JP5267715B2 - 色素増感型太陽電池素子モジュール - Google Patents
色素増感型太陽電池素子モジュール Download PDFInfo
- Publication number
- JP5267715B2 JP5267715B2 JP2012204843A JP2012204843A JP5267715B2 JP 5267715 B2 JP5267715 B2 JP 5267715B2 JP 2012204843 A JP2012204843 A JP 2012204843A JP 2012204843 A JP2012204843 A JP 2012204843A JP 5267715 B2 JP5267715 B2 JP 5267715B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrode
- dye
- solar cell
- sensitized solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
また、上記電解質層としては、例えば、上記一対の電極基材と、上記一対の電極基材の間に設けられた封止部材とによって構成される空間に液状の電解質を封入することによって形成されたものを挙げることができる。また、上記電解質層に用いられる上記封止部材は、上記一対の電極基材とともに液状の電解質を保持する機能だけではなく、上記一対の電極基材同士が接触することによって、色素増感型太陽電池の内部短絡が発生することを防止する機能を有するものである。
また、色素増感型太陽電池素子モジュールにおいては、複数の色素増感型太陽電池素子のうち1つの色素増感型太陽電池素子に内部短絡が生じてしまうと、色素増感型太陽電池素子モジュール全体に影響することから、各々の色素増感型太陽電池素子における内部短絡の発生を防止することは、重要な課題の1つである。
ここで従来のフレキシブル性を有する色素増感型太陽電池素子モジュールの構成としては、例えば、2枚のフレキシブル性を有する基材の間に複数の色素増感型太陽電池素子が形成されている構成が挙げられる。
しかしながら、上述した構成を有する色素増感型太陽電池素子モジュールに曲げ加工を施した場合、2枚のフレシキブル性を有する基材はそれぞれ異なる曲率を有することとなるため、所望の曲げ性を示すことが困難となる場合や、曲げ加工により色素増感型太陽電池素子モジュールが劣化してしまうといった問題があった。
また、上述の色素増感型太陽電池素子モジュールを構成する各々の色素増感型太陽電池素子は、通常、色素増感型太陽電池素子の端部側の領域において多孔質層と封止部材との間に空間を有しており、上記空間内に液状の電解質が満たされた構成を有するものである。そのため、第1電極層および第2電極層間に多孔質層を有さず、上述した空間を有する色素増感型太陽電池素子の端部側の領域においては電極層同士の接触による内部短絡が特に発生しやすいといった問題があった。
また、本発明によれば、固体電解質層を有することから、第1電極層、第2電極層および封止部材からなる空間に液状の電解質を封入してなる電解質層を有する場合に比べて、色素増感型太陽電池素子モジュールの発電面積を大きなものとすることができる。また、固体電解質層を用いることができることから、簡便な製造方法を用いることが可能となるため、上記色素増感型太陽電池素子モジュールの生産性の高いものとすることができ、また取り扱いやすいことから加工性にも優れたものとすることができる。
図1(a)は、本発明の色素増感型太陽電池素子モジュールの一例を示す概略平面図であり、図1(b)は図1(a)のA−A線断面図である。なお、図1(a)においては、固体電解質層および多孔質層が配置されている領域については点線で示している。
図1(a)、(b)に示すように、本発明の色素増感型太陽電池素子モジュール100は、1枚の第1基材11および第1基材11上にパターン状に形成された複数の第1電極層12を有する第1電極基材10と、少なくとも第2電極層22を有する複数の第2電極基材20と、第2電極基材20の第2電極層22上に形成され、色素増感剤が坦持された金属酸化物半導体微粒子を含有する複数の多孔質層3と、第1電極基材10の第1電極層11および多孔質層3の間に形成され、酸化還元対を含有する複数の固体電解質層4とを有するものである。また、本発明においては、図1(a)、(b)に示すように、少なくとも多孔質層3と対峙する固体電解質層4と第1電極基材10の第1電極層11との間に触媒層5を有していてもよい。
なお、図2(a)、(b)において説明していない符号等については図1(a)、(b)と同様とすることができるので、ここでの説明は省略する。
図3(a)、(b)、および図4(a)、(b)に示される色素増感型太陽電池素子モジュール100は、第1電極層12の各ストライプの長辺の端部を含む接続部分aと、各第2電極層22の短冊の長辺の端部を含む接続部分bにおいて、第1電極層12および第2電極層22が内部接続されている例について示している。また、図3(a)、(b)においては、色素増感型太陽電池素子1の固体電解質層4の大きさが多孔質層3の大きさと同一となるように、固体電解質層4が形成されている例、図4(a)、(b)においては、色素増感型太陽電池素子1の固体電解質層4の大きさが多孔質層3の大きさよりも大きくなるように、固体電解質層4が形成されている例について示している。
図3(a)、(b)、および図4(a)、(b)において、説明していない符号等については図1(a)、(b)と同様とすることができるので、ここでの説明は省略する。
本発明における固体電解質層は、その大きさが、多孔質層の大きさと同一、または多孔質層の大きさよりも大きいものである。
また、「固体電解質層の端部の位置と多孔質層の端部の位置とが一致する」とは、色素増感型太陽電池素子の内部短絡の発生を防止することが可能となる程度に固体電解質層の端部の位置と多孔質層の端部の位置とが一致していれば特に限定されず、色素増感型太陽電池素子の縦断面の形状、および平面視上の形状を観察した場合に、固体電解質層の端部の位置と多孔質層の端部の位置とが完全に一致する場合だけではなく、固体電解質層の端部の位置と多孔質層の端部の位置とが部分的に一致する場合を含む概念である。
ここで、本発明における第2電極基材の形成方法としては、複数の第2電極基材を切り出すことが可能な1枚の第2電極基材用基板を、第1電極基材の第1電極層のパターンに対応するパターンに切断することによって第2電極基材を形成する方法を好適に用いることができる。また上記第2電極基材の形成方法を用いた場合は、多孔質層、固体電解質層、または多孔質層および固体電解質層の積層体等を連続的に形成した後、第2電極基材用基板を所望の形状に切断することによって、第2電極基材上に第1電極基材の第1電極層のパターン形状に対応するパターンを有する多孔質層、固体電解質層、または多孔質層および固体電解質層の積層体等を形成することが可能となる。
しかしながら、上述した形成方法により第2電極基材上に多孔質層、固体電解質層、または多孔質層および固体電解質層の積層体等を形成した場合、多孔質層、固体電解質層、または多孔質層および固体電解質層の積層体等が連続的に形成された第2電極基材用基板を切断する際に、多孔質層や固体電解質層に割れ、欠け等を生じる場合がある。そのため、得られた第2電極基材においては多孔質層の端部や固体電解質層の端部が、平面視上から観察された場合に連続的な直線状や曲線状とならず、部分的に多孔質層や固体電解質層が突出している突出部分や、部分的に多孔質層や固体電解質層が欠落している欠落部分を有する場合がある。
一方、多孔質層の形状が円形状、楕円形状、または連続した曲線からなる端辺を有する形状である場合は、上記端辺に固体電解質層が連続的に形成されていることを指す。
また、「連続的に形成されている」とは、少なくとも1辺の端部または端辺の全てに固体電解質層が連続的に形成されている場合だけではなく、少なくとも1辺の端部または端辺の一部を除いて固体電解質層が連続的に形成されている場合を含む。
本発明における色素増感型太陽電池素子は、固体電解質層の大きさが上述した大きさを有するように、固体電解質層が形成されているものである。
また、上記色素増感型太陽電池素子の層構成は、具体的には、固体電解質層の大きさが多孔質層の大きさと同一となるように固体電解質層が形成されている態様(以下、第1態様とする。)と、固体電解質層の大きさが多孔質層の大きさよりも大きくなるように固体電解質層が形成されている態様(以下、第2態様とする。)との2つの態様を有する。
以下、各態様について説明する。
本態様の色素増感型太陽電池素子の層構成は、固体電解質層の大きさが多孔質層の大きさと同一となるように固体電解質層が形成されている層構成である。
なお、「第2電極層、多孔質層、および固体電解質層が第1電極基材の第1電極層のパターンに対応するように配置される」とは、本発明の色素増感型太陽電池素子モジュールを構成する色素増感型太陽電池素子が、第1電極層、第2電極層、多孔質層、および固体電解質層を有するように、第1電極基材上にパターン状に形成された複数の第1電極層上にそれぞれ第2電極層、多孔質層、および固体電解質層が配置されることを指す。より具体的には、1つの第1電極層上には第2電極層、多孔質層、および固体電解質層が不連続なパターンを有さず、連続的に配置されていることを指す。
以下、上記層構成について詳しく説明する。
また、「固体電解質層の幅または多孔質層の幅が電極層の幅と同一である」とは、第1電極層または第2電極層上全面に固体電解質層または多孔質層が形成され、第1電極層または第2電極層の端部の位置と固体電解質層または多孔質層の端部の位置とが一致している場合をいう。
なお、「第1電極層または第2電極層の端部の位置と固体電解質層または多孔質層の端部の位置とが一致している」ことについては、上述した「固体電解質層の端部の位置と多孔質層の端部の位置とが一致している」ことと同様とすることができるので、ここでの説明は省略する。
また、「固体電解質層の幅または多孔質層の幅が電極層の幅よりも大きい」とは、第1電極層または第2電極層上全面および第1電極層または第2電極層の端部の外側に固体電解質層または多孔質層が連続して形成されている場合をいう。
本態様における固体電解質層の配置としては、固体電解質層の幅と多孔質層の幅とが同一となり、かつ色素増感型太陽電池素子の内部短絡を防止することが可能であれば特に限定されず、具体的には多孔質層上全面に形成可能な配置とされる。ここで、上述したように、多孔質層については、多孔質層の幅と第2電極基材の第2電極層の幅とが同一となるように配置されていることが好ましいことから、本態様における固体電解質層の配置としては、固体電解質層の幅と第2電極基材の第2電極層の幅が同一となることが好ましい。
また、固体電解質層3の形成位置としては、色素増感型太陽電池素子1の内部短絡の発生を防止することが可能であれば特に限定されないが、第1電極層12の接続部分aを除く部分で固体電解質層4の幅が第1電極層12の幅と同一以上、すなわち、図3(b)に示すように、少なくとも第1電極層12の接続部分aを除く第1電極層12の全面に固体電解質層4が配置されていることや、図8に示すように、第1電極層12の接続部分aを除く第1電極層12の全面に固体電解質層4が配置され、かつ、第1電極層12の接続部分aに含まれる端部とは反対側の端部の外側に固体電解質層4が配置されていることが好ましい。なお、図8に示すように、第1電極層12の接続部分aが含まれる端部とは反対側の端部の外側に固体電解質層4が配置される場合は、固体電解質層4によって、隣接する色素増感型太陽電池素子1の第1電極層12と第2電極層22との接続が妨げられない程度に配置される。
本態様の色素増感型太陽電池素子の層構成は、固体電解質層の大きさが多孔質層の大きさよりも大きくなるように固体電解質層が形成されている層構成である。
以下、上記色素増感型太陽電池素子の層構成における各層の配置について詳しく説明する。
なお、色素増感型太陽電池素子モジュールにおいて、隣接する色素増感型太陽電池素子の固体電解質層や多孔質層については接触したとしても短絡を生じないものである。
色素増感型太陽電池素子1が上記構成を有する場合、多孔質層3の配置については上述した第1態様の項で説明した配置と同様とすることができるので、ここでの説明は省略する。
また、固体電解質層4の配置としては、色素増感型太陽電池素子1の内部短絡を防止することが可能であれば特に限定されないが、本態様においては固体電解質層4の大きさが多孔質層3の大きさよりも大きくなるように配置されるものであることから、通常は、図4(b)および図10に示すように、多孔質層3上全面、および第2電極基材20の第2電極層22の接続部分bに含まれる端部とは反対側の端部の外側に固体電解質層4が配置される。
また、固体電解質層4の配置としては、第1電極層12の接続部分aを除く部分で固体電解質層4の幅が第1電極層12の幅と同一以上、すなわち、図4(b)に示すように、第1電極層12の接続部分aを除く第1電極層12の全面に固体電解質層4が配置されていることや、図10に示すように、第1電極層12の接続部分aを除く第1電極層12の全面および第1電極層12の接続部分aに含まれる端部とは反対側の端部の外側に固体電解質層4が配置されていることが好ましい。なお、第1態様の項でも説明したように、図10に示すように、第1電極層12の接続部分aに含まれる端部とは反対側の端部の外側に固体電解質層4が配置される場合は、固体電解質層4によって、隣接する色素増感型太陽電池素子1の第1電極層12と第2電極層22との接続が妨げられない程度に配置される。
本発明における色素増感型太陽電池素子は、上述した第1態様の層構成、第2態様の層構成のいずれも採用することができるが、第2態様の層構成を採用することがより好ましい。第2態様の層構成とすることにより、上記色素増感型太陽電池素子の内部短絡の発生をより好適に防止することが可能となるからである。
本発明の色素増感型太陽電池素子モジュールは、1枚の第1基材および上記第1基材上にパターン状に形成された複数の第1電極層を有する第1電極基材と、少なくとも第2電極層を有する複数の第2電極基材と、上記第1電極基材の第1電極層または上記第2電極基材の第2電極層のうち、いずれか一方の電極層上に形成され、色素増感剤が坦持された金属酸化物半導体微粒子を含有する複数の多孔質層と、上記第1電極基材の第1電極層または上記第2電極基材の第2電極層のうち、上記多孔質層が形成されていない方の電極層および上記多孔質層の間に形成され、酸化還元対を含有する複数の固体電解質層とを有し、上記第1電極層、上記第2電極層、上記多孔質層、および上記固体電解質層を有する色素増感型太陽電池素子が複数連結されて構成され、1つの上記色素増感型太陽電池素子の上記第1電極層および上記1つの色素増感型太陽電池素子に隣接する他の上記色素増感型太陽電池素子の上記第2電極層が電気的に接続されているものである。
本発明における固体電解質層は、上記第1電極基材の第1電極層または上記第2電極基材の第2電極層のうち、上記多孔質層が形成されていない方の電極層および上記多孔質層の間に形成され、酸化還元対を含有する複数の固体電解質層とを有するものである。また、上記固体電解質層は、固体電解質層の幅が多孔質層の幅と同一、または大きくなるように形成されているものである。
本発明における固体電解質層の形状としては、その大きさが多孔質層の大きさと同一、または多孔質層の大きさよりも大きくなるような形状であり、かつ、第1電極基材の第1電極層のパターンに対応する形状であれば、特に限定されるものではないが、上述した「II.色素増感型太陽電池素子の層構成」の項において説明したように固体電解質層の配置することが可能となるような形状であることが好ましい。
より具体的には、本発明における1つの固体電解質層が、1つの第1電極層上に連続的に形成可能なパターンを有することを指す。
なお、固体電解質層のパターン形状については、第1電極基材の第1電極層のパターンによって、適宜選択されるものであるが、図2(a)、図4(a)、(b)等に示すように、本発明における第1電極基材10の第1電極層12のパターン形状がストライプ状である場合は、ストライプの少なくとも一方の長辺の端部の外側に固体電解質層4を形成することが可能なパターン形状であることが好ましい。
よって、上記第1電極層の各ストライプの長辺の端部に固体電解質層が配置されていることにより、色素増感型太陽電池素子における内部短絡の発生をより効果的に防止することができる。
本発明における固体電解質層の材料は、酸化還元対を含有するものである。
次に、固体電解質層に用いられる酸化還元対について説明する。
本発明における固体電解質層において、酸化還元対としては、一般的に色素増感型太陽電池の電解質層において用いられているものであれば特に限定はされない。具体的には、ヨウ素およびヨウ化物の組合せ、臭素および臭化物の組合せであることが好ましい。例えば、ヨウ素およびヨウ化物の組合せとしては、LiI、NaI、KI、CaI2等の金属ヨウ化物と、I2との組合せを挙げることができる。さらに、臭素および臭化物の組み合わせとしては、LiBr、NaBr、KBr、CaBr2等の金属臭化物と、Br2との組合せを挙げることができる。
本発明に用いられる固体電解質層は、上述した酸化還元対の他にも、必要な成分を適宜追加することが可能である。
以下、このような成分について説明する。
本発明における固体電解質層は、高分子化合物を含有していることが好ましい。固体電解質層が高分子化合物を含有していることにより、固体電解質層の強度を高いものとすることが可能となるからである。
以下、上記固体電解質層に用いられる高分子化合物について説明する。
本発明における固体電解質層は、上述した高分子化合物以外の任意の成分を含有することができる。このような成分としては、例えばイオン液体を挙げることができる。
本発明における固体電解質層の形成方法としては、色素増感型太陽電池素子が上述した層構成を有するように固体電解質層を形成することが可能であれば特に限定されず、一般的な塗布方法を用いて上述した固体電解質層の材料を塗布する方法を挙げることができる。
また、上記固体電解質層は、第1電極基材の第1電極層側に形成されていてもよく、第2電極基材の第2電極層側に形成されていてもよい。
上述したように、上記第2電極基材は、第2電極基材用基板を切断することによって形成することが可能である。よって、予め第2電極基材用基板上に固体電解質層を連続的に形成した後、第2電極基材用基板を切断することにより、同一の大きさを有する多孔質層および固体電解質層を簡便な形成方法で形成することができるからである。
本発明における多孔質層は、上記第1電極基材の第1電極層または上記第2電極基材の第2電極層のうち、いずれか一方の表面上に形成され、色素増感剤が坦持された金属酸化物半導体微粒子を含有するものである。
本発明における多孔質層の形状としては、第1電極基材の第1電極層のパターンに対応する形状であれば特に限定されないが、上述した「II.色素増感型太陽電池素子の層構成」の項において説明したように多孔質層を配置することが可能となるような形状であることが好ましい。
この場合、多孔質層の形状は、通常、第1電極基材の第1電極層のパターンに対応するパターンを有する形状となる。
なお、「多孔質層の形状が第1電極基材の第1電極層のパターンに対応するパターンを有する」とは、本発明の色素増感型太陽電池素子モジュールを構成する色素増感型太陽電池素子がそれぞれ多孔質層を有するように、多孔質層の形状が、第1電極基材上にパターン状に形成された複数の第1電極層上に多孔質層を形成することが可能となるパターンを有することを指す。
より具体的には、本発明における1つの多孔質層が、1つの多孔質層上に連続的に形成可能なパターンを有することを指す。
本発明の多孔質層は、金属酸化物半導体微粒子、および色素増感剤を有するものである。
以下、金属酸化物半導体微粒子、および色素増感剤についてそれぞれ説明する。
上記金属酸化物半導体微粒子としては、半導体特性を備える金属酸化物からなるものであれば特に限定されるものではない。上記金属酸化物半導体微粒子を構成する金属酸化物としては、例えば、TiO2、ZnO、SnO2、ITO、ZrO2、MgO、Al2O3、CeO2、Bi2O3、Mn3O4、Y2O3、WO3、Ta2O5、Nb2O5、La2O3等を挙げることができる。
なかでも本発明においては、TiO2からなる金属酸化物半導体微粒子を用いることが最も好ましい。TiO2は特に半導体特性に優れるからである。
なお、上記金属酸化物半導体微粒子の平均粒径は一次粒径を意味するものとする。
上記色素増感剤としては、光を吸収して起電力を生じさせることが可能なものであれば特に限定はされない。このような色素増感剤としては、有機色素または金属錯体色素を挙げることができる。上記有機色素としては、アクリジン系、アゾ系、インジゴ系、キノン系、クマリン系、メロシアニン系、フェニルキサンテン系、インドリン系、カルバゾール系の色素が挙げられる。本発明においてはこれらの有機色素の中でも、クマリン系色素を用いることが好ましい。また、上記金属錯体色素としてはルテニウム系色素を用いることが好ましく、特にルテニウム錯体であるルテニウムビピリジン色素およびルテニウムターピリジン色素を用いることが好ましい。このようなルテニウム錯体は吸収する光の波長範囲が広いため、光電変換できる光の波長領域を大幅に広げることができるからである。
上記多孔質層には、上記金属酸化物半導体微粒子の他に任意の成分が含まれていてもよい。本発明における任意の成分としては、例えば、樹脂を挙げることができる。上記多孔質層に樹脂が含有されることにより、本発明における多孔質層の脆性を改善することができるからである。
本発明における多孔質層の形成方法としては、第1電極基材の複数の第1電極層上または第2電極基材の第2電極層上に所望の厚みで多孔質層を形成することが可能な方法であれば特に限定されるものではない。
まず、少なくとも上述した金属酸化物半導体微粒子、バインダー樹脂、および溶媒からなる多孔質層形成用塗工液を調製する。次に第2電極層として金属層を用い、上記金属層上に、調製された上記多孔質層形成用塗工液を所望の膜厚で塗布して多孔質層形成用塗布膜を形成し、上記多孔質層形成用塗布膜を焼成してバインダー樹脂を熱分解させることによって多孔質層形成用層を形成する。次に上記多孔質層形成用層の表面に上述した色素増感剤を付着させることにより多孔質層を形成する。
なお、多孔質層形成用塗工液に用いられるバインダー樹脂、溶媒については一般的な多孔質層の形成方法で用いられるものと同様とすることができるので、ここでの説明は省略する。また、多孔質層形成用塗工液としては、上述した成分の他に、必要に応じて分散剤を添加することもできる。
また、多孔質層形成用塗工液の塗布方法、焼成条件等についても一般的な多孔質層の形成方法で用いられるものと同様とすることができるので、ここでの説明は省略する。
まず、上述した金属酸化物半導体微粒子および溶媒を含む多孔質層形成用組成物を第2電極層上に塗布して乾燥させることにより多孔質層形成用層を形成し、次いで多孔質層形成用層に色素増感剤を付着させることによって多孔質層を形成する。上記多孔質層形成用組成物に用いられる溶媒、上記多孔質層形成用組成物の塗布方法、および乾燥条件等については、一般的な多孔質層の形成方法で用いられるものと同様とすることができるので、ここでの説明は省略する。
なお、この方法は、第1電極基材の第1電極層上に多孔質層を形成する場合においても用いることができる。
上述した第2電極層上に多孔質層を焼成して形成する方法と同様の方法を用いて、耐熱基板上に剥離層を形成した後、上記多孔質層を剥離層上に配置し、上記第2電極層と貼り合せ、次いで耐熱基板を剥離することにより多孔質層を形成する。
なお、この方法は、第1電極基材の第1電極層上に多孔質層を形成する場合においても用いることができる。
本発明における第1電極基材は、1枚の第1基材と、上記第1基材上にパターン状に形成された複数の第1電極層とを有するものである。
第2電極基材が透明性を有する基材である場合は、第1電極基材としては、透明性を有する基材であってもよく、透明性を有さない基材であってもよい。
一方、第2電極基材が透明性を有さない基材である場合は、第1電極基材は透明性を有する基材である。
以下、それぞれについて説明する。
上記第1電極基材が透明性を有する基材である場合、第1電極基材は、通常、第1基材として透明基材と、第1電極層として上記透明基材上に形成された透明電極層とを有するものである。
上記第1電極基材が透明性を有する基材である場合、上述したように、第1基材としては透明基材が用いられる。
上記透明基材は、後述する透明電極層を支持するものである。
上記第1電極基材が透明性を有する基材である場合、上述したように、第1電極層としては透明電極層が用いられる。
透明電極層は、上述した透明基材上にパターン状に形成されるものである。
一方、上記導電性高分子材料としては、例えば、ポリチオフェン、ポリアニリン(PA)、ポリピロール、ポリエチレンジオキシチオフェン(PEDOT)、ならびにこれらの誘導体等を挙げることができる。また、これらを2種以上混合して用いることもできる。
なお、上記全光線透過率は、可視光領域において、スガ試験機株式会社製 SMカラーコンピュータ(型番:SM−C)を用いて測定した値である。
なお、上記シート抵抗は、三菱化学株式会社製 表面抵抗計(ロレスタMCP:四端子プローブ)を用い、JIS R1637(ファインセラミックス薄膜の抵抗率試験方法:4探針法による測定方法)に基づき、測定した値である。
なお、上記厚みは、透明電極層が複数の層から構成される場合には、すべての層の厚みを合計した総厚みを指すものとする。
上記接続部分としては、隣接する色素増感型太陽電池素子の第1電極層と第2電極層とを内部接続させることが可能であれば特に限定されず、透明電極層がストライプ状である場合、図1(a)等に示すように、接続部分aがストライプの短辺の端部を含む部分であることや、図3(a)、(b)等に示すように、接続部分aがストライプの長辺の端部を含む部分であることが好ましい。
なお、補助電極については、一般的な色素増感型太陽電池素子に用いられるものと同様とすることができるので、ここでの説明は省略する。
上記第1電極基材が透明性を有さない基材としては、上述した「透明性を有する基材」で説明したような、透明性を示さない基材であれば特に限定されないが、通常、第1基材と第1基材上にパターン状に形成された金属層とを有する。
上記第1基材としては、透明基材であってもよく、透明性を有さない第1基材であってもよい。透明基材については、上述した「(1)透明性を有する基材」の項で記載したものと同様とすることができるので、ここでの説明は省略する。
一方、透明性を有さない第1基材としては、樹脂製基材を挙げることができる。
なお、樹脂製基材に用いられる樹脂材料については、上述した透明樹脂製基材に用いられる材料と同様とすることができるので、ここでの説明は省略する。
上記第1電極基材が透明性を有さない基材である場合、上述したように、第1電極層としては、金属層が用いられる。
また、上記金属層としては、上述した第1基材上に所定のパターン形状で形成することが可能であれば特に限定されないが、フレキシブル性を有するものであることが好ましい。金属層がフレキシブル性を有することにより、本発明の色素増感型太陽電池素子モジュールの加工性をより高いものとすることができるからである。
例えば、第1基材上に蒸着法等により金属膜を形成した後、エッチングすることにより所定のパターン形状の金属層を形成する方法や、金属マスク等を用いて第1基材上にパターン蒸着させることにより金属層を形成する方法等を挙げることができる。
第1電極基材としては、第1基材および第1電極層を有するものであれば特に限定されず、必要に応じて他の構成を有していてもよい。
このような触媒層の例としては、例えば、上記第1電極層上にPtを蒸着した態様や、ポリエチレンジオキシチオフェン(PEDOT)、ポリピロール(PP)、ポリアニリン(PA)並びにこれらの誘導体およびこれらの混合物から触媒層を形成する態様を挙げることができるが、この限りではない。
本発明における第1電極基材としては、上述した透明性を有する基材、および透明性を有さない基材のいずれであってもよいが、透明性を有する基材であることが好ましい。
ここで、上述した多孔質層を形成するに際しては、第2電極層として金属基材を用い、金属基材上に多孔質層を焼成して形成する方法を用いることが好ましい。
よって、第2電極基材としては、透明性を有さない基材を用いることが好ましいことから、本発明における第1電極基材は、透明性を有する基材であることが好ましい。
本発明における第2電極基材は、少なくとも第2電極層を有するものである。
上述した第1電極基材が透明性を有する基材である場合は、上記第2電極基材としては透明性を有する基材であってもよく、透明性を有さない基材であってもよい。一方、上記第1電極基材が透明性を有さない基材である場合は、上記第2電極基材としては透明性を有する基材が用いられる。
なお、第2電極基材としては、通常、第2基材上全面に第2電極層が形成されているものである。
例えば、後述する多孔質層が第1電極基材の第1電極層上に形成される場合、上記第2電極層上に触媒層を形成することが好ましい。
なお、触媒層については上述した第1電極基材の項で説明したものと同様とすることができるので、ここでの説明は省略する。
ここで、本発明において「第2電極層が第1電極層のパターンに対応するパターンを有する」とは、本発明の色素増感型太陽電池素子モジュールを構成する各々の色素増感型太陽電池素子が第2電極層を有するように、第2電極層が、パターン状に形成された各々の第1電極層に対向させて配置することが可能なパターンを有することを指す。
より具体的には、本発明における1つの第2電極層が、1つの第1電極層上に連続的に配置可能なパターンを有することを指す。
また、上述の形成方法を用いた場合は、例えば、第2電極基材用基板の第2電極層上に後述する固体電解質層や多孔質層等を連続して形成した後、第2電極基材用基板を切断することにより、第1電極基材の第1電極層のパターンに対応するパターンを有する固体電解質層や多孔質層を簡便な方法で形成することが可能となる。
本発明における色素増感型太陽電池素子は、上述した上記第1電極層、上記第2電極層、上記多孔質層、および上記固体電解質層を有するものである。
また、本発明における色素増感型太陽電池素子は上述した層構成を有するものである。
本発明の色素増感型太陽電池素子モジュールは上述した色素増感型太陽電池素子から構成されるものであり、1つの上記色素増感型太陽電池素子の上記第1電極層および上記1つの色素増感型太陽電池素子に隣接する他の上記色素増感型太陽電池素子の上記第2電極層が電気的に接続されているものである。
第1電極層および第2電極層の接続方法としては、色素増感型太陽電池素子モジュールにおいて隣接する色素増感型太陽電池素子の第1電極層および第2電極層を電気的に接続させることが可能な方法であれば特に限定されない。例えば、隣接する色素増感型太陽電池素子の第1電極層と第2電極層とを直接接触させたり、または第1電極層と第2電極層との間に導電性層を形成して接続させたりする等の内部接続させる方法や、隣接する色素増感型太陽電池素子の第1電極層と第2電極層とを導線等を用いて外部から電気的に接続させる方法等を挙げることができる。
なお、導電性層の材料としては、一般的な導電性接着剤等を用いることができる。
本発明の色素増感型太陽電池素子モジュールは、上述した各構成を有するものであれば特に限定されず、必要な構成を適宜選択して追加することができる。このような構成としては、色素増感型太陽電池素子モジュールの第1電極基材上および第2電極基材上に配置され、色素増感型太陽電池素子モジュールをパッケージングする透明樹脂フィルムや金属ラミネートフォルム等を挙げることができる。
本発明の色素増感型太陽電池素子モジュールの製造方法としては、上述した色素増感型太陽電池素子モジュールを製造することが可能な方法であれば特に限定されないが、例えば以下に説明する製造方法を好適に用いることができる。
次に、図11(c)、(d)に示すように、第1電極層12および触媒層5をエッチング処理等により所定のパターンにパターニングすることで、1枚の第1基材11上に、パターン状に形成された複数の第1電極層12および触媒層5を有する第1電極基材10を形成する。図11(c)においては、第1電極層12および触媒層5が、ストライプ状に形成され、かつ各々の第1電極層12および触媒層5がストライプの短辺の端部を含む接続部分aを有するように形成される例について示している。
なお、図11(c)では、上記第1電極基材形成工程により形成された第1電極基材の一例を上面から示しており、図11(d)では、図11(c)のE’−E’線断面を示している。
なお、図12(a)では、上記多孔質層形成工程により多孔質層3が形成された第2電極基材用基板20’の一例を上面から示しており、図12(b)では、図12(a)のF−F線断面を示している。
図12(c)、(d)に示すように、上記固体電解質層形成工程においては、上述した第2電極基材用基板20’の多孔質層3上に、酸化還元対を含む固体電解質層4を連続的に形成する。
なお、図12(c)では、固体電解質層4が形成された第2電極基材用基板20’の一例を上面から示しており、図12(d)では、図12(c)のF’−F’線断面を示している。
図12(e)に示すように、上記切断工程においては、第2電極基材用基板20’を所望の形状に切断することにより、第2電極基材20を形成する。図12(e)においては、色素増感型太陽電池素子モジュールとした際に、隣接する第2電極基材20同士が接触しない形状となり、かつ第2電極基材20上に形成された固体電解質層4の幅が、図11(c)に示す第1電極層12の幅よりも大きくなるように第2電極基材20が形成される例について示している。
上記貼合工程においては、図11(c)に示される第1電極基材10の複数の第1電極層12上に形成された触媒層5と、図12(e)に示される複数の第2電極基材20の第2電極層22上に形成された多孔質層とを対向させて、固体電解質層4を界面として密着させる。これにより、本工程においては図1(a)、(b)に示される色素増感型太陽電池素子モジュール100の構成を得ることができる。
また上記接続工程においては、例えば図11(c)に示される第1電極基材10の複数の第1電極層12上に形成された触媒層5と、図12(e)に示される複数の第2電極基材20の第2電極層22上に形成された多孔質層とを対向させて、固体電解質層4を界面として貼合する際に、第1電極層12の各ストライプの短辺の端部を含む接続部分aと第2電極層22の短冊の短辺の端部を含む接続部分bとを直接接触させることにより、図1(a)に示すように、1つの色素増感型太陽電池素子1の第1電極層12と、上記1つの色素増感型太陽電池素子1に隣接する他の色素増感型太陽電池素子1の第2電極層22とを電気的に接続することができる。
貼合工程においては、図13(b)に示される第1電極基材10の複数の第1電極層12上に形成された触媒層5と、図14(c)に示される複数の第2電極基材20の第2電極層22上に形成された多孔質層3とを対向させて、固体電解質層4を界面として密着させる。これにより、本工程においては図2(a)、(b)に示される色素増感型太陽電池素子モジュール100の構成を得ることができる。
また接続工程においては、上述した工程と同様とすることができるので、ここでの説明は省略する。
第1電極基材形成工程は、第1基材上に複数の第1電極層を形成することにより第1電極基材を形成する工程である。
上記第2電極基材用基板準備工程は、複数の第2電極基材を切り出すことが可能な1枚の第2電極基材用基板を準備する工程である。
多孔質層形成工程は、上記第1電極層または上記第2電極層のいずれか一方の表面上に、多孔質層を形成する工程である。
固体電解質層形成工程は、上記第1電極基材の上記第1電極層側に上記固体電解質層を形成する工程、または上記第2電極基材用基板の上記第2電極層側に上記固体電解質層を連続的に形成する工程のいずれか一方を行う工程である。
上記切断工程は、上記第2電極基材用基板を切断することにより、上記複数の第2電極基材を形成する工程である。
上記貼合工程は、上記第1電極基材の上記第1電極層側と上記第2電極基材の上記第2電極層側とを対向させ、上記固体電解質層を界面として密着させることにより上記第1電極基材および上記第2電極基材を貼合する工程である。
また、多孔質層が形成されていない側の電極層上に触媒層が形成されている場合は、多孔質層と触媒層とを対向させて固体電解質層を界面として密着させる。
本発明における接続工程は、1つの上記色素増感型太陽電池素子の上記第1電極層と、上記1つの色素増感型太陽電池素子に隣接する他の上記色素増感型太陽電池素子の上記第2電極層とを電気的に接続する工程である。
上記色素増感型太陽電池素子モジュールの製造方法は、上述した各工程を有する製造方法であれば特に限定されず、必要な工程を適宜選択して追加することが可能である。
このような工程としては、例えば色素増感型太陽電池素子モジュールを作製した後、色素増感型太陽電池素子モジュールの第1電極基材上および第2電極基材上に透明樹脂フィルムや金属ラミネートフィルムを配置してパッケージングする工程等を挙げることができる。
<第1電極基材の作製>
第1基材としてPENフィルム上に第1電極層としてITO膜が形成された透明導電フィルムを用意し、そのITO膜上に、触媒層として白金を厚み13Å(透過率72%)で積層させた。上記積層体が形成されたPENフィルム上の、第1電極層と触媒層との積層体の一部をレーザースクライブにて除去し、絶縁部を形成し、上記積層体を図11(a)、(b)に示すように、ストライプ状であり、かつストライプの短辺の端部を含む接続部分aを有するように、パターニングした。絶縁部と絶縁部の間隔は長尺方向(図15(a)においてhで示される部分)に100mm、短尺方向(図15(a)においてiで示される部分)に12mmとした。なお、図15(a)は、実施例1において形成される1つの第1電極層の形状を説明する図である。
これにより、第1基材上に、パターン状に形成された複数の第1電極層を有する第1電極基材(対向電極基材)を得た。
多孔質酸化チタン微粒子(日本エアロジル社製、商品名:P25)5gをエタノール16.7gに投入し、さらにアセチルアセトン0.25g、及びジルコニアビーズ(φ1.0mm)20gを添加した混合液を、ペイントシェーカーにより攪拌し、さらにバインダーとしてポリビニルピロリドン(日本触媒社製、商品名:K−30)を0.25g添加して多孔質層形成用のインキを調製した。
上記作製した多孔質層形成用インキを、第2電極基材用基板であるチタン箔上にドクターブレード法により10cm幅の面積で塗布し、その後、120℃で乾燥させることで、多数の酸化チタン微粒子を含む膜厚9μmの多孔質層形成用層を形成した。多孔質層形成用層の周囲には、図12(a)、(b)に示すように、多孔質形成用インキが塗工されず、チタン箔のみが存在している未塗工部(第2電極基材用基板20’の接続部分b)を設けた。
その多孔質層形成用層にプレス機で0.1t/cm2の圧力を加えた。プレス後、500℃で30分間焼成した。
次に、色素増感剤として有機色素(三菱製紙社製、商品名:D358)を、濃度が3.0×10−4mol/lとなるようにアセトニトリル及びtert−ブチルアルコールの体積比1:1溶液に溶解させて色素増感剤担持用塗工液を調製した。この色素増感剤担持用塗工液に対し、上述のチタン箔上に形成した多孔質層形成用層を3時間浸漬させた。その後、色素担持用塗工液から引き上げ、酸化チタン微粒子に付着した色素担持用塗工液をアセトニトリルにより洗浄後、風乾した。これにより、酸化チタン微粒子の細孔表面に増感色素を担持させて多孔質層を形成した。
カチオン性ヒドロキシセルロース(ダイセル化学社製、商品名:ジェルナーQH200)0.14gをエタノール2.72gに溶解させた溶液に、ヨウ化カリウムを0.043g加え、攪拌して溶解させた。次いで、その溶液に1−エチル−3−メチルイミダゾリウムテトラシアノボレート(EMIm−B(CN)4)0.18g、1−プロピル−3−メチルイミダゾリウムアイオダイド(PMIm−I)0.5g、及びI2を0.025g加えて、撹拌して溶解させた。これにより、コーティング可能な電解質層形成用塗工液を調製した。
上述の多孔質層(10cm幅)上に、電解質層形成用塗工液をドクターブレード法により塗布し、100℃で乾燥して電解質層を形成した。
電解質層付き基板を図12(e)に示すように、短冊状であり、かつ第2電極層22の短冊の短辺を端部を含む接続部分bを有するように、切断した。なお、短冊の幅(図15(b)においてjで示される幅)は10mmとした。
これにより、第2電極基材(導電基材)を得た。
なお、図15(b)は、実施例1において形成される1つの第2電極基材の形状を説明する図である。
図15(c)に示すように、短冊上に切り出した第2電極基材20のうち、接続部分bに導電性接着剤を形成した後、導電性接着剤が隣接する第1電極層の接続部分aと接続するように、第1電極基材と、第2電極基材20の貼り合わせを行い、色素増感型太陽電池素子モジュール100を作製した。
なお、図15(c)は、実施例1において作製される色素増感型太陽電池素子モジュールの例を示す概略図である。
作製したモジュールを充填材で挟み、150℃でラミネートすることにより、封止した。
電解質層形成用塗工液を第1電極基材の第1電極層側にドクターブレード法を用いて連続的に塗布することにより、固体電解質層を形成したこと以外は実施例1と同様にして色素増感型太陽電池素子モジュールを作製した。
第1電極基材の第1電極層が形成されていない部分にマスクを配置し、電解質層形成用塗工液を第1電極基材の第1電極層側にドクターブレード法を用いて塗布することにより、パターン状に形成された第1電極層の幅と同一の幅となるように固体電解質層を形成したこと以外は実施例1と同様にして色素増感型太陽電池素子モジュールを作製した。
第1電極基材の第1電極層が形成されていない部分が第1電極層の端部から0.5mm露出するようにマスクを配置し、電解質層形成用塗工液を第1電極基材の第1電極層側にドクターブレード法を用いて塗布することにより、パターン状に形成された第1電極層の幅よりも端部から0.5mm幅広くなるように固体電解質層を形成したこと以外は実施例1と同様にして色素増感型太陽電池素子モジュールを作製した。
第1電極基材の第1電極層の一部および第1電極層が形成されていない部分にマスクを配置し、電解質層形成用塗工液を第1電極基材の第1電極層側にドクターブレード法を用いて塗布することにより、パターン状に形成された第1電極層の幅よりも固体電解質層の幅が小さくなるように固体電解質層を形成したこと以外は実施例1と同様にして色素増感型太陽電池素子モジュールを作製した。なお、比較例の色素増感型太陽電池素子モジュールは、色素増感型太陽電池素子の固体電解質層の大きさが多孔質層の大きさよりも小さくなるように固体電解質層が形成されているものである。
作製した色素増感型太陽電池モジュールについて、擬似太陽光(AM1.5、入射光強度100mW/cm2)を光源として、対向電極側から入射させ、ソースメジャーユニット(ケースレー2400型)を用いて電圧印加による電流電圧特性を測定した。その結果、実施例1においては、短絡電流23(mA)、開放電圧6.1(V)、曲線因子0.24、最大出力34mWの特性を示し、蛍光灯(500lux)を光源とした場合、短絡電流0.25(mA)、開放電圧4.7(V)、曲線因子0.70、最大出力0.8mWの特性を得た。
3 … 多孔質層
4 … 固体電解質層
5 … 触媒層
10 … 第1電極基材
11 … 第1基材
12 … 第1電極層
20 … 第2電極基材
20’ … 第2電極基材用基板
100 … 色素増感型太陽電池素子モジュール
Claims (1)
- 1枚の第1基材および前記第1基材上にパターン状に形成された複数の第1電極層を有する第1電極基材、
少なくとも第2電極層を有する複数の第2電極基材、
前記第1電極基材の前記第1電極層または前記第2電極基材の前記第2電極層のうち、いずれか一方の電極層上に形成され、色素増感剤が坦持された金属酸化物半導体微粒子を含有する複数の多孔質層、並びに、
前記第1電極基材の前記第1電極層または前記第2電極基材の前記第2電極層のうち、前記多孔質層が形成されていない方の電極層および前記多孔質層の間に形成され、酸化還元対を含有する複数の固体電解質層を有し、
前記第1電極層、前記第2電極層、前記多孔質層、および前記固体電解質層を有する色素増感型太陽電池素子が複数連結されて構成され、
1つの前記色素増感型太陽電池素子の前記第1電極層および前記1つの色素増感型太陽電池素子に隣接する他の前記色素増感型太陽電池素子の前記第2電極層が電気的に接続されている色素増感型太陽電池素子モジュールであって、
前記色素増感型太陽電池素子の前記固体電解質層の大きさが前記多孔質層の大きさよりも大きくなるように、前記固体電解質層が形成され、
さらに、前記第2電極基材が、第2基材と前記第2電極層とを有し、前記第2基材の一方の表面全面に前記第2電極層が形成されており、
前記色素増感型太陽電池素子の前記固体電解質層の幅が前記第2電極層の幅と同一、または前記第2電極層の幅よりも大きくなるように、前記固体電解質層が形成されていることを特徴とする色素増感型太陽電池素子モジュール。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012204843A JP5267715B2 (ja) | 2012-09-18 | 2012-09-18 | 色素増感型太陽電池素子モジュール |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012204843A JP5267715B2 (ja) | 2012-09-18 | 2012-09-18 | 色素増感型太陽電池素子モジュール |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011095452A Division JP2012227063A (ja) | 2011-04-21 | 2011-04-21 | 色素増感型太陽電池素子モジュール |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013098572A Division JP5920282B2 (ja) | 2013-05-08 | 2013-05-08 | 色素増感型太陽電池素子モジュール |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013058480A JP2013058480A (ja) | 2013-03-28 |
JP5267715B2 true JP5267715B2 (ja) | 2013-08-21 |
Family
ID=48134154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012204843A Expired - Fee Related JP5267715B2 (ja) | 2012-09-18 | 2012-09-18 | 色素増感型太陽電池素子モジュール |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5267715B2 (ja) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007073289A (ja) * | 2005-09-06 | 2007-03-22 | Fujifilm Corp | 光電変換素子 |
EP2287961B1 (en) * | 2008-05-30 | 2016-05-25 | Fujikura, Ltd. | Photoelectric conversion element module and method for manufacturing photoelectric conversion element module |
-
2012
- 2012-09-18 JP JP2012204843A patent/JP5267715B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013058480A (ja) | 2013-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5699374B2 (ja) | 有機系太陽電池素子モジュールの製造方法 | |
JP4858652B2 (ja) | 色素増感型太陽電池 | |
JP5134867B2 (ja) | 光電変換素子 | |
JP5991092B2 (ja) | 有機系太陽電池素子モジュールの製造方法 | |
US20150235774A1 (en) | Dye-sensitized solar cell | |
JP5754071B2 (ja) | 酸化物半導体電極基板の製造方法および色素増感型太陽電池 | |
JP5817783B2 (ja) | 色素増感型太陽電池素子モジュール | |
JP5267608B2 (ja) | 色素増感型太陽電池素子モジュール | |
JP5920282B2 (ja) | 色素増感型太陽電池素子モジュール | |
JP5267715B2 (ja) | 色素増感型太陽電池素子モジュール | |
JP2012227063A (ja) | 色素増感型太陽電池素子モジュール | |
JP5929118B2 (ja) | フレキシブル太陽電池素子モジュール | |
JP2013125633A (ja) | 太陽電池モジュール | |
JP5083442B2 (ja) | 色素増感型太陽電池 | |
JP2012186032A (ja) | 色素増感太陽電池 | |
JP5817461B2 (ja) | フレキシブル太陽電池素子モジュール | |
JP2008041258A (ja) | 作用極用基板及び光電変換素子 | |
JP4888607B2 (ja) | 色素増感型太陽電池 | |
JP5828816B2 (ja) | 色素増感型太陽電池 | |
JP6196547B2 (ja) | 光電極及びその製造方法、色素増感太陽電池 | |
JP2013051143A (ja) | 光電変換素子用電極、及び、光電変換素子 | |
JP5458620B2 (ja) | 色素増感型太陽電池用対極基板、色素増感型太陽電池素子、および色素増感型太陽電池モジュール | |
JP2012212620A (ja) | 色素増感型太陽電池の製造方法 | |
JP2017022325A (ja) | 光電変換素子 | |
JP2011192406A (ja) | 色素増感型太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130422 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5267715 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |