal display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4527986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term