JP5275001B2 - Manufacturing method of multilayer flexible wiring board - Google Patents

Manufacturing method of multilayer flexible wiring board Download PDF

Info

Publication number
JP5275001B2
JP5275001B2 JP2008314074A JP2008314074A JP5275001B2 JP 5275001 B2 JP5275001 B2 JP 5275001B2 JP 2008314074 A JP2008314074 A JP 2008314074A JP 2008314074 A JP2008314074 A JP 2008314074A JP 5275001 B2 JP5275001 B2 JP 5275001B2
Authority
JP
Japan
Prior art keywords
layer
wiring board
manufacturing
plating
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008314074A
Other languages
Japanese (ja)
Other versions
JP2010140989A5 (en
JP2010140989A (en
Inventor
間 史 朗 赤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP2008314074A priority Critical patent/JP5275001B2/en
Priority to CN200910163346.2A priority patent/CN101754571B/en
Priority to TW98126739A priority patent/TWI433630B/en
Publication of JP2010140989A publication Critical patent/JP2010140989A/en
Publication of JP2010140989A5 publication Critical patent/JP2010140989A5/ja
Application granted granted Critical
Publication of JP5275001B2 publication Critical patent/JP5275001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

To provide a multi-layered flexible printed wiring board and manufacturing method thereof having cables with excellent bending-tolerance for mounting thin and high-density parts correspondingly. The multi-layered flexible wiring board and manufacturing method thereof belong to the kind of multi-layered flexible wiring board having: the mounting part and the cable part formed by the internal-layer wiring bodies (111, 121, 131) of the electrically conductive pattern (6) formed on the surface of at least one site of the insulation substrates (5). It is characterized by: the said mounting part is formed in the way of coating the said electrically conductive pattern onto the composite body layer (4) of the rigid material and the adhesive resin. The said cable part has the adhesive agent layer (3) not containing the said rigid material. The surface not contacting the said composite body layer and the said electrically conductive layer of the said adhesive agent layer is coated by one continuous insulation film (2).

Description

本発明は、耐屈曲性に優れるケーブル部分を有し、薄くかつ高密度な部品実装に対応可能な多層フレキシブルプリント配線板の製造方法に関する。 The present invention relates to a method for manufacturing a multilayer flexible printed wiring board having a cable portion with excellent bending resistance and capable of mounting thin and high-density components.

携帯電話やデジタルカメラ、ノートパソコンなどに代表されるモバイル電子機器には、軽薄短小化が特に強く要求されている。そのため、モバイル電子機器を軽薄短小化し、かつ使い易くするためには、折り畳み型やスライド型などの筺体デザインが多く採用されている。   Mobile electronic devices represented by mobile phones, digital cameras, notebook computers, and the like are particularly strongly required to be light and thin. For this reason, in order to make mobile electronic devices lighter, thinner, and easier to use, a housing design such as a folding type or a sliding type is often used.

このような優れたデザインの実現には、折り畳み動作やスライド動作で稼動するヒンジ構造と、そのヒンジ構造の内部を通して電気信号を伝送できる配線が必要である。   In order to realize such an excellent design, a hinge structure that operates in a folding operation or a sliding operation and a wiring that can transmit an electric signal through the inside of the hinge structure are required.

稼動するヒンジ内部の電気信号の伝送には、動的屈曲状態でも信号伝送が可能なフレキシブルプリント配線板が主に用いられており、ヒンジ部に使用されるフレキシブルプリント配線板には、10万回レベルの繰り返しの屈曲動作において、機械的、電気的に耐えることが要求されている。   For the transmission of electrical signals inside the operating hinge, a flexible printed wiring board capable of signal transmission even in a dynamically bent state is mainly used. The flexible printed wiring board used for the hinge part is 100,000 times. It is required to endure mechanically and electrically in repeated bending operations at a level.

一方、モバイル電子機器では、高画質の静止画/動画データなど、処理するデータのサイズは急速に大きくなっており、また情報処理の高速化も求められている。一方で、高度な機能を有する半導体を低コストに提供するために半導体の微細化が進み、合わせてBGA、CSPなどの半導体パッケージも小型化している。BGA・CSPのバンプピッチも、ピッチ0.8mm、0.5mm、0.4mm、0.3mmと小さくなってきており、フレキシブルプリント配線板を含む配線板には、上記の狭ピッチの半導体の半導体パッケージを実装できることが必須として求められてきている。   On the other hand, in mobile electronic devices, the size of data to be processed, such as high-quality still image / moving image data, is rapidly increasing, and high-speed information processing is also required. On the other hand, semiconductors have been miniaturized in order to provide semiconductors with advanced functions at low cost, and semiconductor packages such as BGA and CSP have also been downsized. BGA / CSP bump pitches are also becoming smaller, such as 0.8mm, 0.5mm, 0.4mm, and 0.3mm, and the above-mentioned narrow-pitch semiconductor packages can be mounted on wiring boards including flexible printed wiring boards. Has been sought as essential.

さらに、モバイル電子機器には、モバイルするための軽薄短小化が非常に強く求められており、使用される基板自体にも0.1mm単位、1g単位での薄型軽量化が常に求められている。   In addition, mobile electronic devices are strongly required to be light and thin for mobile purposes, and the substrates used are always required to be thin and light in units of 0.1 mm and 1 g.

上記を纏めると、現在および将来において、フレキシブルプリント配線板には、以下の3つの条件を満たすことが必要となっている。
1) 耐屈曲性を有するフレキシブルな電気配線ケーブル部を有すること。
2) 高密度な狭ピッチの半導体パッケージを実装できること。
3) 薄型軽量であること。
In summary, in the present and future, the flexible printed wiring board is required to satisfy the following three conditions.
1) Have a flexible electric wiring cable part with bending resistance.
2) A high-density, narrow-pitch semiconductor package can be mounted.
3) Thin and lightweight.

現在、耐屈曲性を有するフレキシブルなケーブル部を形成し、かつ高密度なCSPを実装するための多層FPCの構造としては、図6に示す構造が用いられている。   At present, the structure shown in FIG. 6 is used as the structure of a multilayer FPC for forming a flexible cable portion having bending resistance and mounting a high-density CSP.

この図6に示すように、従来の多層フレキシブル配線板の構造においては、耐屈曲性を有するフレキシブルなケーブル部を形成するため、ケーブル部となる内層FPCのカバーにカバーフィルムを用いており、またCSP等の高密度パッケージを実装可能とする配線設計のビルドアップ層の形成を、先述の内層カバーフィルムの上に更にプリプレグ層等の積層接着剤を用いて片面FPCや両面FPCを積層、ビア加工を行なう構造としている。 As shown in FIG. 6, in the structure of the conventional multilayer flexible wiring board, in order to form a flexible cable portion having bending resistance, a cover film is used for the cover of the inner layer FPC that becomes the cable portion. Forming a wiring design build-up layer that enables mounting of high-density packages such as CSP, and laminating a single-sided FPC or double-sided FPC on the inner cover film described above using a laminating adhesive such as a prepreg layer, via processing It is set as the structure which performs.

しかし、上記の従来構造には以下の課題がある。
(1) 実装部となるビルドアップ部の厚みが厚くなり、基板の軽薄短小化を妨げている。
(2) ビルドアップ部が厚いためレーザーにてビアを形成する際、レーザー加工に時間がかかるばかりでなく、ビア深さが深くなるため、ビアめっきにも時間がかかる。
(3) またビアフィルをめっきしない場合、ビア中の空洞の体積が増えることより、ビア穴上で部品実装を行うビアオンチップの際に、部品に付くべきはんだがビア穴に喰われてはんだ接続が不均一になる現象や、ボイド残りといった、実装品質上好ましくない現象が発生し易くなっている。
特許第2708980号公報
However, the above conventional structure has the following problems.
(1) The build-up part, which is the mounting part, is thicker, which prevents the board from becoming lighter and thinner.
(2) When a via is formed with a laser because the build-up part is thick, not only does laser processing take time, but also the via plating takes time because the via depth increases.
(3) In addition, when the via fill is not plated, the volume of the cavity in the via increases, so in via-on-chip where the component is mounted on the via hole, the solder to be attached to the component is eaten by the via hole and soldered. Phenomenon that is not preferable in terms of mounting quality, such as non-uniformity and void remaining, are likely to occur.
Japanese Patent No. 2708980

上記特許文献1には、多層フレキシブル配線板を薄く低コストにするための発明がされている。しかし、薄型の多層フレキシブル配線板に求められる実装部分の剛性とケーブル部分の柔らかさおよび耐屈曲性との両立については一切言及されておらず、また解決策が示されていない。 The aforementioned Patent Document 1, the invention to the thin low-cost multi-layer flexible wiring board is shown. However, there is no mention of any compatibility between the rigidity of the mounting portion required for the thin multilayer flexible wiring board and the softness and bending resistance of the cable portion, and no solution is shown.

本発明は上述の点を考慮してなされたもので、耐屈曲性に優れるケーブル部分を有し、薄くかつ高密度な部品実装に対応可能な多層フレキシブルプリント配線板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and provides a multilayer flexible printed wiring board having a cable portion excellent in bending resistance and capable of mounting thin and high-density components and a method for manufacturing the same. With the goal.

上記目的達成のため、本発明では、
絶縁フィルムの一方の面に導電層、およびこの導電層を覆う剥離可能なカバーが設けられ、他方の面に剛性材としてのガラスクロスと接着性樹脂との複合体であるプリプレグ層、および前記剛性材を含まない前記接着性樹脂による接着層が形成された外層積層材を用意し、
絶縁ベース材の面に導電パターンが形成された内層配線体を用意し、
前記内層配線体の面に、前記外層積層材を前記複合体および前記接着層を有する面と接するように積層することにより積層配線板を形成し、
前記積層配線板にビアおよびスルーホールの少なくとも一方を形成し、
前記積層配線板に必要なめっき層を形成し、
前記めっき層の上にドライフィルムを形成し、
前記接着層が形成された部分に対応する部分のめっき層をエッチングにより除去してケーブル部を形成する
実装部とケーブル部とを有する多層フレキシブル配線板の製造方法、
を提供するものである。
In order to achieve the above object, in the present invention,
A conductive layer on one surface of the insulating film, and a peelable cover that covers the conductive layer, and a prepreg layer that is a composite of a glass cloth and an adhesive resin as a rigid material on the other surface , and the rigidity Prepare an outer layer laminated material in which an adhesive layer made of the adhesive resin not containing a material is formed,
Providing a inner wiring body conductive pattern is formed on both surfaces of the insulating base member,
To both sides of the inner layer wiring body, the laminated wiring board formed by laminating the outer layer laminate in contact with the surface having the composite layer and the adhesive layer,
Forming at least one of a via and a through hole in the laminated wiring board;
Forming a plating layer necessary for the laminated wiring board,
Forming a dry film on the plating layer;
A method for manufacturing a multilayer flexible wiring board having a mounting portion and a cable portion, which are formed by removing a plating layer corresponding to the portion where the adhesive layer is formed by etching, and forming a cable portion,
Is to provide.

本発明は上述のように、実装部を構成する絶縁フィルムおよび接着剤の層数を減らすことができ、基板の薄型化が容易となる。この結果、層間導通のためのビア加工用のレーザー穴開け加工やビアめっき、ビアフィルめっきのための加工時間およびコストを削減できる。   As described above, the present invention can reduce the number of layers of the insulating film and the adhesive that constitute the mounting portion, and can easily reduce the thickness of the substrate. As a result, it is possible to reduce the processing time and cost for laser drilling, via plating, and via fill plating for via processing for interlayer conduction.

以下、図1ないし図6に基づいて本発明の実施形態について説明する。図1および図2は、本発明に係る多層フレキシブル配線板の2つの構造例を示している。図3ないし図6は、本発明に関連する4つの製造方法例を示している。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2 show two structural examples of a multilayer flexible wiring board according to the present invention. 3 to 6 show four examples of manufacturing methods related to the present invention.

(第1の構造例)
図1に本発明の基本構造の一つとなる、4層構造による多層フレキシブルプリント配線板の断面構造を示す。
(First structural example)
FIG. 1 shows a cross-sectional structure of a multilayer flexible printed wiring board having a four-layer structure, which is one of the basic structures of the present invention.

(第2の構造例)
図2に本発明の基本構造の他の一つとなる、6層構造による多層フレキシブルプリント配線板の断面構造を示す。
(Second structural example)
FIG. 2 shows a cross-sectional structure of a multilayer flexible printed wiring board having a six-layer structure, which is another basic structure of the present invention.

(製造方法)
図3ないし図6に、本発明による多層フレキシブルプリント配線板の製造方法を示す。
(Production method)
3 to 6 show a method for manufacturing a multilayer flexible printed wiring board according to the present invention.

(製造方法1)
図3は、本発明に係る製造方法の基本例を示している。この基本例は、下記(1)ないし(5)の工程により構成される。
(1) 絶縁フィルム2の片側に導電金属箔1が形成され、絶縁フィルム2を挟んで導電金属箔1とは反対側の面上で、少なくとも実装部の構成要素となる部分には剛性材としてのガラスクロスおよび接着性樹脂を構成要素とするプリプレグ層4が形成され、ケーブル部の構成要素となる部分にはガラスクロスを構成要素として含まない有機接着剤3が形成されている外層積層材111を用意する。
絶縁フィルム2の材質としては、ポリイミド、ポリアミド、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)、などのフレキシブルプリント配線板で使用される絶縁フィルムを用いることができる。導電金属箔1の材質としては、各種圧延銅箔、電解銅箔が可能である。
接着剤3の材質としては、片面FPCや両面FPCを製造する際に用いるカバーフィルム用接着剤などの、ガラスクロスを含まず曲げ易く耐屈曲性に優れる接着材が利用可能である。プリプレグ層4としては、ガラスクロスを含むエポキシ系やイミド系、BTレジン(登録商標)系等のプリプレグが利用可能である。
(2) 絶縁ベース材5に導電パターン6が形成された内層配線体112を用意する。
(3) この内層配線体112の導電パターン面と、上記工程(1)により形成された外層積層材111のリリースを剥離した接着剤面とが対面する向きに重ね合わせて、内層配線体112と外層積層材111とを真空ラミネートプレスで積層して積層配線板100を形成する。
(4) 上記工程(3)で作製した積層配線板100の導電層1のある面から、導電層1、絶縁フィルム2およびプリプレグ層4をCO2レーザー等で部分的に除去し、内層配線体112の上に形成された導電パターン6の表面を露出させる。
次いで、デスミア処理などの必要なクリーニング工程を経てビアとする下穴7を形成する。レーザー加工と前後して、ドリル加工によるスルーホールの下穴7の加工およびデスミア処理を行うことも可能である。
(5) 上記工程(4)の後、積層配線板100の露出面に導電化処理および電解銅めっき等を行い、めっき層8を形成する。このめっき層8が、ビアやスルーホールの層間導通を行う。めっきとして、ビアフィルめっきや、スルーホールフィルめっきなどの、フィルドめっき技術を用いることで、ビア穴内及びスルーホール穴内を導電金属で埋めることも可能である。
(Manufacturing method 1)
FIG. 3 shows a basic example of the manufacturing method according to the present invention. This basic example includes the following steps (1) to (5).
(1) A conductive metal foil 1 is formed on one side of the insulating film 2, and at least a component that is a component of the mounting portion on the surface opposite to the conductive metal foil 1 across the insulating film 2 is used as a rigid material. A prepreg layer 4 having a glass cloth and an adhesive resin as constituent elements is formed, and an outer layer laminated material 111 in which an organic adhesive 3 that does not include glass cloth as a constituent element is formed in a portion to be a constituent element of the cable portion. Prepare.
As a material of the insulating film 2, an insulating film used for a flexible printed circuit board such as polyimide, polyamide, LCP (liquid crystal polymer), PEN (polyethylene naphthalate), or the like can be used. As a material of the conductive metal foil 1, various rolled copper foils and electrolytic copper foils are possible.
As the material of the adhesive 3, it is possible to use an adhesive that does not include a glass cloth and has excellent bending resistance, such as an adhesive for a cover film used when manufacturing a single-sided FPC or a double-sided FPC. As the prepreg layer 4, prepregs such as epoxy, imide, and BT resin (registered trademark) containing glass cloth can be used.
(2) An inner layer wiring body 112 in which the conductive pattern 6 is formed on the insulating base material 5 is prepared.
(3) Overlay the conductive pattern surface of the inner-layer wiring body 112 and the inner-layer wiring body 112 so that the adhesive surface from which the release of the outer-layer laminated material 111 formed in the step (1) is peeled faces each other. A laminated wiring board 100 is formed by laminating the outer layer laminated material 111 with a vacuum laminating press.
(4) The conductive layer 1, the insulating film 2 and the prepreg layer 4 are partially removed with a CO2 laser or the like from the surface where the conductive layer 1 of the laminated wiring board 100 produced in the above step (3) is present, and the inner layer wiring body 112 The surface of the conductive pattern 6 formed thereon is exposed.
Next, a pilot hole 7 serving as a via is formed through a necessary cleaning process such as a desmear process. Before and after the laser processing, it is also possible to perform processing and desmear processing of the pilot hole 7 of the through hole by drilling.
(5) After the step (4), the exposed surface of the laminated wiring board 100 is subjected to conductive treatment, electrolytic copper plating, and the like to form the plating layer 8. This plating layer 8 provides interlayer conduction between vias and through holes. By using a filled plating technique such as via fill plating or through hole fill plating as the plating, it is also possible to fill the via hole and the through hole hole with a conductive metal.

上記工程(5)の積層配線板100のケーブル部に相当するめっき層8の上に、エッチング用のドライフィルム(図示せず)を形成し、不要の金属部分をエッチングにより除去して導電層8を形成する。   A dry film for etching (not shown) is formed on the plating layer 8 corresponding to the cable portion of the laminated wiring board 100 in the step (5), and unnecessary metal portions are removed by etching to remove the conductive layer 8. Form.

この最外層の導電層8の形成方法としては、先の工程(4)の後、セミアディティブ用のめっきレジストにて逆パターンを形成し、電気銅めっきで導電パターンおよび層間導通路を同時に形成し、先の金属層1を、ソフトエッチングにより除去して形成することも可能である。   The outermost conductive layer 8 is formed by forming a reverse pattern with a semi-additive plating resist after the previous step (4), and simultaneously forming a conductive pattern and an interlayer conduction path by electrolytic copper plating. It is also possible to remove the metal layer 1 by soft etching.

この後、実装部の導電層8の上に、ソルダーレジストを形成し、金めっきやはんだめっき等の必要な表面処理を施した後、部品実装する。   Thereafter, a solder resist is formed on the conductive layer 8 of the mounting portion, and after performing necessary surface treatment such as gold plating or solder plating, the components are mounted.

(製造方法1の効果)
これらの特徴により、製造方法1は次のような効果を有する。
(Effect of Manufacturing Method 1)
Due to these characteristics, the manufacturing method 1 has the following effects.

まず、実装部となるビルドアップ部の絶縁材の材料構成層数を減らすことができ、基板の薄型化が容易となる。   First, it is possible to reduce the number of material constituent layers of the insulating material in the build-up part that becomes the mounting part, and it becomes easy to reduce the thickness of the substrate.

また、ビルドアップ部絶縁材をより薄くできることは、層間導通のためのビア加工用のレーザー穴開け加工やビアめっき、ビアフィルめっきのための加工時間およびコストの削減を可能とする。   In addition, the thinner build-up portion insulating material enables laser drilling for via processing for interlayer conduction, processing time and cost for via plating and via fill plating to be reduced.

さらに、ビアフィルめっきや穴埋めを行わない場合の、ビア中の空洞の体積を減らすことができ、ビア穴上で部品実装を行うビアオンチップの際に、部品に付くべきはんだがビア穴に喰われてはんだ接続が不均一になる現象や、ボイド残りといった、実装品質上好ましくない現象を減らす効果が期待できる。   In addition, when via fill plating or hole filling is not performed, the volume of the cavity in the via can be reduced, and when via-on-chip mounting a component on the via hole, the solder to be attached to the component is eaten into the via hole. As a result, it is possible to expect an effect of reducing phenomena that are undesirable in terms of mounting quality, such as a phenomenon in which the solder connection is uneven and a void remaining.

さらにこの製造方法においては、ガラスクロスを含む高剛性なプリプレグ層の厚みおよび適用箇所を最適化することで、多層フレキシブル基板の製造工程をロールツーロール化できるようになり、多層フレキシブル配線板の製造工程の自動化、歩留まりの向上および低コスト化が可能となる。   Furthermore, in this manufacturing method, by optimizing the thickness and application location of the highly rigid prepreg layer including the glass cloth, the manufacturing process of the multilayer flexible substrate can be made roll-to-roll, and the manufacturing of the multilayer flexible wiring board is possible. Process automation, yield improvement, and cost reduction are possible.

(製造方法2)
図4は、本発明に係る製造法の第2の実施例を示している。この第2の実施例は、下記(1a)ないし(6)の工程により構成される。
(1a) 絶縁フィルム2の片側に導電パターン1としての金属箔が形成された外層積層材121を用意する。絶縁フィルム2の材質としては、ポリイミド、ポリアミド、LCP、PEN、などのフレキシブルプリント配線板で用いられる絶縁フィルム材の適用が可能である。導電金属箔1の材質としては、各種圧延銅箔、電解銅箔が可能である。
(2a) 導電パターン1が形成された内層配線体122の導電パターン面の、少なくとも実装部となる部分には、剛性材としてのガラスクロスおよび接着性樹脂を構成要素とするプリプレグ層4が形成され、少なくともケーブル部の構成要素となる部分にはガラスクロスを構成要素として含まない接着性樹脂3が形成されている内層配線体122を用意する。
(3) 上記内層配線体122上に、外層積層材121を、真空熱プレス等で積層する。
(4) 上記工程(3)における外層積層材122の最外層の導電層1の面から、導電層(金属箔)1と絶縁フィルム2および接着剤層3をCO2レーザー等で部分的に除去し、内層配線体122に形成された導電パターン6の表面を露出させ、ビアとなる下穴7を形成する。レーザー加工と前後して、ドリル加工によるスルーホールの下穴加工を行うこともできる。
(5) 上記工程(4)の後、デスミア処理などの必要なクリーニング工程を実施した後、さらに導電化処理および電解銅めっきを行い、めっき層8を形成し、層間導電構造であるビアやスルーホールを形成する。めっき方法として、いわゆるビアフィルめっきや、スルーホールフィルめっきなどの、フィルドめっき技術を用いることで、ビア穴内及びスルーホール穴内を導電金属で埋めることも可能である。
(6) 上記工程(5)の積層配線板100のめっき層8の上に、エッチング用のドライフィルムを形成し、不要の金属部分をエッチング除去し、導電パターン8を形成する。
(Manufacturing method 2)
FIG. 4 shows a second embodiment of the manufacturing method according to the present invention. The second embodiment includes the following steps (1a) to (6).
(1a) An outer layer laminated material 121 in which a metal foil as the conductive pattern 1 is formed on one side of the insulating film 2 is prepared. As a material of the insulating film 2, an insulating film material used for flexible printed wiring boards such as polyimide, polyamide, LCP, and PEN can be used. As a material of the conductive metal foil 1, various rolled copper foils and electrolytic copper foils are possible.
(2a) A prepreg layer 4 comprising a glass cloth as a rigid material and an adhesive resin as constituent elements is formed at least on a portion to be a mounting portion of the conductive pattern surface of the inner layer wiring body 122 on which the conductive pattern 1 is formed. The inner-layer wiring body 122 is prepared in which the adhesive resin 3 that does not include glass cloth as a constituent element is formed at least in a portion that becomes a constituent element of the cable portion.
(3) The outer layer laminated material 121 is laminated on the inner layer wiring body 122 by vacuum hot pressing or the like.
(4) The conductive layer (metal foil) 1, the insulating film 2 and the adhesive layer 3 are partially removed from the surface of the outermost conductive layer 1 of the outer layer laminate 122 in the step (3) with a CO2 laser or the like. Then, the surface of the conductive pattern 6 formed in the inner layer wiring body 122 is exposed, and a pilot hole 7 serving as a via is formed. Before and after laser processing, it is also possible to drill through holes for drilling through holes.
(5) After the above step (4), after carrying out necessary cleaning steps such as desmear treatment, conductive treatment and electrolytic copper plating are further performed to form a plating layer 8, and vias and throughs that are interlayer conductive structures A hole is formed. By using a filled plating technique such as so-called via fill plating or through hole fill plating as the plating method, it is possible to fill the via hole and the through hole hole with a conductive metal.
(6) An etching dry film is formed on the plating layer 8 of the laminated wiring board 100 in the above step (5), and unnecessary metal portions are removed by etching to form a conductive pattern 8.

(製造方法2の効果)
この後、部品実装部の導電パターン8の上に、ソルダーレジストを形成し、金めっきやはんだめっき等に必要な表面処理を施した後、部品実装することが可能である。これらの特徴により、図3で説明した製造方法1と同等の効果を有する。
(Effect of Manufacturing Method 2)
After that, a solder resist is formed on the conductive pattern 8 of the component mounting portion, and after the surface treatment necessary for gold plating, solder plating or the like is performed, the component can be mounted. Due to these characteristics, the manufacturing method 1 described in FIG. 3 has the same effect.

(製造方法3)
図5は、本発明に係る製造方法の参考例1を示している。この参考例1は、下記の工程により構成される。
(Manufacturing method 3)
FIG. 5 shows Reference Example 1 of the manufacturing method according to the present invention. The reference example 1 includes the following steps.

この図5に示した参考例1では、図3の工程(1)で用いた導電パターン1に替えていわゆる剥離可能な(「ピーラブル」と呼ばれる)金属箔を用いる。この金属箔は、薄い導電金属箔のハンドリング性を向上させるために、薄い金属箔とそのカバーとしての厚い金属箔が積層され、必要に応じて厚い金属箔を容易に剥離除去できる多層構造の積層金属箔として構成されている。 In the reference example 1 shown in FIG. 5, a so-called peelable (called “peelable”) metal foil is used instead of the conductive pattern 1 used in the step (1) of FIG. In order to improve the handling of thin conductive metal foil, this metal foil is laminated with a thin metal foil and a thick metal foil as its cover, and a multilayer structure that can easily peel and remove the thick metal foil as needed It is configured as a metal foil.

工程(1b)では、絶縁フィルム2の一方の面に、導電パターン1となる薄い金属箔およびカバー9としての厚い金属箔が積層され、他方の面に、少なくとも実装部の構成要素となる部分には剛性材としてのガラスクロスおよび接着性樹脂を構成要素とするプリプレグ層4が形成され、ケーブル部の構成要素となる部分には剛性材であるガラスクロスを構成要素として含まない有機接着剤3が形成されている外層積層材131を用意する。   In the step (1b), a thin metal foil serving as the conductive pattern 1 and a thick metal foil serving as the cover 9 are laminated on one surface of the insulating film 2, and at least a portion serving as a component of the mounting portion on the other surface. A prepreg layer 4 having a glass cloth as a rigid material and an adhesive resin as a constituent element is formed, and an organic adhesive 3 that does not include the glass cloth as a rigid material as a constituent element is formed in a portion that is a constituent element of the cable portion. A formed outer layer laminated material 131 is prepared.

工程(2)は、内層配線体132を形成する工程であり、製造方法1における工程(2)と同じである。   Step (2) is a step of forming the inner-layer wiring body 132 and is the same as step (2) in the manufacturing method 1.

工程(3-1)および(3-2)は、製造方法1および同2における工程(3)に相当するが、外層積層材131としてピーラブルな材料を用いており、その剥離前後を示すために2工程として図示している。   Steps (3-1) and (3-2) correspond to step (3) in production method 1 and 2 but use a peelable material as outer layer laminated material 131 to show before and after peeling. Illustrated as two steps.

図5の工程(4)以降は、図3および図4の工程(4)以降と同様である。   Steps (4) and subsequent steps in FIG. 5 are the same as steps (4) and subsequent steps in FIGS.

(製造方法3の効果)
製造方法3では、製造工程でハンドリングして形成できるめっき前の最外層銅箔の厚みを製造方法1に比較して薄くできるため、レーザー加工の負荷の低減、めっき後の導体総厚の低減によりサブトラクティブ法での微細パターンの加工性の向上、まためっき前の銅箔をセミアディティブ法のシード層として用いることで、セミアディティブ法による微細配線およびビアを同時めっき形成した後の、シード層のソフトエッチング除去がより効率的に行える。
(Effect of manufacturing method 3)
In manufacturing method 3, since the thickness of the outermost copper foil before plating that can be formed by handling in the manufacturing process can be reduced compared to manufacturing method 1, by reducing the load of laser processing and reducing the total conductor thickness after plating By improving the workability of the fine pattern by the subtractive method and using the copper foil before plating as the seed layer for the semi-additive method, the micro-wiring and vias are simultaneously plated by the semi-additive method. Soft etching removal can be performed more efficiently.

図6は、本発明に係る製造方法の参考例2を示している。この参考例2は、下記の工程により構成される。 FIG. 6 shows Reference Example 2 of the manufacturing method according to the present invention. This reference example 2 is constituted by the following steps.

工程(1)では、製造方法1の工程(1)と同じ外層積層材141を用意する。   In step (1), the same outer layer laminated material 141 as in step (1) of manufacturing method 1 is prepared.

工程(2b)では、図3に示した製造方法1の内層配線体112に替えて層間導通をスルーホールで形成した内層配線体142を用意する。   In step (2b), instead of the inner layer wiring body 112 of the manufacturing method 1 shown in FIG. 3, an inner layer wiring body 142 in which interlayer conduction is formed by through holes is prepared.

工程(3)では、外層積層材141と内層配線体142とを製造方法1の工程3と同様に積層し、積層配線板100を形成する。   In the step (3), the outer layer laminated material 141 and the inner layer wiring body 142 are laminated in the same manner as in the step 3 of the manufacturing method 1 to form the laminated wiring board 100.

工程(4b)では、積層配線板100を構成する内層配線体142のスルーホールの中心位置に合わせて外層積層材141に層間導通用の下穴7を、図3に示した製造方法1の工程4と同様にレーザー加工により形成する。   In the step (4b), the pilot hole 7 for interlayer conduction is formed in the outer layer laminated material 141 in accordance with the center position of the through hole of the inner layer wiring body 142 constituting the laminated wiring board 100, and the step of the manufacturing method 1 shown in FIG. In the same manner as in No. 4, it is formed by laser processing.

工程(5)以降は、図3ないし図5の工程(5)以降と同様である。   Step (5) and subsequent steps are the same as step (5) and subsequent steps in FIGS.

(製造方法4の効果)
製造方法4では、層間導通構造として最外層間をスルーホールで導通する、いわゆる貫通スルーホール構造の下穴を、ドリル加工ではなくレーザー加工で形成できる。これにより、ビアと貫通スルーホールとを混在させた設計も可能となり、配線板設計の自由度を増すことができる。
(Effect of Manufacturing Method 4)
In the manufacturing method 4, a so-called through-hole structure prepared hole that conducts the outermost layer through a through-hole as an interlayer conduction structure can be formed by laser machining instead of drilling. As a result, a design in which vias and through-through holes are mixed is possible, and the degree of freedom in wiring board design can be increased.

本発明に係る多層フレキシブル配線板の第1の実施例の構造を示す断面図。Sectional drawing which shows the structure of the 1st Example of the multilayer flexible wiring board which concerns on this invention. 本発明に係る多層フレキシブル配線板の第2の実施例の構造を示す断面図。Sectional drawing which shows the structure of the 2nd Example of the multilayer flexible wiring board which concerns on this invention. 本発明に係る製造方法の基本例を示す工程図。Process drawing which shows the basic example of the manufacturing method which concerns on this invention. 本発明に係る製造方法の実施例を示す工程図。Process drawing which shows the Example of the manufacturing method which concerns on this invention. 本発明に係る製造方法の参考例1を示す工程図。Process drawing which shows the reference example 1 of the manufacturing method which concerns on this invention. 本発明に係る製造方法の参考例2を示す工程図。Process drawing which shows the reference example 2 of the manufacturing method which concerns on this invention. 従来の構造を示す断面構成図。The cross-sectional block diagram which shows the conventional structure.

符号の説明Explanation of symbols

1 導電パターン(導電箔)、2 絶縁フィルム、3 接着剤層、4 プリプレグ層、
5 絶縁ベース材、6 導電パターン、7 ビア下穴、8 導電パターン、9 導電パターン、
100 積層配線板、111,121,131,141 外層積層材、
112,122,132,142 内層配線体。
1 conductive pattern (conductive foil), 2 insulating film, 3 adhesive layer, 4 prepreg layer,
5 Insulating base material, 6 Conductive pattern, 7 Via pilot hole, 8 Conductive pattern, 9 Conductive pattern,
100 laminated wiring board, 111, 121, 131, 141 outer layer laminated material,
112,122,132,142 Inner layer wiring body.

Claims (1)

絶縁フィルムの一方の面に導電層、およびこの導電層を覆う剥離可能なカバーが設けられ、他方の面に剛性材としてのガラスクロスと接着性樹脂との複合体であるプリプレグ層、および前記剛性材を含まない前記接着性樹脂による接着層が形成された外層積層材を用意し、
絶縁ベース材の面に導電パターンが形成された内層配線体を用意し、
前記内層配線体の面に、前記外層積層材を前記複合体および前記接着層を有する面と接するように積層することにより積層配線板を形成し、
前記積層配線板にビアおよびスルーホールの少なくとも一方を形成し、
前記積層配線板に必要なめっき層を形成し、
前記めっき層の上にドライフィルムを形成し、
前記接着層が形成された部分に対応する部分のめっき層をエッチングにより除去してケーブル部を形成する
実装部とケーブル部とを有する多層フレキシブル配線板の製造方法。
A conductive layer on one surface of the insulating film, and a peelable cover that covers the conductive layer, and a prepreg layer that is a composite of a glass cloth and an adhesive resin as a rigid material on the other surface , and the rigidity Prepare an outer layer laminated material in which an adhesive layer made of the adhesive resin not containing a material is formed,
Providing a inner wiring body conductive pattern is formed on both surfaces of the insulating base member,
To both sides of the inner layer wiring body, the laminated wiring board formed by laminating the outer layer laminate in contact with the surface having the composite layer and the adhesive layer,
Forming at least one of a via and a through hole in the laminated wiring board;
Forming a plating layer necessary for the laminated wiring board,
Forming a dry film on the plating layer;
A method of manufacturing a multilayer flexible wiring board having a mounting portion and a cable portion, wherein a portion of the plating layer corresponding to the portion where the adhesive layer is formed is removed by etching to form a cable portion.
JP2008314074A 2008-12-10 2008-12-10 Manufacturing method of multilayer flexible wiring board Active JP5275001B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008314074A JP5275001B2 (en) 2008-12-10 2008-12-10 Manufacturing method of multilayer flexible wiring board
CN200910163346.2A CN101754571B (en) 2008-12-10 2009-08-07 Flexible multilayer wiring plate and its manufacturing method
TW98126739A TWI433630B (en) 2008-12-10 2009-08-10 Method for manufacturing multilayer flexible wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314074A JP5275001B2 (en) 2008-12-10 2008-12-10 Manufacturing method of multilayer flexible wiring board

Publications (3)

Publication Number Publication Date
JP2010140989A JP2010140989A (en) 2010-06-24
JP2010140989A5 JP2010140989A5 (en) 2011-08-11
JP5275001B2 true JP5275001B2 (en) 2013-08-28

Family

ID=42350890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314074A Active JP5275001B2 (en) 2008-12-10 2008-12-10 Manufacturing method of multilayer flexible wiring board

Country Status (3)

Country Link
JP (1) JP5275001B2 (en)
CN (1) CN101754571B (en)
TW (1) TWI433630B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197675A (en) * 2015-04-06 2016-11-24 大日本印刷株式会社 Flexible multilayer circuit board for LED element
EP3564800A1 (en) * 2016-12-28 2019-11-06 Fujikura Ltd. Wiring body, wiring board and touch sensor
CN110662342B (en) * 2018-06-28 2021-02-02 鹏鼎控股(深圳)股份有限公司 Rigid-flex board and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB863115A (en) * 1956-08-02 1961-03-15 Fairey Co Ltd Improvements relating to aerofoils or sheet material impregnated with a synthetic resin and to methods of making such aerofoils
JP3680321B2 (en) * 1994-06-28 2005-08-10 日立化成工業株式会社 Manufacturing method of multilayer printed wiring board
CN1283132C (en) * 2001-09-28 2006-11-01 钟渊化学工业株式会社 Polyimide film for flexible printed board and flexible printed board using same
JP4228677B2 (en) * 2002-12-06 2009-02-25 パナソニック株式会社 Circuit board
JP4063082B2 (en) * 2003-01-10 2008-03-19 日本電気株式会社 Flexible electronic device and manufacturing method thereof
JP2007129153A (en) * 2005-11-07 2007-05-24 Cmk Corp Rigid-flex multilayer printed wiring board

Also Published As

Publication number Publication date
CN101754571A (en) 2010-06-23
JP2010140989A (en) 2010-06-24
TWI433630B (en) 2014-04-01
CN101754571B (en) 2014-06-04
TW201023713A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4767269B2 (en) Method for manufacturing printed circuit board
US8347493B2 (en) Wiring board with built-in electronic component and method of manufacturing same
JP4855186B2 (en) Manufacturing method of double-sided flexible printed wiring board
JP5259240B2 (en) Multilayer flexible printed wiring board and manufacturing method thereof
JP2009231770A (en) Multilayer flexible printed wiring board and its manufacturing method
WO2008004382A1 (en) Method for manufacturing multilayer printed wiring board
JP5275001B2 (en) Manufacturing method of multilayer flexible wiring board
KR100731819B1 (en) Manufacturing process of multiple flexible printed circuit board
JP4705400B2 (en) Manufacturing method of multilayer printed wiring board
JP2010278067A (en) Method of manufacturing multilayer flexible printed circuit board, and multilayer circuit base material
KR101046084B1 (en) Metal core substrate and multilayer printed circuit board including the same and method for manufacturing same
JP2007287721A (en) Multilayer circuit board having cable section, and manufacturing method thereof
JP2013030811A (en) Display element module using multilayer flexible printed wiring board
JP2010016061A (en) Printed wiring board, and manufacturing method therefor
JP2007288023A (en) Method for manufacturing rigid flex multilayer printed wiring board
JP2011243767A (en) Multilayer wiring board and manufacturing method of the same
JP5000446B2 (en) Method for manufacturing printed wiring board
KR100658972B1 (en) Pcb and method of manufacturing thereof
JP4347143B2 (en) Circuit board and manufacturing method thereof
KR100754071B1 (en) Method of manufacturing printed circuit board for using all layer interstitial via hole
KR100601476B1 (en) Packaging substrate using metal core and manufacturing method thereof
JP2014222733A (en) Printed wiring board and method for manufacturing the same
JP2006156576A (en) Method of manufacturing rigid flex multilayer printed wiring board
TWI778356B (en) Rigid-flexible circuit board and method of manufacturing the same
US11792929B2 (en) Wiring substrate and method for manufacturing wiring substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250