JP3991764B2 - Illumination device and projection display device - Google Patents

Illumination device and projection display device Download PDF

Info

Publication number
JP3991764B2
JP3991764B2 JP2002135641A JP2002135641A JP3991764B2 JP 3991764 B2 JP3991764 B2 JP 3991764B2 JP 2002135641 A JP2002135641 A JP 2002135641A JP 2002135641 A JP2002135641 A JP 2002135641A JP 3991764 B2 JP3991764 B2 JP 3991764B2
Authority
JP
Japan
Prior art keywords
light
light source
polarizing plate
reflective polarizing
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002135641A
Other languages
Japanese (ja)
Other versions
JP2003329978A (en
JP2003329978A5 (en
Inventor
秀文 坂田
高司 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002135641A priority Critical patent/JP3991764B2/en
Priority to EP03252873A priority patent/EP1363460B1/en
Priority to US10/434,288 priority patent/US7192147B2/en
Priority to CNB031223931A priority patent/CN100422850C/en
Publication of JP2003329978A publication Critical patent/JP2003329978A/en
Publication of JP2003329978A5 publication Critical patent/JP2003329978A5/ja
Priority to US11/656,979 priority patent/US20070121310A1/en
Application granted granted Critical
Publication of JP3991764B2 publication Critical patent/JP3991764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、照明装置および投射型表示装置に関し、特に、光利用効率に優れた照明装置の構成に関するものである。
【0002】
【従来の技術】
液晶ライトバルブ等の光変調装置を用いて映像光を合成し、合成された映像光を投射レンズ等からなる投射光学系を通じてスクリーンに拡大投射する投射型表示装置が従来から知られている。この種の投射型表示装置に用いられる照明光学系において、メタルハライドランプ等の光源から出射される光は通常、偏光状態がランダムな光である。ところが、偏光を利用する液晶ライトバルブを用いた投射型液晶表示装置の場合、表示には一方向の偏光しか利用しないため、光源からの光をそのまま液晶ライトバルブに入射させると、略半分の光が入射側偏光板で吸収されてしまい、ここで吸収された光はそれ以降、表示には利用されないことになる。
【0003】
そこで、従来の投射型液晶表示装置では、光の利用効率を改善する目的で、光源からのランダムな偏光状態の光を表示に利用する一方向の偏光に揃える偏光変換手段が、光源と液晶ライトバルブとの間に設置されている。偏光変換手段には、偏光ビームスプリッタ(Polarized Beam Splitter,以下、PBSと略記する)アレイが一般的に用いられる。PBSアレイは、偏光分離膜と反射膜とを有する複数のPBSと1/2波長板等の位相差板とが組み合わされたものであって、光源からの光に含まれるp偏光、s偏光(直線偏光)のうちの一方を偏光変換して他方の偏光に揃える機能を有している。
【0004】
【発明が解決しようとする課題】
ところが、PBSアレイを用いた従来の投射型表示装置の偏光変換手段には、以下のような問題点があった。
個々のPBS自体がある程度の寸法を持った素子であるため、これをアレイ状に配列したPBSアレイはかなりの大きさになってしまい、最近の投射型表示装置の小型化、薄型化、軽量化の要求にそぐわないものとなる。また、PBSアレイの入射面のうち、偏光分離膜に相当する位置に光を入射させなければならず、その位置に光を集光させるためのレンズ系が必要であった。このことが偏光変換手段の構成を複雑にしていた。また、偏光分離膜で分離したp偏光とs偏光とで光路長が異なるため、ライトバルブ上での照明条件にずれが生じ、光の利用効率が低下する、という問題があった。
【0005】
本発明は、上記の課題を解決するためになされたものであって、光の利用効率に優れ、簡単な構成で小型化、薄型化、軽量化が図れる照明装置、およびこの照明装置を備えた小型、薄型、軽量の投射型液晶表示装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の照明装置は、光源と、前記光源から入射される光を一方向の偏光に揃える偏光変換手段とを備えた照明装置であって、前記光源が、光源本体に対する側の面が反射面となるように前記光源本体の光出射方向に対して後方側に設けられた反射板を備え、前記偏光変換手段が、前記光源の光出射側に設けられ、所定の振動方向の偏光を透過させるとともに前記振動方向と異なる振動方向の偏光を反射させる反射型偏光板を備えたことを特徴とする。
【0007】
この構成によれば、一つの偏光(例えばp偏光)を透過させるとともに他の偏光(例えばs偏光)を反射させる反射型偏光板が光源の光出射側に設けられているので、光源からのランダムな偏光状態の光が反射型偏光板に入射された際に例えばp偏光は反射型偏光板を透過し、s偏光は反射して光源側に戻る。そして、光源側に戻った光は、光源本体の後方に設けられた反射板で反射し、再度反射型偏光板に向けて伝播する。そうすると、最初に反射型偏光板を透過できなかった光は、偏光状態が変わらない限り反射型偏光板と反射板との間を往復することになる。しかしながら、実際には光は反射を繰り返すうちに偏光状態が少しずつ変化するので、光の一部は反射型偏光板を透過するようになり、吸収されなかった全ての光がいずれは反射型偏光板を透過する。したがって、本照明装置を投射型表示装置に適用した場合、最初に反射型偏光板で反射された光もいつかは偏光状態が揃った状態で反射型偏光板を透過し、液晶ライトバルブ等の光変調手段に入射される。このようにして、従来に比べて光の利用効率の高い照明装置を実現することができる。
【0008】
また、本発明の照明装置では、偏光変換機能を持つ素子として、従来のPBSアレイに代えて、反射型偏光板を用いている。反射型偏光板には、例えばフィルム多層積層型偏光板を用いることができるので、PBSアレイの場合とは全く異なり、装置の小型化、薄型化、軽量化に寄与することができる。また、反射型偏光板の場合、面全体に光を入射させることができ、PBSアレイのように特定の位置に光を集光させる必要がない。よって、偏光変換光学系にレンズを用いる必要がなく、構成が簡単になる。また、PBSアレイで用いるような波長板も不要となり、部品点数を削減することができる。
【0009】
本発明の照明装置においては、前記光源と前記反射型偏光板との間に位相差板を備えることが望ましい。
【0010】
この構成によれば、反射型偏光板上や反射板上で光が反射する際の自然な偏光変化にまかせるのではなく、位相差板の作用によって偏光状態を積極的に変換するので、光が反射型偏光板と反射板との間を往復する間の偏光状態の変化がより大きくなる。その結果、光が反射型偏光板を透過する割合を大きくすることができ、光の利用効率をより高めることができる。ここで、位相差板として1/2波長板や1/4波長板のように均一な位相差を発生するものでなく、光の透過する位置によって異なる位相差を発生する位相差板とすることが望ましい。この構成によれば、反射板と反射型偏光板の間を往復する光は往きと戻りで異なる位相変調作用を受けることになり、偏光状態の変化がより大きくなる。
【0011】
さらに、前記光源と前記反射型偏光板との間に、棒状の導光体、もしくは内面が反射面とされた管状の導光体を備えることが望ましい。ここで言う「棒状の導光体」、もしくは「内面が反射面とされた管状の導光体」は、いわゆる従来からのロッドレンズのことである。
【0012】
この構成によれば、導光体(ロッドレンズ)が光源から出射された光をただ単に反射型偏光板に導く機能を果たすのみならず、光が導光体中を透過する間に導光体内面で反射し、様々な角度で反射した光が導光体の出射端面で重畳されることによって光の照度分布を均一化する機能をも果たす。すなわち、光はこの照明装置を出射した時点で偏光状態が一方向に揃っており、かつ照度分布が均一化されている。投射型表示装置には、通常、光源光の照度分布を均一化するためにフライアイインテグレータ、ロッドインテグレータ等の均一照明手段が備えられていることが多いが、上記構成の照明装置を採用することによって均一照明手段と偏光変換手段を兼用することができる。
【0013】
前記反射型偏光板は、上述のフィルム多層積層型偏光板の他、入射光の波長よりも小さいピッチでストライプ状に配列された複数の光反射体を有するグリッド偏光子で構成することができる。
この構成によれば、反射型偏光板が無機材料で構成できるので、耐熱性、耐光性に優れたものとなる。したがって、高輝度の光が照射される投射型表示装置に用いて好適なものとなる。
【0014】
本発明の投射型表示装置は、上記本発明の照明装置を備えた投射型表示装置であって、前記光源は、異なる色の色光を時間順次に出射可能な複数の前記光源本体が平面状または曲面状に配列された面状光源であり、前記光源から時間順次に出射される各色光の出射タイミングに同期して時分割駆動されるライトバルブからなる光変調手段と、前記光変調手段によって変調された光を投射する投射手段とが備えられたことを特徴とする。
【0015】
この構成によれば、上記本発明の照明装置を備えたことにより、投射型表示装置の小型化、薄型化、軽量化を実現できるとともに、光の利用効率が向上することから高輝度化、低消費電力化を図ることができる。また、この投射型表示装置は、「色順次駆動(カラーシーケンシャル)方式」と呼ばれる駆動方式を採用したものである。したがって、各色光毎の3個のライトバルブを用いる従来の3板方式の投射型表示装置と異なり、ライトバルブが1個で済み(単板方式となる)、さらに光変調手段への照明光学系も1系統で済む。そして、色分離光学系や色合成光学系が不要となるため、部品点数を大きく削減できるとともに装置構成を簡単にでき、コスト低減を図ることができる。
【0016】
本発明のさらに他の投射型表示装置は、上記本発明の照明装置を備えた投射型表示装置であって、前記光源は、互いに異なる色の色光を出射可能な複数の面状光源であり、 前記光源から前記偏光変換手段を経て出射される各色光を変調するライトバルブからなる複数の光変調手段と、前記複数の光変調手段により変調された色光を合成する色合成手段と、前記色合成手段により合成された光を投射する投射手段とが備えられたことを特徴とする。
【0017】
本構成の投射型表示装置も、上記本発明の照明装置を備えたことにより、投射型表示装置の小型化、薄型化、軽量化を実現できるとともに、光の利用効率が向上することで高輝度化、低消費電力化が図れるが、上で述べた投射型表示装置と異なり、複数のライトバルブを必要とするものである。しかしながら、従来の装置とは異なり、複数の光源が互いに異なる色の色光を出射するように構成され、各色光毎にライトバルブが設けられているので、色分離手段を必要としない。その分、従来の装置に比べて装置構成が簡単になる。また、上で述べた装置のように光源とライトバルブの駆動を同期させる必要はないため、駆動が複雑にならず、ライトバルブの応答速度もそれ程速いものを必要としなくて済む。
【0018】
【発明の実施の形態】
[第1の実施の形態]
以下、本発明の第1の実施の形態を、図1〜図5を参照して説明する。
本実施の形態では、色順次駆動方式の投射型カラー液晶表示装置の例を示す。図1は投射型表示装置1の全体構成を示す概略図であって、図中符号2はLEDアレイ(光源)、3は位相差板、4はテーパロッドレンズアレイ、7はロッドレンズアレイ、8は反射型偏光板、5は液晶ライトバルブ(光変調手段)、6は投射レンズ、である。
【0019】
本実施の形態の投射型表示装置1は、図1に示すように、R、G、Bの各色光を出射可能な複数(図1では図面を見やすくするため、4個のみ示す)の発光ダイオード14R,14G,14B(Light Emitting Diode, 以下、LEDと略記する)が配列されたLEDアレイ2、LEDアレイ2の出射側に設けられた位相差板3、各LED14R,14G,14Bから出射される各色光の照度を均一化するためのテーパロッドレンズアレイ4およびロッドレンズアレイ7、ロッドレンズアレイ7から出射される光の偏光変換を行う反射型偏光板8、反射型偏光板8から入射される各色光を変調して画像を合成する液晶ライトバルブ5、液晶ライトバルブ5によって合成された画像をスクリーン9に拡大投射する投射レンズ6から概略構成されている。このうち、本実施の形態の照明装置は、LEDアレイ2、位相差板3、テーパロッドレンズアレイ4、ロッドレンズアレイ7、反射型偏光板8によって構成されている。なお、図2は、本実施の形態の照明装置のうち、1個のLEDに対応する部分のみを取りだして示す図である。
【0020】
LEDアレイ2は光源駆動回路10に接続されており、この光源駆動回路10によって各LED14R,14G,14Bが発光するタイミングが制御され、各LED14R,14G,14Bから例えばR、G、B、R、G、B、…というように時間順次に異なる色の色光を発光可能な構成となっている。また、図2において各LED14R,14G,14Bの右側の面が光出射面となっており、各LED14R,14G,14Bから右方向に光が出射されるようになっている。そして、各LED14R,14G,14Bの光出射方向に対して後方側(図2におけるLEDの左側)に、金属膜等からなる曲面状の反射板15が、各LED14R,14G,14Bに対する側の面が反射面となるように設置されている。
【0021】
テーパロッドレンズアレイ4は、楔形のガラス柱からなる複数のテーパロッドレンズ16が位相差板3を介して各LED14R,14G,14Bに対応して配置されたものである。図2において、テーパロッドレンズ16の左側の面が入射端面、右側の面が出射端面である。個々のテーパロッドレンズ16は入射端面側から出射端面側に向けて先拡がりのテーパ状の形状となっている。同様に、テーパロッドレンズアレイ4の出射端面側に設けられたロッドレンズアレイ7は、入射端面側と出射端面側とで同径のガラス柱からなる複数のロッドレンズ17が、各LED14R,14G,14B(各テーパロッドレンズ16)に対応して配置されたものである。
【0022】
位相差板3は、後述するように、反射型偏光板8と反射板15との間を往復する光の偏光状態の変化をより大きくするためのものである。この位相差板3は、これを透過する光にいくらかの位相差を付与することで、何もない場合と比べて偏光状態をより大きく変化させる点で意味がある。したがって、例えば1/2波長、1/4波長というような特定の位相差の値を持つものに限定されるわけではない。また、位相差板3として、1/2波長板や1/4波長板のように均一な位相差を発生するものでなく、光の透過する位置によって異なる位相差を発生する位相差板とすることが望ましい。その場合、反射板15と反射型偏光板8の間を往復する光は往きと戻りで異なる位相変調作用を受けることになり、偏光状態の変化をより大きくすることができる。
【0023】
反射型偏光板8は、LEDアレイ2から出射されるランダムな偏光方向の光のうち、例えばp偏光、s偏光(直線偏光)のうちの一方を透過し、他方を反射する機能を有している。この機能により、反射型偏光板8からは常に偏光方向が一方向に揃った光が出射される。反射型偏光板8としては、例えばフィルム多層積層型偏光板を用いることもできるし、無機材料からなるグリッド偏光子を用いた反射型偏光子を用いることもできる。
【0024】
後者の例としては、図5に示すように、アルミニウムなどの光反射性を有する金属からなる多数のリブ24(光反射体)が入射光の波長よりも小さいピッチでガラス基板25上に形成されたグリッド偏光子が挙げられる。すなわち、この反射型偏光子8は、異なる屈折率を有するAlリブ24と空気とが入射光の波長よりも小さいピッチで交互にストライプ状に配置されたことで透過光、反射光の強度が、偏光状態によって異なる挙動を示すようになり、その結果、偏光子として機能する。この構成により、Alリブ24が形成された側の面にランダムな偏光が入射されると、Alリブ24の延在方向に平行な方向に振動するS偏光が反射され、Alリブ24の延在方向に垂直な方向(Alリブが配列する方向)に振動するP偏光が透過する。
【0025】
本実施の形態の照明装置において、各LED14R,14G,14Bから出射された光は、LEDの中心部の輝度が高く、周縁部の輝度が低いという輝度分布を有している。ところが、各LED14R,14G,14Bの出射側にテーパロッドレンズ16、ロッドレンズ17が順次設けられているので、LED14R,14G,14Bからの入射光はこれらレンズ16,17の内面で反射を繰り返し、ロッドレンズ17の出射端面から出射される時点では照度が均一化された状態となる。
【0026】
そして、照度が均一化されたランダムな偏光状態の光が反射型偏光板8に入射されると、例えばp偏光は反射型偏光板8を透過し、s偏光は反射してLED14R,14G,14B側に戻る。そして、LED14R,14G,14B側に戻った光は反射板15で反射し、再度反射型偏光板8に向けて進む。そうすると、最初に反射型偏光板8を透過できなかった光は、偏光状態が変わらない限り反射型偏光板8と反射板15との間を往復することになるが、実際には光は反射を繰り返すうちに偏光状態が少しずつ変化する。また本実施の形態では、反射時の自然な偏光変化にまかせるだけでなく、反射型偏光板8と反射板15との間の光路上に位相差板3が設けられており、光が位相差板3を透過する際に偏光状態が強制的に変えられるため、偏光状態の変化がより大きくなる。このため、最初に反射型偏光板8で反射された光は、反射型偏光板8と反射板15との間を往復する間にその一部が反射型偏光板8を透過することができる。
【0027】
一方、液晶ライトバルブ5には、画素スイッチング用素子として薄膜トランジスタ(Thin Film Transistor, 以下、TFTと略記する)を用いたTNモードのアクティブマトリクス方式の透過型の液晶セル31が使用されている。そして、液晶セル31の外面には入射側偏光板32、出射側偏光板33がその透過軸が互いに直交するように配置されて設けられている。例えば、オフ状態では液晶ライトバルブ5に入射されたp偏光がs偏光に変換されて出射される一方、オン状態では光が遮断されるようになっている。以上の照明装置を構成するLEDアレイ2、位相差板3、テーパロッドレンズアレイ4、ロッドレンズアレイ7、反射型偏光板8、および液晶ライトバルブ5は離間して配置しても良いが、装置の小型化、薄型化のためには全てを密着させて配置することが望ましい。
【0028】
図1に示すように、液晶ライトバルブ5は液晶ライトバルブ駆動回路11に接続されており、この液晶ライトバルブ駆動回路11によって、入射される各色光に対応させて液晶ライトバルブ5を時間順次に駆動することが可能な構造になっている。また、本実施の形態の投射型表示装置1においては、同期信号発生回路12が備えられており、この同期信号発生回路12により、同期信号SYNCを発生させ、光源駆動回路10および液晶ライトバルブ駆動回路11に入力することにより、各LED14R,14G,14Bから色光を出射するタイミングと、その色光に対応して液晶ライトバルブ5を駆動するタイミングとを同期させることができる構造になっている。
【0029】
すなわち、本実施の形態の投射型表示装置1では、1フレームを時分割し、LED14R,14G,14Bから時間順次にR、G、Bの各色光を出射させ、各LED14R,14G,14Bから色光を出射するタイミングと液晶ライトバルブ5を駆動するタイミングとを同期させることにより、各LED14R,14G,14Bから出射される色光に対応させて液晶ライトバルブ5を時間順次に駆動し、各LED14R,14G,14Bから出射される色光に対応する画像信号を出力することにより、カラー画像を合成することが可能な構成になっている。
【0030】
本実施の形態の投射型表示装置は、いわゆる「色順次駆動(カラーシーケンシャル)方式」と呼ばれる駆動方式を採用したものである。したがって、各色光毎の3個の液晶ライトバルブを用いる従来の3板方式の投射型表示装置と異なり、液晶ライトバルブが1個で済み(単板方式となる)、さらに光変調手段への照明光学系も1系統で済む。そして、色分離光学系や色合成光学系が不要となるため、部品点数を大きく削減できるとともに装置構成を簡単にでき、コスト低減を図ることができる。
【0031】
本実施の形態では、上述したように、照明装置の出射側に反射型偏光板8、各LED14R,14G,14Bの後方に反射板15が設けられており、最初に反射型偏光板8で反射された光もその後、反射板15との間で反射を繰り返すうちに偏光状態が一定に揃った状態で反射型偏光板8を透過し、液晶ライトバルブ5に入射される。このようにして、従来に比べて光の利用効率の高い照明装置を実現することができる。
【0032】
また、本実施の形態の照明装置では、偏光変換機能を持つ素子として、従来のPBSアレイに代えて、反射型偏光板8を用いている。反射型偏光板8として市販の偏光フィルムを用いた場合、特に装置の小型化、薄型化、軽量化に寄与することができる。構造複屈折体からなる反射型偏光子8を用いた場合、耐光性、耐熱性に優れ、投射型表示装置に特に好適なものとなる。また、反射型偏光板8の場合、PBSアレイと異なり、面全体に光を入射させることができ、特定の位置に光を集光させる必要がない。よって、偏光変換光学系にレンズを用いる必要がなく、構成が簡単になる。また、PBSアレイで用いるような波長板も不要となり、部品点数を削減することができる。すなわち、均一照明機能と偏光変換機能を兼ね備えた非常にコンパクトな照明装置を実現することができる。
【0033】
[第2の実施の形態]
以下、本発明の第2の実施の形態を、図6を参照して説明する。
本実施の形態も投射型カラー液晶表示装置の例であるが、第1の実施の形態が色順次駆動方式の単板方式の例であったのに対し、本実施の形態では3板方式の例を示す。図6は投射型表示装置の概略構成を示す拡大図である。なお、図6において図1と共通の構成要素には同一の符号を付し、詳細な説明は省略する。
【0034】
第1の実施の形態では、光源としてR、G、Bの異なる色の色光を発光し得るLED14R,14G,14Bを同一面内に配列したLEDアレイ2を用いたのに対し、本実施の形態の投射型液晶表示装置36では、図6に示すように、Rの色光を発光し得るLED14Rを同一面内に配列したLEDアレイ2R、Gの色光を発光し得るLED14Gを同一面内に配列したLEDアレイ2G、Bの色光を発光し得るLED14Bを同一面内に配列したLEDアレイ2B、の3個を面状光源として用いている。そして、各LEDアレイ2R,2G,2Bの出射側には、第1の実施の形態と同様、位相差板3、テーパロッドレンズアレイ4およびロッドレンズアレイ7、反射型偏光板8がそれぞれ配置されている。したがって、本実施の形態の投射型表示装置は各色光毎に3系統の照明装置を有している。
【0035】
各色光毎の反射型偏光板8の出射側に、R、G、Bの各色光を変調する液晶ライトバルブ5がそれぞれ設けられている。そして、各液晶ライトバルブ5によって変調された3つの色光が、クロスダイクロイックプリズム25(色合成手段)に入射するように構成されている。このプリズム25は4つの直角プリズムが貼り合わされたものであり、内面に赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが十字状に形成されている。これらの誘電体多層膜によって3つの色光Lr、Lg、Lbが合成されてカラー画像を表す光が形成される。色合成された光は投射レンズ6によりスクリーン9上に投射され、拡大された画像が表示される。
【0036】
本実施の形態の投射型表示装置は、第1の実施の形態の装置と異なり、3個の液晶ライトバルブ5を必要とするものである。しかしながら、従来の装置とは異なり、3つの照明装置が互いに異なる色の色光を出射するように構成され、各色光毎に液晶ライトバルブ5が設けられているので、従来の装置におけるダイクロイックミラーのような色分離手段を必要としない。その分、従来の装置に比べて装置構成が簡単になる。また、第1の実施の形態の装置のようにLEDアレイ2r,2g,2bと液晶ライトバルブ5の駆動を同期させる必要はないため、駆動が複雑にならず、液晶ライトバルブの応答速度もそれ程速いものを必要としなくて済む。
【0037】
そして、本実施の形態においても、照明装置の出射側に反射型偏光板8、各LED14R,14G,14Bの後方に反射板15が設けられたことで光の利用効率の高い照明装置を実現できる、集光レンズが不要となることで偏光変換光学系の構成が簡単になる、波長板も不要となることで部品点数を削減できる、という第1の実施の形態と同様の効果を得ることができる。
【0038】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば上記実施の形態では、図2に示したように、LED14R,14G,14Bの出射側に位相差板3、テーパロッドレンズ16、ロッドレンズ17、反射型偏光板8を順次備えた照明装置を例示したが、この構成に代えて、例えば図3に示すように、図2の構成からロッドレンズ17を省いた構成としてもよい。これにより、照明装置をより薄型にすることができる。さらに、図4に示すように、テーパロッドレンズ16も省き、LED14R,14G,14Bの出射面に位相差板3と反射型偏光板8とを直接積層した構成としてもよい。これにより、照明装置を大幅に薄型化することが可能となる。
【0039】
また、上記実施の形態では、各LED14R,14G,14Bと各ロッドレンズ16,17を1:1に対応させたが、必ずしも1:1に対応している必要はなく、例えば複数個のLEDに1個のロッドレンズが対応していても良い。さらに、光源として複数のLED14R,14G,14Bをアレイ状に配置したものを用いたが、必要充分な光量さえ得られれば、LEDを1個のみ用いてもよい。上記実施の形態では本発明の照明装置を投射型表示装置に用いた例を示したが、直視型の表示装置に用いることもできる。
【0040】
【発明の効果】
以上、詳細に説明したように、本発明によれば、最初に反射型偏光板で反射された光もいつかは偏光状態が一定に揃った状態で反射型偏光板を透過し、ライトバルブ等の光変調手段に入射される。このようにして、従来に比べて光の利用効率の高い照明装置を実現することができる。また、本発明の照明装置では、偏光変換素子として従来のPBSアレイに代えて、反射型偏光板を用いたことにより装置の小型化、薄型化、軽量化に寄与することができ、投射型表示装置に用いて好適なものとなる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態の投射型表示装置を示す概略構成図である。
【図2】 同、投射型表示装置における照明装置の一つのLEDに対応する部分のみを取りだして示す断面図である。
【図3】 同、他の例を示す断面図である。
【図4】 同、さらに他の例を示す断面図である。
【図5】 同、照明装置に用いる反射型偏光板の一例を示す斜視図である。
【図6】 本発明の第2の実施形態の投射型表示装置を示す概略構成図である。
【符号の説明】
1 投射型表示装置
2 LEDアレイ(光源)
3 位相差板
4 テーパロッドレンズアレイ
5 液晶ライトバルブ(光変調手段)
6 投射レンズ
7 ロッドレンズアレイ
8 反射型偏光板
14R,14G,14B LED(光源本体)
15 反射板
16 テーパロッドレンズ
17 ロッドレンズ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lighting device and a projection display device, and more particularly to a configuration of a lighting device having excellent light utilization efficiency.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a projection type display device that synthesizes image light using a light modulation device such as a liquid crystal light valve and enlarges and projects the synthesized image light on a screen through a projection optical system including a projection lens or the like is known. In an illumination optical system used in this type of projection display device, light emitted from a light source such as a metal halide lamp is usually light having a random polarization state. However, in the case of a projection type liquid crystal display device using a liquid crystal light valve that uses polarized light, only one direction of polarized light is used for display. Therefore, if light from a light source is directly incident on the liquid crystal light valve, approximately half of the light is emitted. Is absorbed by the incident-side polarizing plate, and the light absorbed here is not used for display thereafter.
[0003]
Therefore, in the conventional projection-type liquid crystal display device, for the purpose of improving the light utilization efficiency, the polarization conversion means for aligning the light in a random polarization state from the light source with the unidirectional polarization used for display is provided with the light source and the liquid crystal light. It is installed between the valves. As the polarization converting means, a polarized beam splitter (hereinafter abbreviated as PBS) array is generally used. A PBS array is a combination of a plurality of PBSs having a polarization separation film and a reflection film and a phase difference plate such as a half-wave plate, and includes p-polarized light and s-polarized light contained in light from a light source ( One of the linearly polarized light) has a function of converting the polarization to align with the other polarized light.
[0004]
[Problems to be solved by the invention]
However, the polarization conversion means of the conventional projection display device using the PBS array has the following problems.
Since each PBS itself is an element with a certain size, the PBS array in which it is arranged in an array becomes quite large, making the recent projection display devices smaller, thinner and lighter. It will not meet the requirements of. Further, light must be incident on a position corresponding to the polarization separation film on the incident surface of the PBS array, and a lens system for condensing the light at that position is required. This complicates the configuration of the polarization conversion means. In addition, since the optical path lengths of the p-polarized light and the s-polarized light separated by the polarization separation film are different, there is a problem that the illumination conditions on the light valve are deviated and the light use efficiency is reduced.
[0005]
The present invention has been made to solve the above-described problems, and has an illumination device that is excellent in light utilization efficiency and can be reduced in size, thickness, and weight with a simple configuration, and the illumination device. It is an object of the present invention to provide a small, thin and light projection type liquid crystal display device.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an illuminating device of the present invention is an illuminating device including a light source and a polarization conversion unit that aligns light incident from the light source with polarized light in one direction. A reflection plate provided on the rear side with respect to the light emission direction of the light source body such that the surface on the side of the light source body is a reflection surface, the polarization conversion means is provided on the light emission side of the light source; A reflection type polarizing plate that transmits polarized light in a predetermined vibration direction and reflects polarized light in a vibration direction different from the vibration direction is provided.
[0007]
According to this configuration, since the reflective polarizing plate that transmits one polarized light (for example, p-polarized light) and reflects the other polarized light (for example, s-polarized light) is provided on the light emitting side of the light source, When light in a polarized state is incident on the reflective polarizing plate, for example, p-polarized light is transmitted through the reflective polarizing plate, and s-polarized light is reflected and returns to the light source side. And the light which returned to the light source side reflects with the reflecting plate provided in the back of the light source main body, and propagates again toward a reflection type polarizing plate. If it does so, the light which could not permeate | transmit the reflection type polarizing plate initially will reciprocate between a reflection type polarizing plate and a reflecting plate, unless a polarization state changes. However, in reality, the polarization state gradually changes as the light is repeatedly reflected, so that part of the light passes through the reflective polarizing plate, and all the unabsorbed light is eventually reflected. It penetrates the plate. Therefore, when this illuminating device is applied to a projection display device, the light initially reflected by the reflective polarizing plate will eventually pass through the reflective polarizing plate in a state of uniform polarization, and light from a liquid crystal light valve, etc. The light enters the modulation means. In this way, it is possible to realize an illuminating device with higher light utilization efficiency than in the past.
[0008]
In the illumination device of the present invention, a reflective polarizing plate is used as an element having a polarization conversion function instead of the conventional PBS array. As the reflective polarizing plate, for example, a film multilayer laminated polarizing plate can be used, which is completely different from the case of the PBS array, and can contribute to downsizing, thinning, and weight reduction of the apparatus. In the case of a reflective polarizing plate, light can be incident on the entire surface, and there is no need to collect light at a specific position unlike a PBS array. Therefore, it is not necessary to use a lens for the polarization conversion optical system, and the configuration is simplified. In addition, a wave plate used in a PBS array is not necessary, and the number of parts can be reduced.
[0009]
In the illuminating device of this invention, it is desirable to provide a phase difference plate between the light source and the reflective polarizing plate.
[0010]
According to this configuration, the polarization state is positively converted by the action of the phase difference plate, not the natural polarization change when the light is reflected on the reflection type polarizing plate or the reflection plate. The change in the polarization state during reciprocation between the reflective polarizing plate and the reflective plate becomes larger. As a result, the ratio of light passing through the reflective polarizing plate can be increased, and the light use efficiency can be further increased. Here, as a retardation plate, a retardation plate that does not generate a uniform retardation like a half-wave plate or a quarter-wave plate, but generates a phase difference that varies depending on a light transmitting position is used. Is desirable. According to this configuration, the light reciprocating between the reflection plate and the reflection-type polarizing plate is subjected to different phase modulation actions in the forward and backward directions, and the change in the polarization state becomes larger.
[0011]
Furthermore, it is desirable to provide a rod-shaped light guide or a tubular light guide whose inner surface is a reflection surface between the light source and the reflective polarizing plate. The “rod-shaped light guide” or “tubular light guide whose inner surface is a reflecting surface” is a so-called conventional rod lens.
[0012]
According to this configuration, the light guide (rod lens) not only performs the function of guiding the light emitted from the light source to the reflective polarizing plate, but also while the light passes through the light guide. The light reflected by the surface and reflected at various angles is also superimposed on the exit end face of the light guide, thereby achieving the function of uniforming the illuminance distribution of the light. That is, when the light is emitted from the illumination device, the polarization state is aligned in one direction, and the illuminance distribution is made uniform. Projection type display devices are usually equipped with uniform illumination means such as fly-eye integrators and rod integrators in order to make the illuminance distribution of the light source light uniform. Therefore, the uniform illumination means and the polarization conversion means can be used together.
[0013]
The reflective polarizing plate can be composed of a grid polarizer having a plurality of light reflectors arranged in stripes at a pitch smaller than the wavelength of incident light, in addition to the above-mentioned film multilayer laminated polarizing plate.
According to this configuration, since the reflective polarizing plate can be formed of an inorganic material, it has excellent heat resistance and light resistance. Therefore, it is suitable for use in a projection display device that is irradiated with high-luminance light.
[0014]
A projection display device according to the present invention is a projection display device including the illumination device according to the present invention, wherein the light source has a plurality of light source bodies that are capable of emitting color lights of different colors in a time sequential manner. A planar light source arranged in a curved surface, a light modulation means comprising a light valve driven in a time-sharing manner in synchronization with the emission timing of each color light emitted sequentially from the light source, and modulated by the light modulation means And projection means for projecting the emitted light.
[0015]
According to this configuration, since the illumination device of the present invention is provided, the projection display device can be reduced in size, thickness, and weight, and light use efficiency is improved. Power consumption can be reduced. Further, this projection type display apparatus adopts a driving method called “color sequential driving method”. Therefore, unlike a conventional three-plate projection display device using three light valves for each color light, only one light valve is required (single-plate method), and the illumination optical system for the light modulation means One system is sufficient. Further, since the color separation optical system and the color synthesis optical system are not required, the number of parts can be greatly reduced, the apparatus configuration can be simplified, and the cost can be reduced.
[0016]
Still another projection display device of the present invention is a projection display device including the illumination device of the present invention, wherein the light source is a plurality of planar light sources capable of emitting color lights of different colors, A plurality of light modulation means comprising light valves for modulating each color light emitted from the light source via the polarization conversion means; a color composition means for combining the color lights modulated by the plurality of light modulation means; and the color composition And projection means for projecting the light synthesized by the means.
[0017]
The projection display device of this configuration also includes the illumination device of the present invention, so that the projection display device can be reduced in size, thickness, and weight, and light use efficiency is improved, resulting in high brightness. However, unlike the projection type display device described above, a plurality of light valves are required. However, unlike the conventional apparatus, a plurality of light sources are configured to emit color lights of different colors, and a light valve is provided for each color light, so that no color separation means is required. As a result, the apparatus configuration is simplified as compared with the conventional apparatus. Further, since it is not necessary to synchronize the driving of the light source and the light valve as in the apparatus described above, the driving does not become complicated, and the light valve does not need to be as fast as the response speed.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
In this embodiment, an example of a color sequential driving projection type color liquid crystal display device is shown. FIG. 1 is a schematic diagram showing the overall configuration of the projection display device 1, in which 2 is an LED array (light source), 3 is a phase difference plate, 4 is a taper rod lens array, 7 is a rod lens array, 8. Is a reflection type polarizing plate, 5 is a liquid crystal light valve (light modulation means), and 6 is a projection lens.
[0019]
As shown in FIG. 1, the projection display device 1 according to the present embodiment has a plurality of light emitting diodes (only four are shown in FIG. 1 for easy viewing). LED array 2 in which 14R, 14G, and 14B (Light Emitting Diodes, hereinafter abbreviated as LEDs) are arranged, phase difference plate 3 provided on the emission side of LED array 2, and each LED 14R, 14G, and 14B. Tapered rod lens array 4 and rod lens array 7 for uniformizing the illuminance of each color light, reflection type polarizing plate 8 that performs polarization conversion of light emitted from rod lens array 7, and incident from reflection type polarizing plate 8 A liquid crystal light valve 5 that synthesizes an image by modulating each color light, and a projection lens 6 that enlarges and projects an image synthesized by the liquid crystal light valve 5 onto a screen 9 are schematically configured. Among these, the illuminating device of this Embodiment is comprised by the LED array 2, the phase difference plate 3, the taper rod lens array 4, the rod lens array 7, and the reflection type polarizing plate 8. FIG. In addition, FIG. 2 is a figure which takes out and shows only the part corresponding to one LED among the illuminating devices of this Embodiment.
[0020]
The LED array 2 is connected to a light source driving circuit 10, and the timing at which each LED 14 R, 14 G, 14 B emits light is controlled by this light source driving circuit 10, and for example, R, G, B, R, and so on from each LED 14 R, 14 G, 14 B G, B,... Can emit light of different colors in time sequence. Further, in FIG. 2, the right side surface of each LED 14R, 14G, 14B is a light emitting surface, and light is emitted rightward from each LED 14R, 14G, 14B. Then, on the rear side (left side of the LED in FIG. 2) with respect to the light emitting direction of each LED 14R, 14G, 14B, a curved reflector 15 made of a metal film or the like is a surface on the side with respect to each LED 14R, 14G, 14B. Is installed as a reflective surface.
[0021]
In the taper rod lens array 4, a plurality of taper rod lenses 16 made of wedge-shaped glass columns are arranged corresponding to the LEDs 14R, 14G, and 14B via the phase difference plate 3. In FIG. 2, the left side surface of the tapered rod lens 16 is the incident end surface, and the right side surface is the outgoing end surface. Each taper rod lens 16 has a tapered shape that widens from the incident end face side toward the outgoing end face side. Similarly, the rod lens array 7 provided on the exit end face side of the taper rod lens array 4 includes a plurality of rod lenses 17 made of glass columns having the same diameter on the entrance end face side and the exit end face side, and each LED 14R, 14G, 14B (each taper rod lens 16) is arranged correspondingly.
[0022]
The phase difference plate 3 is for increasing the change in the polarization state of light reciprocating between the reflective polarizing plate 8 and the reflective plate 15 as will be described later. This phase difference plate 3 is meaningful in that the polarization state is changed more greatly than by giving some phase difference to the light passing through the phase difference plate 3 compared with the case where there is nothing. Therefore, it is not limited to those having specific phase difference values such as ½ wavelength and ¼ wavelength. Further, the phase difference plate 3 does not generate a uniform phase difference like a half-wave plate or a quarter-wave plate, but a phase difference plate that generates a phase difference that varies depending on the position where the light is transmitted. It is desirable. In that case, the light reciprocating between the reflection plate 15 and the reflection type polarizing plate 8 is subjected to different phase modulation actions in the forward and backward directions, and the change in the polarization state can be further increased.
[0023]
The reflective polarizing plate 8 has a function of transmitting, for example, one of p-polarized light and s-polarized light (linearly polarized light) out of light in a random polarization direction emitted from the LED array 2 and reflecting the other. Yes. With this function, light having the polarization direction aligned in one direction is always emitted from the reflective polarizing plate 8. As the reflective polarizing plate 8, for example, a film multilayer laminated polarizing plate can be used, or a reflective polarizer using a grid polarizer made of an inorganic material can be used.
[0024]
As an example of the latter, as shown in FIG. 5, a large number of ribs 24 (light reflectors) made of a light reflective metal such as aluminum are formed on the glass substrate 25 at a pitch smaller than the wavelength of incident light. Grid polarizers. That is, the reflective polarizer 8 has Al ribs 24 having different refractive indexes and air alternately arranged in stripes at a pitch smaller than the wavelength of incident light, so that the intensity of transmitted light and reflected light is It behaves differently depending on the polarization state, and as a result, it functions as a polarizer. With this configuration, when random polarized light is incident on the surface on which the Al rib 24 is formed, S-polarized light oscillating in a direction parallel to the extending direction of the Al rib 24 is reflected, and the extending of the Al rib 24 is performed. P-polarized light that vibrates in the direction perpendicular to the direction (the direction in which the Al ribs are arranged) is transmitted.
[0025]
In the illumination device of the present embodiment, the light emitted from each LED 14R, 14G, 14B has a luminance distribution in which the luminance at the center of the LED is high and the luminance at the peripheral portion is low. However, since the tapered rod lens 16 and the rod lens 17 are sequentially provided on the emission side of the LEDs 14R, 14G, and 14B, the incident light from the LEDs 14R, 14G, and 14B is repeatedly reflected on the inner surfaces of the lenses 16 and 17, At the time of exit from the exit end face of the rod lens 17, the illuminance is uniform.
[0026]
Then, when light in a random polarization state with uniform illuminance is incident on the reflective polarizing plate 8, for example, p-polarized light is transmitted through the reflective polarizing plate 8, and s-polarized light is reflected, and the LEDs 14R, 14G, and 14B are reflected. Return to the side. Then, the light returned to the LEDs 14R, 14G, and 14B is reflected by the reflecting plate 15 and travels toward the reflective polarizing plate 8 again. Then, the light that could not pass through the reflective polarizing plate 8 first reciprocates between the reflective polarizing plate 8 and the reflective plate 15 as long as the polarization state does not change. The polarization state changes little by little as it repeats. Further, in the present embodiment, not only is the natural polarization change at the time of reflection, but also the phase difference plate 3 is provided on the optical path between the reflection type polarizing plate 8 and the reflection plate 15 so that the light is phase difference. Since the polarization state is forcibly changed when passing through the plate 3, the change in the polarization state becomes larger. Therefore, a part of the light initially reflected by the reflective polarizing plate 8 can pass through the reflective polarizing plate 8 while reciprocating between the reflective polarizing plate 8 and the reflective plate 15.
[0027]
On the other hand, the liquid crystal light valve 5 uses a TN mode active matrix transmission type liquid crystal cell 31 using a thin film transistor (hereinafter abbreviated as TFT) as a pixel switching element. An incident-side polarizing plate 32 and an emitting-side polarizing plate 33 are provided on the outer surface of the liquid crystal cell 31 so that their transmission axes are orthogonal to each other. For example, p-polarized light incident on the liquid crystal light valve 5 is converted into s-polarized light and emitted in the off state, while light is blocked in the on state. The LED array 2, the phase difference plate 3, the taper rod lens array 4, the rod lens array 7, the reflective polarizing plate 8, and the liquid crystal light valve 5 that constitute the above-described illumination device may be arranged apart from each other. In order to reduce the size and thickness of the device, it is desirable to arrange them in close contact with each other.
[0028]
As shown in FIG. 1, the liquid crystal light valve 5 is connected to a liquid crystal light valve drive circuit 11, and the liquid crystal light valve drive circuit 11 moves the liquid crystal light valve 5 in time-sequential manner corresponding to each incident color light. It has a structure that can be driven. Further, the projection display device 1 of the present embodiment is provided with a synchronization signal generation circuit 12, which generates a synchronization signal SYNC to drive the light source drive circuit 10 and the liquid crystal light valve. By inputting to the circuit 11, the timing of emitting the color light from each LED 14 R, 14 G, 14 B and the timing of driving the liquid crystal light valve 5 corresponding to the color light can be synchronized.
[0029]
That is, in the projection type display device 1 of the present embodiment, one frame is time-divided, and the R, G, B color lights are emitted from the LEDs 14R, 14G, 14B in time order, and the color lights are emitted from the LEDs 14R, 14G, 14B. Is synchronized with the timing at which the liquid crystal light valve 5 is driven, so that the liquid crystal light valve 5 is driven sequentially in time according to the color light emitted from each LED 14R, 14G, 14B. , 14B by outputting an image signal corresponding to the color light emitted from 14B, it is possible to synthesize a color image.
[0030]
The projection type display apparatus of the present embodiment employs a so-called “color sequential driving (color sequential) system”. Therefore, unlike the conventional three-plate projection display device using three liquid crystal light valves for each color light, only one liquid crystal light valve is required (single-plate method), and the light modulation means is illuminated. One optical system is sufficient. Further, since the color separation optical system and the color synthesis optical system are not required, the number of parts can be greatly reduced, the apparatus configuration can be simplified, and the cost can be reduced.
[0031]
In the present embodiment, as described above, the reflective polarizing plate 8 is provided on the exit side of the lighting device, and the reflective plate 15 is provided behind the LEDs 14R, 14G, and 14B. Then, the reflected light is transmitted through the reflective polarizing plate 8 in a state where the polarization state is kept constant while repeating reflection with the reflection plate 15, and is incident on the liquid crystal light valve 5. In this way, it is possible to realize an illuminating device with higher light utilization efficiency than in the past.
[0032]
In the illumination device of the present embodiment, a reflective polarizing plate 8 is used as an element having a polarization conversion function instead of the conventional PBS array. When a commercially available polarizing film is used as the reflective polarizing plate 8, it can contribute to the reduction in size, thickness, and weight of the apparatus. When the reflective polarizer 8 made of a structural birefringent material is used, it is excellent in light resistance and heat resistance, and is particularly suitable for a projection display device. In the case of the reflective polarizing plate 8, unlike the PBS array, light can be incident on the entire surface, and it is not necessary to collect the light at a specific position. Therefore, it is not necessary to use a lens for the polarization conversion optical system, and the configuration is simplified. In addition, a wave plate used in a PBS array is not necessary, and the number of parts can be reduced. That is, it is possible to realize a very compact illuminating device having both a uniform illumination function and a polarization conversion function.
[0033]
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.
Although the present embodiment is also an example of a projection type color liquid crystal display device, the first embodiment is an example of a single plate method of a color sequential drive method, whereas in the present embodiment, a three plate method is used. An example is shown. FIG. 6 is an enlarged view showing a schematic configuration of the projection display device. In FIG. 6, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0034]
In the first embodiment, the LED array 2 in which the LEDs 14R, 14G, and 14B that can emit light of different colors of R, G, and B are used as the light source is used in the same plane. In the projection type liquid crystal display device 36, as shown in FIG. 6, an LED array 2R in which LEDs 14R capable of emitting R colored light are arranged in the same plane, and an LED 14G capable of emitting G colored light are arranged in the same plane. Three LED arrays 2B, in which LEDs 14B capable of emitting the color light of the LED arrays 2G and B are arranged in the same plane, are used as the planar light source. And the phase difference plate 3, the taper rod lens array 4, the rod lens array 7, and the reflective polarizing plate 8 are respectively arranged on the emission side of each LED array 2R, 2G, 2B, as in the first embodiment. ing. Therefore, the projection display device of the present embodiment has three systems of illumination devices for each color light.
[0035]
A liquid crystal light valve 5 for modulating each color light of R, G, B is provided on the emission side of the reflective polarizing plate 8 for each color light. Then, the three color lights modulated by the liquid crystal light valves 5 are configured to enter the cross dichroic prism 25 (color synthesis means). This prism 25 is formed by bonding four right-angle prisms, and a dielectric multilayer film that reflects red light and a dielectric multilayer film that reflects blue light are formed in a cross shape on the inner surface. These dielectric multilayer films combine the three color lights Lr, Lg, and Lb to form light representing a color image. The color-synthesized light is projected onto the screen 9 by the projection lens 6 and an enlarged image is displayed.
[0036]
Unlike the apparatus of the first embodiment, the projection display apparatus of the present embodiment requires three liquid crystal light valves 5. However, unlike the conventional device, the three illumination devices are configured to emit color lights of different colors, and the liquid crystal light valve 5 is provided for each color light, so that it is like a dichroic mirror in the conventional device. No need for color separation means. As a result, the apparatus configuration is simplified as compared with the conventional apparatus. Further, since it is not necessary to synchronize the driving of the LED arrays 2r, 2g, 2b and the liquid crystal light valve 5 as in the apparatus of the first embodiment, the driving is not complicated and the response speed of the liquid crystal light valve is also so much. You don't need to be fast.
[0037]
Also in the present embodiment, it is possible to realize a lighting device with high light utilization efficiency by providing the reflective polarizing plate 8 on the emission side of the lighting device and the reflector 15 behind the LEDs 14R, 14G, and 14B. It is possible to obtain the same effect as the first embodiment in that the configuration of the polarization conversion optical system is simplified by eliminating the need for the condensing lens, and the number of components can be reduced by eliminating the need for the wavelength plate. it can.
[0038]
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, as shown in FIG. 2, an illumination device including the retardation plate 3, the taper rod lens 16, the rod lens 17, and the reflective polarizing plate 8 in order on the emission side of the LEDs 14R, 14G, and 14B. Although illustrated, instead of this configuration, for example, as shown in FIG. 3, a configuration in which the rod lens 17 is omitted from the configuration of FIG. Thereby, an illuminating device can be made thinner. Furthermore, as shown in FIG. 4, the taper rod lens 16 may be omitted, and the phase difference plate 3 and the reflective polarizing plate 8 may be directly laminated on the emission surface of the LEDs 14R, 14G, and 14B. As a result, the lighting device can be significantly reduced in thickness.
[0039]
In the above embodiment, the LEDs 14R, 14G, and 14B and the rod lenses 16 and 17 correspond to 1: 1. However, it is not always necessary to correspond to 1: 1. One rod lens may correspond. Further, although a plurality of LEDs 14R, 14G, and 14B arranged in an array is used as a light source, only one LED may be used as long as a necessary and sufficient amount of light can be obtained. In the above embodiment, an example in which the lighting device of the present invention is used for a projection display device is shown, but it can also be used for a direct-view display device.
[0040]
【The invention's effect】
As described above in detail, according to the present invention, the light initially reflected by the reflective polarizing plate is also transmitted through the reflective polarizing plate in a state where the polarization state is constantly uniform, such as a light valve. The light is incident on the light modulation means. In this way, it is possible to realize an illuminating device with higher light utilization efficiency than in the past. Moreover, in the illumination device of the present invention, a reflective polarizing plate is used in place of the conventional PBS array as the polarization conversion element, which can contribute to miniaturization, thickness reduction, and weight reduction of the device. It is suitable for use in an apparatus.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a projection display device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing only a portion corresponding to one LED of the illumination device in the projection display device.
FIG. 3 is a sectional view showing another example.
FIG. 4 is a sectional view showing still another example.
FIG. 5 is a perspective view showing an example of a reflective polarizing plate used in the illumination device.
FIG. 6 is a schematic configuration diagram showing a projection display device according to a second embodiment of the present invention.
[Explanation of symbols]
1 Projection display
2 LED array (light source)
3 Phase difference plate
4 Tapered rod lens array
5 Liquid crystal light valve (light modulation means)
6 Projection lens
7 Rod lens array
8 reflective polarizing plate
14R, 14G, 14B LED (light source body)
15 Reflector
16 Tapered rod lens
17 Rod lens

Claims (5)

光源と、前記光源から入射される光を一方向の偏光に揃える偏光変換手段とを備えた照明装置であって、
発光ダイオードと、前記発光ダイオードに対する側の面が反射面となるように前記発光ダイオードの光出射方向に対して後方側に設けられた反射板と、を備えた光源と、
前記光源の光出射側に設けられ、所定の振動方向の偏光を透過させるとともに前記振動方向と異なる振動方向の偏光を反射させる反射型偏光板を備えた偏光変換手段と、
前記光源と前記反射型偏光板との間に設けられ、光の透過する位置によって異なる位相差を発生する位相差板と、
前記光源と前記反射型偏光板との間に設けられ、入射端面側から出射端面側に向けて先拡がりのテーパ形状を有する、棒状の第1導光体もしくは内面が反射面とされた管状の第1導光体と、が備えられ、
前記光源の前記発光ダイオードの光出射面と前記位相差板と前記第1導光体と前記反射型偏光板とが密着されて配置されていることを特徴とする照明装置。
An illumination device comprising a light source and polarization conversion means for aligning light incident from the light source with polarized light in one direction,
A light emitting diode, a light source side surface to said light emitting diode is provided with a reflecting plate provided on the rear side with respect to the light emitting direction of the light emitting diode so that the reflecting surface,
A polarization conversion means provided on a light emitting side of the light source, and including a reflective polarizing plate that transmits polarized light in a predetermined vibration direction and reflects polarized light in a vibration direction different from the vibration direction;
A phase difference plate that is provided between the light source and the reflective polarizing plate and generates a phase difference that varies depending on a position through which light passes;
A rod-shaped first light guide or a tubular tube having a reflection surface on the inner surface, which is provided between the light source and the reflective polarizing plate and has a taper shape that widens from the incident end surface side to the output end surface side. A first light guide,
The illumination device , wherein the light emitting surface of the light emitting diode of the light source, the retardation plate, the first light guide, and the reflective polarizing plate are disposed in close contact with each other.
光源と、前記光源から入射される光を一方向の偏光に揃える偏光変換手段とを備えた照明装置であって、
発光ダイオードと、前記発光ダイオードに対する側の面が反射面となるように前記発光ダイオードの光出射方向に対して後方側に設けられた反射板と、を備えた光源と、
前記光源の光出射側に設けられ、所定の振動方向の偏光を透過させるとともに前記振動方向と異なる振動方向の偏光を反射させる反射型偏光板を備えた偏光変換手段と、
前記光源と前記反射型偏光板との間に設けられ、光の透過する位置によって異なる位相差を発生する位相差板と、
前記光源と前記反射型偏光板との間に設けられ、入射端面側から出射端面側に向けて先拡がりのテーパ形状を有する、棒状の第1導光体もしくは内面が反射面とされた管状の第1導光体と、
前記第1導光体と前記反射型偏光板との間に設けられ、入射端面側と出射端面側とで同径の第2導光体と、が備えられ、
前記光源の前記発光ダイオードの光出射面と前記位相差板と前記第1導光体と前記第2導光体と前記反射型偏光板とが密着されて配置されていることを特徴とする照明装置。
An illumination device comprising a light source and polarization conversion means for aligning light incident from the light source with polarized light in one direction,
A light source comprising: a light emitting diode; and a reflector provided on the rear side with respect to the light emitting direction of the light emitting diode such that a surface on the side of the light emitting diode becomes a reflecting surface;
A polarization conversion means provided on a light emitting side of the light source, and including a reflective polarizing plate that transmits polarized light in a predetermined vibration direction and reflects polarized light in a vibration direction different from the vibration direction;
A phase difference plate that is provided between the light source and the reflective polarizing plate and generates a phase difference that varies depending on a position through which light passes;
A rod-shaped first light guide or a tubular tube having a reflection surface on the inner surface, which is provided between the light source and the reflective polarizing plate and has a taper shape that widens from the incident end surface side to the output end surface side. A first light guide;
Provided between the first light guide and the reflective polarizing plate, and a second light guide having the same diameter on the incident end face side and the exit end face side,
The light emitting surface of the light emitting diode of the light source, the retardation plate, the first light guide, the second light guide, and the reflective polarizing plate are disposed in close contact with each other. apparatus.
前記反射型偏光板が、入射光の波長よりも小さいピッチでストライプ状に配列された複数の光反射体を有するグリッド偏光子からなることを特徴とする請求項1または2に記載の照明装置。  3. The illumination device according to claim 1, wherein the reflective polarizing plate includes a grid polarizer having a plurality of light reflectors arranged in a stripe pattern with a pitch smaller than the wavelength of incident light. 請求項1ないし3のいずれか一項に記載の照明装置を備えた投射型表示装置であって、
前記光源は、異なる色の色光を時間順次に出射可能な複数の前記光源本体が平面状または曲面状に配列された面状光源であり、
前記光源から時間順次に出射される各色光の出射タイミングに同期して時分割駆動されるライトバルブからなる光変調手段と、前記光変調手段によって変調された光を投射する投射手段とが備えられたことを特徴とする投射型表示装置。
A projection display device comprising the illumination device according to any one of claims 1 to 3,
The light source is a planar light source in which a plurality of light source bodies capable of emitting color lights of different colors in time sequence are arranged in a planar shape or a curved shape,
A light modulation unit including a light valve driven in a time-sharing manner in synchronization with the emission timing of each color light emitted sequentially from the light source; and a projection unit for projecting light modulated by the light modulation unit. A projection display device characterized by that.
請求項1ないし3のいずれか一項に記載の照明装置を備えた投射型表示装置であって、
前記光源は、互いに異なる色の色光を出射可能な複数の面状光源であり、
前記光源から前記偏光変換手段を経て出射される各色光を変調するライトバルブからなる複数の光変調手段と、前記複数の光変調手段により変調された色光を合成する色合成手段と、前記色合成手段により合成された光を投射する投射手段とが備えられたことを特徴とする投射型表示装置。
A projection display device comprising the illumination device according to any one of claims 1 to 3,
The light source is a plurality of planar light sources capable of emitting different color lights.
A plurality of light modulation means comprising light valves for modulating each color light emitted from the light source through the polarization conversion means; a color synthesis means for synthesizing the color lights modulated by the plurality of light modulation means; and the color synthesis. A projection display device comprising: projection means for projecting light synthesized by the means.
JP2002135641A 2002-05-10 2002-05-10 Illumination device and projection display device Expired - Fee Related JP3991764B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002135641A JP3991764B2 (en) 2002-05-10 2002-05-10 Illumination device and projection display device
EP03252873A EP1363460B1 (en) 2002-05-10 2003-05-08 Lighting system and projector
US10/434,288 US7192147B2 (en) 2002-05-10 2003-05-09 Lighting system and projector
CNB031223931A CN100422850C (en) 2002-05-10 2003-05-09 Illuminating apparatus and projector display device
US11/656,979 US20070121310A1 (en) 2002-05-10 2007-01-24 Lighting system and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135641A JP3991764B2 (en) 2002-05-10 2002-05-10 Illumination device and projection display device

Publications (3)

Publication Number Publication Date
JP2003329978A JP2003329978A (en) 2003-11-19
JP2003329978A5 JP2003329978A5 (en) 2005-08-18
JP3991764B2 true JP3991764B2 (en) 2007-10-17

Family

ID=29267741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135641A Expired - Fee Related JP3991764B2 (en) 2002-05-10 2002-05-10 Illumination device and projection display device

Country Status (4)

Country Link
US (2) US7192147B2 (en)
EP (1) EP1363460B1 (en)
JP (1) JP3991764B2 (en)
CN (1) CN100422850C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140726A1 (en) * 2012-03-22 2013-09-26 日本電気株式会社 Light-emitting device

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302702A (en) * 2002-04-11 2003-10-24 Mitsubishi Electric Corp Projection type display
KR20070062611A (en) * 2002-12-26 2007-06-15 산요덴키가부시키가이샤 Illuminating device
TW200513673A (en) * 2003-06-24 2005-04-16 Koninkl Philips Electronics Nv Method and apparatus for recycling reflected light in optical systems
US7510316B2 (en) * 2003-07-14 2009-03-31 Koninklijke Philips Electronics N.V. Ultra compact illumination system for display systems
GB2408588A (en) * 2003-11-27 2005-06-01 Sharp Kk Polarisation conversion optical system eg with dispersion compensation for liquid crystal projection
JP2005157059A (en) 2003-11-27 2005-06-16 Seiko Epson Corp Illuminating apparatus and projector
US7258450B2 (en) 2003-12-04 2007-08-21 Sharp Kabushiki Kaisha Projector optical system configuration, optical module, and projector, and also electronic equipment, vehicle, projection system, and showcase utilizing such projector
JP4581407B2 (en) * 2004-01-16 2010-11-17 株式会社日立製作所 Light source unit and projection-type image display device using the same
JP4438423B2 (en) 2004-01-21 2010-03-24 株式会社日立製作所 Projection-type image display device
JP2005221706A (en) * 2004-02-05 2005-08-18 Nec Corp Light source device, projector provided therewith, illuminating device, and liquid crystal display device
US7246923B2 (en) * 2004-02-11 2007-07-24 3M Innovative Properties Company Reshaping light source modules and illumination systems using the same
JP4144532B2 (en) * 2004-02-23 2008-09-03 セイコーエプソン株式会社 Illumination device and projection display device
US7360900B2 (en) * 2004-03-10 2008-04-22 Seiko Epson Corporation Illuminating apparatus, image display apparatus, and projector
EP1728395A2 (en) * 2004-03-11 2006-12-06 Koninklijke Philips Electronics N.V. Light engine for frame-sequential color projection display system having monochromatic light sources, system and driving method
TW200602585A (en) 2004-03-16 2006-01-16 Koninkl Philips Electronics Nv High brightness illumination device with incoherent solid state light source
JP2005274933A (en) * 2004-03-24 2005-10-06 Seiko Epson Corp Light source device and projector
US7293876B2 (en) 2004-03-24 2007-11-13 Seiko Epson Corporation Light source unit and projector
JP4539134B2 (en) * 2004-03-24 2010-09-08 セイコーエプソン株式会社 Light source device, image display device, and projector
KR100639189B1 (en) 2004-03-31 2006-10-30 럭스피아 주식회사 Light source module of back-light unit for lcd
JP2005292561A (en) * 2004-04-01 2005-10-20 Nec Viewtechnology Ltd Light source device and projection type display device
JP2005300712A (en) * 2004-04-08 2005-10-27 Nikon Corp Projection type display device
WO2005101096A1 (en) * 2004-04-13 2005-10-27 Hamamatsu Photonics K.K. Light collecting device and light collecting mirror
JP4616577B2 (en) * 2004-04-22 2011-01-19 株式会社日立製作所 Video display device
JP5066781B2 (en) * 2004-06-18 2012-11-07 株式会社日立製作所 Video display device
US7114810B2 (en) * 2004-06-25 2006-10-03 Hewlett-Packard Development Company, L.P. Multimedia display device
JP2006018196A (en) * 2004-07-05 2006-01-19 Sanyo Electric Co Ltd Illuminator and projection video display device
US7352124B2 (en) * 2004-09-28 2008-04-01 Goldeneye, Inc. Light recycling illumination systems utilizing light emitting diodes
US20060094322A1 (en) * 2004-10-29 2006-05-04 Ouderkirk Andrew J Process for manufacturing a light emitting array
US7304425B2 (en) * 2004-10-29 2007-12-04 3M Innovative Properties Company High brightness LED package with compound optical element(s)
US7404756B2 (en) 2004-10-29 2008-07-29 3M Innovative Properties Company Process for manufacturing optical and semiconductor elements
JP4715167B2 (en) * 2004-11-16 2011-07-06 セイコーエプソン株式会社 Lighting device, image display device, and projector
WO2006059272A1 (en) * 2004-11-30 2006-06-08 Koninklijke Philips Electronics N.V. Miniaturized projection display
JP4186918B2 (en) 2004-12-01 2008-11-26 セイコーエプソン株式会社 Image display device
JP4843949B2 (en) * 2005-01-24 2011-12-21 セイコーエプソン株式会社 Lighting device and projector
WO2006081243A1 (en) * 2005-01-25 2006-08-03 Jabil Circuit, Inc. Light-emitting diode (led) illumination system for a digital micro-mirror device (dmd) and method of providing same
US20060187650A1 (en) * 2005-02-24 2006-08-24 3M Innovative Properties Company Direct lit backlight with light recycling and source polarizers
JP2006235338A (en) * 2005-02-25 2006-09-07 Hitachi Ltd Projection type image display apparatus
JP2007065425A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Illuminating device and projection type video display device using same
JP2006251556A (en) * 2005-03-11 2006-09-21 Nec Viewtechnology Ltd Projection display device
CN100374905C (en) * 2005-03-24 2008-03-12 精工爱普生株式会社 Projector
KR101109592B1 (en) * 2005-04-25 2012-01-31 삼성전자주식회사 Light source module and image projection apparatus employing the same
US7198373B2 (en) * 2005-05-03 2007-04-03 Eastman Kodak Company Display apparatus using LCD panel
US7384150B2 (en) * 2005-05-27 2008-06-10 3M Innovative Properties Company Light emitting diode (LED) illumination control system and method
US20060274284A1 (en) * 2005-05-31 2006-12-07 Infocus Corporation Illumination arrangements for colored light sources
CN100440649C (en) * 2005-06-09 2008-12-03 精工爱普生株式会社 Laser light source device, display device, scanning type display device and projector
JP4910315B2 (en) * 2005-06-20 2012-04-04 セイコーエプソン株式会社 Display device and light emitting device
CN100445838C (en) * 2005-06-24 2008-12-24 鸿富锦精密工业(深圳)有限公司 Light emitting unit and backlight module assembly
JP4984452B2 (en) * 2005-07-25 2012-07-25 ソニー株式会社 Spatial light modulation optical device, virtual image display device using the same, and projection type image display device
US7589797B2 (en) * 2005-07-25 2009-09-15 Industrial Technology Research Institute High efficiency liquid crystal display projection system
JP2007156294A (en) * 2005-12-08 2007-06-21 Victor Co Of Japan Ltd Polarizing illuminant apparatus and image display apparatus
JP2007178567A (en) * 2005-12-27 2007-07-12 Victor Co Of Japan Ltd Polarizing illuminant apparatus and image display apparatus
JP2007034012A (en) * 2005-07-28 2007-02-08 Victor Co Of Japan Ltd Polarization light source device and image display apparatus
JP5017817B2 (en) * 2005-08-29 2012-09-05 ソニー株式会社 Virtual image optical device
JP2007114375A (en) * 2005-10-19 2007-05-10 Ricoh Opt Ind Co Ltd Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
US8976080B2 (en) 2005-12-06 2015-03-10 Dolby Laboratories Licensing Corporation Multi-segment imager
JP4835160B2 (en) * 2006-01-10 2011-12-14 セイコーエプソン株式会社 projector
US20070165186A1 (en) * 2006-01-13 2007-07-19 Copner Nigel J Light source system and an image projection system
US7850314B2 (en) * 2006-02-24 2010-12-14 Konica Minolta Opto, Inc. Light-emitting module and image projection apparatus using same
JP4872411B2 (en) 2006-03-31 2012-02-08 株式会社ニコン Projection device
US7843642B2 (en) * 2006-05-04 2010-11-30 University Of Central Florida Research Foundation Systems and methods for providing compact illumination in head mounted displays
CN100514183C (en) * 2006-05-29 2009-07-15 晶荧光学科技有限公司 Portable electronic apparatus
US7843637B2 (en) * 2006-06-22 2010-11-30 3M Innovative Properties Company Birefringent structured film for LED color mixing in a backlight
US20080036972A1 (en) * 2006-07-31 2008-02-14 3M Innovative Properties Company Led mosaic
WO2008016905A1 (en) 2006-07-31 2008-02-07 3M Innovative Properties Company Optical projection subsystem
TWI465147B (en) 2006-07-31 2014-12-11 3M Innovative Properties Co Led source with hollow collection lens
JP5122565B2 (en) * 2006-07-31 2013-01-16 スリーエム イノベイティブ プロパティズ カンパニー Integrated light source module
US8075140B2 (en) 2006-07-31 2011-12-13 3M Innovative Properties Company LED illumination system with polarization recycling
JP4815301B2 (en) * 2006-08-02 2011-11-16 株式会社リコー Light source module and projection display device
TW200815787A (en) * 2006-09-20 2008-04-01 Ind Tech Res Inst Polarization light source
JP4909703B2 (en) * 2006-10-12 2012-04-04 Necディスプレイソリューションズ株式会社 projector
WO2008139355A1 (en) * 2007-05-11 2008-11-20 Koninklijke Philips Electronics N.V. Illumination system
US20090015917A1 (en) * 2007-06-27 2009-01-15 Sony Corporation Three-dimensional image display apparatus
JP2009063914A (en) * 2007-09-07 2009-03-26 Casio Comput Co Ltd Display device
US7537352B2 (en) * 2007-10-22 2009-05-26 Young Optics Inc. Light emitting diode illumination device capable of providing uniformly polarized light
CN101451674B (en) * 2007-12-04 2011-01-19 深圳Tcl新技术有限公司 Lighting system and operation mode thereof in video display unit
DE102007060202A1 (en) * 2007-12-14 2009-06-25 Osram Opto Semiconductors Gmbh Polarized radiation emitting semiconductor device
US20090161076A1 (en) * 2007-12-20 2009-06-25 Young Optics Inc. Projection apparatus
US8408721B2 (en) * 2008-08-14 2013-04-02 3M Innovative Properties Company Projection system with imaging light source module
WO2010068974A1 (en) * 2008-12-15 2010-06-24 Digislide Holdings Limited An optical engine for miniature projection utilising a retro-reflective polarisation recycling system and a reflective field sequential or colour filter lcos panel
CN101493635B (en) * 2008-12-19 2011-08-10 上海广茂达光艺科技股份有限公司 Liquid crystal projection lamp and control method thereof
CN101825244B (en) * 2009-03-02 2013-12-04 上海天马微电子有限公司 Backlight device and liquid crystal display module
CN101988630B (en) * 2009-07-31 2013-01-09 深圳市光峰光电技术有限公司 Stage lighting system and method thereof for proving high-brightness white light
CN106406001B (en) * 2010-08-16 2019-09-20 深圳光峰科技股份有限公司 Light source and its optical projection system of application
JP2012118452A (en) * 2010-12-03 2012-06-21 Asahi Kasei E-Materials Corp Polarization-converting light source device and projection type liquid crystal display device using the same
JP5170221B2 (en) * 2010-12-03 2013-03-27 セイコーエプソン株式会社 Illumination device and image display device
CN102537759B (en) * 2010-12-10 2014-10-08 联胜(中国)科技有限公司 Lighting module and projector
TW201235700A (en) * 2011-02-25 2012-09-01 Ind Tech Res Inst Composite color separation system
CN102262340B (en) 2011-07-11 2013-01-09 深圳市华星光电技术有限公司 Projection device and projection equipment
JP5910850B2 (en) 2011-09-07 2016-04-27 カシオ計算機株式会社 LIGHT SOURCE DEVICE, PROJECTOR, AND LIGHT SOURCE DEVICE MANUFACTURING METHOD
DE102011054234B4 (en) * 2011-10-06 2020-03-12 HELLA GmbH & Co. KGaA Lighting device
PL2820847T3 (en) * 2012-02-27 2020-06-29 Dolby Laboratories Licensing Corporation Multi-segment imager
CN113640817A (en) * 2012-03-26 2021-11-12 螳螂慧视科技有限公司 Three-dimensional camera and projector thereof
TWI484265B (en) * 2012-11-01 2015-05-11 Nat Univ Tsing Hua Color separation system
WO2014183583A1 (en) * 2013-05-17 2014-11-20 深圳市绎立锐光科技开发有限公司 Light-emitting device and stage lamp system
JP5974987B2 (en) * 2013-06-20 2016-08-23 株式会社デンソー Head-up display device and lighting device used for head-up display device
US9532464B2 (en) 2013-07-22 2016-12-27 Rohm Co., Ltd. LED lighting apparatus
CA2864723C (en) 2013-09-25 2021-12-07 Harsco Corporation Systems and methods for use in rail track corrections
CN110286484A (en) * 2013-10-20 2019-09-27 Mtt创新公司 Light field projection arrangement and method
US9068726B2 (en) 2013-11-13 2015-06-30 Gemmy Industries Corp. Spotlight
US9310059B2 (en) 2013-12-06 2016-04-12 Gemmy Industries Corp. Rotary projector light
US9504101B2 (en) * 2013-12-06 2016-11-22 Gemmy Industries Corp. Kaleidoscopic light string
US9664373B2 (en) 2013-12-31 2017-05-30 Gemmy Industries Corp. Inflatable display with dynamic lighting effect
US10400966B2 (en) 2013-12-31 2019-09-03 Gemmy Industries Corp. Decorative lights and related methods
US9890938B2 (en) 2016-02-08 2018-02-13 Gemmy Industries Corp. Decorative light
EP3143763B8 (en) 2014-05-15 2023-12-27 MTT Innovation Incorporated Light projector and method for displaying an image
JP6438879B2 (en) * 2015-12-17 2018-12-19 株式会社テクノポスト Lighting device
CN105425523A (en) * 2015-12-29 2016-03-23 海信集团有限公司 Laser light source and laser projection apparatus
USD791381S1 (en) 2016-02-08 2017-07-04 Gemmy Industries Corp. Decorative light
US10234118B2 (en) 2016-02-08 2019-03-19 Gemmy Industries Corp. Decorative light
CN105867060A (en) * 2016-05-31 2016-08-17 深圳市华星光电技术有限公司 Projection device and system
JP6315720B2 (en) * 2016-08-10 2018-04-25 横浜リーディングデザイン合資会社 Exposure illumination device
CN106125265B (en) * 2016-08-17 2019-04-09 海信集团有限公司 Projection imaging system
KR102646789B1 (en) * 2016-09-22 2024-03-13 삼성전자주식회사 Directional backlight unit and three-dimensional image display apparatus including the same
WO2019203833A1 (en) * 2018-04-19 2019-10-24 Hewlett-Packard Development Company, L.P. Image rear-projection and image capture
CN109188834A (en) * 2018-09-03 2019-01-11 深圳小淼科技有限公司 A kind of projector
JP2019056914A (en) * 2018-11-19 2019-04-11 株式会社テクノポスト Illumination device and illumination method

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958258A (en) * 1953-09-21 1960-11-01 Technicolor Corp Optical projection of beam controlled object fields
GB2191057A (en) * 1986-05-19 1987-12-02 Philips Electronic Associated Colour video display arrangement
JPH05181135A (en) * 1992-01-06 1993-07-23 Canon Inc Polarizing illuminating device and projection display device using it
US5622418A (en) * 1994-03-29 1997-04-22 Mitsubishi Denki Kabuskiki Kaisha Projection display device
US6560018B1 (en) * 1994-10-27 2003-05-06 Massachusetts Institute Of Technology Illumination system for transmissive light valve displays
US6147802A (en) * 1994-12-28 2000-11-14 Seiko Epson Corporation Polarization luminaire and projection display
US6390626B2 (en) * 1996-10-17 2002-05-21 Duke University Image projection system engine assembly
US6028703A (en) * 1997-03-14 2000-02-22 Nikon Corporation High-efficiency polarizing arrangement and projection apparatus using the same
JPH10269802A (en) * 1997-03-24 1998-10-09 Sony Corp Lighting system and image display unit
JPH116989A (en) * 1997-06-16 1999-01-12 So Fukada Irradiation device for liquid crystal projector
WO1999049358A1 (en) * 1998-03-26 1999-09-30 Mitsubishi Denki Kabushiki Kaisha Image display and light-emitting device
US6108131A (en) * 1998-05-14 2000-08-22 Moxtek Polarizer apparatus for producing a generally polarized beam of light
JP3585097B2 (en) * 1998-06-04 2004-11-04 セイコーエプソン株式会社 Light source device, optical device and liquid crystal display device
US6064523A (en) * 1998-06-29 2000-05-16 International Business Machines Corporation Apparatus for polarization conversion
TW380213B (en) * 1999-01-21 2000-01-21 Ind Tech Res Inst Illumination apparatus and image projection apparatus includes the same
US6234634B1 (en) * 1999-07-28 2001-05-22 Moxtek Image projection system with a polarizing beam splitter
JP4427837B2 (en) * 1999-09-03 2010-03-10 住友化学株式会社 Wire grid type polarization optical element
JP2001343706A (en) 2000-05-31 2001-12-14 Sony Corp Video display device
US6587269B2 (en) * 2000-08-24 2003-07-01 Cogent Light Technologies Inc. Polarization recovery system for projection displays
TW477513U (en) * 2000-12-08 2002-02-21 Prokia Technology Co Ltd Multiple light source illumination device
US20020141192A1 (en) * 2001-03-27 2002-10-03 Prokia Technology Co., Ltd. Illuminating module for a display apparatus
US6866404B2 (en) * 2001-04-23 2005-03-15 Ricoh Company, Ltd. Illumination apparatus and a liquid crystal projector using the illumination apparatus
GB0116446D0 (en) * 2001-07-06 2001-08-29 Barco Nv Smearing reduction on lcd and lcos projectors
TW500225U (en) * 2001-07-27 2002-08-21 Kenmos Technology Co Ltd Polarized light transfer device with light-guide tube
US6739723B1 (en) * 2001-12-07 2004-05-25 Delta Electronics, Inc. Polarization recapture system for liquid crystal-based data projectors
US20030133299A1 (en) * 2002-01-16 2003-07-17 Pokia Technology Co., Ltd. Illuminating module for a display apparatus
US20030161136A1 (en) * 2002-02-28 2003-08-28 O'connor Michael Polarization conversion system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140726A1 (en) * 2012-03-22 2013-09-26 日本電気株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP2003329978A (en) 2003-11-19
US20070121310A1 (en) 2007-05-31
US7192147B2 (en) 2007-03-20
CN100422850C (en) 2008-10-01
US20030231497A1 (en) 2003-12-18
EP1363460B1 (en) 2011-11-02
EP1363460A3 (en) 2005-03-09
CN1487356A (en) 2004-04-07
EP1363460A2 (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP3991764B2 (en) Illumination device and projection display device
JP4186918B2 (en) Image display device
TWI269929B (en) Illuminating apparatus, image display apparatus, and projector
KR101109592B1 (en) Light source module and image projection apparatus employing the same
JP2004184777A (en) Light source device and projection type display device
JP2005284051A (en) Semiconductor light emitting element, light source unit using the same, optical unit and video display device
KR20070115882A (en) Etendue efficient combination of multiple light sources
JP2010204333A (en) Projector
JP4183663B2 (en) Illumination device and projection display device
JP4082083B2 (en) Illumination device and projection display device
JP4564757B2 (en) Light source device and projection display device
JP5105804B2 (en) Projector and projection method
JP4382503B2 (en) Light source device for projection display device and projection display device
JP2003330110A (en) Projection type display device
JP2006039201A (en) Stereoscopic video projecting optical engine
JP2003295315A (en) Projection type display device
JP2006220912A (en) Illuminator and picture display device
JP2005257872A (en) Lighting device and projector
KR20010090890A (en) Polarized Light Illumination Apparatus And Projection Type Display Device
JP2006154601A (en) Light source device and image display device
JP5105733B2 (en) Illumination device and projector equipped with the same
KR100667759B1 (en) Illuminating unit and projection type image display apparatus employing the same
JP2002122812A (en) Illumination optical device and projection display device
JP2005031249A (en) Liquid crystal light valve and image display device
JP2005301062A (en) Light source unit and projector

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees