JP5313414B1 - 高分子圧電材料、およびその製造方法 - Google Patents

高分子圧電材料、およびその製造方法 Download PDF

Info

Publication number
JP5313414B1
JP5313414B1 JP2013520315A JP2013520315A JP5313414B1 JP 5313414 B1 JP5313414 B1 JP 5313414B1 JP 2013520315 A JP2013520315 A JP 2013520315A JP 2013520315 A JP2013520315 A JP 2013520315A JP 5313414 B1 JP5313414 B1 JP 5313414B1
Authority
JP
Japan
Prior art keywords
piezoelectric material
polymer
stretching
polymeric piezoelectric
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013520315A
Other languages
English (en)
Other versions
JPWO2013089148A1 (ja
Inventor
光伸 吉田
茂雄 西川
正樹 清水
浩志 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2013520315A priority Critical patent/JP5313414B1/ja
Application granted granted Critical
Publication of JP5313414B1 publication Critical patent/JP5313414B1/ja
Publication of JPWO2013089148A1 publication Critical patent/JPWO2013089148A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0039Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/004Semi-crystalline

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明では、重量平均分子量が5万〜100万である光学活性を有するヘリカルキラル高分子を含み、DSC法で得られる結晶化度が20%〜80%であり、かつ、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcと前記結晶化度との積が25〜250である、高分子圧電材料が提供される。

Description

本発明は、高分子圧電材料、およびその製造方法に関する。
圧電材料としては、従来、セラミックス材料であるPZT(PBZrO−PbTiO系固溶体)が多く用いられてきた。しかし、PZTは鉛を含有することから、現在、圧電材料としては、環境負荷が低く、また柔軟性に富む高分子圧電材料が用いられるようになってきている。
現在知られている高分子圧電材料は、主に以下の2種類に大別される。すなわち、ナイロン11、ポリフッ化ビニル、ポリ塩化ビニル、ポリ尿素などに代表されるポーリング型高分子と、ポリフッ化ビニリデン(β型)(PVDF)、フッ化ビニリデン−トリフルオロエチレン共重合体(P(VDF−TrFE))(75/25)などに代表される強誘電性高分子との2種類である。
しかしながら、高分子圧電材料は、圧電性においてPZTに及ばず、圧電性の向上が要求されている。そのため、種々の観点から高分子圧電材料の圧電性を向上することが試みられている。
例えば、強誘電性高分子であるPVDF、及びP(VDF−TrFE)は、高分子の中でも優れた圧電性を有し、圧電定数d31が20pC/N以上である。PVDF、及びP(VDF−TrFE)から形成されるフィルム材料は、延伸操作により、延伸方向に高分子鎖を配向させた後に、コロナ放電などでフィルムの表裏に異種の電荷を付与することで、フィルム面垂直方向に電界を発生させ、高分子鎖の側鎖にあるフッ素を含む永久双極子を、電界方向に平行に配向させ、圧電性を付与する。しかし、分極したフィルム表面には、配向を打ち消す方向に、空気中の水やイオンのような異種電荷が付着しやすく、分極処理で揃えた永久双極子の配向が緩和し、経時的に圧電性が顕著に低下するといった実用上の課題があった。
PVDFは、上記の高分子圧電材料の中で最も圧電性の高い材料ではあるが、誘電率が高分子圧電材料の中では比較的高く、13であるため、圧電d定数を誘電率で割った値の圧電g定数(単位応力当たりの開放電圧)は小さくなる。また、PVDFは、電気から音響への変換効率は良いものの、音響から電気への変換効率については、改善が期待されていた。
近年、上記の高分子圧電材料以外に、ポリペプチドやポリ乳酸等の光学活性を有する高分子を用いることが着目されている。ポリ乳酸系高分子は、機械的な延伸操作のみで圧電性が発現することが知られている。光学活性を有する高分子の中でも、ポリ乳酸のような高分子結晶の圧電性は、螺旋軸方向に存在するC=O結合の永久双極子に起因する。特にポリ乳酸は、主鎖に対する側鎖の体積分率が小さく、体積あたりの永久双極子の割合が大きく、ヘリカルキラリティをもつ高分子の中でも理想的な高分子といえる。延伸処理のみで圧電性を発現するポリ乳酸は、ポーリング処理が不要で、圧電率は数年にわたり減少しないことが知られている。
以上のように、ポリ乳酸には種々の圧電特性があるため、種々のポリ乳酸を用いた高分子圧電材料が報告されている。例えば、ポリ乳酸の成型物を延伸処理することで、常温で、10pC/N程度の圧電率を示す高分子圧電材が開示されている(例えば、特開平5−152638号公報参照)。また、ポリ乳酸結晶を高配向にするために、鍛造法と呼ばれる特殊な配向方法により18pC/N程度の高い圧電性を出すことも報告されている(例えば、特開2005−213376号公報参照)。
しかし、上記特開平5−152638号公報や特開2005−213376号公報に示される圧電材料(フィルム)は、主に一軸方向に延伸されて作製されるため、延伸方向と平行な方向に裂けやすく、特定方向についての引裂強さが低いという問題があった。以下、特定方向についての引裂強さを、「縦裂強度」ともいう。
また、上記特開平5−152638号公報や特開2005−213376号公報に示される圧電材料はいずれも透明性が不十分である。
本発明においては上記事情に鑑み、圧電定数d14が大きく、透明性に優れ、縦裂強度の低下が抑制された高分子圧電材料及びその製造方法を提供することを目的とする。
前記課題を達成するための具体的手段は、以下の通りである。
[1]重量平均分子量が5万〜100万である光学活性を有するヘリカルキラル高分子を含み、DSC法で得られる結晶化度が20%〜80%であり、かつ、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcと前記結晶化度との積が25〜250である、高分子圧電材料。
[2]前記結晶化度が40.8%以下である、[1]に記載の高分子圧電材料。
[3]可視光線に対する内部ヘイズが40%以下である、[1]または[2]に記載の高分子圧電材料。
[4]前記規格化分子配向MORcが1.0〜15.0である、[1]〜[3]のいずれか1項に記載の高分子圧電材料。
[5]25℃において変位法で測定した圧電定数d14が1pm/V以上である、[1]〜[4]のいずれか1項に記載の高分子圧電材料。
[6]前記ヘリカルキラル高分子が、下記式(1)で表される繰り返し単位を含む主鎖を有するポリ乳酸系高分子である、[1]〜[5]のいずれか1項に記載の高分子圧電材料。
[7]前記ヘリカルキラル高分子は、光学純度が95.00%ee以上である、[1]〜[6]のいずれか1項に記載の高分子圧電材料。
[8] 前記ヘリカルキラル高分子の含有量が80質量%以上である、[1]〜[7]のいずれか1項に記載の高分子圧電材料。
[9] 可視光線に対する内部ヘイズが1.0%以下である、[1]〜[8]のいずれか1項に記載の高分子圧電材料。
[10][1]〜[9]のいずれか1項に記載の高分子圧電材料を製造する方法であって、前記ヘリカルキラル高分子を含む非晶状態のシートを加熱して予備結晶化シートを得る第一の工程と、前記予備結晶化シートを同時に2軸方向に延伸する第二の工程と、を含む、高分子圧電材料の製造方法。
[11]前記予備結晶化シートを得る第一の工程において、下記式で表される温度Tにおいて、結晶化度が1%〜70%になるまで前記非晶状態のシートを加熱する、[10]に記載の高分子圧電材料の製造方法。
Tg−40℃≦T≦Tg+40℃
(Tgは、前記ヘリカルキラル高分子のガラス転移温度を表す。)
[12]前記予備結晶化シートを得る第一の工程において、前記ヘリカルキラル高分子としてポリ乳酸を含む非晶状態のシートを20℃〜170℃で、5秒〜60分加熱する、[10]または[11]に記載の高分子圧電材料の製造方法。
[13]前記第二の工程の後に、アニール処理をする[10]〜[12]のいずれか1項に記載の高分子圧電材料の製造方法。
本発明によれば、圧電定数d14が大きく、透明性に優れ、縦裂強度の低下が抑制された高分子圧電材料及びその製造方法を提供することができる。
本発明の高分子圧電材料は、重量平均分子量が5万〜100万である光学活性を有するヘリカルキラル高分子(以下、「光学活性高分子」ともいう)を含み、DSC法で得られる結晶化度が20%〜80%であり、かつ、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcと前記結晶化度との積が25〜250である。
圧電材料を上記構成とすることで、圧電定数d14が大きく、透明性に優れ、縦裂強度(特定方向についての引裂強さ)の低下が抑制された高分子圧電材料とすることができる。
より詳細には、上記構成の高分子圧電材料では、結晶化度を20%〜80%の範囲とし、かつ、前記MORcと前記結晶化度との積を25〜250とすることにより、高い圧電性(大きい圧電定数d14)及び高い透明性を維持したまま、縦裂強度(特定方向についての引裂強さ)が低下する現象を抑制できる。
本明細書中では、特定方向についての引裂強さが低下することを「縦裂強度が低下する」ということがあり、特定方向についての引裂強さが低い状態を「縦裂強度が低い」ということがある。
また、本明細書中では、特定方向についての引裂強さが低下する現象が抑制されることを「縦裂強度が向上する」ということがあり、特定方向についての引裂強さが低下する現象が抑制された状態を「縦裂強度が高い」または「縦裂強度に優れる」ということがある。
本実施形態において、「圧電定数d14」とは、圧電率のテンソルの一つであり、延伸した材料の延伸軸方向にずり応力を印加したとき、ずり応力の方向に生じた分極の程度から求める。具体的には、単位ずり応力あたりの発生電荷密度をd14と定義する。圧電定数d14の数値が大きいほど圧電性が高いことを表す。本明細書中において、単に『圧電定数』と称するときは、「圧電定数d14」を指す。
ここで、圧電定数d14は、以下の方法で算出される値である。
すなわち、延伸方向に対して、斜め45°の方向を長手方向とした矩形フィルムを試験片とする。この試験片の主面の表裏全面に電極層を設け、この電極に印加電圧E(V)を加えたとき、フィルムの長手方向の歪量をXとする。印加電圧E(V)をフィルムの厚さt(m)で割った値を電界強度E(V/m)とし、E(V)印加したときのフィルムの長手方向の歪量をXとしたとき、d14は、2×歪量X/電界強度E(V/m)で定義される値である。
また、複素圧電率d14は、「d14=d14’―id14’’」として算出され、「d14’」と「id14’’」は東洋精機製作所社製「レオログラフソリッドS−1型」より得られる。「d14’」は、複素圧電率の実数部を表し、「id14’’」は、複素圧電率の虚数部を表し、d14’(複素圧電率の実数部)は本実施形態における圧電定数d14に相当する。尚、複素圧電率の実数部が高いほど圧電性に優れることを示す。
圧電定数d14には変位法で測定されるもの(単位:pm/V)と、共振法により測定されるもの(単位:pC/N)とがある。
〔光学活性を有するヘリカルキラル高分子〕
光学活性を有するヘリカルキラル高分子とは、分子構造が螺旋構造である分子光学活性を有する高分子をいう。
以下、重量平均分子量が5万〜100万である光学活性を有するヘリカルキラル高分子を、「光学活性高分子」ともいう。
光学活性高分子としては、例えば、ポリペプチド、セルロース、セルロース誘導体、ポリ乳酸系樹脂、ポリプロピレンオキシド、ポリ(β―ヒドロキシ酪酸)等を挙げることができる。前記ポリペプチドとしては、例えば、ポリ(グルタル酸γ−ベンジル)、ポリ(グルタル酸γ−メチル)等が挙げられる。前記セルロース誘導体としては、例えば、酢酸セルロース、シアノエチルセルロース等が挙げられる。
光学活性高分子は、高分子圧電材料の圧電性を向上する観点から、光学純度が95.00%ee以上であることが好ましく、99.00%ee以上であることがより好ましく、99.99%ee以上であることがさらに好ましい。望ましくは100.00%eeである。光学活性高分子の光学純度を上記範囲とすることで、圧電性を発現する高分子結晶のパッキング性が高くなり、その結果、圧電性が高くなるものと考えられる。
本実施形態において、光学活性高分子の光学純度は、下記式にて算出した値である。
光学純度(%ee)=100×|L体量−D体量|/(L体量+D体量)
すなわち、『「光学活性高分子のL体の量〔質量%〕と光学活性高分子のD体の量〔質量%〕との量差(絶対値)」を「光学活性高分子のL体の量〔質量%〕と光学活性高分子のD体の量〔質量%〕との合計量」で割った(除した)数値』に、『100』をかけた(乗じた)値を、光学純度とする。
なお、光学活性高分子のL体の量〔質量%〕と光学活性高分子のD体の量〔質量%〕は、高速液体クロマトグラフィー(HPLC)を用いた方法により得られる値を用いる。具体的な測定の詳細については後述する。
以上の光学活性高分子の中でも、光学純度を上げ、圧電性を向上させる観点から、下記式(1)で表される繰り返し単位を含む主鎖を有する化合物が好ましい。
前記式(1)で表される繰り返し単位を主鎖とする化合物としては、ポリ乳酸系樹脂が挙げられる。中でも、ポリ乳酸が好ましく、L−乳酸のホモポリマー(PLLA)またはD−乳酸のホモポリマー(PDLA)が最も好ましい。
前記ポリ乳酸系樹脂とは、「ポリ乳酸」、「L−乳酸またはD−乳酸と、共重合可能な多官能性化合物とのコポリマー」、又は、両者の混合物をいう。前記「ポリ乳酸」は、乳酸がエステル結合によって重合し、長く繋がった高分子であり、ラクチドを経由するラクチド法と、溶媒中で乳酸を減圧下加熱し、水を取り除きながら重合させる直接重合法などによって製造できることが知られている。前記「ポリ乳酸」としては、L−乳酸のホモポリマー、D−乳酸のホモポリマー、L−乳酸およびD−乳酸の少なくとも一方の重合体を含むブロックコポリマー、及び、L−乳酸およびD−乳酸の少なくとも一方の重合体を含むグラフトコポリマーが挙げられる。
前記「共重合可能な多官能性化合物」としては、グリコール酸、ジメチルグリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシプロパン酸、3−ヒドロキシプロパン酸、2−ヒドロキシ吉草酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、2−ヒドロキシカプロン酸、3−ヒドロキシカプロン酸、4−ヒドロキシカプロン酸、5−ヒドロキシカプロン酸、6−ヒドロキシカプロン酸、6−ヒドロキシメチルカプロン酸、マンデル酸等のヒドロキシカルボン酸、グリコリド、β−メチル−δ−バレロラクトン、γ−バレロラクトン、ε−カプロラクトン等の環状エステル、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、テレフタル酸等の多価カルボン酸、及びこれらの無水物、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、3−メチル−1,5−ペンタンジオール、ネオペンチルグリコール、テトラメチレングリコール、1,4−ヘキサンジメタノール等の多価アルコール、セルロース等の多糖類、及び、α−アミノ酸等のアミノカルボン酸等を挙げることができる。
前記「L−乳酸またはD−乳酸と、共重合可能な多官能性化合物とのコポリマー」としては、らせん結晶を生成可能なポリ乳酸シーケンスを有する、ブロックコポリマーまたはグラフトコポリマーが挙げられる。
また、光学活性高分子中のコポリマー成分に由来する構造の濃度は20mol%以下であることが好ましい。例えば、光学活性高分子がポリ乳酸系高分子の場合、ポリ乳酸系高分子中の乳酸に由来する構造と、乳酸と共重合可能な化合物(コポリマー成分)に由来する構造と、のモル数の合計に対して、前記コポリマー成分が20mol%以下であることが好ましい。
前記光学活性高分子(例えばポリ乳酸系樹脂)は、例えば、特開昭59−096123号公報、及び特開平7−033861号公報に記載されている乳酸を直接脱水縮合して得る方法や、米国特許2,668,182号及び4,057,357号等に記載されている乳酸の環状二量体であるラクチドを用いて開環重合させる方法などにより製造することができる。
さらに、前記の各製造方法により得られた光学活性高分子(例えばポリ乳酸系樹脂)は、光学純度を95.00%ee以上とするために、例えば、ポリ乳酸をラクチド法で製造する場合、晶析操作により光学純度を95.00%ee以上の光学純度に向上させたラクチドを、重合することが好ましい。
〔光学活性高分子の重量平均分子量〕
本実施形態に係る光学活性高分子は、重量平均分子量(Mw)が、5万〜100万である。光学活性高分子の重量平均分子量の下限が、5万未満であると光学活性高分子を成型体としたときの機械的強度が不十分となる。光学活性高分子の重量平均分子量の下限は、10万以上であることが好ましく、15万以上であることがさらに好ましい。一方、光学活性高分子の重量平均分子量の上限が100万を超えると、光学活性高分子を成形すること(例えば、押出成型などによりフィルム形状などに成形すること)が難しくなる。
重量平均分子量の上限は、80万以下であることが好ましく、30万以下であることがさらに好ましい。
また、前記光学活性高分子の分子量分布(Mw/Mn)は、高分子圧電材料の強度の観点から、1.1〜5であることが好ましく、1.2〜4であることがより好ましい。さらに1.4〜3であることが好ましい。なお、ポリ乳酸系高分子の重量平均分子量Mwと、分子量分布(Mw/Mn)は、ゲル浸透クロマトグラフ(GPC)を用い、下記GPC測定方法により、測定される。
−GPC測定装置−
Waters社製GPC−100
−カラム−
昭和電工社製、Shodex LF−804
−サンプルの調製−
ポリ乳酸系高分子を40℃で溶媒(例えば、クロロホルム)へ溶解させ、濃度1mg/mlのサンプル溶液を準備する。
−測定条件−
サンプル溶液0.1mlを溶媒〔クロロホルム〕、温度40℃、1ml/分の流速でカラムに導入する。
カラムで分離されたサンプル溶液中のサンプル濃度を示差屈折計で測定する。ポリスチレン標準試料にてユニバーサル検量線を作成し、ポリ乳酸系高分子の重量平均分子量(Mw)および分子量分布(Mw/Mn)を算出する。
ポリ乳酸系高分子は、市販のポリ乳酸を用いてもよい。市販のポリ乳酸としては、例えば、PURAC社製のPURASORB(PD、PL)、三井化学社製のLACEA(H−100、H−400)、NatureWorks社製Ingeo4032D、4043D等が挙げられる。
光学活性高分子としてポリ乳酸系樹脂を用いるとき、ポリ乳酸系樹脂の重量平均分子量(Mw)を5万以上とするためには、ラクチド法、または直接重合法により光学活性高分子を製造することが好ましい。
本実施形態に係る高分子圧電材料は、既述の光学活性高分子を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
本実施形態に係る高分子圧電材料において、光学活性高分子の含有量(2種以上である場合には総含有量。以下同じ。)には特に制限はないが、高分子圧電材料全質量中に対して、80質量%以上であることが好ましい。
上記含有量が80質量%以上であることにより、圧電定数がより大きくなる傾向がある。
〔その他の成分〕
本実施形態の高分子圧電材料は、本実施形態の効果を損なわない限度において、既述の光学活性高分子以外のその他の成分(例えば、ポリフッ化ビニリデン、ポリエチレン樹脂やポリスチレン樹脂に代表される公知の樹脂や、シリカ、ヒドロキシアパタイト、モンモリロナイト等の無機フィラー、フタロシアニン等の公知の結晶核剤等)を含有していてもよい。
また、本実施形態の高分子圧電材料は、加水分解などによる構造変化をより抑制する観点から、カルボジライト(登録商標)に代表されるカルボジイミド化合物などの安定化剤を含むのが好ましい。
また、本実施形態の高分子圧電材料は、本実施形態の効果を損なわない限度において、既述の光学活性高分子(即ち、重量平均分子量(Mw)が5万〜100万である光学活性を有するヘリカルキラル高分子)以外のヘリカルキラル高分子を含んでいてもよい。
−無機フィラー−
本実施形態の高分子圧電材料は、無機フィラーを少なくとも1種含有していてもよい。
例えば、高分子圧電材料を、気泡等のボイドの発生を抑えた透明なフィルムとするために、高分子圧電材料中に、ヒドロキシアパタイト等の無機フィラーをナノ分散してもよいが、無機フィラーをナノ分散させるためには、凝集塊の解砕に大きなエネルギーが必要であり、また、無機フィラーがナノ分散しない場合、フィルムの透明度が低下する場合がある。従って、本実施形態に係る高分子圧電材料が無機フィラーを含有するときは、高分子圧電材料全質量に対する無機フィラーの含有量は、1質量%未満とすることが好ましい。 なお、高分子圧電材料が光学活性高分子以外の成分を含む場合、光学活性高分子以外の成分の含有量は、高分子圧電材料全質量中に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
−結晶促進剤(結晶核剤)−
本実施形態の高分子圧電材料は、結晶促進剤(結晶核剤)を少なくとも1種含有していてもよい。
結晶促進剤(結晶核剤)としては、結晶化促進の効果が認められるものであれば、特に限定されないが、光学活性高分子の結晶格子の面間隔に近い面間隔を持つ結晶構造を有する物質を選択することが望ましい。面間隔が近い物質ほど核剤としての効果が高いからである。例えば、光学活性高分子としてポリ乳酸系樹脂を用いた場合、有機系物質であるフェニルスルホン酸亜鉛、ポリリン酸メラミン、メラミンシアヌレート、フェニルホスホン酸亜鉛、フェニルホスホン酸カルシウム、フェニルホスホン酸マグネシウム、無機系物質のタルク、クレー等が挙げられる。それらのうちでも、最も面間隔がポリ乳酸の面間隔に類似し、良好な結晶形成促進効果が得られるフェニルホスホン酸亜鉛が好ましい。なお、使用する結晶促進剤は、市販されているものを用いることができる。具体的には例えば、フェニルホスホン酸亜鉛;エコプロモート(日産化学工業(株)製)等が挙げられる。
結晶核剤の含有量は、光学活性高分子100重量部に対して通常0.01〜1.0重量部、好ましくは0.01〜0.5重量部、より良好な結晶促進効果とバイオマス度維持の観点から特に好ましくは0.02〜0.2重量部である。
結晶核剤の上記含有量が0.01重量部以上であると、結晶促進の効果がより効果的に得られる。結晶核剤の上記含有量が1.0重量部未満であると、結晶化速度をより制御しやすい。
なお、高分子圧電材料は、透明性の観点からは、光学活性を有するヘリカルキラル高分子以外の成分を含まないことが好ましい。
〔構造〕
本実施形態の高分子圧電材料中では、光学活性高分子が配向している。
この配向を表す指標として、「分子配向度MOR」がある。分子配向度MOR(Molecular Orientation Ratio)は、分子の配向の度合いを示す値であり、以下のようなマイクロ波測定法により測定される。すなわち、試料(フィルム)を、周知のマイクロ波分子配向度測定装置(マイクロ波透過型分子配向計ともいう)のマイクロ波共振導波管中に、マイクロ波の進行方向に前記試料面(フィルム面)が垂直になるように配置する。そして、振動方向が一方向に偏ったマイクロ波を試料に連続的に照射した状態で、試料をマイクロ波の進行方向と垂直な面内で0〜360°回転させて、試料を透過したマイクロ波強度を測定することにより分子配向度MORを求める。
本実施形態における規格化分子配向MORcとは、基準厚さtcを50μmとしたときのMOR値であって、下記式により求めることができる。
MORc = (tc/t)×(MOR−1)+1
(tc:補正したい基準厚さ、t:試料厚さ)
規格化分子配向MORcは、公知の分子配向計、例えば王子計測機器株式会社製マイクロ波方式分子配向計MOA−2012AやMOA−6000等により、4GHzもしくは12GHz近傍の共振周波数で測定することができる。
また、規格化分子配向MORcは、高分子圧電材料を製造する際の結晶化の条件(例えば、加熱温度および加熱時間)及び延伸の条件(例えば、延伸温度および延伸速度)によって制御されうる。
なお、規格化分子配向MORcは、位相差量(レターデーション)をフィルムの厚さで除した複屈折率Δnに変換することもできる。
具体的には、レターデーションは大塚電子株式会社製RETS100を用いて測定することができる。またMORcとΔnとは大凡、直線的な比例関係にあり、かつΔnが0の場合、MORcは1になる。
<高分子圧電材料の物性>
本実施形態に係る高分子圧電材料は、圧電定数が大きく(25℃において変位法で測定した圧電定数d14が、好ましくは1pm/V以上)、透明性、縦裂強度に優れる。
〔圧電定数(変位法)〕
本実施形態において、高分子圧電材料の圧電定数は、次のようにして測定される値をいう。
まず、高分子圧電材料を、延伸方向(MD方向)に40mm、延伸方向に直交する方向(TD方向)に40mmでそれぞれカットして、矩形の試験片を作製する。次に、アルバック社製スパッタ薄膜形成装置JSP−8000の試験台に、得られた試験片をセットし、ロータリーポンプによりコータチャンバー内を真空状態(例えば、10−3Pa以下)にする。その後、Ag(銀)ターゲットに、印加電圧280V、スパッタリング電流0.4A)の条件で、試験片の一方の面に500秒間スパッタリング処理をする。次いで、試験片の他方の面を、同様の条件で500秒間スパッタリング処理をして、試験片の両面にAgを被覆し、Agの導電層を形成する。
両面にAgの導電層が形成された40mm×40mmの試験片(高分子圧電材料)を、高分子圧電材料の延伸方向(MD方向)に対して45°なす方向に32mm、45°なす方向に直交する方向に5mmにカットして、32mm×5mmの矩形のフィルムを切り出す。これを、圧電定数測定用サンプルとする。
得られたサンプルに、10Hz、300Vppの正弦波の交流電圧を印加したときの、フィルムの変位の最大値と最小値の差分距離を、キーエンス社製レーザ分光干渉型変位計SI−1000により計測する。
計測した変位量(mp−p)を、フィルムの基準長30mmで割った値を歪量とし、この歪量をフィルムに印加した電界強度((印加電圧(V))/(フィルム厚))で割った値に2を乗じた値を圧電定数d14とする。
圧電定数は高ければ高いほど、高分子圧電材料に印加される電圧に対する前記材料の変位、逆に高分子圧電材料に印加される力に対し発生する電圧が大きくなり、高分子圧電材料としては有用である。
具体的には、25℃における変位法で測定した圧電定数d14は1pm/V以上が好ましく、3pm/V以上がより好ましく、4pm/V以上がさらに好ましい。また圧電定数の上限は特に限定されないが、後述する透明性などのバランスの観点からは、ヘリカルキラル高分子を用いた圧電材料では50pm/V以下が好ましく、30pm/V以下がより好ましい。
また、同様に透明性とのバランスの観点からは共振法で測定した圧電定数d14が15pC/N以下であることが好ましい。
なお、本明細書中において、「MD方向」とはフィルムの流れる方向(Machine Direction)であり、「TD方向」とは、前記MD方向と直交し、フィルムの主面と平行な方向(Transverse Direction)である。
〔結晶化度〕
高分子圧電材料の結晶化度は、DSC法によって求められるものであり、本実施形態の高分子圧電材料の結晶化度は20%〜80%であり、30%〜70%が好ましい。前記範囲に結晶化度があれば、高分子圧電材料の圧電性、透明性、縦裂強度のバランスがよく、また高分子圧電材料を延伸するときに、白化や破断がおきにくく製造しやすい。
具体的には、結晶化度が20%未満であると、圧電性が低下する傾向がある。
また、結晶化度が80%を超えると、縦裂強度及び透明性が低下する傾向がある。
前記結晶化度は、縦裂強度及び透明性をより向上させる観点より、40.8%以下が更に好ましく、40.0%以下が特に好ましい。
本実施形態では、例えば、高分子圧電材料を製造する際の結晶化及び延伸の条件を調整することにより、高分子圧電材料の結晶化度を20%〜80%の範囲に調整することができる。
〔透明性(内部ヘイズ)〕
高分子圧電材料の透明性は、例えば、目視観察やヘイズ測定により評価することができる。
高分子圧電材料は、可視光線に対する内部ヘイズが40%以下であることが好ましい。ここで内部ヘイズは、厚さ0.03mm〜0.05mmの高分子圧電材料に対して、JIS−K7105に準拠して、ヘイズ測定機〔(有)東京電色製、TC−HIII DPK〕を用いて25℃で測定したときの値であり、測定方法の詳細は実施例において詳述する。
高分子圧電材料の前記内部ヘイズは、20%以下であることがより好ましく、5%以下であることが更に好ましい。更に、高分子圧電材料の前記内部ヘイズは、縦裂強度をより向上させる観点からは、2.0%以下が好ましく、1.0%以下が特に好ましい。
また、高分子圧電材料の前記内部ヘイズは、低ければ低いほどよいが、圧電定数などとのバランスの観点からは、0.0%〜40%であることが好ましく、0.01%〜20%であることがさらに好ましく、0.01%〜5%がさらに好ましく、0.01%〜2.0%がさらに好ましく、0.01%〜1.0%が特に好ましい。
なお、本願でいう「内部ヘイズ」とは、本発明の高分子圧電材料の内部へイズをいう。内部へイズとは、実施例において後述するように前記高分子圧電材料の外表面の形状によるヘイズを除外したヘイズである。
〔規格化分子配向MORc〕
本実施形態の高分子圧電材料は、規格化分子配向MORcが1.0〜15.0であることが好ましく、4.0〜10.0であることがより好ましい。
規格化分子配向MORcが1.0以上であれば、延伸方向に配列する光学活性高分子の分子鎖(例えばポリ乳酸分子鎖)が多く、その結果、配向結晶の生成する率が高くなり、より高い圧電性を発現することが可能となる。
規格化分子配向MORcが15.0以下であれば、縦裂強度が更に向上する。
〔規格化分子配向MORcと結晶化度との積〕
本実施形態において、高分子圧電材料の結晶化度と規格化分子配向MORcとの積は25〜250である。この範囲に調整することで、高い圧電性及び高い透明性が維持され、かつ、縦裂強度(即ち、特定方向についての引裂強さ)の低下が抑制される。
高分子圧電材料の結晶化度と規格化分子配向MORcとの積が25未満であると、圧電性が低下する傾向がある。
高分子圧電材料の結晶化度と規格化分子配向MORcとの積が250を超えると、縦裂強度及び透明性が低下する傾向がある。
上記結晶化度とMORcとの積は、さらに好ましくは50〜200、さらに好ましくは100〜190である。
本実施形態では、例えば、高分子圧電材料を製造する際の結晶化及び延伸の条件を調整することにより、高分子圧電材料の結晶化度と規格化分子配向MORcとの積を25〜250の範囲に調整することができる。
〔縦裂強度〕
本実施形態の高分子圧電材料の縦裂強度は、JIS K 7128−3の「プラスチックーフィルム及びシートの引裂強さ」に記載の試験方法「直角形引裂法」に準拠して測定された引裂強さに基づいて評価される。
ここで、引張試験機のクロスヘッド速度は毎分200mmとし、引裂強さは下式より算出する。
T=F/d
上記式において、Tは引裂強さ(N/mm)、Fは最大引裂荷重、dは試験片の厚さ(mm)を表す。
〔寸法安定性〕
高分子圧電材料は、加熱下、特に後述するスピーカーやタッチパネルなどのデバイスや機器等に組み込まれ使用される環境下の温度での寸法変化率が低い方が好ましい。圧電材料の寸法がデバイスなどの使用環境下で変化すると、圧電材料に接続されている配線などの位置を動かし、デバイスなどの誤作動を引き起こす恐れがあるからである。高分子圧電材料の寸法安定性は、後述するようにデバイスなどの使用環境よりも少し高い温度である150℃で、10分間処理した前後の寸法変化率で評価される。寸法変化率は、10%以下が好ましく、5%以下がさらに好ましい。
<高分子圧電材料の製造>
本発明の高分子圧電材料を製造する方法としては、前記結晶化度を20%〜80%に調整でき、かつ、前記規格化分子配向MORcと前記結晶化度との積を25〜250に調整できる方法であれば特に制限されない。
この方法として、例えば、既述の光学活性高分子を含む非晶状態のシートに対して結晶化及び延伸(いずれが先であってもよい)を施す方法であって、前記結晶化及び前記延伸の各条件を調整することにより、前記結晶化度を20%〜80%に調整し、かつ、前記規格化分子配向MORcと前記結晶化度との積を25〜250に調整する方法を用いることができる。
なお、ここでいう「結晶化」は、後述の予備結晶化及び後述のアニール処理を包含する概念である。
また、非晶状態のシートとは、光学活性高分子単体又は光学活性高分子を含む混合物を、光学活性高分子の融点Tm以上の温度に加熱し、その後、急冷して得られたシートを示す。急冷する温度としては、例えば、50℃が挙げられる。
本発明の高分子圧電材料を製造する方法において、高分子圧電材料(または非晶状態のシート)の原料としては、前記光学活性高分子(ポリ乳酸系高分子など)を1種単独で用いてもよいし、既述の光学活性高分子(ポリ乳酸系高分子など)の2種以上の混合物、または、既述の光学活性高分子の少なくとも1種とその他の成分の少なくとも1種との混合物を用いてもよい。
上述の混合物は、溶融混練して得られた混合物であることが好ましい。
具体的には、例えば、2種類以上の光学活性高分子を混合する場合や、1種類以上の光学活性高分子にその他の成分(例えば上述の無機フィラーや結晶核剤)を混合する場合は、混合する光学活性高分子を(必要に応じその他の成分とともに)、溶融混練機〔東洋精機社製、ラボプラストミキサー〕を用い、ミキサー回転数30rpm〜70rpm、180℃〜250℃の条件で、5分〜20分間溶融混練することで、複数種の光学活性高分子のブレンド体や光学活性高分子と無機フィラーなどの他の成分とのブレンド体を得ることができる。
以下、本発明の高分子圧電材料の製造方法の実施形態について説明するが、本発明の高分子圧電材料を製造する方法は、下記実施形態に限定されることはない。
−第1の実施形態−
本発明の高分子圧電材料の製造方法の第1の実施形態は、例えば、光学活性高分子(即ち、重量平均分子量が5万〜100万である光学活性を有するヘリカルキラル高分子)を含む非晶状態のシートを加熱して予備結晶化シートを得る第一の工程と、前記予備結晶化シートを2軸方向に延伸する(例えば、主として1軸方向に延伸しつつ同時または逐次的に前記延伸方向とは別の方向に延伸する)第二の工程と、を含む。
一般的に、延伸時にフィルムにかける力を増やすことで、光学活性高分子の配向が促進されて圧電定数が大きくなる一方で、結晶化が進み、結晶サイズが大きくなることで内部ヘイズも大きくなる傾向にある。また、内部応力の増加により寸法変形率も増加する傾向がある。単純にフィルムに力をかけた場合、球晶のように配向していない結晶が形成される。球晶のような配向が低い結晶は、内部ヘイズを上げるものの圧電定数の増加には寄与しにくい。
よって、圧電定数が高く、内部ヘイズが低いフィルムを形成するためには、圧電定数に寄与する配向結晶を、内部ヘイズを増大させない程度の微小サイズで効率よく形成することが好ましい。
上記の点から、例えば、延伸の前にシート内を予備結晶化させ微細な結晶(微結晶)を形成した予備結晶化シートを作製した後に、前記予備結晶化シートを延伸することにより、前記予備結晶化シート内部における微結晶と微結晶との間の結晶性が低い高分子部分に、延伸による力を効率よくかけることができる。これにより、光学活性高分子を主な延伸方向に効率よく配向させることができる。
具体的には、前記予備結晶化シートを延伸することにより、微結晶と微結晶との間の結晶性が低い高分子部分内に、微細な配向結晶が生成すると同時に、予備結晶化によって生成された球晶がくずれ、球晶を構成しているラメラ晶が、タイ分子鎖につながれた数珠繋ぎ状に延伸方向に配向する。これにより、所望の値のMORcを得ることができる。
このため、前記予備結晶化シートを延伸することにより、圧電定数を大きく低下させることなく、内部ヘイズが低いシートを得ることができる。さらに製造条件を調整することで寸法安定性に優れる高分子圧電材料を得ることができる。
しかし、前記予備結晶化シートを延伸する方法では、延伸により予備結晶化シート内部の結晶性が低い部分の高分子鎖の絡み合いがほどけ延伸方向に分子鎖が並ぶため、延伸方向と略直交する方向からの力に対する引裂強さは向上するが、逆に延伸方向と略平行方向からの力に対する引裂強さが低下する場合がある。
以上の点に鑑み、第1の実施形態では、光学活性高分子を含む非晶状態のシートを加熱して予備結晶化シートを得る第一の工程と、前記予備結晶化シートを2軸方向に延伸する第二の工程と、を含む構成とする。
この第1の実施形態では、第二の工程(延伸工程)において、圧電性を高めるために予備結晶化シートを延伸(主延伸ともいう)する際、同時にまたは逐次的に前記主延伸の延伸方向と交差する方向に予備結晶化シートを延伸(副次的延伸ともいう)する2軸延伸を行う。これにより、シート内の分子鎖を、主たる延伸の軸の方向だけでなく、主たる延伸の軸と交差する方向にも配向させることができるので、前記規格化分子配向MORcと前記結晶化度との積を、特定の範囲(具体的には25〜250)に好適に調整することができる。
その結果、圧電性を高め、透明性を維持しつつ、さらに縦裂強度をも向上させることができる。
規格化分子配向MORcを制御するには、第一の工程における非晶状態のシートの加熱時間および加熱温度、並びに、第二の工程における予備結晶化シートの延伸速度および延伸温度の調整が重要である。
また、前述のとおり、光学活性高分子は、分子構造が螺旋構造である分子光学活性を有する高分子である。
光学活性高分子を含む非晶状態のシートは、市場から入手可能なものでもよく、押出成形などの公知のフィルム成形手段で作製されたものでもよい。非晶状態のシートは単層であっても、多層であっても構わない。
〔第一の工程(予備結晶化工程)〕
第1の実施形態における第一の工程は、光学活性高分子を含む非晶状態のシートを加熱して予備結晶化シートを得る工程である。
第1の実施形態における第一の工程及び第二の工程を通じた処理として、具体的には、1)非晶状態のシートを加熱処理して予備結晶化シートとし(以上、第一の工程)、得られた予備結晶化シートを延伸装置にセットして延伸する(以上、第二の工程)処理であってもよいし(オフライン処理)、または、2)非晶状態のシートを延伸装置にセットし、延伸装置にて加熱して予備結晶化シートとし(以上、第一の工程)、得られた予備結晶化シートを引き続きこの延伸装置にて延伸する(以上、第二の工程)処理であってもよい(インライン処理)。
第一の工程において、光学活性高分子を含む非晶状態のシートを予備結晶化するための加熱温度Tは特に限定されないが、製造される高分子圧電材料の圧電性や透明性など高める点で、光学活性高分子のガラス転移温度Tgと以下の式の関係を満たし、結晶化度が1〜70%になるように設定される温度であることが好ましい。
Tg−40℃≦T≦Tg+40℃
(Tgは、光学活性高分子のガラス転移温度を表す。)
なお、ここでいう光学活性高分子のガラス転移温度Tg〔℃〕および前述した光学活性高分子の融点Tm〔℃〕は、前記示差走査型熱量計(DSC)を用い、光学活性高分子に対して、昇温速度10℃/分の条件で温度を上昇させたときの融解吸熱曲線から、曲線の屈曲点として得られるガラス転移温度(Tg)と、吸熱反応のピーク値として確認される温度(Tm)である。
第一の工程において、予備結晶化するための加熱処理時間は、所望の結晶化度を満たし、かつ延伸後(第二の工程後)の高分子圧電材料の規格化分子配向MORcと延伸後の高分子圧電材料の結晶化度との積が25〜250、好ましくは50〜200、さらに好ましくは100〜190になるように調整されればよい。加熱処理時間が長くなると、延伸後の結晶化度も高くなり、延伸後の規格化分子配向MORcも高くなる。加熱処理時間が短くなると、延伸後の結晶化度も低くなり、延伸後の規格化分子配向MORcも低くなる。
延伸前の予備結晶化シートの結晶化度が高くなると、シートが硬くなってより大きな延伸応力がシートにかかるので、前記シート中の結晶性が比較的低い部分も配向が強くなり、延伸後の規格化分子配向MORcも高くなると考えられる。逆に、延伸前の予備結晶化シートの結晶化度が低くなると、シートが柔らかくなって延伸応力がよりシートにかかりにくくなるので、前記シート中の結晶性が比較的低い部分も配向が弱くなり、延伸後の規格化分子配向MORcも低くなると考えられる。
加熱処理時間は、加熱処理温度、シートの厚み、シートを構成する樹脂の分子量、添加剤などの種類または量によって異なる。また、シートを結晶化させる実質的な加熱処理時間は、後述する延伸工程(第二工程)の前に行なってもよい予熱において、非晶状態のシートが結晶化する温度で予熱した場合、前記予熱時間と、予熱前の予備結晶化工程における加熱処理時間の和に相当する。
非晶状態のシートの加熱処理時間は、5秒〜60分が好ましく、製造条件の安定化という観点からは1分〜30分がより好ましい。例えば、光学活性高分子としてポリ乳酸樹脂を含む非晶状態のシートを予備結晶化する場合は、20℃〜170℃で、5秒〜60分(好ましくは1分〜30分)加熱することが好ましい。
第1の実施形態において、延伸後のシートに効率的に圧電性、透明性、縦裂強度を付与するには、延伸前の予備結晶化シートの結晶化度を調整することが好ましい。
すなわち、延伸により圧電性などが向上する理由は、球晶状態にあると推測される、予備結晶化シート中の結晶性が比較的高い部分に延伸による応力が集中し、球晶が破壊されつつ配向することで圧電性(圧電定数d14)が向上する一方、球晶を介して延伸応力が結晶性の比較的低い部分にもかかり、この比較的低い部分の配向を促し、圧電性(圧電定数d14)を向上させるためと考えられるからである。
延伸後のシートの結晶化度は、20%〜80%、好ましくは30%〜70%になるように設定される。そのため、予備結晶化シートの延伸直前の結晶化度は1%〜70%、好ましくは2%〜60%になるように設定される。予備結晶化シートの結晶化度は、延伸後の本実施形態の高分子圧電材料の結晶化度の測定と同様に行なえばよい。
予備結晶化シートの厚みは、第二の工程の延伸により得ようとする高分子圧電材料の厚みと延伸倍率によって主に決められるが、好ましくは50μm〜1000μmであり、より好ましくは200μm〜800μm程度である。
〔第二の工程(延伸工程)〕
第二の工程(延伸工程)における延伸方法は特に制限されないが、配向結晶を形成するための延伸(主な延伸ともいう)と、前記延伸の方向に対して交差する方向に施す延伸と、を組み合わせた方法を用いることができる。高分子圧電材料を延伸することにより、主面の面積が大きな高分子圧電材料を得ることもできる。
ここで、「主面」とは、高分子圧電材料の表面の中で、最も面積の大きい面をいう。本発明の高分子圧電材料は、主面を2つ以上有してもよい。例えば、高分子圧電材料が、10mm×0.3mm四方の面Aと、3mm×0.3mm四方の面Bと、10mm×3mm四方の面Cとをそれぞれ2面ずつ有する板状体である場合、当該高分子圧電材料の主面は面Cであり、2つの主面を有する。
本実施形態における主面の面積は、高分子圧電材料の主面の面積が5mm以上であることが好ましく、10mm以上であることがより好ましい。
高分子圧電材料を主に一方向に延伸することで、高分子圧電材料に含まれるポリ乳酸系高分子の分子鎖を、一方向に配向させ、かつ高密度に整列させることができ、より高い圧電性が得られると推測される。
一方、前述のように一方向のみに延伸した場合、シート内の高分子の分子鎖が主に延伸方向に配向するため、延伸方向と略直交方向からの力による縦裂強度が低下する恐れがある。
そこで、延伸工程において、圧電性を高めるための延伸(主延伸ともいう)をする際に、同時にまたは逐次的に、前記主延伸の方向と交差する方向に予備結晶化シートを延伸(副次的延伸ともいう)する2軸延伸を行うことで、圧電性、透明性、縦裂強度のバランスに優れる高分子圧電材料を得ることができる。
なお、ここで言う「逐次的な延伸」とは、まず1軸方向に延伸した後に、前記延伸の方向と交差する方向に延伸する延伸方法をいう。
第二の工程における2軸延伸の方式は特に限定されず、一般的な方式を用いることができるが、具体的にはロール延伸(MD方向への延伸)とテンター延伸(TD方向への延伸)を組み合わせた方式とすることが好ましい。このとき、製造効率の観点から、延伸倍率が大きい方向(例えば主延伸の方向)をTD方向、延伸倍率が低い方向(例えば副次的延伸の方向)をMD方向に設定するのが好ましい。
2軸延伸は同時に行なっても、逐次的に行なってもよいが、同時に行なうこと(即ち、同時2軸延伸)が好ましい。
同時2軸延伸が好ましい理由は、逐次延伸の場合には、二回目以降の延伸において、一回目の延伸の方向と交差する方向に力を加えることになるため、フィルムが延伸中に縦裂けする恐れがあるからである。
また、同様に、逐次延伸を行なう場合は、二回目以降の延伸中のフィルムの縦裂けを抑制する観点から、最初に行なう延伸の倍率を小さくすることが好ましい。
なお、前述のとおり、「MD方向」とはフィルムの流れる方向であり、「TD方向」とは、前記MD方向と直交し、フィルムの主面と平行な方向である。
延伸倍率は、延伸後(または後述するアニール工程を行なう場合は、アニール処理後)の高分子圧電材料の結晶化度とMORcと結晶化度との積が、前述の範囲になるように調整できれば特に限定されないが、主延伸の延伸倍率は2〜8倍が好ましく、2.5〜5倍がより好ましく、2.7〜4.5倍が特に好ましい。また、副次的延伸の延伸倍率は、1〜4倍が好ましく、1.2〜2.5倍がより好ましく、1.2〜2.3倍がより好ましい。
また、延伸速度も特に限定されないが、通常は、倍率に応じて主延伸の速度と副次的延伸の速度が調整される。具体的には、主延伸倍率が副次的延伸の倍率の2倍に設定された場合は、主延伸の速度は副次的延伸の2倍に設定されることが多い。延伸速度は通常用いられる速度に設定すればよく、特に限定されないが、フィルムが延伸時に破断することないような速度に調整されることが多い。
高分子圧電材料の延伸温度は、1軸延伸方法や2軸延伸方法等のように、引張力のみで高分子圧電材料を延伸する場合は、高分子圧電材料のガラス転移温度より10℃〜20℃程度高い温度範囲であることが好ましい。
予備結晶化シートの延伸を行なうときは、延伸直前にシートを延伸しやすくするために予熱を行なってもよい。
この予熱は、一般的には延伸前のシートを軟らかくし延伸しやすくするために行なわれるものであるため、前記延伸前のシートを結晶化してシートを硬くすることがない条件で行なわれるのが通常である。
しかし、上述したように第1の実施形態においては、延伸前に予備結晶化を行なうため、前記予熱を、予備結晶化を兼ねて行なってもよい。具体的には、上述した予備結晶化工程における加熱温度や加熱処理時間に合わせて、予熱を通常行なわれる温度よりも高い温度や長い時間行なうことで、予熱と予備結晶化を兼ねることができる。
〔アニール処理工程〕
圧電定数を向上させる観点から、延伸処理を施した後の高分子圧電材料を、一定の熱処理(以下「アニール処理」とも称する)することが好ましい。アニール処理の温度は、概ね80℃〜160℃であることが好ましく、100℃〜155℃あることがさらに好ましい。
アニール処理の温度印加方法は、特に限定されないが、熱風ヒータや赤外線ヒータを用いて直接加熱する方法や、加熱したシリコンオイルなどの液体に高分子圧電材料を浸漬する方法等が挙げられる。このとき、線膨張により高分子圧電材料が変形すると、実用上平坦なフィルムを得ることが困難になるため、高分子圧電材料に一定の引張応力(例えば、0.01MPa〜100Mpa)を印加し、高分子圧電材料がたるまないようにしながら温度を印加することが好ましい。
アニール処理の温度印加時間は、1秒〜60分であることが好ましく、1秒〜300秒であることがより好ましく、1秒から60秒の範囲で加熱することがさらに好ましい。60分を超えてアニールをすると、高分子圧電材料のガラス転移温度より高い温度で、非晶部分の分子鎖から球晶が成長することにより配向度が低下する場合があり、その結果、圧電性が低下する場合がある。
上記のようにしてアニール処理された高分子圧電材料は、アニール処理した後に急冷することが好ましい。
アニール処理において、「急冷する」とは、アニール処理した高分子圧電材料を、アニール処理直後に、例えば氷水中等に浸漬して、少なくともガラス転移点Tg以下に冷やすことをいい、アニール処理と氷水中等への浸漬との間に他の処理が含まれないことをいう。
急冷の方法は、水、氷水、エタノール、ドライアイスを入れたエタノールやメタノール、液体窒素などの冷媒に、アニール処理した高分子圧電材料を浸漬する方法や、蒸気圧の低い液体スプレーを吹き付け、蒸発潜熱により冷却したりする方法が挙げられる。
連続的に高分子圧電材料を冷却するには、高分子圧電材料のガラス転移温度Tg以下の温度に管理された金属ロールと、高分子圧電材料とを接触させるなどして、急冷することが可能である。また、冷却の回数は、1回のみであっても、2回以上であってもよく、さらには、アニールと冷却とを交互に繰り返し行なうことも可能である。また前述の延伸処理を施した後の高分子圧電材料について前記アニールを行うと、アニール前に比べてアニール後の高分子圧電材料が縮むことがある。
−第2の実施形態−
本発明の高分子圧電材料の製造方法の第2の実施形態は、光学活性高分子を含むシート(好ましくは非晶状態のシート)を主として1軸方向に延伸する工程と、アニール処理工程と、をこの順で含む。
第2の実施形態において、主として1軸方向に延伸する工程は、少なくとも主延伸を行う(必要に応じ、更に副次的延伸を行う)工程である。
第2の実施形態における、主として1軸方向に延伸する工程及びアニール処理工程の各条件は、製造される高分子圧電材料の前記結晶化度が20%〜80%となり、かつ、前記規格化分子配向MORcと前記結晶化度との積が25〜250となるように適宜調整される。
その他、第2の実施形態における、主として1軸方向に延伸する工程及びアニール処理工程の好ましい条件は、それぞれ、第1の実施形態における第二の工程及びアニール処理工程の条件と同様である。
なお、第2の実施形態では、第1の実施形態における第一の工程(予備結晶化工程)を設ける必要はない。
<高分子圧電材料の用途>
本発明の高分子圧電材料は、以上説明したように圧電定数d14が大きく、透明性、縦裂強度に優れた圧電材料であるので、スピーカー、ヘッドホン、タッチパネル、リモートコントローラー、マイクロホン、水中マイクロホン、超音波トランスデューサ、超音波応用計測器、圧電振動子、機械的フィルター、圧電トランス、遅延装置、センサー、加速度センサー、衝撃センサー、振動センサー、感圧センサー、触覚センサー、電界センサー、音圧センサー、ディスプレイ、ファン、ポンプ、可変焦点ミラー、遮音材料、防音材料、キーボード、音響機器、情報処理機、計測機器、医用機器などの種々の分野で利用することができる。
このとき、本発明の高分子圧電材料は、少なくとも2つの面を有し、当該面には電極が備えられた圧電素子として用いられることが好ましい。電極は、高分子圧電材料の少なくとも2つの面に備えられていればよい。前記電極としては、特に制限されないが、例えば、ITO、ZnO、IZO(登録商標)、導電性ポリマー等が用いられる。
また、本発明の高分子圧電材料と、電極と、を繰り返し重ねて積層圧電素子として用いることもできる。例としては、電極と高分子圧電材料とのユニットを繰り返し重ね、最後に電極で覆われていない高分子圧電材料の主面を電極で覆ったものが挙げられる。具体的にはユニットの繰り返しが2回のものは、電極、高分子圧電材料、電極、高分子圧電材料、電極をこの順で重ねた積層圧電素子である。積層圧電素子に用いられる高分子圧電材料はそのうち1層の高分子圧電材料が本発明の高分子圧電材料であればよく、その他の層は本発明の高分子圧電材料でなくてもよい。
また、積層圧電素子に複数の本発明の高分子圧電材料が含まれる場合は、ある層の本発明の高分子圧電材料に含まれる光学活性高分子の光学活性がL体ならば、他の層の高分子圧電材料に含まれる光学活性高分子はL体であってもD体であってもよい。高分子圧電材料の配置は圧電素子の用途に応じて適宜調整することができる。
例えば、L体の光学活性高分子を主たる成分として含む高分子圧電材料の第1の層が電極を介してL体の光学活性高分子を主たる成分として含む第2の高分子圧電材料と積層される場合は、第1の高分子圧電材料の一軸延伸方向(主たる延伸方向)を、第2の高分子圧電材料の一軸延伸方向(主たる延伸方向)と交差、好ましくは直交させると、第1の高分子圧電材料と第2の高分子圧電材料との変位の向きを揃えることができ、積層圧電素子全体としての圧電性が高まるので好ましい。
一方、L体の光学活性高分子を主たる成分として含む高分子圧電材料の第1の層が電極を介してD体の光学活性高分子を主たる成分として含む第2の高分子圧電材料と積層される場合は、第1の高分子圧電材料の一軸延伸方向(主たる延伸方向)を、第2の高分子圧電材料の一軸延伸方向(主たる延伸方向)と略平行となるように配置すると第1の高分子圧電材料と第2の高分子圧電材料の変位の向きを揃えることができ、積層圧電素子全体としての圧電性が高まるので好ましい。
特に高分子圧電材料の主面に電極を備える場合には、透明性のある電極を備えることが好ましい。ここで、電極について、透明性があるとは、具体的には、内部ヘイズが40%以下(全光線透過率が60%以上)であることをいう。
本発明の高分子圧電材料を用いた前記圧電素子は、スピーカーやタッチパネル等、上述の種々の圧電デバイスに応用することができる。特に、透明性のある電極を備えた圧電素子は、スピーカー、タッチパネル、アクチュエータ等への応用に好適である。
以下、本発明の実施形態を実施例により更に具体的に説明するが、本実施形態はその主旨を越えない限り、以下の実施例に限定されるものではない。
〔実施例1〕
三井化学(株)製ポリ乳酸系樹脂(登録商標LACEA、H−400(重量平均分子量Mw:20万)を押出成形機ホッパーに入れて、220〜230℃に加熱しながらTダイから押し出し、50℃のキャストロールに0.3分間接触させ厚さ230μmの予備結晶化シートを製膜した(予備結晶化工程)。前記予備結晶化シートの結晶化度を測定したところ4%であった。
得られた予備結晶化シートを80℃に加熱しながら、テンター方式でTD方向に3.0倍(主延伸)、ロールツーロール方式でMD方向に2.0倍(副次的延伸)まで同時2軸延伸を行い、フィルムを得た(延伸工程)。
前記延伸工程の後のフィルムを、ロールツーロールで、145℃に加熱したロール上に接触させアニール処理し、急冷して、高分子圧電材料を作製した(アニール処理工程)。なお、前記急冷は、アニール処理後のフィルムを20℃〜30℃の大気に接触させ、さらにフィルム巻取機の金属ロールに接触させることにより、フィルム温度を急速に室温近傍に降温させることによって行った。
〔実施例2〜8、比較例1〜2〕
次いで、実施例1の高分子圧電材料の作製において、予備結晶化条件や延伸条件を、表1に示す条件に変更した他は同様にして、実施例2〜8、比較例1〜2の高分子圧電材料を作製した。
実施例5〜8では、主延伸の方向をMD方向とし、副次的延伸の方向をTD方向とした。

−樹脂(光学活性高分子)のL体量とD体量の測定−
50mLの三角フラスコに1.0gのサンプル(高分子圧電材料)を秤り込み、IPA(イソプロピルアルコール)2.5mLと、5.0mol/L水酸化ナトリウム溶液5mLとを加えた。次に、サンプル溶液が入った前記三角フラスコを、温度40℃の水浴に入れ、ポリ乳酸が完全に加水分解するまで、約5時間攪拌した。
前記サンプル溶液を室温まで冷却後、1.0mol/L塩酸溶液を20mL加えて中和し、三角フラスコを密栓してよくかき混ぜた。サンプル溶液の1.0mLを25mLのメスフラスコに取り分け、移動相で25mLとしてHPLC試料溶液1を調製した。HPLC試料溶液1を、HPLC装置に5μL注入し、下記HPLC条件で、ポリ乳酸のD/L体ピーク面積を求め、L体の量とD体の量を算出した。
−HPLC測定条件−
・カラム
光学分割カラム、(株)住化分析センター製 SUMICHIRAL OA5000
・測定装置
日本分光社製 液体クロマトグラフィ
・カラム温度
25℃
・移動相
1.0mM−硫酸銅(II)緩衝液/IPA=98/2(V/V)
硫酸銅(II)/IPA/水=156.4mg/20mL/980mL
・移動相流量
1.0ml/分
・検出器
紫外線検出器(UV254nm)
<分子量分布>
ゲル浸透クロマトグラフ(GPC)を用い、下記GPC測定方法により、実施例および比較例の各高分子圧電材料に含まれる樹脂(光学活性高分子)の分子量分布(Mw/Mn)を測定した。
−GPC測定方法−
・測定装置
Waters社製GPC−100
・カラム
昭和電工社製、Shodex LF−804
・サンプルの調製
実施例および比較例の各高分子圧電材料を、それぞれ40℃で溶媒〔クロロホルム〕へ溶解させ、濃度1mg/mlのサンプル溶液を準備した。
・測定条件
サンプル溶液0.1mlを溶媒(クロロホルム)、温度40℃、1ml/分の流速でカラムに導入し、カラムで分離されたサンプル溶液中のサンプル濃度を示差屈折計で測定した。樹脂の分子量は、ポリスチレン標準試料にてユニバーサル検量線を作成し、各樹脂の重量平均分子量(Mw)を算出した。実施例、比較例で用いた樹脂について測定した結果を表1に示した。なお、表1において、「LA」はLACEA H−400を表す。
<物性測定および評価>
以上のようにして得られた実施例1〜8、比較例1〜2の高分子圧電材料について、それぞれ、ガラス転移温度Tg、融点Tm、結晶化度、比熱容量Cp、厚さ、内部ヘイズ、圧電定数、MORc、寸法変化率を測定し、縦裂性評価を行った。
評価結果を表2に示す。
なお、具体的には、次のようにして測定した。
〔ガラス転移温度Tg、融点Tm、及び結晶化度〕
実施例および比較例の各高分子圧電材料を、それぞれ10mg正確に秤量し、示差走査型熱量計(パーキンエルマー社製DSC−1)を用い、昇温速度10℃/分の条件で測定し、融解吸熱曲線を得た。得られた融解吸熱曲線から融点Tm、ガラス転移温度Tg、比熱容量Cpおよび結晶化度を得た。
〔比熱容量Cp〕
実施例および比較例の各高分子圧電材料を上記示差走査型熱量計で測定したときに、1g当たり1℃上昇させるのに要した熱量を測定した。測定条件はTg、Tmと同様の条件で測定した。
〔寸法変化率〕
実施例および比較例の各高分子圧電材料を、MD方向に50mm、TD方向に50mmカットして、50mm×50mmの矩形フィルムを切り出した。このフィルムを85℃にセットしたオーブン中に吊り下げて、30分間アニール処理(以下、この寸法変化率評価のためのアニール処理を「アニールB」とする)した。その後、アニールB前後のMD方向のフィルム矩形辺長の寸法をノギスで測定し、下式に従い、寸法変化率(%)を算出し、その絶対値により、寸法安定性を評価した。寸法変化率が小さいほど寸法安定性が高いことを示す。
寸法変化率(%)=100×((アニールB前のMD方向の辺長)−(アニールB後のMD方向の辺長さ))/(アニールB前のMD方向の辺長)
〔内部ヘイズ〕
本願でいう「内部ヘイズ」とは本発明の高分子圧電材料の内部へイズのことをいい、測定方法は一般的な方法で測定される。
具体的には、実施例および比較例の各高分子圧電材料の内部ヘイズ(以下、内部ヘイズ(H1)ともいう)は、厚さ方向の光透過性を測定することにより、測定した。より詳細には、予めガラス板2枚の間に、シリコンオイル(信越化学工業株式会社製信越シリコーン(商標)、型番:KF96−100CS)のみを挟んでヘイズ(H2)を測定し、次にシリコンオイルで表面を均一に塗らしたフィルム(高分子圧電材料)を、ガラス板2枚で挟んでヘイズ(H3)を測定し、下記式のようにこれらの差をとることで、実施例および比較例の各高分子圧電材料の内部ヘイズ(H1)を得た。
内部ヘイズ(H1)=ヘイズ(H3)−ヘイズ(H2)
上記式におけるヘイズ(H2)及びヘイズ(H3)は、それぞれ、下記測定条件下で下記装置を用い、厚さ方向の光透過性を測定することにより測定した。
測定装置:東京電色社製、HAZE METER TC−HIIIDPK
試料サイズ:幅30mm×長さ30mm(厚さは表2参照)
測定条件:JIS−K7105に準拠
測定温度:室温(25℃)
〔圧電定数d14(変位法による)〕
両面にAgの導電層が形成された40mm×40mmの試験片(高分子圧電材料)を、高分子圧電材料の延伸方向(MD方向)に対して45°なす方向に32mm、45°なす方向に直交する方向に5mmにカットして、32mm×5mmの矩形のフィルムを切り出した。これを、圧電定数測定用サンプルとした。得られたサンプルに、10Hz、300Vppの正弦波の交流電圧を印加したときの、フィルムの変位の最大値と最小値の差分距離を、キーエンス社製レーザ分光干渉型変位計SI−1000により計測した。計測した、変位量(mp−p)を、フィルムの基準長30mmで割った値を歪量とし、この歪量をフィルムに印加した電界強度((印加電圧(V))/(フィルム厚))で割った値に2を乗じた値を圧電定数d14(pm/V)とした。
〔規格化分子配向MORc〕
実施例および比較例の各高分子圧電材料について、規格化分子配向MORcを、王子計測機器株式会社製マイクロ波方式分子配向計MOA−6000により測定した。基準厚さtcは、50μmに設定した。
〔縦裂性評価〕
実施例および比較例の各高分子圧電材料について、JIS K 7128−3の「プラスチックーフィルム及びシートの引裂強さ」に記載の試験方法「直角形引裂法」に準拠し、MD方向の引裂強さ及びTD方向の引裂強さをそれぞれ測定することにより、縦裂性評価を行った。
縦裂性評価において、MD方向の引裂強さ及びTD方向の引裂強さがいずれも大きいことが、縦裂強度の低下が抑制されていることを意味している。換言すれば、MD方向の引裂強さ及びTD方向の引裂強さの少なくとも一方が低いことが、縦裂強度が低下したことを意味している。
引裂強さの測定において、引張試験機のクロスヘッド速度は毎分200mmとした。
引裂強さ(T)は下式より算出した。
T=F/d
上記式において、Tは引裂強さ(N/mm)、Fは最大引裂荷重、dは試験片の厚さ(mm)を表す。

表2に示すように、実施例1〜8では、比較例1と比較して、縦裂強度(ここでは、MD方向の引裂強さ)の低下が抑制された。
また、実施例1〜8では、透明性に優れ(即ち、内部ヘイズが低く)、かつ、高い圧電定数(1pm/V以上)を示した。
一方、比較例2では、実施例1〜8と圧電定数はほぼ同等であったが、実施例1〜8と比較して縦裂強度(ここでは、MD方向の引裂強さ)が低下した。
なお、表2において、「N.D.」は、測定を省略したために測定結果が無いことを示している。
日本出願2011−272708の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (13)

  1. 重量平均分子量が5万〜100万である光学活性を有するヘリカルキラル高分子を含み、DSC法で得られる結晶化度が20%〜80%であり、かつ、マイクロ波透過型分子配向計で測定される基準厚さを50μmとしたときの規格化分子配向MORcと前記結晶化度との積が25〜250である、高分子圧電材料。
  2. 前記結晶化度が40.8%以下である、請求項1に記載の高分子圧電材料。
  3. 可視光線に対する内部ヘイズが40%以下である、請求項1または請求項2に記載の高分子圧電材料。
  4. 前記規格化分子配向MORcが1.0〜15.0である、請求項1〜請求項3のいずれか1項に記載の高分子圧電材料。
  5. 25℃において変位法で測定した圧電定数d14が1pm/V以上である、請求項1〜請求項4のいずれか1項に記載の高分子圧電材料。
  6. 前記ヘリカルキラル高分子が、下記式(1)で表される繰り返し単位を含む主鎖を有するポリ乳酸系高分子である、請求項1〜請求項5のいずれか1項に記載の高分子圧電材料。
  7. 前記ヘリカルキラル高分子は、光学純度が95.00%ee以上である、請求項1〜請求項6のいずれか1項に記載の高分子圧電材料。
  8. 前記ヘリカルキラル高分子の含有量が80質量%以上である、請求項1〜請求項7のいずれか1項に記載の高分子圧電材料。
  9. 可視光線に対する内部ヘイズが1.0%以下である、請求項1〜請求項8のいずれか1項に記載の高分子圧電材料。
  10. 請求項1〜請求項9のいずれか1項に記載の高分子圧電材料を製造する方法であって、
    前記ヘリカルキラル高分子を含む非晶状態のシートを加熱して予備結晶化シートを得る第一の工程と、前記予備結晶化シートを同時に2軸方向に延伸する第二の工程と、を含む、高分子圧電材料の製造方法。
  11. 前記予備結晶化シートを得る第一の工程において、下記式で表される温度Tにおいて、結晶化度が1%〜70%になるまで前記非晶状態のシートを加熱する、請求項10に記載の高分子圧電材料の製造方法。
    Tg−40℃≦T≦Tg+40℃
    (Tgは、前記ヘリカルキラル高分子のガラス転移温度を表す。)
  12. 前記予備結晶化シートを得る第一の工程において、前記ヘリカルキラル高分子としてポリ乳酸を含む非晶状態のシートを20℃〜170℃で、5秒〜60分加熱する、請求項10または請求項11に記載の高分子圧電材料の製造方法。
  13. 前記第二の工程の後に、アニール処理をする、請求項10〜請求項12のいずれか1項に記載の高分子圧電材料の製造方法。
JP2013520315A 2011-12-13 2012-12-12 高分子圧電材料、およびその製造方法 Active JP5313414B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013520315A JP5313414B1 (ja) 2011-12-13 2012-12-12 高分子圧電材料、およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011272708 2011-12-13
JP2011272708 2011-12-13
JP2013520315A JP5313414B1 (ja) 2011-12-13 2012-12-12 高分子圧電材料、およびその製造方法
PCT/JP2012/082237 WO2013089148A1 (ja) 2011-12-13 2012-12-12 高分子圧電材料、およびその製造方法

Publications (2)

Publication Number Publication Date
JP5313414B1 true JP5313414B1 (ja) 2013-10-09
JPWO2013089148A1 JPWO2013089148A1 (ja) 2015-04-27

Family

ID=48612591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013520315A Active JP5313414B1 (ja) 2011-12-13 2012-12-12 高分子圧電材料、およびその製造方法

Country Status (6)

Country Link
US (2) US20140051825A1 (ja)
EP (1) EP2662910B1 (ja)
JP (1) JP5313414B1 (ja)
KR (1) KR101489115B1 (ja)
CN (1) CN103493235B (ja)
WO (1) WO2013089148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083676A1 (ja) * 2013-12-02 2015-06-11 株式会社村田製作所 押圧センサ

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101789896B1 (ko) * 2013-02-01 2017-10-25 미쯔이가가꾸가부시끼가이샤 표시 장치 및 적층 광학 필름
KR101743379B1 (ko) * 2013-04-10 2017-06-02 미쯔이가가꾸가부시끼가이샤 적층체
JP6275135B2 (ja) * 2013-07-04 2018-02-07 三井化学株式会社 フィルム及び高分子圧電材料
KR20160007623A (ko) * 2013-07-19 2016-01-20 미쯔이가가꾸가부시끼가이샤 결정화 고분자 필름 및 그 제조 방법
US20160204337A1 (en) * 2013-09-02 2016-07-14 Mitsui Chemicals, Inc. Layered body
CN105556268B (zh) 2013-10-07 2018-05-25 三井化学株式会社 按压检测装置和按压检测触摸面板
US20160284977A1 (en) * 2013-11-26 2016-09-29 Mitsui Chemicals, Inc. Polymeric piezoelectric material and method of producing the same
JP2015198154A (ja) * 2014-04-01 2015-11-09 帝人株式会社 圧電素子
JP6113926B2 (ja) * 2014-07-02 2017-04-12 三井化学株式会社 高分子圧電材料、積層体、高分子圧電材料の製造方法および積層体の製造方法
WO2016027587A1 (ja) * 2014-08-22 2016-02-25 三井化学株式会社 高分子圧電フィルム
JP6300948B2 (ja) * 2014-10-27 2018-03-28 三井化学株式会社 高分子圧電フィルム
WO2016076071A1 (ja) * 2014-11-14 2016-05-19 三井化学株式会社 高分子圧電フィルム
EP3216596A1 (en) * 2014-12-17 2017-09-13 Mitsui Chemicals, Inc. Laminated body
CN107251252B (zh) * 2015-02-13 2019-11-29 三井化学株式会社 高分子压电膜及其制造方法
US11171282B2 (en) * 2015-10-06 2021-11-09 Mitsui Chemicals, Inc. Elongated plate-form piezoelectric body and production method therefor, layered body and production method therefor, fabric, garment, and biological information acquisition device
US11723279B2 (en) 2016-06-06 2023-08-08 Mitsui Chemicals, Inc. Piezoelectric substrate, piezoelectric woven fabric, piezoelectric knitted fabric, piezoelectric device, force sensor, and actuator
US11367827B2 (en) 2017-04-20 2022-06-21 Mitsui Chemicals, Inc. Piezoelectric substrate, force sensor, and actuator
CN111051835A (zh) * 2017-08-09 2020-04-21 三井化学株式会社 传感器组件及具有其的压力分布传感器
JP6995669B2 (ja) 2018-03-05 2022-01-14 株式会社クレハ 圧電体フィルム、圧電体フィルムの製造方法、および、圧電体デバイス
CN112585504A (zh) 2018-09-19 2021-03-30 三井化学株式会社 人体检测装置、床装置及人体检测系统
CN110175839B (zh) * 2019-05-31 2023-01-20 中国银联股份有限公司 支付信息处理方法、装置、设备及计算机可读存储介质
WO2022065454A1 (ja) 2020-09-25 2022-03-31 三井化学株式会社 圧電デバイス、力センサー、及び生体情報取得デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142184A (ja) * 1992-11-06 1994-05-24 Takiron Co Ltd 骨形成促進用フィルム
JP2005213376A (ja) * 2004-01-29 2005-08-11 Mitsui Chemicals Inc ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料
WO2010104196A1 (ja) * 2009-03-13 2010-09-16 三井化学株式会社 高分子圧電材料、及びその製造方法、並びに、圧電素子
JP2011117992A (ja) * 2009-11-30 2011-06-16 Mitsui Chemicals Inc 偏光性拡散フィルム、偏光性拡散フィルムの製造方法、および偏光性拡散フィルムを含む液晶表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668182A (en) 1950-07-13 1954-02-02 William T Miller Polyunsaturated fluoroolefins
US4057357A (en) 1975-11-24 1977-11-08 Mueller Co. Chipless shell cutter for large diameter plastic pipe
JPS5996123A (ja) 1982-11-25 1984-06-02 Showa Highpolymer Co Ltd 高分子量ポリラクタイドの製造方法
JP3074404B2 (ja) 1991-07-31 2000-08-07 タキロン株式会社 高分子圧電材
FI930259A (fi) 1992-11-06 1994-05-07 Takiron Co Polymert piezoelektriskt material
JP3347406B2 (ja) 1993-07-22 2002-11-20 三井化学株式会社 ポリヒドロキシカルボン酸の製造方法
JP4804179B2 (ja) * 2005-03-10 2011-11-02 三井化学東セロ株式会社 ポリ乳酸系組成物、その組成物からなる成形品
JP5096707B2 (ja) 2005-08-11 2012-12-12 株式会社日本触媒 異物が少なくゲル化し難いラクトン環含有重合体およびその用途
KR100948871B1 (ko) * 2005-08-11 2010-03-24 니폰 쇼쿠바이 컴파니 리미티드 이물이 적고 겔화되기 어려운 락톤환 함유 중합체 및 그용도
JP6082511B2 (ja) * 2010-05-14 2017-02-15 帝人株式会社 積層フィルム
KR101408582B1 (ko) 2010-08-25 2014-06-17 어 스쿨 코포레이션 칸사이 유니버시티 고분자 압전 재료 및 그의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142184A (ja) * 1992-11-06 1994-05-24 Takiron Co Ltd 骨形成促進用フィルム
JP2005213376A (ja) * 2004-01-29 2005-08-11 Mitsui Chemicals Inc ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料
WO2010104196A1 (ja) * 2009-03-13 2010-09-16 三井化学株式会社 高分子圧電材料、及びその製造方法、並びに、圧電素子
JP2011117992A (ja) * 2009-11-30 2011-06-16 Mitsui Chemicals Inc 偏光性拡散フィルム、偏光性拡散フィルムの製造方法、および偏光性拡散フィルムを含む液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083676A1 (ja) * 2013-12-02 2015-06-11 株式会社村田製作所 押圧センサ
JP6041060B2 (ja) * 2013-12-02 2016-12-07 株式会社村田製作所 押圧センサ

Also Published As

Publication number Publication date
JPWO2013089148A1 (ja) 2015-04-27
US20160380180A1 (en) 2016-12-29
CN103493235A (zh) 2014-01-01
US20140051825A1 (en) 2014-02-20
KR101489115B1 (ko) 2015-02-02
EP2662910A1 (en) 2013-11-13
EP2662910B1 (en) 2017-02-01
US9905750B2 (en) 2018-02-27
CN103493235B (zh) 2015-09-02
KR20140003616A (ko) 2014-01-09
EP2662910A4 (en) 2014-11-19
WO2013089148A1 (ja) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5313414B1 (ja) 高分子圧電材料、およびその製造方法
JP4934235B2 (ja) 高分子圧電材料、およびその製造方法
JP5259026B1 (ja) 高分子圧電材料、およびその製造方法
JP6275135B2 (ja) フィルム及び高分子圧電材料
JP6302935B2 (ja) 高分子圧電材料及びその製造方法
JP6271121B2 (ja) 高分子圧電材料及びその製造方法並びに高分子圧電材料用組成物
TWI687450B (zh) 高分子壓電膜及其製造方法
JP2014093487A (ja) 高分子圧電材料、およびその製造方法
JP6300948B2 (ja) 高分子圧電フィルム
JP5940730B2 (ja) 結晶化高分子フィルム及びその製造方法
JP2016138239A (ja) 高分子圧電材料及びその製造方法
JP2017191951A (ja) 高分子圧電材料及びその製造方法並びに高分子圧電材料用組成物
JP2019019277A (ja) 高分子圧電材料、及びその製造方法
JP2017126615A (ja) 高分子圧電材料
JP2016172797A (ja) 高分子圧電材料、およびその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Ref document number: 5313414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250