JP4427837B2 - Wire grid type polarization optical element - Google Patents

Wire grid type polarization optical element Download PDF

Info

Publication number
JP4427837B2
JP4427837B2 JP24986499A JP24986499A JP4427837B2 JP 4427837 B2 JP4427837 B2 JP 4427837B2 JP 24986499 A JP24986499 A JP 24986499A JP 24986499 A JP24986499 A JP 24986499A JP 4427837 B2 JP4427837 B2 JP 4427837B2
Authority
JP
Japan
Prior art keywords
light
polarized light
optical element
metal film
polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24986499A
Other languages
Japanese (ja)
Other versions
JP2001074935A (en
Inventor
眞人 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP24986499A priority Critical patent/JP4427837B2/en
Publication of JP2001074935A publication Critical patent/JP2001074935A/en
Application granted granted Critical
Publication of JP4427837B2 publication Critical patent/JP4427837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置、投影型の表示装置、自動車のヘッドランプ等に用いられる、簡便な工程から得られる偏光子、該偏光子を用いた偏光光源に関する。
【0002】
【従来の技術】
液晶表示装置などに用いられている偏光板は、延伸された高分子フィルムにヨウ素や二色性色素などの吸収に異方性を有する化合物を吸着、配向させてなり、偏光板に入射した光のうち二色性色素の吸収軸に平行な光を吸収し、それと直交する成分の光を透過することにより直線偏光を得ている。このような吸収型の偏光板では原理的に自然光に対する透過率は50%を超えることができないため、光の利用効率が悪かった。
【0003】
また、分光分析などに用いられている偏光素子は、複屈折性結晶を伝搬する固有偏光に対する屈折率の違いや、反射率の違いを利用し、一方の固有偏光を光路からはずすことにより直線偏光を得ている。このような偏光素子の例としてグラン−トンプソンプリズムやニコルプリズムなどが挙げられるが、自然光に対する透過率は原理的に50%を超えることができない。
【0004】
可視光より波長の長い赤外線に対して、細い金属線を平行に並べたワイヤーグリッド偏光子が用いられている。ワイヤーグリッド偏光子では、金属線に垂直に振動する電気ベクトルを持つような偏光を透過し、金属に平行に振動する電気ベクトルを持つ偏光を反射することにより、直線偏光を得ている。
【0005】
特開平9−90122号公報には、誘電体表面上に金属が格子状に分布する構造のワイヤーグリッド型偏光子において、金属格子の直線方向に全体を加熱延伸または圧延してなるワイヤーグリッド型偏光子の製造方法が開示されている。該出願の目的は、格子のピッチを波長の1/2以下にするためにある程度ピッチの大きな金属格子をフォトリソグラフィーなどの方法により作成し、得られた金属格子をワイヤーの長軸方向に延伸することによりピッチが0.1μmで線幅が0.01μm程度になるようにすることである。該出願では、フォトリソグラフィーなどの煩雑な工程を用いてある程度ピッチの大きな金属格子を作製する必要があり、大面積化やコストなどの実用的な面で課題を有している。
また、特開平9−90122号公報には先行技術として、特開昭56−169140号公報が例示されている。特開昭56−169140号公報は、延伸により配向されたハロゲン化銀を還元してなる偏光ガラスに関する出願であるが、銀による光吸収を用いているために、光の利用効率は良くない。
【0006】
特開昭63−168626号公報には、ワイヤーグリッド偏光ビームスプリッターとλ/4板もしくは拡散板を組み合わせて用いた液晶表示装置用バックライト光源が開示されている。該出願にはワイヤーグリッド偏光板により反射された偏光成分を光源の前後に配置されたλ/4板と反射板によりワイヤーグリッド偏光板の透過偏光に変換することや、ワイヤーグリッド偏光板により反射された偏光成分を拡散板によりランダム偏光にした後再度ワイヤーグリッド偏光板を透過させることで、光の利用効率を上げることが開示されている。
特開平5−66368、特開平11−6989号公報には、ワイヤーグリッド偏光ビームスプリッターとλ/4板を組み合わせて用いた液晶プロジェクター用光源が開示されている。該出願にはワイヤーグリッド偏光ビームスプリッターにより反射されたP偏光成分を光源の前後に配置されたλ/4板と反射板によりS偏光に変換して、光の利用効率を上げることが開示されている。
【0007】
【発明が解決しようとする課題】
本発明の目的は、光の利用効率が50%を超えるワイヤーグリッド型の偏光光学素子、該偏光光学素子を用いた偏光光源、および該偏光光源を用いた液晶表示装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく、検討した結果、簡便な工程でワイヤーグリッド型の偏光光学素子が作製できること、並びに該偏光光学素子と発光光源と散乱性の反射板もしくは位相差板を組み合わせて用いることにより光の利用効率の高い偏光光源とすることを見出し本発明を完成するに至った。
【0009】
すなわち本発明は、下記の(1)〜(5)を提供する。
(1)透明で柔軟な延伸により塑性変形が起こり得る熱可塑性樹脂基板上に該樹脂基板と伸び率が異なる金属膜を形成し、金属膜の融点以下で基板と金属膜とを延伸することにより、異方的な形状を有する金属部分と誘電体部分とからなる構造が形成されてなり、該構造の短い方向の長さが光の波長より短く、長い方向の長さが光の波長より長い構造であることを特徴とするワイヤーリッド型偏光光学素子の製造方法
(2)短軸方向の長さが光の波長より短く、長軸方向が光の波長より長い形状を有し、該表面に金属膜が形成させた微粒子を、透明媒体中もしくは透明媒体の表面に分散させながらまたは分散後、該微粒子を透明媒体を延伸することにより配向させたことを特徴とするワイヤーリッド型偏光光学素子の製造方法
(3)上記(1)または(2)記載の製造方法により得られた偏光光学素子と、ランプなどの発光源と、散乱性の反射板とからなる偏光光源であり、発光源からの光の一部が該偏光光学素子により反射され、反射された光を散乱性の反射板により再度該偏光光学素子に戻すことにより、実質的に該偏光光学素子を透過する光の利用効率が50%を超えることを特徴とする偏光光源。
(4)上記(1)または(2)記載の製造方法により得られた偏光光学素子と、ランプなどの発光源と、位相差板とからなる偏光光源であり、発光源からの光の一部が該偏光光学素子により反射され、反射された光を位相差板を通じて再度該偏光光学素子に戻すことにより、実質的に該偏光光学素子を透過する光の利用効率が50%を超えることを特徴とする偏光光源。
(5)上記(3)または(4)記載の偏光光源を用いた液晶表示装置。
【0010】
【発明の実施の様態】
以下本発明を図面を元に詳細に説明する。
本発明の第一の様態は、透明で柔軟な基板上に金属膜を形成し、基板と金属膜を延伸することにより、金属部分と誘電体部分とからなる異方的な形状を有する構造が形成されてなり、該構造の短軸が光の波長より小さく、該構造の長軸が光の波長より長いことを特徴とする偏光光学素子である。
図1のaは金属膜が形成された基材を示しており、図に示すようにこの基材/金属膜をx軸方向に延伸することにより、例えば、延伸方向と直交するy軸方向に金属の割れが発生し、図1のcに示すように金属の付いている部分と基材が露出した部分が、例えば、ストライプ状に交互に配置された異方的な構造が得られる。以下に示すように基材と金属膜の材質を適当に選ぶことにより、得られる構造の短軸が光の波長より小さく、長軸が光の波長より大きいすることができる。
いま、金属部分(1−4)と誘電体部分(1−5)からなる異方的な構造に入射し、z軸方向に伝播する光を考える。このような異方的な構造はワイヤーグリッド型の偏光子として作用するため、図1のx軸方向に電場成分が振動する直線偏光は図2のaに示すように透過し、延伸方向と直交するy軸方向に電場成分が振動する直線偏光は図2のbに示すように反射される。従って、本発明の異方的な構造はx軸方向に電気ベクトルが振動する直線偏光を透過する直線偏光光学素子になる。
【0011】
表面に金属膜を形成する透明で柔軟な誘電体からなる基板は、延伸により塑性変形が起こり得る素材でかつ透明であればよく、例えばポリマーフィルムでは、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニル、ポリスルホン、ポリアリレート、ポリエーテルスルホン、2酢酸セルロース、3酢酸セルロース等の熱可塑性樹脂や、ポリメチルメタクリレートや、アートン、ゼオネックスなどの商標で知られる光弾性係数の小さい熱可塑性樹脂などが例示される。
基材上に形成する金属としては、使用する光の波長で反射率が高いことが好ましく、可視光領域ではアルミニウム、銀などの金属が、赤外域では、金、銀、銅などの金属が例示される。このような金属のうち金属の伸び率が小さいものが好適に用いられる。
基板と金属の組み合わせも基板と金属膜の伸び率が異なればよい。
基材と金属膜の伸び率が近い場合は、基材と金属膜の間に他の有機物または無機物からなり、伸びの小さい物質からなる層を介してもよい。この場合の有機物または無機物の特性はとくに制限はなく、目的とする波長の光に対して透明であっても良いし、不透明であってもよく、また吸収性のものであっても良い。
【0012】
割れた金属の形状は光の波長と比較して長い辺と短い辺を有するアスペクト比の大きな形状になっていればよく、矩形状やストライプ状の構造が例示される。該構造はx軸方向に周期的であっても良いし、周期が揺らいでいても良い。
【0013】
金属膜の透明な基材上への形成方法についてはとくに制限はなく、電子線加熱や抵抗加熱による真空蒸着法、スパッター法や、メッキや電解メッキ法、金属化合物などを溶液状態で塗布した後、酸化還元することにより金属膜とする方法などが例示される。この中でも、基材との密着性に優れた真空蒸着法、スパッター法、電解メッキ法などが好ましい。
【0014】
金属膜を形成した透明基板を延伸する方法については、基材の塑性変形を伴う方法が必須であり、基材フィルムを加熱しながら延伸する方法や、基材フィルムを加熱しながらロール間で圧延する方法などが例示される。
【0015】
次に、本発明の第2の様態について説明する。
本発明の第2の様態は、表面に金属膜を有し、短軸方向の長さが光の波長より短く、長軸方向の長さが光の波長より長い形状を有する微粒子(図3の3−1)を透明媒体中(図3のa)および/または透明媒体表面(図3のb)に配向した状態で分散してなる偏光光学素子である。金属膜を有する微粒子が配向し、微粒子のある部分と無い部分とが、ワイヤーグリッド型の偏光光学素子として作用するため、粒子の長軸方向に電気ベクトルが振動する直線偏光が、反射され、微粒子の短軸方向に電気ベクトルが振動する直線偏光を透過する偏光光学素子として作用する。
【0016】
表面に金属膜を有する微粒子として、金属のウィスカーや、無機化合物の針状単結晶や針状多結晶に金属膜が形成されているものが例示される。ウィスカーや針状結晶としては公知の物質を使うことができ、例えば、Jpn. J. Appl. Phys. 第38巻(1999年)L586−L589頁になどに記載されているものなどが例示される。これらの微粒子の表面に形成される金属膜としては、使用する光の波長で反射率が高いことが好ましく、可視光領域ではアルミニウム、銀などの金属が、赤外域では、金、銀、銅などの金属が例示される。
これらの金属の微粒子への形成法としてとくに制限はなく、電子線加熱や抵抗加熱による真空蒸着法、スパッター法、メッキ法、金属化合物などを溶液状態で塗布した後、酸化還元することにより金属膜とする方法などが例示される。
【0017】
金属膜を表面に有する微粒子を分散および/または表面に塗布する透明媒体としては、公知のものが使用でき、板状の無機物でも良いしポリマーフィルムなどでも良い。また分散および/または表面に塗布する方法も公知の方法が使用でき、分散性を改良するために分散剤などを添加しても良い。
また、表面または媒体の内部の微粒子の配向方法は、透明媒体として柔軟な物質を用いた場合は、微粒子を分散および/または表面に形成した後、透明媒体を延伸する方法などが例示される。また透明媒体の表面に微粒子を塗布などの方法により形成する場合は、塗布するときにシェアをかけて配向させる方法も例示される。
【0018】
次に、本発明の別の様態である偏光光源について説明する。
本発明の偏光子では、金属部分の長軸方向(y軸方向)に電気ベクトルが振動する直線偏光および、表面に金属膜を有する針状結晶の長軸方向(y軸方向)に電気ベクトルが振動する直線偏光は、図2のbに示すように本発明の偏光子により反射される。
ランプなどの熱的な光源から発せられた光は、自然光であることが知られている。自然光とはあらゆる状態の偏光を均等に含んだように見える光であり、強度の等しい直交する2つの直線偏光の和で表現される。従って、入射した自然光の強度を100とすると一方向に電気ベクトルが振動する直線偏光の強度が50、それと直交する方向に電気ベクトルが振動する直線偏光の強度が50と考えられる。
【0019】
例えば、図4のaに示すように本発明の偏光光学素子と散乱性の反射板を配置することにより、ランプなどの発光源から放出された強度100の光のうち、例えば、理想的には強度50の光が本発明の偏光光学素子を図4のaの4−4で示すように透過し、残りの強度50の直線偏光(4−5)が本発明の偏光光学素子により散乱性の反射板(4−2)の方に反射される。
今散乱性の反射板により散乱された光(4−6)は偏光状態が乱され、理想的には自然光として再び本発明の偏光光学素子(4−1)に反射される。この反射された自然光には本発明の偏光光学素子を透過できる直線偏光成分が含まれているため、先に透過した強度50の直線偏光(4−4)と合わせることにより、光強度50以上の直線偏光が得られることになる。従って、本発明の偏光光源を出射する光の強さは入射した光の強さの50%を超えることができ明るい偏光光源として使用することができる。すなわち、本発明の偏光光源は、実質的に該偏光光学素子を透過する光の利用効率が50%を超えることができる。
【0020】
また、図4のbに示すような位置に、例えば、λ/4板のような位相差板と反射板を配置した場合、図に示していない光源から出射した強度100の自然光のうち理想的にはx軸方向に振動する強度50の光(4−11)が本発明の偏光光学素子(4−7)を透過し、残りのy軸方向に振動する強度50の光が反射板4−9の方に反射される。この反射されたy軸方向に電気ベクトルが振動する直線偏光は、λ/4板を透過した後に例えば右回りの円偏光(4−12)に変換される。右回りの円偏光は左回りの円偏光(4−13)として理想的には強度を変えず反射板で反射され、再度λ/4板に入射して今度はx軸方向に電気ベクトルが振動する直線偏光(4−14)として透過する。この直線偏光は、偏光子を透過することができるため、先に透過した強度50の光(4−11)と合わせることにより、光強度50を超える直線偏光が得られることになる。従って、このような発光源、位相差板、本願の偏光子、反射板を配置して偏光光源とすることで、偏光光源を出射した光の強さが入射した光の強さの50%を超えるようにすることができ、明るい偏光光源として使用することができる。
以上の例では位相差板の位相差がλ/4である場合を例にとって説明したが、λ/4以外の位相差であっても良い。
【0021】
以上述べてきたように本発明の偏光光源は、入射光に対する出射光の強度が50%を超えており、従来の吸収型の偏光板を用いた偏光光源と比較して光の利用効率が高い。従って、発光源の強度を従来の偏光光源と同じにした場合は明るい偏光光源となり、また、発光源の強度を落としても従来と同等の偏光強度が得られるので、発光源による消費電力が低減できる効果も期待できる。
【0022】
明るい偏光が必要とされる用途として、透過型の液晶表示装置のバックライトユニットや、投影型の液晶表示装置の光源、自動車のヘッドランプなどが例示される。液晶表示装置などの偏光度の高い偏光光源が求められる用途では、従来の吸収型の偏光板を本発明の偏光光源の前に配置しても良い。
【0023】
【実施例】
以下、本発明を実施例を用い手より詳細に説明する。言うまでもないが本発明の範囲は実施例に限定されるものではない。
実施例1
ポリカーボネートフィルムに EB蒸着装置を用いてアルミを蒸着する。得られたポリカーボネート/アルミフィルム(/は積層されていること示す)を加熱しながら延伸すると、延伸方向と直交する方向にアルミ蒸着膜にひび割れが生じ、本発明の偏光光学素子を得る。
得られる偏光光学素子に自然光を入射すると、延伸方向に平行な方向に電気ベクトルが振動する直線偏光が透過し、反射光は延伸方向と直交する方向に電気ベクトルが振動する直線偏光が透過する。
【0024】
実施例2
実施例1と同様の手法でポリカーボネート/SiO2/アルミ積層蒸着フィルムを得る。得られるフィルムを加熱しながら延伸すると、延伸方向と直交する方向にSiO2/アルミ蒸着膜にひび割れが生じ、本発明の偏光光学素子を得る。得られる偏光光学素子に自然光を入射すると、延伸方向に平行な方向に電気ベクトルが振動する直線偏光が透過し、反射光は延伸方向と直交する方向に電気ベクトルが振動する直線偏光が透過する。
【0025】
実施例3
ZnOウィスカーにアルミを蒸着し、金属膜が表面に形成された針状微粒子を得る。得られる針状微粒子を溶媒に分散し粘度を調整した後、ガラス基板上にシェアをかけながら塗布し、本発明の偏光光学素子を得る。
得られる偏光光学素子に自然光を入射すると、シェアと直交する方向に電気ベクトルが振動する直線偏光が透過し、反射光はシェアと平行な方向に電気ベクトルが振動する直線偏光になる。
【0026】
実施例4
実施例1〜3記載の偏光光学素子を図4のbに示すような配置で液晶表示装置の偏光光源として用いる。従来の吸収型の偏光板を使った場合と比較して輝度の高い表示が可能になる。
【0027】
【発明の効果】
本発明によれば、光の利用効率が50%を超えるワイヤーグリッド型偏光光学素子が得られ、それを用いた本発明の偏光光源は、従来の吸収型の偏光板を用いた偏光光源と比較して光の利用効率が高く、発光源による消費電力が低減できる。よって、透過型の液晶表示装置のバックライトユニットや、投影型の液晶表示装置の光源、自動車のヘッドランプ、液晶表示装置などに用いると、明るい偏光を発揮する。
【図面の簡単な説明】
【図1】a:本発明の第1の様態の偏光素子を延伸する前の図。
b:本発明の偏光素子における座標系を示す図。
c:本発明の第1の様態の偏光素子を示す図。
【図2】a:本発明の偏光素子における透過光の偏光状態を説明する図。
b:本発明の偏光素子における反射光の偏光状態を説明する図。
【図3】a:本発明の第2の様態の偏光素子で、表面に金属膜が形成されてなる針状の微粒子が透明媒体中に分散してなる偏光素子。
b:本発明の第2の様態の偏光素子で、表面に金属膜が形成されてなる針状の微粒子が透明媒体中の表面に分散してなる偏光素子。
【図4】a:本発明の偏光素子と、光源と、拡散性の反射板とからなる偏光光源を説明する図。
b:本発明の偏光素子と、光源と位相差板とからなる偏光光源を説明する図。
c:本発明の偏光光源における座標系を示す図。
【符号の説明】
1−1:透明で柔軟な基板
1−2:透明で柔軟な基板の表面に形成された金属膜
1−3:基板の延伸方向
1−4:延伸により破断した金属膜
1−5:延伸により露出した基板表面
2−1:本発明の偏光素子
2−2:本発明の偏光素子に入射したx軸方向の直線偏光
2−3:本発明の偏光素子を透過したx軸方向の直線偏光
2−4:本発明の偏光素子に反射されたy軸方向の直線偏光
3−1:表面に金属膜が形成されてなる針状の微粒子
3−2:透明媒体
4−1・4−7:本発明の偏光素子
4−2:光散乱性の反射板
4−3・4−10:本発明の偏光素子に入射した自然光
4−4・4−11:本発明の偏光素子を透過した直線偏光
4−5:本発明の偏光素子により反射された直線偏光
4−6:散乱性の反射板により散乱され、自然光に変換された反射光
4−8:λ/4位相差板
4−9:反射板
4−12:本発明の偏光素子により反射された直線偏光がλ/4位相差板を透過して変換された右回りの円偏光
4−13:反射板で反射されて左回りの円偏光なった光
4−14:左回りの円偏光がλ/4位相差板を透過して本発明の偏光素子の透過軸方向の直線偏光に変換された光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polarizer obtained from a simple process used in a liquid crystal display device, a projection display device, a headlamp of an automobile, and the like, and a polarized light source using the polarizer.
[0002]
[Prior art]
A polarizing plate used in a liquid crystal display or the like is formed by adsorbing and orienting a compound having anisotropy in absorption, such as iodine or a dichroic dye, on a stretched polymer film, and entering the polarizing plate. Among these, linearly polarized light is obtained by absorbing light parallel to the absorption axis of the dichroic dye and transmitting light of a component orthogonal thereto. Such an absorption type polarizing plate, in principle, has a low light utilization efficiency because the transmittance for natural light cannot exceed 50%.
[0003]
Polarizing elements used for spectroscopic analysis are linearly polarized light by taking advantage of differences in refractive index and reflectance with respect to intrinsic polarization propagating through a birefringent crystal, and removing one intrinsic polarization from the optical path. Have gained. Examples of such a polarizing element include a Gran-Thompson prism and a Nicol prism, but the transmittance for natural light cannot theoretically exceed 50%.
[0004]
Wire grid polarizers in which thin metal wires are arranged in parallel with infrared rays having a wavelength longer than that of visible light are used. In the wire grid polarizer, linearly polarized light is obtained by transmitting polarized light having an electric vector that vibrates perpendicularly to a metal line and reflecting polarized light having an electric vector that vibrates parallel to the metal.
[0005]
In Japanese Patent Laid-Open No. 9-90122, in a wire grid polarizer having a structure in which metal is distributed in a lattice pattern on a dielectric surface, the wire grid polarization is obtained by heating or stretching the whole in the linear direction of the metal grid. A child manufacturing method is disclosed. The purpose of this application is to create a metal lattice having a large pitch to some extent by a method such as photolithography in order to make the pitch of the lattice less than ½ of the wavelength, and extend the obtained metal lattice in the major axis direction of the wire Thus, the pitch is 0.1 μm and the line width is about 0.01 μm. In this application, it is necessary to produce a metal lattice having a large pitch by using a complicated process such as photolithography, and there are problems in practical aspects such as an increase in area and cost.
Japanese Patent Laid-Open No. 9-90122 exemplifies Japanese Patent Laid-Open No. 56-169140 as a prior art. Japanese Patent Application Laid-Open No. 56-169140 is an application relating to a polarizing glass obtained by reducing silver halide oriented by stretching, but the light utilization efficiency is not good because it uses light absorption by silver.
[0006]
Japanese Unexamined Patent Publication No. 63-168626 discloses a backlight light source for a liquid crystal display device using a combination of a wire grid polarization beam splitter and a λ / 4 plate or a diffusion plate. In this application, the polarization component reflected by the wire grid polarizing plate is converted into the transmission polarized light of the wire grid polarizing plate by the λ / 4 plate and the reflecting plate arranged before and after the light source, or reflected by the wire grid polarizing plate. It is disclosed that the use efficiency of light is increased by making the polarized light component random polarized light by a diffusion plate and then transmitting the polarized light component again through a wire grid polarizing plate.
Japanese Patent Application Laid-Open Nos. 5-66368 and 11-6989 disclose a light source for a liquid crystal projector using a combination of a wire grid polarization beam splitter and a λ / 4 plate. The application discloses that the P-polarized component reflected by the wire grid polarization beam splitter is converted to S-polarized light by a λ / 4 plate and a reflector placed before and after the light source, thereby improving the light utilization efficiency. Yes.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a wire grid type polarization optical element having a light utilization efficiency exceeding 50%, a polarization light source using the polarization optical element, and a liquid crystal display device using the polarization light source.
[0008]
[Means for Solving the Problems]
As a result of investigations to solve the above problems, the present inventors have made it possible to produce a wire grid type polarizing optical element by a simple process, and the polarizing optical element, a light emitting light source, a scattering reflector or a retardation plate. As a result, the present invention has been completed.
[0009]
That is, the present invention provides the following (1) to (5).
(1) By forming a metal film having a different elongation rate from the resin substrate on a thermoplastic resin substrate that can undergo plastic deformation due to transparent and flexible stretching, and stretching the substrate and the metal film below the melting point of the metal film A structure composed of a metal part having an anisotropic shape and a dielectric part is formed, the length of the structure in the short direction is shorter than the wavelength of light, and the length in the long direction is longer than the wavelength of light method for producing a wire-grid type polarization optical element which is a structure.
(2) shorter than the wavelength of the length of the minor axis direction of light, the major axis direction have a longer shape than the wavelength of light, the surface of the microparticles metal film was formed on the surface, a transparent medium in or transparent medium method for producing a wire-grid type polarization optical element characterized by containing an oriented post or dispersed with dispersing, by the fine particles stretching the transparent medium.
(3) A polarized light source comprising a polarizing optical element obtained by the production method described in (1) or (2) above, a light source such as a lamp, and a scattering reflector, and the light from the light source A part of the light is reflected by the polarizing optical element, and the reflected light is returned to the polarizing optical element again by a scattering reflector, thereby substantially reducing the utilization efficiency of the light transmitted through the polarizing optical element to 50%. A polarized light source characterized by exceeding.
(4) A polarized light source comprising a polarizing optical element obtained by the production method described in (1) or (2) above, a light source such as a lamp, and a retardation plate, and a part of light from the light source Is reflected by the polarizing optical element, and the reflected light is returned to the polarizing optical element again through the phase difference plate, so that the utilization efficiency of the light transmitted through the polarizing optical element substantially exceeds 50%. A polarized light source.
(5) A liquid crystal display device using the polarized light source according to (3) or (4).
[0010]
[Mode for Carrying Out the Invention]
Hereinafter, the present invention will be described in detail with reference to the drawings.
In the first aspect of the present invention, a metal film is formed on a transparent and flexible substrate, and the substrate and the metal film are stretched to form a structure having an anisotropic shape composed of a metal portion and a dielectric portion. The polarizing optical element is characterized in that the short axis of the structure is smaller than the wavelength of light, and the long axis of the structure is longer than the wavelength of light.
FIG. 1a shows a base material on which a metal film is formed. As shown in the figure, by stretching the base material / metal film in the x-axis direction, for example, in the y-axis direction orthogonal to the stretching direction. As shown in FIG. 1c, an anisotropic structure in which the metal-attached portion and the portion where the base material is exposed is alternately arranged in a stripe shape is obtained. As shown below, by appropriately selecting the material of the base material and the metal film, the minor axis of the resulting structure can be made smaller than the wavelength of light, and the major axis can be made larger than the wavelength of light.
Now consider light that is incident on an anisotropic structure composed of a metal portion (1-4) and a dielectric portion (1-5) and propagates in the z-axis direction. Since such an anisotropic structure acts as a wire grid type polarizer, linearly polarized light whose electric field component oscillates in the x-axis direction of FIG. 1 is transmitted as shown in FIG. The linearly polarized light whose electric field component vibrates in the y-axis direction is reflected as shown in FIG. Therefore, the anisotropic structure of the present invention is a linearly polarized optical element that transmits linearly polarized light whose electric vector vibrates in the x-axis direction.
[0011]
A substrate made of a transparent and flexible dielectric that forms a metal film on the surface may be a material that can be plastically deformed by stretching and transparent, for example, for a polymer film, polycarbonate, polyethylene terephthalate, polyethylene, polyvinyl chloride, Examples include thermoplastic resins such as polysulfone, polyarylate, polyethersulfone, cellulose acetate, cellulose acetate, and cellulose acetate, and thermoplastic resins having a low photoelastic coefficient known by trademarks such as polymethyl methacrylate, arton, and ZEONEX. .
As the metal formed on the substrate, it is preferable that the reflectance is high at the wavelength of the light to be used. Metals such as aluminum and silver are exemplified in the visible light region, and metals such as gold, silver and copper are exemplified in the infrared region. Is done. Of these metals, those having a small metal elongation are preferably used.
The combination of the substrate and the metal may be different in the elongation ratio between the substrate and the metal film.
When the elongation percentage of the base material and the metal film is close, a layer made of another organic or inorganic substance and a substance having a small elongation may be interposed between the base material and the metal film. In this case, the characteristics of the organic substance or inorganic substance are not particularly limited, and may be transparent, opaque or absorptive with respect to light having a target wavelength.
[0012]
The shape of the cracked metal only needs to be a shape having a long side and a short side and a large aspect ratio compared to the wavelength of light, and examples thereof include a rectangular or striped structure. The structure may be periodic in the x-axis direction or the period may fluctuate.
[0013]
There are no particular restrictions on the method of forming the metal film on the transparent substrate. After applying a vacuum deposition method by electron beam heating or resistance heating, sputtering method, plating or electrolytic plating method, metal compound, etc. in a solution state Examples thereof include a method for forming a metal film by oxidation-reduction. Among these, a vacuum deposition method, a sputtering method, an electrolytic plating method and the like excellent in adhesiveness with the substrate are preferable.
[0014]
As for the method of stretching a transparent substrate on which a metal film is formed, a method involving plastic deformation of the base material is essential, and a method of stretching while heating the base film, or rolling between rolls while heating the base film The method of doing is illustrated.
[0015]
Next, the second aspect of the present invention will be described.
A second aspect of the present invention is a fine particle having a metal film on the surface, having a shape in which the length in the minor axis direction is shorter than the wavelength of light and the length in the major axis direction is longer than the wavelength of light (see FIG. 3). It is a polarizing optical element obtained by dispersing 3-1) in a state of being oriented in the transparent medium (a in FIG. 3) and / or the transparent medium surface (b in FIG. 3). Since the fine particles having a metal film are oriented and the portion with and without the fine particles acts as a wire grid type polarization optical element, the linearly polarized light whose electric vector vibrates in the major axis direction of the particles is reflected, and the fine particles It acts as a polarizing optical element that transmits linearly polarized light whose electric vector vibrates in the minor axis direction.
[0016]
Examples of the fine particles having a metal film on the surface include metal whiskers and those in which a metal film is formed on an acicular single crystal or acicular polycrystal of an inorganic compound. Known substances can be used as whiskers and needle-like crystals. For example, Jpn. J. et al. Appl. Phys. Examples described in Vol. 38 (1999) L586-L589, etc. The metal film formed on the surface of these fine particles preferably has a high reflectance at the wavelength of light used, and metals such as aluminum and silver are used in the visible light region, and gold, silver, copper, etc. are used in the infrared region. These metals are exemplified.
There are no particular restrictions on the method for forming these metals into fine particles, and a metal film is formed by applying a vacuum deposition method such as electron beam heating or resistance heating, sputtering, plating, or a metal compound in a solution state, followed by oxidation and reduction. The method etc. are illustrated.
[0017]
As a transparent medium for dispersing and / or applying fine particles having a metal film on the surface, known media can be used, and a plate-like inorganic material or a polymer film may be used. In addition, a known method can be used for dispersion and / or coating on the surface, and a dispersant or the like may be added to improve dispersibility.
Examples of the method for aligning the fine particles on the surface or inside the medium include a method of stretching the transparent medium after the fine particles are dispersed and / or formed on the surface when a flexible material is used as the transparent medium. Further, in the case where fine particles are formed on the surface of the transparent medium by a method such as coating, a method of aligning by applying shear when coating is also exemplified.
[0018]
Next, a polarized light source which is another aspect of the present invention will be described.
In the polarizer of the present invention, the linearly polarized light whose electric vector vibrates in the major axis direction (y-axis direction) of the metal portion and the electric vector in the major axis direction (y-axis direction) of the needle-like crystal having the metal film on the surface. The oscillating linearly polarized light is reflected by the polarizer of the present invention as shown in FIG.
It is known that light emitted from a thermal light source such as a lamp is natural light. Natural light is light that appears to uniformly include polarized light in all states, and is expressed by the sum of two orthogonal linearly polarized lights having equal intensities. Therefore, if the intensity of incident natural light is 100, the intensity of linearly polarized light whose electric vector oscillates in one direction is 50, and the intensity of linearly polarized light whose electric vector oscillates in a direction perpendicular thereto is 50.
[0019]
For example, by arranging the polarizing optical element of the present invention and a scattering reflector as shown in FIG. 4a, for example, ideally, out of light having an intensity of 100 emitted from a light source such as a lamp, for example, Light having an intensity of 50 is transmitted through the polarizing optical element of the present invention as indicated by 4-4 in FIG. 4a, and the remaining linearly polarized light (4-5) having an intensity of 50 is scattered by the polarizing optical element of the present invention. Reflected toward the reflector (4-2).
The light (4-6) scattered by the now scattering reflector is disturbed in the polarization state, and ideally is reflected again by the polarizing optical element (4-1) of the present invention as natural light. Since the reflected natural light includes a linearly polarized light component that can be transmitted through the polarizing optical element of the present invention, the reflected natural light is combined with the previously transmitted linearly polarized light (4-4) having an intensity of 50 to obtain a light intensity of 50 or more. Linearly polarized light will be obtained. Therefore, the intensity of the light emitted from the polarized light source of the present invention can exceed 50% of the intensity of the incident light and can be used as a bright polarized light source. That is, in the polarized light source of the present invention, the utilization efficiency of the light that substantially passes through the polarizing optical element can exceed 50%.
[0020]
Also, for example, when a retardation plate such as a λ / 4 plate and a reflecting plate are arranged at a position as shown in FIG. 4B, it is ideal among natural light having an intensity of 100 emitted from a light source not shown in the drawing. The light (4-11) having intensity 50 that vibrates in the x-axis direction is transmitted through the polarizing optical element (4-7) of the present invention, and the remaining light having intensity 50 that vibrates in the y-axis direction is reflected on the reflector 4- 9 is reflected. The reflected linearly polarized light whose electric vector vibrates in the y-axis direction is converted into, for example, clockwise circularly polarized light (4-12) after passing through the λ / 4 plate. Right-handed circularly polarized light is ideally reflected as counterclockwise circularly polarized light (4-13) without being changed in intensity, and is reflected by the reflecting plate. Then, it enters the λ / 4 plate again and this time the electric vector vibrates in the x-axis direction. Transmits as linearly polarized light (4-14). Since this linearly polarized light can be transmitted through the polarizer, linearly polarized light exceeding the light intensity 50 can be obtained by combining it with the light (4-11) having an intensity of 50 previously transmitted. Therefore, by arranging such a light source, a phase difference plate, the polarizer of the present application, and a reflection plate as a polarized light source, the intensity of light emitted from the polarized light source can be reduced to 50% of the intensity of incident light. And can be used as a bright polarized light source.
In the above example, the case where the phase difference of the phase difference plate is λ / 4 has been described as an example, but a phase difference other than λ / 4 may be used.
[0021]
As described above, the polarized light source of the present invention has an output light intensity exceeding 50% with respect to incident light, and has higher light utilization efficiency than a polarized light source using a conventional absorption type polarizing plate. . Therefore, if the intensity of the light source is the same as that of a conventional polarized light source, it becomes a bright polarized light source, and even if the intensity of the light source is reduced, the same polarized light intensity can be obtained, reducing the power consumption of the light source. Expected effects.
[0022]
Examples of applications that require brightly polarized light include a backlight unit of a transmissive liquid crystal display device, a light source of a projection liquid crystal display device, and a headlamp of an automobile. In applications where a polarized light source having a high degree of polarization is required, such as a liquid crystal display device, a conventional absorption polarizing plate may be disposed in front of the polarized light source of the present invention.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. Needless to say, the scope of the present invention is not limited to the examples.
Example 1
Aluminum is deposited on the polycarbonate film using an EB deposition apparatus. When the obtained polycarbonate / aluminum film (/ indicates that it is laminated) is stretched while being heated, the aluminum vapor deposition film is cracked in the direction orthogonal to the stretching direction, and the polarizing optical element of the present invention is obtained.
When natural light is incident on the obtained polarizing optical element, linearly polarized light whose electric vector oscillates in a direction parallel to the stretching direction is transmitted, and reflected light transmits linearly polarized light whose electric vector oscillates in a direction orthogonal to the stretching direction.
[0024]
Example 2
A polycarbonate / SiO 2 / aluminum laminated vapor-deposited film is obtained in the same manner as in Example 1. When the obtained film is stretched while being heated, the SiO 2 / aluminum vapor-deposited film is cracked in the direction perpendicular to the stretching direction, and the polarizing optical element of the present invention is obtained. When natural light is incident on the obtained polarizing optical element, linearly polarized light whose electric vector oscillates in a direction parallel to the stretching direction is transmitted, and reflected light transmits linearly polarized light whose electric vector oscillates in a direction orthogonal to the stretching direction.
[0025]
Example 3
Aluminum is vapor-deposited on ZnO whiskers to obtain acicular fine particles having a metal film formed on the surface. The obtained acicular fine particles are dispersed in a solvent to adjust the viscosity, and then applied onto a glass substrate while applying a shear to obtain the polarizing optical element of the present invention.
When natural light is incident on the obtained polarizing optical element, linearly polarized light whose electric vector oscillates in a direction orthogonal to the shear is transmitted, and reflected light becomes linearly polarized light whose electric vector oscillates in a direction parallel to the shear.
[0026]
Example 4
The polarizing optical elements described in Examples 1 to 3 are used as a polarizing light source of a liquid crystal display device in an arrangement as shown in FIG. A display with higher luminance is possible as compared with the case of using a conventional absorption type polarizing plate.
[0027]
【The invention's effect】
According to the present invention, a wire grid type polarization optical element having a light utilization efficiency exceeding 50% is obtained, and the polarization light source of the present invention using the same is compared with a polarization light source using a conventional absorption type polarization plate. Thus, the light utilization efficiency is high and the power consumption by the light source can be reduced. Therefore, when used in a backlight unit of a transmission type liquid crystal display device, a light source of a projection type liquid crystal display device, a headlamp of an automobile, a liquid crystal display device, etc., it exhibits bright polarized light.
[Brief description of the drawings]
FIG. 1A is a diagram before stretching a polarizing element according to a first embodiment of the present invention.
b: The figure which shows the coordinate system in the polarizing element of this invention.
c: The figure which shows the polarizing element of the 1st aspect of this invention.
FIG. 2A is a view for explaining the polarization state of transmitted light in the polarizing element of the present invention.
b: The figure explaining the polarization state of the reflected light in the polarizing element of this invention.
FIG. 3A is a polarizing element according to the second embodiment of the present invention, in which acicular fine particles having a metal film formed on the surface thereof are dispersed in a transparent medium.
b: The polarizing element according to the second aspect of the present invention, wherein acicular fine particles having a metal film formed on the surface thereof are dispersed on the surface in the transparent medium.
4A is a diagram illustrating a polarized light source including a polarizing element of the present invention, a light source, and a diffusive reflector. FIG.
b: A diagram for explaining a polarizing light source comprising a polarizing element of the present invention, a light source and a retardation plate.
c: The figure which shows the coordinate system in the polarized light source of this invention.
[Explanation of symbols]
1-1: Transparent and flexible substrate 1-2: Metal film formed on the surface of the transparent and flexible substrate 1-3: Stretching direction of the substrate 1-4: Metal film broken by stretching 1-5: By stretching Exposed substrate surface 2-1: Polarizing element 2-2 of the present invention: Linearly polarized light in the x-axis direction incident on the polarizing element of the present invention 2-3: Linearly polarized light 2 in the x-axis direction transmitted through the polarizing element of the present invention -4: y-axis direction linearly polarized light reflected by the polarizing element of the present invention 3-1: acicular fine particles formed with a metal film on the surface 3-2: transparent media 4-1, 4-7: book Polarizing element 4-2 of the invention: Light-scattering reflectors 4-3 and 4-10: Natural light incident on the polarizing element of the invention 4-4 and 4-11: Linearly polarized light 4 transmitted through the polarizing element of the invention -5: Linearly polarized light reflected by the polarizing element of the present invention 4-6: Scattered by a scattering reflector and converted into natural light Reflected light 4-8: λ / 4 phase difference plate 4-9: Reflection plate 4-12: A clockwise rotation in which the linearly polarized light reflected by the polarizing element of the present invention is transmitted through the λ / 4 phase difference plate and converted. Circularly polarized light 4-13: Light that is reflected by the reflecting plate to become counterclockwise circularly polarized light 4-14: The counterclockwise circularly polarized light is transmitted through the λ / 4 retardation plate and is transmitted in the direction of the transmission axis of the polarizing element of the present invention. Light converted to linearly polarized light

Claims (2)

透明で柔軟な延伸により塑性変形が起こり得る熱可塑性樹脂基板上に該樹脂基板と伸び率が異なる金属膜を形成し、金属膜の融点以下で基板と金属膜とを延伸することにより、異方的な形状を有する金属部分と誘電体部分とからなる構造が形成されてなり、該構造の短い方向の長さが光の波長より短く、長い方向の長さが光の波長より長い構造であることを特徴とするワイヤーグリッド型偏光光学素子の製造方法。By forming a metal film having a different elongation rate from the resin substrate on a thermoplastic resin substrate that can undergo plastic deformation due to transparent and flexible stretching, and stretching the substrate and the metal film below the melting point of the metal film, A structure composed of a metal part having a typical shape and a dielectric part is formed, and the length in the short direction of the structure is shorter than the wavelength of light, and the length in the long direction is longer than the wavelength of light. A manufacturing method of a wire grid type polarization optical element characterized by the above. 短軸方向の長さが光の波長より短く、長軸方向が光の波長より長い形状を有し、該表面に金属膜が形成させた微粒子を、透明媒体中もしくは透明媒体の表面に分散させながらまたは分散後、該微粒子を透明媒体を延伸することにより配向させることを特徴とするワイヤーグリッド型偏光光学素子の製造方法。Disperse fine particles in which the length in the minor axis direction is shorter than the wavelength of light and the major axis direction is longer than the wavelength of light, and a metal film is formed on the surface, in the transparent medium or on the surface of the transparent medium. A method for producing a wire grid type polarizing optical element, wherein the fine particles are oriented by stretching a transparent medium while or after dispersion.
JP24986499A 1999-09-03 1999-09-03 Wire grid type polarization optical element Expired - Fee Related JP4427837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24986499A JP4427837B2 (en) 1999-09-03 1999-09-03 Wire grid type polarization optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24986499A JP4427837B2 (en) 1999-09-03 1999-09-03 Wire grid type polarization optical element

Publications (2)

Publication Number Publication Date
JP2001074935A JP2001074935A (en) 2001-03-23
JP4427837B2 true JP4427837B2 (en) 2010-03-10

Family

ID=17199336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24986499A Expired - Fee Related JP4427837B2 (en) 1999-09-03 1999-09-03 Wire grid type polarization optical element

Country Status (1)

Country Link
JP (1) JP4427837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033409A1 (en) * 2021-08-31 2023-03-09 삼성에스디아이 주식회사 Polarizing plate and optical display device comprising same

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329611B2 (en) 2002-04-11 2008-02-12 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
JP3991764B2 (en) * 2002-05-10 2007-10-17 セイコーエプソン株式会社 Illumination device and projection display device
US6874899B2 (en) * 2002-07-12 2005-04-05 Eastman Kodak Company Apparatus and method for irradiating a substrate
US6807004B2 (en) 2002-10-10 2004-10-19 Lucent Technologies Inc. Polarization independent optical taps
JP4824270B2 (en) * 2003-09-29 2011-11-30 浜松ホトニクス株式会社 Semiconductor substrate
JP2005148417A (en) 2003-11-14 2005-06-09 Seizo Miyata Polarizing optical element, method for continuously manufacturing the same, and reflection optical element using the polarizing optical element
JP2005148416A (en) 2003-11-14 2005-06-09 Seizo Miyata Polarization optical element, method for continuously manufacturing the same, and reflection optical element using the polarization optical element
US7570424B2 (en) 2004-12-06 2009-08-04 Moxtek, Inc. Multilayer wire-grid polarizer
US7961393B2 (en) 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
US7800823B2 (en) 2004-12-06 2010-09-21 Moxtek, Inc. Polarization device to polarize and further control light
WO2006064693A1 (en) * 2004-12-16 2006-06-22 Toray Industries, Inc. Polarizing plate, method of producing the polarizing plate, and liquid crystal display device using the polarizing plate
JP4479535B2 (en) 2005-02-21 2010-06-09 セイコーエプソン株式会社 Optical element manufacturing method
EP1887390A4 (en) 2005-05-27 2010-09-15 Zeon Corp Grid polarizing film, method for producing grid polarizing film, optical laminate, method for producing optical laminate, and liquid crystal display
JP4793082B2 (en) * 2006-04-28 2011-10-12 コニカミノルタオプト株式会社 Roll-shaped reflective polarizing element, roll-shaped reflection / absorption-integrated polarizing element, roll-shaped viewing angle widening reflection / absorption-integrated polarizing element, and roll-shaped retardation compensation reflection / absorption-integrated polarizing element
US8755113B2 (en) 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
JP4695101B2 (en) 2007-01-24 2011-06-08 株式会社 日立ディスプレイズ Polarizer and liquid crystal display device using the same
US7957062B2 (en) * 2007-02-06 2011-06-07 Sony Corporation Polarizing element and liquid crystal projector
JP4488033B2 (en) * 2007-02-06 2010-06-23 ソニー株式会社 Polarizing element and liquid crystal projector
US7789515B2 (en) 2007-05-17 2010-09-07 Moxtek, Inc. Projection device with a folded optical path and wire-grid polarizer
JP4507126B2 (en) 2007-10-29 2010-07-21 ソニー株式会社 Manufacturing method of polarizing plate
JP4640446B2 (en) * 2008-05-26 2011-03-02 ソニー株式会社 Liquid crystal device, color filter substrate and array substrate
EP2400341B1 (en) 2009-02-17 2014-12-03 Sharp Kabushiki Kaisha Liquid crystal display device
CN101989012A (en) * 2009-08-03 2011-03-23 江苏丽恒电子有限公司 Liquid crystal on silicon imager
KR101624232B1 (en) 2009-10-06 2016-05-26 삼성디스플레이 주식회사 Display substrate, method for manufacturing the same, and display device having the display substrate
JP2011257678A (en) * 2010-06-11 2011-12-22 Asahi Kasei E-Materials Corp Wire grid polarizing plate and liquid crystal display device using the wire grid polarizing plate
WO2012005050A1 (en) 2010-07-05 2012-01-12 シャープ株式会社 Liquid crystal display device
US8939592B2 (en) 2010-08-02 2015-01-27 Nec Corporation Polarizer and light-emitting device
US8611007B2 (en) 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
US8913321B2 (en) 2010-09-21 2014-12-16 Moxtek, Inc. Fine pitch grid polarizer
JP5708095B2 (en) * 2011-03-18 2015-04-30 セイコーエプソン株式会社 Manufacturing method of polarizing element
JP5708096B2 (en) * 2011-03-18 2015-04-30 セイコーエプソン株式会社 Manufacturing method of polarizing element
US8873144B2 (en) 2011-05-17 2014-10-28 Moxtek, Inc. Wire grid polarizer with multiple functionality sections
US8913320B2 (en) 2011-05-17 2014-12-16 Moxtek, Inc. Wire grid polarizer with bordered sections
JP5810975B2 (en) * 2012-03-05 2015-11-11 セイコーエプソン株式会社 Manufacturing method of polarizing element
US8922890B2 (en) 2012-03-21 2014-12-30 Moxtek, Inc. Polarizer edge rib modification
JPWO2013161257A1 (en) 2012-04-26 2015-12-21 パナソニックIpマネジメント株式会社 Liquid crystal optical element and image display apparatus including the same
WO2013192403A2 (en) 2012-06-20 2013-12-27 Battelle Memorial Institute Two dimensional meta-material windows
US10393885B2 (en) 2012-06-20 2019-08-27 Battelle Memorial Institute Gamma radiation stand-off detection, tamper detection, and authentication via resonant meta-material structures
WO2015015722A1 (en) 2013-07-29 2015-02-05 パナソニックIpマネジメント株式会社 Optical filter and polarization imaging apparatus using same
US9354374B2 (en) 2013-10-24 2016-05-31 Moxtek, Inc. Polarizer with wire pair over rib
JPWO2021085332A1 (en) * 2019-10-31 2021-05-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033409A1 (en) * 2021-08-31 2023-03-09 삼성에스디아이 주식회사 Polarizing plate and optical display device comprising same

Also Published As

Publication number Publication date
JP2001074935A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
JP4427837B2 (en) Wire grid type polarization optical element
JP4838804B2 (en) Wire grid polarizer with low fill factor
JP4122808B2 (en) Liquid crystal display device and electronic device
JP2002514778A (en) Polarizer device for producing a generally polarized light beam
JP2002514781A (en) Polarizer device for producing a generally polarized light beam
JPH11352474A (en) Back light for liquid crystal display device and liquid crystal display device
JP2006139283A (en) Liquid crystal display device and fabrication method thereof
JP2002540557A (en) Backlight system
EP1794628A1 (en) Polarized interference recycling backlight module and liquid crystal display incorporating the same
JPH11352479A (en) Backlight device and transmission type display device
JP2013015615A (en) Screen
TW201502605A (en) Optical member, polarizing plate set and liquid crystal display device
JP2006047829A (en) Liquid crystal display device
KR100485530B1 (en) liquid crystal display devices and manufacturing method of the same
JP2001318367A (en) Display device
JP2641229B2 (en) Lighting device for liquid crystal display
JP4602604B2 (en) Polymer film having scattering anisotropy and surface light source device using the same
WO2021218407A1 (en) Backlight module and liquid crystal display device
JP2001074934A (en) Polarizing optical device
JPH11281975A (en) Polarized light transmission plate and polarized surface light source device
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP3108773B2 (en) Liquid crystal display device and liquid crystal projector with liquid crystal display device
JP3182363B2 (en) Reflective liquid crystal display
JP2002328225A (en) Polymer film having scattering anisotropy and surface light source device using the same
JP2019125543A (en) Lighting device and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

LAPS Cancellation because of no payment of annual fees