JP5298879B2 - 液体吐出装置、及び液体吐出方法 - Google Patents

液体吐出装置、及び液体吐出方法 Download PDF

Info

Publication number
JP5298879B2
JP5298879B2 JP2009012370A JP2009012370A JP5298879B2 JP 5298879 B2 JP5298879 B2 JP 5298879B2 JP 2009012370 A JP2009012370 A JP 2009012370A JP 2009012370 A JP2009012370 A JP 2009012370A JP 5298879 B2 JP5298879 B2 JP 5298879B2
Authority
JP
Japan
Prior art keywords
dot
region
nozzle
irradiation
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009012370A
Other languages
English (en)
Other versions
JP2010167677A (ja
Inventor
豊彦 蜜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009012370A priority Critical patent/JP5298879B2/ja
Publication of JP2010167677A publication Critical patent/JP2010167677A/ja
Application granted granted Critical
Publication of JP5298879B2 publication Critical patent/JP5298879B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液体吐出装置、及び液体吐出方法に関する。
電磁波(例えば紫外線(UV))の照射によって硬化する液体(例えばUVインク)を用いて印刷を行なう液体吐出装置が知られている。このような液体吐出装置では、ノズルから媒体に液体を吐出した後、媒体に形成されたドットに電磁波を照射する。こうすることにより、ドットが硬化して媒体に定着するので、液体を吸収しにくい媒体に対しても良好な印刷を行うことができる(例えば特許文献1参照)。
特開2000-158793号公報
電磁波を照射する照射部(例えばUV光源)がノズル列と並列して設けられることがある。このような構成において照射部の電磁波の照射量が均一の場合、媒体を搬送方向に搬送する搬送動作と、移動するノズルから液体を吐出してドットを形成するとともに、このドットに照射部から電磁波を照射するドット形成動作とを繰り返すと、ドットに応じて電磁波の照射量が大きく異なってしまうことがある。この結果、ドットの形状が不均一になってしまい、画質を損なうことがある。
そこで、本発明は、各ドットに照射される電磁波の照射量のばらつきを抑制することを目的とする。
上記目的を達成するための主たる発明は、
媒体を搬送方向に搬送する搬送部と、
電磁波の照射によって硬化する液体を吐出する複数のノズルが前記搬送方向に沿って配置されたノズル列であって、前記搬送方向と交差する移動方向に移動するノズル列と、
前記ノズル列とともに前記移動方向に移動し、前記ノズルから吐出された前記液体に対して前記電磁波を照射する仮硬化用照射部と、
前記仮硬化用照射部よりも前記搬送方向の下流側に配置され、前記仮硬化用照射部よりも多い照射量の前記電磁波を照射する本硬化用照射部であって、前記移動方向の長さが前記仮硬化用照射部の前記移動方向の長さよりも長く、かつ前記搬送方向の長さが前記仮硬化用照射部の前記搬送方向の長さよりも短い本硬化用照射部と、を有し、
前記搬送部によって前記媒体を搬送方向に搬送する搬送動作と、前記ノズル列を移動させつつ前記ノズルから前記液体を吐出させることによって前記媒体にドットを形成するドット形成動作を繰り返す液体吐出装置であって、
或るドット形成動作の際に、前記ノズル列の一部のノズルである第1ノズルによって前記媒体に第1ドットを形成するとともに、前記仮硬化用照射部の第1領域から前記第1ドットに前記電磁波を照射し、且つ
前記或るドット形成動作の後の別のドット形成動作の際に、前記第1ノズルよりも前記搬送方向下流側の一部のノズルである第2ノズルによって前記媒体に第2ドットを形成するとともに、前記仮硬化用照射部のうち前記第1領域よりも前記搬送方向下流側の第2領域から前記第1ドット及び前記第2ドットに前記第1領域よりも照射量の多い電磁波を照射する、
ことを特徴とする液体吐出装置である。
本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。
プリンターの構成を示すブロック図である。 プリンターのヘッド周辺の概略図である。 図3A及び図3Bは、プリンターの横断面図である。 ヘッドの構成の説明図である。 本実施形態の参考例の説明図である。 図5の領域aにおける各ドットの照射回数の説明図である。 図7A及び図7Bは、仮硬化の際のUVの総照射量とドットの形状との関係の説明図である。 本実施形態の説明図である。 図9A〜図9Dは、領域aにおけるドット形成及びUV照射状況の説明図である。 第2実施形態の説明図である。 図11A〜図11Hは、図10の領域bにおけるドット形成及びUV照射状況の説明図である。 図10の領域bにおける各ドットの照射回数の説明図である。 第3実施形態の説明図である。 図13の点線で囲まれた部分における各ドットの照射回数の説明図である。 仮硬化用照射部42aの構成の一例である。
===開示の概要===
本明細書及び添付図面の記載により、少なくとも、以下の事項が明らかとなる。
(A)媒体を搬送方向に搬送する搬送部と、
(B)電磁波の照射によって硬化する液体を吐出する複数のノズルが前記搬送方向に沿って配置されたノズル列であって、前記搬送方向と交差する移動方向に移動するノズル列と、
(C)前記ノズル列とともに前記移動方向に移動し前記電磁波を照射する照射部と、
(D)前記搬送部によって前記媒体を搬送方向に搬送する搬送動作と、前記ノズル列を移動させつつ前記ノズルから前記液体を吐出させることによって前記媒体にドットを形成するドット形成動作を繰り返す液体吐出装置であって、
(E)或るドット形成動作の際に、前記ノズル列の一部のノズルである第1ノズルによって前記媒体に第1ドットを形成するとともに、前記第1ノズルと前記移動方向に並ぶ位置にある前記照射部の第1領域から前記第1ドットに前記電磁波を照射し、且つ
前記或るドット形成動作の後の別のドット形成動作の際に、前記第1ノズルよりも前記搬送方向下流側の一部のノズルである第2ノズルによって、前記媒体に第2ドットを形成するとともに、前記第2ノズルと前記移動方向に並ぶ位置にある前記照射部の第2領域から前記第1ドット及び前記第2ドットに前記電磁波を照射する場合に、
前記第2領域から照射される前記電磁波の照射量が、前記第1領域から照射される前記電磁波の照射量よりも多いことを特徴とする液体吐出装置が明らかとなる。
このような液体吐出装置によれは、第1ドットと第2ドットに照射される電磁波のばらつきを抑制することができ、画質の劣化を防止することができる。
かかる液体吐出装置であって、前記搬送動作の搬送量に応じて、前記第1領域及び前記第2領域の範囲を設定する、ことが望ましい。
このような液体吐出装置によれば、ドット毎の照射量を調整しやすくなり、照射量の差をより縮小できる。
かかる液体吐出装置であって、前記或るドット形成動作と前記別のドット形成動作との間のドット形成動作において、前記第1ノズルと前記第2ノズルの間の第3ノズルによって前記媒体に第3ドットを形成するとともに、前記第3ノズルと前記移動方向に並ぶ位置にある前記照射部の第3領域から前記第1ドット及び前記第3ドットに前記電磁波を照射し、且つ、前記別のドット形成動作の際に、前記第2照射部から前記第1ドット、前記第2ドット、及び前記第3ドットに前記電磁波を照射する場合、前記第3領域から照射される前記電磁波の照射量が、前記第1領域から照射される前記電磁波の照射量と等しくなるようにしてもよい。また、前記第3領域から照射される前記電磁波の照射量が、前記第1領域から照射される前記電磁波の照射量よりも多く、前記第2領域から照射される前記電磁波の照射量よりも少なくなるようにしてもよい。
このような液体吐出装置によれば、各ドットに最後に照射されるUVの量が多くなるので、ドット毎の照射量の差を縮小できる。
かかる液体吐出装置は、複数回の前記ドット形成動作によって、前記移動方向にドットが並ぶドット列が形成される場合に、ラスタラインを構成するドットの照射量の差を縮小できるのでより効果的である。
かかる液体吐出装置であって、前記ノズル列よりも前記搬送方向の下流側に設けられ、前記媒体に形成された各ドットに前記照射部の各領域の照射量よりも多い照射量の前記電磁波を照射する第2照射部を有する、ことが望ましい。
このような液体吐出装置によれば、各ドットの照射量の差を縮小させた後、最終的な照射(硬化)を行なうことができる。よって、画質の差を低減できる。
また、(A)電磁波の照射によって硬化する液体を吐出する複数のノズルが媒体の搬送方向に沿って配置されたノズル列であって、前記搬送方向と交差する移動方向に移動するノズル列と、前記ノズル列とともに前記移動方向に移動し前記電磁波を照射する照射部と、を備える液体吐出装置によって媒体に画像を形成する液体吐出方法であって、
(B)前記ノズル列の一部のノズルである第1ノズルから前記液体を吐出することによって前記媒体に第1ドットを形成することと、
(C)前記第1ノズルと前記移動方向に並ぶ位置にある前記照射部の第1領域から前記第1ドットに前記電磁波を照射することと、
(D)前記媒体を前記搬送方向に搬送する搬送動作を行うことと、
(E)前記搬送動作の後、前記第1ノズルよりも前記搬送方向下流側の一部のノズルである第2ノズルから前記液体を吐出することによって、前記媒体に第2ドットを形成することと、
(F)前記第2ノズルと前記移動方向に並ぶ位置にある前記照射部の第2領域から前記第1ドット及び前記第2ドットに前記電磁波を照射することと、
を有し、
(G)前記第2領域から照射される前記電磁波の照射量が、前記第1領域から照射される前記電磁波の照射量よりも多い
ことを特徴とする液体吐出方法が明らかとなる。
以下の実施形態では、液体吐出装置としてインクジェットプリンター(以下、プリンター1ともいう)を例に挙げて説明する。
===第1実施形態===
<プリンターの構成について>
以下、図1、図2、図3A、及び図3Bを参照しながら本実施形態のプリンター1について説明する。図1は、プリンター1の構成を示すブロック図である。図2は、プリンター1のヘッド周辺の概略図である。図3A及び図3Bは、プリンター1の横断面図である。図3Aは図2のA−A断面に相当し、図3Bは図2のB−B断面に相当する。
本実施形態のプリンター1は、紙、布、フィルムシート等の媒体に向けて、液体の一例として、紫外線(以下、UV)の照射によって硬化する紫外線硬化型インク(以下、UVインク)を吐出することにより、媒体に画像を印刷する装置である。UVインクは、紫外線硬化樹脂を含むインクであり、UVの照射を受けると紫外線硬化樹脂において光重合反応が起こることにより硬化する。なお、本実施形態のプリンター1は、CMYKの4色のUVインクを用いて画像を印刷する。
プリンター1は、搬送ユニット10、キャリッジユニット20、ヘッドユニット30、照射ユニット40、検出器群50、及びコントローラー60を有する。外部装置であるコンピューター110から印刷データを受信したプリンター1は、コントローラー60によって各ユニット(搬送ユニット10、キャリッジユニット20、ヘッドユニット30、照射ユニット40)を制御する。コントローラー60は、コンピューター110から受信した印刷データに基づいて、各ユニットを制御し、媒体に画像を印刷する。プリンター1内の状況は検出器群50によって監視されており、検出器群50は、検出結果をコントローラー60に出力する。コントローラー60は、検出器群50から出力された検出結果に基づいて、各ユニットを制御する。
搬送ユニット10は、媒体(例えば、紙)を所定の方向(以下、搬送方向という)に搬送させるためのものである。この搬送ユニット10は、給紙ローラー11と、搬送モータ(不図示)と、搬送ローラー13と、プラテン14と、排紙ローラー15とを有する。給紙ローラー11は、紙挿入口に挿入された媒体をプリンター内に給紙するためのローラーである。搬送ローラー13は、給紙ローラー11によって給紙された媒体を印刷可能な領域まで搬送するローラーであり、搬送モーターによって駆動される。プラテン14は、印刷中の媒体を支持する。排紙ローラー15は、媒体をプリンターの外部に排出するローラーであり、印刷可能な領域に対して搬送方向下流側に設けられている。
キャリッジユニット20は、ヘッドを所定の方向(以下、移動方向という)に移動(「走査」とも呼ばれる)させるためのものである。キャリッジユニット20は、キャリッジ21と、キャリッジモーター(不図示)とを有する。また、キャリッジ21は、UVインクを収容するインクカートリッジを着脱可能に保持している。そして、キャリッジ21は、後述する搬送方向と交差したガイド軸24に支持された状態で、キャリッジモーターによりガイド軸24に沿って往復移動する。
ヘッドユニット30は、媒体に液体(本実施形態ではUVインク)を吐出するためのものである。ヘッドユニット30は、複数のノズルを有するヘッド31を備える。このヘッド31はキャリッジ21に設けられているため、キャリッジ21が移動方向に移動すると、ヘッド31も移動方向に移動する。そして、ヘッド31が移動方向に移動中にUVインクを断続的に吐出することによって、移動方向に沿ったドットライン(ラスタライン)が媒体に形成される。なお、以下、ヘッド31の移動において、図2の一端側から他端側に向かって移動することを往動と呼び、他端側から一端側に移動することを復動と呼ぶ。本実施形態では、往動の期間中にUVインクの吐出が行われるが、復動の期間中にはUVインクの吐出は行われない。
なお、ヘッド31の構成については、後述する。
照射ユニット40は、媒体に着弾したUVインクに向けてUVを照射するものである。媒体上に形成されたドットは、照射ユニット40からのUVの照射を受けることにより、硬化する。本実施形態の照射ユニット40は、仮硬化用照射部42a、42bと本硬化用照射部43とを備えている。本実施形態において、仮硬化用照射部42a、42bは、照射部に相当し、本硬化用照射部43は第2照射部に相当する。なお、仮硬化用照射部42a、42b及び本硬化用照射部43の詳細については後述する。
検出器群50には、リニア式エンコーダー(不図示)、ロータリー式エンコーダー(不図示)、紙検出センサー53、および光学センサー54等が含まれる。リニア式エンコーダーは、キャリッジ21の移動方向の位置を検出する。ロータリー式エンコーダーは、搬送ローラー13の回転量を検出する。紙検出センサー53は、給紙中の紙の先端の位置を検出する。光学センサー54は、キャリッジ21に取付けられている発光部と受光部により、紙の有無を検出する。そして、光学センサー54は、キャリッジ21によって移動しながら紙の端部の位置を検出し、紙の幅を検出することができる。また、光学センサー54は、状況に応じて、紙の先端(搬送方向下流側の端部であり、上端ともいう)・後端(搬送方向上流側の端部であり、下端ともいう)も検出できる。
コントローラー60は、プリンター1の制御を行うための制御ユニット(制御部)である。コントローラー60は、インターフェイス部61と、CPU62と、メモリー63と、ユニット制御回路64とを有する。インターフェイス部61は、外部装置であるコンピューター110とプリンター1との間でデータの送受信を行う。CPU62は、プリンター1全体の制御を行うための演算処理装置である。メモリー63は、CPU62のプログラムを格納する領域や作業領域等を確保するためのものであり、RAM、EEPROM等の記憶素子を有する。CPU62は、メモリー63に格納されているプログラムに従って、ユニット制御回路64を介して各ユニットを制御する。
印刷を行うとき、コントローラー60は、後述するように移動方向に移動中のヘッド31からUVインクを吐出させるドット形成動作と、搬送方向に紙を搬送する搬送動作とを交互に繰り返し、複数のドットから構成される画像を紙に印刷する。なお、以下、ドット形成動作のことを「パス」と呼ぶ。また、n回目のパスのことをパスnと呼ぶ。
<ヘッド31の構成について>
図4は、ヘッド31の構成の一例の説明図である。ヘッド31の下面には、図4に示すように、ブラックインクノズル群Kと、シアンインクノズル列Cと、マゼンダインクノズル列Mと、イエローインクノズル列Yとが形成されている。各ノズル列は、各色のUVインクを吐出するための吐出口であるノズルを複数個(本実施形態では180個)備えている。
各ノズル列の複数のノズルは、搬送方向に沿って一定の間隔(ノズルピッチ:k・D)でそれぞれ整列している。ここで、Dは、搬送方向における最小のドットピッチ(つまり、媒体に形成されるドットの最高解像度での間隔)である。また、kは、1以上の整数である。例えば、ノズルピッチが180dpi(1/180インチ)であって、搬送方向のドットピッチが720dpi(1/720インチ)である場合、k=4である。
各ノズル列のノズルには、搬送方向下流側のノズルほど若い番号が付されている。各ノズルには、各ノズルからUVインクを吐出させるための駆動素子としてピエゾ素子(不図示)が設けられている。このピエゾ素子を駆動信号によって駆動させることにより、前記各ノズルから滴状のUVインクが吐出される。吐出されたUVインクは、媒体に着弾してドットを形成する。
<仮硬化及び本硬化について>
本実施形態では、媒体に着弾したUVインクにUVを照射することで、ドットを硬化させている。本実施形態のプリンター1では、照射ユニット40として、UVインクの仮硬化用のUV照射を行なう仮硬化用照射部42a、42bと、本硬化用のUV照射行なう本硬化用照射部43を備えており、2段階の硬化を行なっている。なお、仮硬化とは、媒体に着弾したUVインクの流動(ドットの広がり)を抑えるためや、あるいは、ドット間のインクの滲みを防止するためにドットの表面部分を硬化するものであり、本硬化とは、UVインクを完全に硬化させるためのものである。従って、本硬化の方がUVの照射エネルギーが大きい(すなわち照射量が多い)。仮硬化用照射部42a、42b及び本硬化用照射部43は、それぞれ媒体に向けてUVを照射するための光源を備えている。
仮硬化用照射部42a及び42bは、図2及び図4に示すように、それぞれキャリッジ21に搭載されている。仮硬化用照射部42aは、キャリッジ21の移動方向の一端側に設けられ、仮硬化用照射部42bは、キャリッジ21の移動方向の他端側に設けられている。したがって、キャリッジ21の移動に伴って、ヘッド31と仮硬化用照射部42a、42bとは一体的に移動方向に移動する。換言すると、ヘッド31の各色のノズル列が往復移動する際、仮硬化用照射部42a、42bは、各色のノズル列に対する相対位置を維持しながら往復移動する。この際に仮硬化用照射部42a、42bから、媒体に向けてUVが照射される。具体的には、往動の期間には仮硬化用照射部42aからUVが照射され、復動の期間には仮硬化用照射部42bからUVが照射される。なお、以下の実施形態では、説明の都合上、往動の期間のみに仮硬化用照射部42aからUVが照射され、仮硬化照射部42bからはUVが照射されないこととしている。このように仮硬化は、ヘッド31が移動方向に移動する期間に行われるものであり、ドットを形成するのと同じパスにおいて行なわれる。なお、仮硬化用照射部42a、42bの光源は、それぞれ仮硬化用照射部42a、42b内に収容されることによりヘッド31から隔離されている。これにより、光源から照射されるUVがヘッド31の下面へ漏れるのを防ぎ、以って、当該下面に形成された各ノズルの開口付近でUVインクが硬化すること(ノズルの目詰まり)を防止している。
本硬化用照射部43は、ヘッド31よりも搬送方向下流側に設けられており、移動方向の長さが印刷対象となる媒体の幅よりも長くなっている。そして、本硬化用照射部43は、移動することなく媒体に向けてUVを照射する。この構成により、パスによってドットの形成された媒体が、搬送動作によって本硬化用照射部43の下まで搬送されると、本硬化用照射部43によるUVの照射を受けるようになっている。
なお、本実施形態では、仮硬化用照射部42a、42bの光源として発光ダイオード(LED:Light Emitting Diode)を用いている。LEDは入力電流の大きさを制御することによって、照射エネルギーを容易に変更することが可能である。また、本硬化用照射部43の光源として、ランプ(メタルハライドランプ、水銀ランプなど)を用いている。
<参考例>
参考例として、仮硬化用照射部42aがパスの際に均一にUVを照射する場合について説明する。
図5は、本実施形態の参考例の説明図である。この図5では、パス1〜パス3におけるヘッド(ノズル列)及び仮硬化用照射部42aの位置と、ドットの形成の様子を示している。
なお、図5では、説明の都合上複数あるノズル列の内の一つのノズル列のみを示し、さらにノズル列のノズル数を8個にしている。
図の左側はパス1〜パス3におけるヘッド(ノズル列)の位置を示している。図中黒丸で示されるノズルは、インクを吐出可能なノズルである。一方、白丸で示されるノズルは、インクを吐出不可のノズルである。また、説明の都合上、ヘッド(ノズル列)が紙に対して移動しているように描かれているが、実際には紙が搬送方向に移動(搬送)されている。
また、図の右側は、パスによって紙に形成されたドットを示している。黒丸で示されるドットは、最後のパスで形成されたドットであり、白丸で示されるドットは、それ以前のパスで形成されたドットである。つまり、この図の場合、白丸はパス1又はパス2で形成されたドットであり、黒丸はパス3で形成されたドットである。
なお、この参考例では、インターレース印刷を行っている。「インターレース印刷」とは、kが2以上であって、1回のパスで形成されるラスタラインの間に形成されないラスタラインが挟まれるような印刷方法を意味する。例えば、図5では、1回のパスで形成されるラスタラインの間に、1本のラスタラインが挟まれている。すなわち、この場合k=2である。
インターレース印刷では、紙が搬送方向に一定の搬送量Fで搬送される毎に、各ノズルが、その直前のパスで形成されたラスタラインのすぐ上のラスタラインを形成する。このように、搬送量を一定にして印刷を行うためには、(1)インクを吐出可能なノズル数N整数)はkと互いに素の関係にあること、(2)搬送量FはN・Dに設定されることが条件となる。
同図では、ノズル列は搬送方向に沿って配列された8個のノズルを有する。ノズル列のノズルピッチkは2なので、インターレース印刷を行うために条件である「Nとkが互いに素の関係」を満たすため、全てのノズルは用いずに、7個のノズル(ノズル#1〜ノズルを用いる。また、7個のノズルが用いられるため、紙は7・Dの搬送量にて搬送される。その結果、180dpi(2・D)のノズルピッチのノズル列を用いて、360dpi(=D)のドット間隔にて紙にドットが形成される。なお、実際のノズル数(180個
)は、7個よりも多いので実際の搬送量(179・D)は、7・Dよりも多くなる。
インターレース印刷の場合、ノズルピッチ幅の連続するラスタラインが完成するためにはk回のパスが必要になる。例えば180dpiのノズルピッチのノズル列を用いて360dpiのドット間隔で連続する2つのラスタラインが完成するには2回のパスが必要になる。
次に、図5を参照しつつ仮硬化用照射部42aとドットとの関係について説明する。なお、仮硬化用照射部42aは、キャリッジ21に設けられているので、キャリッジ21が移動方向に移動すると、キャリッジ21に設けられたヘッド31及び仮硬化用照射部42aも同時に移動方向に移動する。また、各パスにおいて、仮硬化用照射部42aと、各ノズル列との相対位置は変わらない
パスの際にコントローラー60は、キャリッジモーター(不図示)を回転させる。このキャリッジモーターの回転に応じて、キャリッジ21が移動方向に移動する。また、キャリッジ21が移動することによって、キャリッジ21に設けられたヘッド31及び仮硬化用照射部(ここでは、仮硬化用照射部42a)も同時に移動方向に移動する。そして、コントローラー60は、ヘッド31が移動方向に移動している間にヘッド31から断続的にインク滴を吐出させる。このインク滴が、媒体に着弾することによって、移動方向に複数のドットが並ぶドット列(ラスタライン)が形成される。
また、コントローラー60は、ヘッド31が移動している間に、仮硬化用照射部42aからUV照射を行なわせる。このUV照射により、媒体上でのドットの流動や滲みが制御される。このとき仮硬化用照射部42aがUVを照射する範囲は、ヘッド31のノズル列長さを含む範囲である。つまり、#1〜#7ノズルによって形成されたドットにUVが照射される。
また、コントローラー60は、ヘッド31が往復移動する合間に搬送モーターを駆動させる。搬送モーターは、コントローラー60からの指令された駆動量に応じて回転方向の駆動力を発生する。そして、搬送モーターは、この駆動力を用いて搬送ローラー13を回転させる。搬送ローラー13の回転により、媒体は所定の搬送量F(=7・D)にて搬送される。これにより、媒体に対するヘッド31の相対位置が搬送方向上流側にF(=7・D)移動する。例えば、#1ノズルが、その前のパスにおける#4ノズルと#5ノズルの間に位置することになる。
その次のパスにおいても、コントローラー60は、ヘッド31が移動している間に、ヘッド31からから断続的にインク滴を吐出させるとともに、仮硬化用照射部42aからUVを照射させる。つまり、当該パスにおいて各ノズルによって形成されたドット、及びその前のパスにおいて#5〜#7ノズルによって形成されたドットにUVが照射される。
以下同様にヘッド31(及び仮硬化用照射部42a)の往復移動によるドット形成動作と媒体の搬送動作が交互に繰り返し行なわれる。
図6は、図5の領域aにおける各ドットの照射回数の説明図である。
図6の丸印はドットを示しており、その中の数字は、仮硬化用照射部42aによるUVの照射回数を示している。例えば、図5の領域aの内の搬送方向下流側のラスタラインはパス3で形成されている(図5の黒丸)。つまり、このラスタラインに仮硬化用照射部42aによってUVが照射されるのは、図6に示すように1回(パス3)である。
一方、その下(上流側)のラスタラインは、パス2で形成されている(図5の白丸)。つまり、このラスタラインに仮硬化用照射部42aによってUVが照射されるのは、図6に示すように2回(パス2及びパス3)である。
このように、領域aにおいて、仮硬化のUV照射を1回受けるドットと、2回受けるドットが混在している。このため、仮硬化用照射部42aが均一にUVを照射する場合、ドットに応じて総照射量が2倍異なることになる。これにより、ドットの形状が不均一になるおそれがある。
図7A及び図7Bは、仮硬化の際のUVの総照射量とドットの形状との関係の説明図である。
図7Aは、UVの総照射量が多い場合のドット形状を示している。仮硬化の際のUVの総照射量が多いと、ドットの流動が小さくなり、例えば、図7Aに示す形状となる。この場合、表面の光沢を抑えた低光沢の画質(マット調)になる。あるいは、ドット面積が小さくなり画像濃度が薄くなる。
図7BはUVの総照射量が少ない場合のドット形状を示している。仮硬化の際のUVの総照射量が少ないと、ドットの流動が大きくなり、例えば図7Bに示す形状となる。この場合、表面の光沢を高めた高光沢の画質(グロス調)になる。あるいは画像濃度が濃くなる。
なお、仮硬化は、ドットの広がりを制御するものであり、このときドットは完全に硬化した状態にはなっていない。例えば、仮硬化でのUVの照射量が多いほどドットは硬化しやすくなる(流動が小さくなる)。逆に仮硬化でのUVの照射量が少ないほどドットは硬化しにくくなる(流動が大きくなる)。すなわち、仮硬化におけるUVの総照射量に応じて、図7A及び図7Bに示すようにドットの形状が異なることになる。
以上、説明したように、参考例では、仮硬化用照射部42aが均一にUVを照射すると、ドット毎にUVの照射回数が異なり、仮硬化のUVの総照射量がドットに応じて異なることになる。
また、ドットの形状は仮硬化の際にドットが受けるUVの総照射量に依存する。このため、仮硬化の際のUVの総照射量に応じてドットの形状が異なる。
すなわち、仮硬化用照射部42aが均一にUVを照射する場合、ドット毎に総照射量が異なるので、同じ画像を形成するドットであってもドット形状が異なってしまい、この結果、ドット形状が不均一になる。このように同じ画像においてドット形状が不均一になると、光沢あるいは濃度にむらが生じ、画質を損なうことになる。
<本実施形態>
図8は本実施形態の説明図である。
ドットの形成方法は、図5と同様なので説明を省略する。本実形態では、仮硬化用照射部42aが上流側領域421と、下流側領域422に分けられている。そして、各領域においてUVの照射量が異なっている。具体的には下流側領域422のUV照射量の方が、上流側領域421のUV照射量よりも多くなっている。
仮硬化用照射部42aの上流側領域421は、#5〜#8ノズル(以下、上流側ノズルともいう)と移動方向に並ぶ位置にある。そして、上流側領域421は、パスの際に、当該パスによってヘッド31の上流側ノズルによって形成されたドット(すなわち形成直後のドット)にUVを照射する。
仮硬化用照射部42aの下流側領域422は、#1〜#4ノズル(以下、下流側ノズルともいう)と移動方向に並ぶ位置にある。そして、下流側領域422は、パスの際に、当該パスで下流側ノズルによって形成されたドット(形成直後のドット)、及び、その前のパスで上流側ノズルによって形成されたドットにUVを照射する。
なお、本実施形態の仮硬化用照射部42aでは、前述したように、下流側領域422のUVの照射量の方が上流側領域421のUVの照射量よりも多くなるようにしている。なお、照射量(mJ/cm)とは、照射エネルギー(mW/cm)と照射時間(sec)との積のことである。通常、パスの際のキャリッジ21(仮硬化用照射部42a)の移動速度は一定(照射時間が場所によらず一定)なので、照射量が多いということとは照射エネルギーが強いということと等価である。
本実施形態では、UVを照射する光源のLEDへの入力電流を変えることによって、上流側領域421と下流側領域422のUVの照射量を変えている。なお、これには限定されず、例えばLEDと媒体との距離を変えることによってUVの照射量を変えるようにしてもよい。具体的には、上流側領域421ではLEDの位置を媒体から離すようにし、下流側領域422では、LEDの位置を媒体に近づけるようにしてもよい。
図9A〜図9Dは、領域aにおけるドット形成及びUV照射状況の説明図である。
図9Aは、領域aのドット形成動作(パス2)を示す図である。図9Bは、パス2での仮硬化を示す図である。図9Cは、領域aのドット形成動作(パス3)を示す図である。図9Dは、パス3での仮硬化を示す図である。
まず、図9Aに示すように、パス2において領域aは上流側ノズル(#5〜#8ノズル)と対向する。そして、各ノズルからUVインクが吐出されて媒体上にドットが形成される。
その後、キャリッジ21(ヘッド31)が移動方向に移動することによって、図9Bに示すように、上流側ノズル(#5〜#8ノズル)と移動方向に並ぶ位置にある仮硬化用照射部42aの上流側領域421が領域aの上を通る。このとき、コントローラー60は、上流側領域421から媒体に向けてUVを照射させる。これにより、上流側ノズルによって形成されたドットの仮硬化が行われる。なお、上流側領域421から照射されるUVの照射量は少ない。但し、このUV照射により、ドットの位置は固定される。つまり、仮硬化の効果は得ている。
その後、搬送動作が行われ、次のパス(パス3)では、領域aは図9Cに示すようにノズル列の内の下流側ノズル(#1〜#4ノズル)と対向する。そして、各ノズルからUVインクが吐出されてドットが形成される。このとき、パス2において形成されたドット間にドットが形成される。例えば、パス2において、#7ノズルによって形成されたドットと、#6ノズルによって形成されたドットの間に、パス3において#3ノズルによってドットが形成される。つまり、このとき、領域aには、形成直後のドット(仮硬化されていないドット)と、一度仮硬化されたドットが混在している。
その後、キャリッジ21(ヘッド31)が移動方向に移動することによって、下流側ノズル(#1〜#4ノズル)と移動方向に並ぶ位置にある仮硬化用照射部42aの下流側領域422が領域aの上を通る。このとき、コントローラー60は、下流側領域422から媒体に向けてUVを照射させる。なお、このときのUVの照射量は、パス2のときに照射された上流側領域421での照射量よりも多くなっている。これにより、領域aの形成直後のドットと、一度仮硬化されたドット(パス2で形成されたドット)がともにUVの照射を受けて仮硬化される。
<参考例と本実施形態との比較>
前述したように領域aでは、仮硬化の際にUVの照射を受ける回数が1回のドット(パス3で形成されるドット)と2回のドット(パス2で形成されるドット)が混在している。
参考例では、各パスの際に領域aに照射するUVの照射量が同じであったので、ドット毎の照射量の差が2倍になっていた。
これに対し、本実施形態では、各パスの際に領域aに照射するUVの照射量を異ならせている。具体的には、下流側領域422のUV照射量を上流側領域421のUV照射量よりも多くしている。こうすることで、UVの照射を1回受けるドットと2回受けるドットとの総照射量の差が参考例の2倍よりも縮小されている。
このように、本実施形態では、ドット毎のUV照射量の差が縮小されているので、ドットの形状を参考例よりも均一にすることができる。これにより、画質の劣化を防止することができる。
===第2実施形態===
第1実施形態では、仮硬化量照射部42aを2つの領域に分けていたがこれには限られない。第2実施形態では、後述するように仮硬化用照射部42aを4つの領域に分けている。なお、仮硬化用照射部42a以外のプリンターの構成等は第1実施形態と同様であるので説明を省略する。
図10は、第2実施形態の説明図である。第2実施形態においても第1実施形態と同様にインターレース印刷を行っている。但し第2実施形態では、180dpiのノズルピッチのノズル列を用いて、720dpi(=D)のドット間隔にドットが形成されている(すなわちk=4である)。この場合も、「N(インクを吐出可能なノズル数)とkが互いに素」の関係を満たすために全てのノズルは用いずに7個のノズル(#1〜#7ノズル)を用いている。また、7個のノズルを用いるため、媒体は搬送量F(=7・D)にて搬送される。なお、第1実施形態ではD=360dpiであったのに対し、第2実施形態ではD=720dpiである。つまり、第2実施形態の搬送量の方が、第1実施形態の搬送量よりも少ないことになる。
このように、180dpiのノズルピッチのノズル列を用いて720dpiのドット間隔にて連続する4つのラスタラインが完成するためには、4回のパスが必要になる。
なお、図10において、ノズル列やドットの表記方法は図8と同じであるので説明を省略する。第2実施形態では、仮硬化用照射部42aを4つの領域に分けている。この各領域を、搬送方向の上流側から順に、領域423、領域424、領域425、領域426としている。なお、本実施形態では、これら4つの領域のうち、搬送方向下流側の領域426の照射量は多く、他の3つの領域の照射量は同じように少ない。
また、図11A〜図11Hは、図10の領域bにおけるドット形成及びUV照射状況の説明図である。図11Aは、領域bのパス1でのドット形成を示す図であり、図11Bは、パス1での仮硬化を示す図である。図11Cは、パス2でのドット形成を示す図であり、図11Dは、パス2での仮硬化を示す図である。図11Eはパス3でのドット形成を示す図であり、図11Fは、パス3での仮硬化を示す図である。図11Gは、パス4でのドット形成を示す図であり、図11Hは、パス4での仮硬化を示す図である
図10及び図11A〜図11Hを参照しつつ領域bにおけるドット形成及びUV照射について説明する。
まず、パス1において領域bはノズル列の#7ノズルと対向する。そして、#7ノズルからUVインクが吐出されて媒体上にドットが形成される。
その後、キャリッジ21(ヘッド31)が移動方向に移動することによって、仮硬化用照射部42aが領域bの上を通る。なお、#7ノズルと移動方向に並ぶ位置にある仮硬化用照射部42aの領域423が、#7ノズルによって形成されたドットの上を通る。このときコントローラー60は、領域423から媒体に向けてUVを照射させる。これによりパス1で形成されたドットの仮硬化が行われる。なお、領域423から照射されるUVの照射量は少ない。但し、このUV照射により、ドットの位置は固定される。つまり、仮硬化の効果は得ている。
その後、搬送動作が行われ、次のパス(パス2)では、領域bはノズル列の#5ノズルと対向する。そして、#5ノズルからUVインクが吐出されてドットが形成される。パス2では、パス1において#7ノズルによって形成されたドットよりも搬送方向下流側の画素にドットが形成される。このとき、領域bには、形成直後のドット(仮硬化されていないドット)と、前のパスで形成されたドット(一度仮硬化されたドット)が混在することになる。
そして、キャリッジ21(ヘッド31)が移動方向に移動することによって、仮硬化用照射部42aが領域bの上を通る。なお、#5ノズルと移動方向に並ぶ位置にある仮硬化用照射部42aの領域424が、領域bの各ドットの上を通る。このとき、コントローラー60は、領域424から媒体に向けてUVを照射させる。本実施形態では、領域424から照射されるUVの照射量は、領域423の照射量と同様に少ない。但し、このUV照射により、形成直後のドットの位置は固定され、前のパスで形成されたドットはより硬化される。
その後、搬送動作が行われ、次のパス(パス3)では、領域bはノズル列の#3ノズルと対向する。そして、#3ノズルからUVインクが吐出されてドットが形成される。パス3では、パス2において#5ノズルによって形成されたドットよりも搬送方向下流側の画素にドットが形成される。このとき、領域bには、形成直後のドット(仮硬化されていないドット)と、前のパスで形成されたドット(一度仮硬化されたドット、及び二度仮硬化されたドット)が混在することになる。
そして、キャリッジ21(ヘッド31)が移動方向に移動することによって、仮硬化用照射部42aが領域bの上を通る。なお、#3ノズルと移動方向に並ぶ位置にある仮硬化用照射部42aの領域425が、領域bの各ドットの上を通る。このとき、コントローラー60は、領域425から媒体に向けてUVを照射させる。本実施形態では、領域425から照射されるUVの照射量は、領域423、領域424の照射量と同様に少ない。但し、このUV照射により、形成直後のドットの位置は固定され、前のパスで形成されたドットはより硬化される。
その後、搬送動作が行われ、次のパス(パス4)では、領域bはノズル列の#1ノズルと対向する。そして、#1ノズルからUVインクが吐出されてドットが形成される。パス4では、パス3において#3ノズルによって形成されたドットよりも搬送方向下流側の画素にドットが形成される。このとき、領域bには、形成直後のドット(仮硬化されていないドット)と前のパスで形成されたドット(一度仮硬化されたドット、二度仮硬化されたドット及び三度仮硬化されたドット)が混在することになる。
そして、キャリッジ21(ヘッド31)が移動方向に移動することによって、仮硬化用照射部42aが領域bの上を通る。なお、#1ノズルと移動方向に並ぶ位置にある仮硬化用照射部42aの領域426が、領域bの各ドットの上を通る。このとき、コントローラー60は、領域426から媒体に向けてUVを照射させる。なお、領域426では、他の領域よりもUVの照射量を多くなるようにしている。これにより、領域bの形成直後のドット、一度仮硬化されたドット(パス3で形成されたドット)、二度仮硬化されたドット(パス2で形成されたドット)、三度仮硬化されたドット(パス1で形成されたドット)がともにUVの照射を受けて仮硬化される。
図12は、図10の領域bにおける各ドットの照射回数の説明図である。図6と同様に、図12の丸印はドットを示しており、その中の数字は、仮硬化用照射部42aによるUVの照射回数を示している。このように、ドットのUVの照射回数に差が生じている。また、その差は第1実施形態の場合よりも多く、最大4倍になっている。
ここで仮に、仮硬化用照射部42aの各領域のUVの照射量が同じであるとすると、領域bにおいて、ドット毎のUVの総照射量に最大4倍の差があることになる。例えば、パス1で形成されたドットは4回のUV照射を受けるが、パス4で形成されたドットは1回のUV照射しか受けない。この結果、ドット形状が不均一になり、画質を損なうことになる。
本実施形態では、仮硬化用照射部42aの搬送方向下流側の領域426の照射量を他の領域よりも多くすることで、領域bに照射されるUVの照射量を、最後のパスだけ多くなるようにしている。つまり、領域bのドット全体に照射する照射量を多くなるようにしている。これにより、各ドットのUVの総照射量の差を縮小させることができ、ドット形状をより均一にすることができる。よって、画質の劣化を防止することができる。
なお、本実施形態では、仮硬化用照射部42aの搬送方向下流側の領域426の照射量を多くし、他の領域の照射量は同様に少ないとしたが、これには限られない。例えば、領域423、領域424、領域425、領域426の順に、搬送方向下流側になるほど照射量が多くなるようにしてもよい。こうすることによっても、各ドットの総照射量の差を縮小させることができる。
以上説明したように、第2実施形態では、第1実施形態よりも搬送量が少ない。この場合、ドット毎の照射回数の差が多くなる。言い換えると、ドット毎の総照射量の差が大きくなりやすい。このように搬送量が少ない場合、仮硬化用照射部の領域を多く分けるようにすれば良い。つまり、搬送量が少ないほど、仮硬化用照射部42aを多くの領域に分けるようにするとよい。
例えば、第1実施形態の図8では2個の領域に分けているのに対し、第2実施形態では4個の領域に分けている。こうすることで、搬送量が少ない場合においてドット毎の総照射量をより縮小させることができる。
===第3実施形態===
前述した実施形態では、各ラスタラインを一回のパスによって形成していた。すなわち1つのノズルでラスタラインを形成していたが、第3実施形態では、オーバーラップ印刷を行なっている。「オーバーラップ印刷」とは、後述するようにラスタラインを複数のノズルで形成する印刷方法を意味する。
図13は、第3実施形態の説明図である。図13において、ノズル列やドットの表記方法は図8と同じであるので説明を省略する。第3実施形態では、仮硬化用照射部42aを8つの領域に分けている。この各領域を、搬送方向の上流側から順に、領域42A、領域42B、領域42C、領域42D、領域42E、領域42F、領域42G、領域42Hとしている。なお、本実施形態では、これら8つの領域のうち、搬送方向下流側の領域Hの照射量は多く、他の7つの領域の照射量は同じように少ない。
まず、図13を参照しつつオーバーラップ印刷について、説明する。
オーバーラップ印刷では、媒体が搬送方向に一定の搬送量Fで搬送される毎に、各ノズルが数ドットおきに間欠的にドットを形成する。そして、他のパスにおいて、他のノズルが既に形成されている間欠的なドットを補完するように(ドットの間を埋めるように)ドットを形成することにより、1つのラスタラインが複数のノズルにより形成される。このようにM回のパスにて1つのラスタラインが形成される場合、「オーバーラップ数M」と定義する。
図13では、各ノズルは1ドットおきに間欠的にドットを形成するのでパス毎に奇数番目の画素又は偶数番目の画素にドットが形成される。そして、1つのラスタラインが2つのノズルによって形成されているので、オーバーラップ数M=2になる。
オーバーラップ印刷において、搬送量を一定にして印刷を行なうためには、(1)N/Mが整数であること、(2)N/Mはkと互いに素の関係にあること、(3)搬送量Fが(N/M)・Dに設定されることが条件となる。
図13では、ノズル列は搬送方向に8つのノズル列を有する。しかし、ノズル列のノズルピッチkは4なので、オーバーラップ印刷を行うための条件である「N/Mとkが互いに素の関係」を満たすために全てのノズルを用いることはできない。そこで、8つのノズルのうち6つのノズルを用いてオーバーラップ印刷が行われる。また、6つのノズルが用いられるため、媒体は搬送量3・Dにて搬送される。その結果、例えば180dpi(4・D)のノズルピッチのノズル列を用いて、720dpi(=D)のドット間隔にて媒体にドットが形成される。なお、搬送量は3・Dであるので、第2実施形態よりもさらに搬送量が少ないことになる。
1つのラスタラインがM個のノズルにより形成される場合、ノズルピッチ分のラスタラインが完成するためには、k×M回のパスが必要になる。例えば、図13では1つのラスタラインが2つのノズルにより形成されているので、4つのラスタラインが完成するためには8回のパスが必要になる。同図によれば、パス3の#4ノズル及びパス7の#1ノズルが形成したラスタライン(図中矢印で示されるラスタライン)よりも搬送方向上流側に、連続的なラスタラインがドット間隔Dにて形成されることが示されている。
図13の場合、パス1では各ノズルが奇数画素にドットを形成し、パス2では各ノズルが偶数画素にドットを形成し、パス3では各ノズルが奇数画素にドットを形成し、パス4では各ノズルが偶数画素にドットを形成する。つまり、前半の4回のパスでは、奇数画素、偶数画素、奇数画素、偶数画素の順にドットが形成される。そして、後半の4回のパス(パス5〜パス8)では、前半の4回のパスと逆の順にドットが形成され偶数画素、奇数画素−偶数画素−奇数画素の順にドットが形成される、なお、パス9以降のドットの形成順序は、パス1からのドット形成順と同じである。
例えば、図13において、矢印で示すラスタラインは、パス3において、#4ノズルによって奇数画素にドットが形成され、パス7において、#1ノズルによって偶数画素にドットが形成されている。また、その下のラスタラインは、パス2において、#5のノズルによって偶数画素にドットが形成され、パス6において#2ノズルによって奇数画素にドットが形成されている。
この第3実施形態の場合、前述の実施形態で説明したように搬送方向に並ぶドット列(ラスタライン)のドット間でUVの総照射量の差が生じるだけではなく、各ラスタラインのドット間においてもUVの総照射量の差が生じることになる。
図14は、図13の点線で囲まれた部分における各ドットの照射回数についての説明図である。なお、図6、図12と同様に、図13の丸印はドットを示しており、その中の数字は、仮硬化用照射部42aによるUVの照射回数を示している。図14からわかるように、第3実施形態では、ラスタライン毎に照射回数の差があるだけではなく、同一ラスタラインにおけるドット間にも照射回数に差がある。
この矢印のラスタラインのうち、パス3で形成されたドットは、先ずパス3において、#4ノズルによって形成された直後に、#4ノズルと移動方向に並ぶ位置にある領域42EからUVの照射を受ける。その後、パス4〜パス7においても、領域42Eよりも搬送方向下流側の領域からUVの照射を受ける。従ってパス3で形成されたドットは、計5回のUVの照射を受けている。一方、パス7で形成されたドットがUVの照射を受けるのは、パス7の直後に仮硬化用照射部42aの#1ノズルと移動方向に並ぶ位置にある領域42Hから受ける1回のみである。
このように、同じラスタラインを構成するドットであるにもかかわらず、UVの照射回数が異なっている。
もし仮に、仮硬化用照射部42aの各領域の照射量が同じであるとすると、パス3で形成されたドットとパス7で形成されたドットの総照射量の差が大きくなりドット形状が不均一になる。
そこで、本実施形態では、コントローラー60は、仮硬化用照射部42aによるUV照射の際に、搬送方向下流側の領域のUVの照射量が多くなるようにしている。すなわち、各ドットに最後に照射されるUVの照射量が多くなるようにしている。こうすることで、各領域の照射量が同じ場合よりも、ドット間の総照射量の差を縮小することできる。
なお、この場合、第2実施形態と同様に、最も搬送方向下流側の領域42Hのみの照射量を多くして、他の領域の照射量を同じくらいに少なくしてもよいし、搬送方向下流側の領域ほどUVの照射量が多くなるようにしてもよい。
このように第3実施形態では、前述した実施形態よりも搬送量が少ない。この場合、仮効用照射部の領域を多く分けるとよい。例えば、図8では2個の領域、図10では4個の領域であったのに対し、図13では8個の領域になっている。こうすることで、各ドットの総照射量をより調整しやすくなる。
また、仮硬化用照射部42aの搬送方向下流側の領域の照射量を多くすることは、複数のパスでラスタラインを形成するとき(オーバーラップ印刷を行なうとき)に、特に有効である。これにより、ラスタラインの各ドットの総照射量の差を縮小することができ、ラスタラインの各ドットの形状をより均一にすることができる。よって画質の劣化を防止することができる。
なお、上述の第3実施形態では、複数回のパスによって1つのラスタラインを形成し、かつ、1回のパスで形成した2つのラスタライン間に他のパスでラスタラインを形成しているが、1回のパスで形成した2つのラスタラインの間には、他のパスでラスタラインを形成することはせずに、複数回のパスによって1つのラスタラインを形成する形態としてもよく、この場合も、搬送量は、ノズル列の搬送方向の長さよりも短くなり、第3実施形態と同様に本願発明が適用可能である。
===仮硬化用照射部の構成例===
図15は、前述した実施形態を行なう場合の仮硬化用照射部42aの構成の一例である。なお、図15では、ヘッド31の各ノズル列のノズル数は180である。
図15に示すように、仮硬化用照射部42aには、5ノズル毎に、それぞれのノズルと移動方向に並ぶ位置に1つの領域(LED)が設けられている。この場合、ノズル数が180であるので、36(=180/5)個の領域が設けられている。
図8の場合、仮硬化用照射部42aを2つの領域に分けている。そして、搬送方向下流側の領域の照射量を多くしている。この場合、コントローラー60は、図15に示す仮硬化用照射部42aの#1〜#36の領域を2つに分ければ良い。つまり、#1〜#18の領域(図8の421に相当)と、#19〜#36の領域(図8の422に相当)に分ければ良い。そして、例えば、#1〜#18の各LEDへの入力電流を大きくして、#19〜#36の各LEDへの入力電流を小さくするようにすればよい。
また、図10の場合、仮硬化用照射部42aを4つの領域に分けている。そして、搬送方向下流側の領域の照射量を多くしている。この場合、コントローラー60は、図15に示す仮硬化用照射部42aの#1〜#36の領域を4つに分ければ良い。つまり、#1〜#9の領域(図10の423に相当)、#10〜#18の領域(図10の424に相当)、#19〜#27の領域(図10の425に相当)、#28〜#36の領域(図10の426に相当)に分ければ良い。そして、例えば、#1〜#9の各LEDへの入力電流を大きくして、他のLEDへの入力電流を小さくするようにすればよい。
また、図13の場合、仮硬化用照射部42aを8つの領域に分けている。そして、搬送方向下流側の領域の照射量を多くしている。この場合、コントローラー60は、図15に示す仮硬化用照射部42aの#1〜#36の領域を8つに分ければ良い。つまり、#1〜#4の領域、#5〜#9の領域、#10〜#13の領域、#14〜#18の領域、#19〜#22の領域、#23〜#27の領域、#28〜#31の領域、#32〜#36の領域に分ければよい。そして、例えば、#1〜#4の領域の各LEDへの入力電流を大きくして、他のLEDへの入力電流を小さくなるようにすればよい。
===その他の実施の形態===
一実施形態としてのプリンター等を説明したが、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは言うまでもない。特に、以下に述べる実施形態であっても、本発明に含まれるものである。
<プリンターについて>
前述の実施形態では、装置の一例としてプリンターが説明されていたが、これに限られるものではない。例えば、カラーフィルタ製造装置、染色装置、微細加工装置、半導体製造装置、表面加工装置、三次元造形機、液体気化装置、有機EL製造装置(特に高分子EL製造装置)、ディスプレイ製造装置、成膜装置、DNAチップ製造装置などのインクジェット技術を応用した各種の液体吐出装置に、本実施形態と同様の技術を適用しても良い。
<ノズルについて>
前述の実施形態では、圧電素子(ピエゾ素子)を用いてインクを吐出していた。しかし、液体を吐出する方式は、これに限られるものではない。例えば、熱によりノズル内に泡を発生させる方式など、他の方式を用いてもよい。
<インクについて>
前述の実施形態は、紫外線(UV)の照射を受けることによって硬化するインク(UVインク)をノズルから吐出していた。しかし、ノズルから吐出する液体は、このようなインクに限られるものではなく、UV以外の他の電磁波(例えば可視光線など)の照射を受けることによって硬化する液体をノズルから吐出しても良い。この場合、仮硬化用照射部42a、42b及び本硬化用照射部43から、その液体を硬化させるための電磁波(可視光線など)を照射するようにすればよい。
<仮硬化用照射部の領域について>
前述した実施形態では、搬送量に応じて仮硬化用照射部の領域を定めていた。例えば、第1実施形態よりも搬送量の少ない第2実施形態では、第1実施形態よりも領域を多くしていた。ただし、これには限定されず、例えば第2実施形態においても、仮硬化用照射部を第1実施形態と同様に2つの領域に分けて、搬送方向下流側の照射量を多くするようにしてもよい。この場合においても、仮硬化用照射部42aの照射量が一定の場合に比べて、各ドットの総照射量の差を縮小することができる。
1 プリンター、10 搬送ユニット、11 給紙ローラー、
13 搬送ローラー、14 プラテン、15 排紙ローラー、
20 キャリッジユニット、21 キャリッジ、
30 ヘッドユニット、31 ヘッド、
40 照射ユニット、42a,42b 仮硬化用照射部、43 本硬化用照射部、
50 検出器群、53 紙検出センサー、54 光学センサー
60 コントローラー、61 インターフェイス部、62 CPU、
63 メモリー、64 ユニット制御回路、
110 コンピューター

Claims (6)

  1. 媒体を搬送方向に搬送する搬送部と、
    電磁波の照射によって硬化する液体を吐出する複数のノズルが前記搬送方向に沿って配置されたノズル列であって、前記搬送方向と交差する移動方向に移動するノズル列と、
    前記ノズル列とともに前記移動方向に移動し、前記ノズルから吐出された前記液体に対して前記電磁波を照射する仮硬化用照射部と、
    前記仮硬化用照射部よりも前記搬送方向の下流側に配置され、前記仮硬化用照射部よりも多い照射量の前記電磁波を照射する本硬化用照射部であって、前記移動方向の長さが前記仮硬化用照射部の前記移動方向の長さよりも長く、かつ前記搬送方向の長さが前記仮硬化用照射部の前記搬送方向の長さよりも短い本硬化用照射部と、を有し、
    前記搬送部によって前記媒体を搬送方向に搬送する搬送動作と、前記ノズル列を移動させつつ前記ノズルから前記液体を吐出させることによって前記媒体にドットを形成するドット形成動作を繰り返す液体吐出装置であって、
    或るドット形成動作の際に、前記ノズル列の一部のノズルである第1ノズルによって前記媒体に第1ドットを形成するとともに、前記仮硬化用照射部の第1領域から前記第1ドットに前記電磁波を照射し、且つ
    前記或るドット形成動作の後の別のドット形成動作の際に、前記第1ノズルよりも前記搬送方向下流側の一部のノズルである第2ノズルによって前記媒体に第2ドットを形成するとともに、前記仮硬化用照射部のうち前記第1領域よりも前記搬送方向下流側の第2領域から前記第1ドット及び前記第2ドットに前記第1領域よりも照射量の多い電磁波を照射する、
    ことを特徴とする液体吐出装置。
  2. 請求項1に記載の液体吐出装置であって、
    前記搬送動作における前記媒体の搬送量に応じて、前記第1領域及び前記第2領域の範囲を設定する、
    ことを特徴とする液体吐出装置。
  3. 請求項1又は2に記載の液体吐出装置であって、
    前記或るドット形成動作と前記別のドット形成動作との間のドット形成動作において、前記第1ノズルと前記第2ノズルの間の第3ノズルによって前記媒体に第3ドットを形成するとともに、前記仮硬化用照射部のうち前記搬送方向において前記第1領域および前記第2領域の間に位置する第3領域から前記第1ドット及び前記第3ドットに前記電磁波を照射し、且つ、前記別のドット形成動作の際に、前記第2領域から前記第1ドット、前記第2ドット、及び前記第3ドットに前記電磁波を照射する場合、
    前記第3領域から照射される前記電磁波の照射量が、前記第1領域から照射される前記電磁波の照射量と等しい、
    ことを特徴とする液体吐出装置。
  4. 請求項1又は2に記載の液体吐出装置であって、
    前記或るドット形成動作と前記別のドット形成動作との間のドット形成動作において、前記第1ノズルと前記第2ノズルの間の第3ノズルによって前記媒体に第3ドットを形成するとともに、前記仮硬化用照射部のうち前記搬送方向において前記第1領域および前記第2領域の間に位置する第3領域から前記第1ドット及び前記第3ドットに前記電磁波を照射し、且つ、前記別のドット形成動作の際に、前記第2領域から前記第1ドット、前記第2ドット、及び前記第3ドットに前記電磁波を照射する場合、
    前記第3領域から照射される前記電磁波の照射量が、前記第1領域から照射される前記電磁波の照射量よりも多く、前記第2領域から照射される前記電磁波の照射量よりも少ない、
    ことを特徴とする液体吐出装置。
  5. 請求項1〜4の何れかに記載の液体吐出装置であって、
    複数回の前記ドット形成動作によって、前記移動方向にドットが並ぶドット列が形成される、ことを特徴とする液体吐出装置。
  6. 電磁波の照射によって硬化する液体を吐出する複数のノズルが媒体の搬送方向に沿って配置されたノズル列であって、前記搬送方向と交差する移動方向に移動するノズル列と、前記ノズル列とともに前記移動方向に移動し、前記ノズルから吐出された前記液体に対して前記電磁波を照射する仮硬化用照射部と、前記ノズル列よりも前記搬送方向の下流側に配置され、前記仮硬化用照射部よりも多い照射量の前記電磁波を照射する本硬化用照射部であって、前記移動方向の長さが前記仮硬化用照射部の前記移動方向の長さよりも長く、かつ前記搬送方向の長さが前記仮硬化用照射部の前記搬送方向の長さよりも短い本硬化用照射部と、を備える液体吐出装置によって媒体に画像を形成する液体吐出方法であって、
    前記ノズル列の一部のノズルである第1ノズルから前記液体を吐出することによって前記媒体に第1ドットを形成することと、
    前記仮硬化用照射部の第1領域から前記第1ドットに前記電磁波を照射することと、
    前記媒体を前記搬送方向に搬送する搬送動作を行うことと、
    前記搬送動作の後、前記第1ノズルよりも前記搬送方向下流側の一部のノズルである第2ノズルから前記液体を吐出することによって、前記媒体に第2ドットを形成することと、
    前記仮硬化用照射部のうち前記第1領域よりも前記搬送方向下流側の第2領域から前記第1ドット及び前記第2ドットに、前記第1領域から照射される前記電磁波の照射量よりも多い前記電磁波を照射することと、
    前記本硬化用照射部から前記第1ドット及び前記第2ドットに前記電磁波を照射することと、
    を有すことを特徴とする液体吐出方法。
JP2009012370A 2009-01-22 2009-01-22 液体吐出装置、及び液体吐出方法 Active JP5298879B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012370A JP5298879B2 (ja) 2009-01-22 2009-01-22 液体吐出装置、及び液体吐出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012370A JP5298879B2 (ja) 2009-01-22 2009-01-22 液体吐出装置、及び液体吐出方法

Publications (2)

Publication Number Publication Date
JP2010167677A JP2010167677A (ja) 2010-08-05
JP5298879B2 true JP5298879B2 (ja) 2013-09-25

Family

ID=42700272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012370A Active JP5298879B2 (ja) 2009-01-22 2009-01-22 液体吐出装置、及び液体吐出方法

Country Status (1)

Country Link
JP (1) JP5298879B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665481B2 (ja) * 2010-10-28 2015-02-04 富士フイルム株式会社 画像形成装置及び仮硬化用の活性光線照射装置並びに照度分布の変更方法
US9056986B2 (en) 2010-11-09 2015-06-16 Seiko Epson Corporation Ultraviolet curable type ink-jet ink composition, recording method and recording apparatus using same
JP2012218340A (ja) * 2011-04-12 2012-11-12 Seiko Epson Corp 印刷方法
JP2012218342A (ja) * 2011-04-12 2012-11-12 Seiko Epson Corp 印刷装置
JP5896111B2 (ja) * 2011-10-12 2016-03-30 セイコーエプソン株式会社 紫外線硬化型インクを用いた記録方法及び記録装置
JP5818258B2 (ja) * 2012-01-27 2015-11-18 富士フイルム株式会社 画像形成装置及び画像形成方法
JP6047904B2 (ja) 2012-03-28 2016-12-21 セイコーエプソン株式会社 インクジェット記録方法、光硬化型インクジェットインク組成物、インクジェット記録装置
CN107379803A (zh) 2012-03-28 2017-11-24 精工爱普生株式会社 喷墨记录方法、紫外线固化型油墨、喷墨记录装置
JP6191120B2 (ja) 2012-03-29 2017-09-06 セイコーエプソン株式会社 インクジェット記録方法、インクジェット記録装置
US10029483B2 (en) 2012-04-25 2018-07-24 Seiko Epson Corporation Ink jet recording method, ultraviolet-ray curable ink, and ink jet recording apparatus
JP6236768B2 (ja) 2012-04-27 2017-11-29 セイコーエプソン株式会社 インクジェット記録方法、インクジェット記録装置
JP6049330B2 (ja) * 2012-06-29 2016-12-21 セーレン株式会社 印刷方法
JP6065535B2 (ja) 2012-11-15 2017-01-25 セイコーエプソン株式会社 紫外線硬化型インクジェット記録用インク組成物、インク収容体、及びインクジェット記録装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678301B2 (ja) * 1998-11-24 2005-08-03 セイコーエプソン株式会社 樹脂硬化型の二液を用いたインクジェット記録方法
JP2004009483A (ja) * 2002-06-06 2004-01-15 Canon Inc インクジェット記録装置
JP2004237597A (ja) * 2003-02-06 2004-08-26 Konica Minolta Holdings Inc インクジェット記録装置
JP2008168502A (ja) * 2007-01-11 2008-07-24 Seiren Co Ltd インクジェット記録装置
JP5047918B2 (ja) * 2008-10-01 2012-10-10 株式会社ミマキエンジニアリング インクジェットプリンタおよびそれを用いた印刷方法

Also Published As

Publication number Publication date
JP2010167677A (ja) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5298879B2 (ja) 液体吐出装置、及び液体吐出方法
US10112415B2 (en) Liquid ejecting apparatus and liquid ejecting method
JP5287323B2 (ja) 液体吐出方法
JP5845620B2 (ja) 液体吐出装置
JP2011062995A (ja) 液体吐出装置
JP5298897B2 (ja) 液体吐出装置
US8262212B2 (en) Liquid discharging apparatus and image forming method
JP5786430B2 (ja) 液体吐出装置
JP5790098B2 (ja) 液体吐出装置、及び、液体吐出方法
JP2011098455A (ja) 液体吐出装置
JP2013035130A (ja) 液体吐出装置、及び、画像形成方法
JP2012045909A (ja) 画像形成装置、及び、画像形成方法
JP5239955B2 (ja) 印刷装置、及び、印刷方法
JP2010162766A (ja) 液体吐出装置、及び液体吐出方法
JP5765393B2 (ja) 液体吐出装置
JP2011062996A (ja) 液体吐出装置
JP5673740B2 (ja) 液体吐出装置
JP2011073328A (ja) 印刷装置及び印刷方法
JP2013028001A (ja) 画像形成装置、及び、画像形成方法
JP2011098456A (ja) 液体吐出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5298879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350