JP5264152B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP5264152B2
JP5264152B2 JP2007304604A JP2007304604A JP5264152B2 JP 5264152 B2 JP5264152 B2 JP 5264152B2 JP 2007304604 A JP2007304604 A JP 2007304604A JP 2007304604 A JP2007304604 A JP 2007304604A JP 5264152 B2 JP5264152 B2 JP 5264152B2
Authority
JP
Japan
Prior art keywords
data
pixel
pixel data
auxiliary pixel
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007304604A
Other languages
English (en)
Other versions
JP2009126091A (ja
JP2009126091A5 (ja
Inventor
文孝 祖父江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007304604A priority Critical patent/JP5264152B2/ja
Publication of JP2009126091A publication Critical patent/JP2009126091A/ja
Publication of JP2009126091A5 publication Critical patent/JP2009126091A5/ja
Application granted granted Critical
Publication of JP5264152B2 publication Critical patent/JP5264152B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明は、レーザ光の発光パターン信号を生成する像形成装に関する。
電子写真方式の画像形成装置においては、一般的に半導体レーザから発光するレーザビームをオン/オフ制御しながら、このレーザビームを回転多面鏡(ポリゴンミラー)で偏向して感光体を主走査方向に繰り返し走査することによって、潜像形成が行われる。
このような画像形成装置においては、レーザビームのオン/オフ制御に一定周波数の画像クロックが用いられている。その理由は、この画像クロックの周波数が一定でないと、レーザビームのオン/オフタイミングが正規のタイミングからずれ、それにより感光体上に形成される静電潜像のドット形成位置が微妙にずれ、その結果、画像ひずみや色ズレ、色むらが発生するからである。
また、ポリゴンミラーと感光体との間に光学レンズであるf−θレンズが設けられている。f−θレンズは、レーザビームの集光作用、走査の時間的な直線性を保証するような歪曲収差の補正作用などの光学特性を有し、f−θレンズを通過したレーザビームは、感光体の長手方向である主走査方向に等速で結合走査される。しかしながら、このf−θレンズの製造上の誤差からの特性のズレにより感光体上へ照射されるレーザビームが理想的な画像形成位置からずれることがある。そこで、このf−θレンズの特性や全体倍率を補正する技術として、1画素を所定の割合で1画素より小さな画素の単位に分割した大きさの画素片を挿入したり、削除したりして、ドット形成位置を補正する技術が提案されている(例えば特許文献1参照)。
特開2005−96351号公報
しかしながら、上記従来の技術では、次のような問題点があった。
画像クロックが常に一定周波数の場合、レーザビームのオン/オフを制御するためのオン/オフ信号を、その生成回路からレーザ駆動回路へ伝送する伝送路において、画像クロックが常に一定周波数であるために放射ノイズが発生する。その放射ノイズのレベルは、国際的な放射ノイズ規格に規定されている値を超える場合が多い。
そこで上述したような画素片挿入/削除技術を用いた場合、放射ノイズレベルは低減されるものの、単に、f−θレンズの特性や全体倍率を補正するために当該技術を用いたのではノイズレベルの低減は十分ではなかった。
また、画素片挿入/削除技術を用いることが少ないタイプの画像形成装置では、その放射ノイズレベルが、国際的な放射ノイズ規格の値を超える場合が多く、問題とされていた。このタイプの画像形成装置としては、例えば、主走査方向の色ズレをあまり考慮する必要がない1ドラム系のカラー画像形成装置や、単色で形成するために色ズレに対する配慮を必要としない白黒画像形成装置などが挙げられる。
このような画像クロックに起因する放射ノイズ対策として、従来では、画像クロックの周波数を高精度に変調を行うことができる高価な周波数変調装置を使用したり、伝送路となる電線にシールドケーブルを用いたりするなどの対策が必要となる。これがコストアップの要因となっていた。
本発明は上記従来の問題点に鑑み、画像クロックに起因する放射ノイズの低減を低コストで実現することができる像形成装を提供することを目的とする。
上記目的を達成するため本発明の画像形成装置は、感光体と、前記感光体を露光するための光ビームを出射する光源と、前記光ビームが前記感光体上を走査するように前記光源から出射された前記光ビームを偏向する偏向手段と、入力画像データに基づいて、前記光源から前記光ビームを出射させるための1画素を予め設定された整数値で分割した補助画素に対応する補助画素データを複数含む補助画素データを生成するデータ生成手段と、前記光ビームによって走査されることによって前記感光体上に形成される静電潜像をトナーを用いて現像する現像手段と、前記補助画素データ列に対して前記補助画素を挿入、または前記補助画素データ列から前記補助画素を削除するデータ処理手段であって、前記光ビームが前記感光体を走査する走査方向におけるトナー像幅を補正するために前記データ生成手段によって生成された前記補助画素データへの前記補助画素データの挿入数または前記補助画素データからの補助画素データの削除数を設定し、かつ前記トナー像幅の補正を実行するか否かに拘わらず前記データ生成手段によって生成された前記補助画素データ前記補助画素データを挿入するとともに前記データ生成手段によって生成された前記補助画素データから挿入する当該補助画素データと同数の前記補助画素データを削除するデータ処理手段と、前記データ処理手段によって処理された前記画素データに基づいて駆動信号を生成する信号生成手段と、前記信号生成手段によって生成される前記駆動信号によって前記光源から前記光ビームを出射させる駆動手段と、を備えることを特徴とする。
本発明によれば、画像クロックに起因する放射ノイズの低減を低コストで実現することが可能になる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
〈画像形成装置の全体構成及び基本的な動作〉
図1は、本発明の実施の形態に係る画像形成装置の全体構成を示す断面図である。
図1において、原稿給紙装置1の上に積載された原稿は、1枚ずつ順次原稿台ガラス2面上に搬送される。原稿が搬送されると、ランプであるスキャナ3が点灯しながらスキャナユニット4が移動して原稿を照射する。原稿の反射光はミラー5,6,7を介してレンズ8を通過し、その後イメージセンサ部9に入力される。イメージセンサ部9に入力された画像信号は、一旦図示しない画像メモリに記憶され、再び読み出された後、露光制御部10に入力される。
露光制御部10が有する半導体レーザから発生させる光ビーム(レーザ光)によって感光体11上に作られた潜像は、次いで、現像器13によって現像される。前記潜像とタイミングを合わせて転写部材積載部14、或いは15より転写部材が搬送され、転写部16において、前記現像されたトナー像が転写部材上に転写される。転写されたトナー像は定着部17にて転写部材に定着された後、排紙部18より装置外部に排出される。
転写後の感光体11の表面をクリーナ25で清掃し、クリーナ25で清掃された感光体11の表面を補助帯電器26で除電する。そして、1次帯電器28で感光体11の表面を帯電し、この工程を繰り返すことで複数枚の画像形成を行う。
また、コントローラ100は、当該画像形成装置の動作全体を制御するものであり、CPUやメモリ、各種インターフェース回路等で構成されている。
〈露光制御部の構成〉
図2は、露光制御部10の構成を示す模式図である。
図2において、21はレーザユニットであり、20は半導体レーザ(レーザ発光手段)である。半導体レーザ20の内部にはレーザビームの一部を検出するPDセンサ(フォトダイオード)が設けられ、PDセンサの検出信号を用いて半導体レーザの自動光量制御であるAPC(Auto Power Control)制御を行う。
半導体レーザ20から発したレーザ光はコリメータレンズ25及び絞り22によりほぼ平行光となり、所定のビーム径で回転多面鏡(ポリゴンミラー)23に入射する。回転多面鏡23は矢印の方向に等角速度の回転を行っており、この回転に伴って、入射した光ビームが連続的に角度を変える偏向ビームとなって反射される。偏向ビームとなった光ビームはf−θレンズ24により集光作用を受ける。
一方、f−θレンズ24は同時に感光体11上で走査の時間的な直線性を保証するような歪曲収差の補正を行うために、光ビームは、像担持体としての感光体11上に図の矢印の方向に等速で走査される。
26は回転多面鏡23からの反射光を検出するビームディテクト(以下、BDと呼ぶ)センサであり、BDセンサ26の検出信号は回転多面鏡23の回転と感光体11上での画像データの書き込みの同期をとるための同期信号として用いられる。
〈レーザ駆動回路の構成〉
次に、図2のレーザユニット21内におけるレーザチップ20を駆動するためのレーザ駆動回路200について、図3を参照して説明する。
図3は、本実施の形態に係るレーザ駆動回路を示す回路図である。
本実施の形態におけるレーザ駆動回路200は、図3に示すように、1つのレーザダイオード20Aと1つのPDセンサ20Bから構成される半導体レーザ(レーザチップ)20を備えている。そして、バイアス電流源31とパルス電流源32の2つの電流源をレーザダイオード20Aに適用することによって、レーザダイオード20Aの発光特性の改善を図っている。
また、レーザダイオード20Aの発光を安定化させるために、PDセンサ20Bからの出力信号を用いてバイアス電流源31に帰還をかけ、バイアス電流量の自動制御を行っている。即ち、シーケンスコントローラ37からのフル点灯信号により論理素子30がON信号をスイッチ39へ出力することにより、バイアス電流源31とパルス電流源32からの電流の和がレーザダイオード20Aへ流れる。その時のPDセンサ20Bからの出力信号は、電流電圧変換器34に入力され、次いで増幅器35で増幅され、APC制御を行うAPC回路36に入力され、次いでこのAPC回路36からバイアス電流源31に制御信号として供給される。
こうして一定光量に制御された光ビームを、画素変調部38で変調されたデータでスイッチ39をOFF/ON制御することで感光体11上に画像を形成している。
〈画素変調部38の構成及び動作〉
次に、図3に示した画素変調部38の構成及び動作について、図4を参照して説明する。
図4は、図3中の画素変調部38の内部構成を示すブロック図である。
図4において、40はタイミング発生回路であり、レーザダイオード20Aの光ビームをBDセンサ26で検出することにより生成されたBD信号の出力に合わせて動作する。41はPWM信号生成回路であり、42はクロック発生回路である。この2つの回路はタイミング発生回路40から出力される信号に合わせて動作する。PWM信号生成回路41は、シフトレジスタ45から出力されるPWM点灯パターン信号を基に、レーザビームのオン/オフを制御するための発光パターン信号であるPWM信号を生成する。また、クロック発生回路42は、メモリ43や変換回路44、シフトレジスタ45にクロックを出力する。タイミング発生回路40、PWM信号生成回路41、及びクロック発生回路42は高周波クロックを基準に動作している。
43はメモリであり、コントローラ100の有する画像処理回路よりDATAとしての濃度データを受信し、クロック発生回路42から出力されるクロックに同期して1画素ずつ出力する。44は変換回路であり、メモリ43から受信した1画素分の濃度信号をPWM信号生成回路41で出力されるPWM信号の元になる1画素分のPWM点灯パターン信号に変換する。45はシフトレジスタであり、変換回路44より出力された1画素分のPWM点灯パターン信号が順次書き込まれ、このデータをシフトさせる。
次に、詳細な動作を説明する。
図5は、タイミング発生回路40、PWM信号生成回路41、及びクロック発生回路42の入出力タイミングを示すタイミングチャートである。
図5中の高周波クロックとは、1画素の分解能によって変化する。この図5の例では、1画素を16分割する構成になっているため、1画素の1/16倍の周期のクロックである。
BD信号の立ち下がりを検出し、所定タイミングでタイミング信号(0〜15)が動作を始める。タイミング信号はまずタイミング信号(0)が高周波クロック1区間Highとなり、高周波クロックに同期して順次タイミング信号(1),タイミング信号(2)・・・とHighになる。タイミング信号(15)がHighになったら、次はタイミング信号(0)がHighになる。BD信号が入力されたタイミングでこのタイミング信号が出力され、次のBD信号が入力されるまで同じタイミングを繰り返し出力する。
PWM信号生成回路41では、このタイミング信号(0〜15)とシフトレジスタ45から出力されたPWM点灯パターン信号に応じてPWM信号を出力する。ここでは、タイミング信号(4)とタイミング信号(11)の間Highになるような1画素分のPWM点灯パターン信号を受け、その区間HighになるようなPWM信号生成回路41の出力として1画素分のPWM信号を出力する。
クロック発生回路42では、前記したタイミング信号(0〜15)に応じて、1画素分のクロック(以降、画像クロックと呼ぶ)を出力する。ここでは、タイミング信号(0)で立ち上がり、タイミング信号(8)で立ち下がる画像クロックを生成する。
変換回路44は、メモリ43から出力された4ビットの濃度信号を16ビットのPWM点灯パターン信号に変換し、シフトレジスタ45に出力する。シフトレジスタ45は、少なくとも2画素分のPWM点灯パターン信号を蓄積できるだけの容量となっている。シフトレジスタ45はクロック発生回路42から出力されるクロック信号に同期して、1画素分(=16ビット)シフトする。もっとも古いデータ16ビットをPWM点灯パターン信号としてPWM信号生成回路41に出力する。
〈画素片挿入/削除の手法〉
次に、シフトレジスタ45において画素片(補助画素)を挿入/削除する手法について、図6及び図7を参照して、説明する。図6(a)〜(d)及び図7(e)〜(h)は、シフトレジスタ45において画素片を挿入/削除する手法を説明する説明図である。
画素片は、不図示の不揮発性メモリに予め記憶された各画像形成装置に固有の情報に基づいて、変換回路44で生成され、シフトレジスタ45へ供給される。変換回路44に限らず適宜の箇所で生成しても良い。なお、説明の便宜上、4つの補助画素から1画素を構成している場合で説明する。四角の中の記号はデータを示す。D1(3)なら、1画素目の最上位ビット、D3(0)は3画素目の最下位ビットである。また四角の横の数字はシフトレジスタ内部のアドレスを示す。
図6(a)は、画素片が挿入されていない場合であり、5〜8に格納されていたデータD1(3〜0)が1〜4にシフトし、新たに変換回路44から出力されたデータD2が5〜8に格納されところを示している。
尚、5〜8には、変換回路44から出力される4ビットのPWM点灯パターン信号が格納されるところである(4ビット単位で格納)。次に、1〜4のデータD1(3〜0)はPWM信号生成回路41に出力される(4ビット単位で出力)。出力した後、シフトレジスタの5〜8に格納されているデータが1〜4にシフトし新たに変換回路44から出力されたデータが5〜8に格納される(このとき、9〜12は空である)。この動作を繰り返す。
図6(b)は、図6(a)の状態から(今までに画素片の挿入がなく)、かつデータが1〜4にシフトするタイミングで画素片が挿入される場合を示している。シフトレジスタの5〜8に格納されているデータD2が1〜4にシフトされる際に4番目に格納されるデータD2(0)と同じデータを5に格納し、続いて、6〜9に新たに変換回路44から出力されたD3(3〜0)を格納したところを示す。この後、図6(a)で説明したのと同様、1〜4のデータD2(3〜0)がPWM信号生成回路41へ出力した後(4ビット単位で出力)、シフトレジスタの5〜9に格納されているデータが1〜5にシフトする。これによって、新たに変換回路44から出力されたデータが6〜9に格納される(このとき、10〜12は空である)(図6(c)の状態となる)。図6(c)は、今までの画素片挿入数が1で、画素片挿入がない場合を示している。
図6(b)の状態から(画素片がすでに1つ挿入されており)、4ビット単位で出力と格納を行った状態を示す。ここから新たなデータD4(3〜0)がレジスタ45の6〜9に格納され、複製され挿入されたD2(0)とD3(3〜1)をPWM信号生成回路41に出力する。その後、同様にシフトレジスタ45のアドレス上位に4ビット分シフトする。
図6(d)は、画素片挿入数が1で、今回画素片挿入する場合である。シフトレジスタ45の5番目に格納されているデータD4(0)と同じデータを6に格納し、新たなデータD5(3〜0)を7〜10に格納する。D3(0)、D4(3〜1)を出力した後、他と同様にシフトレジスタ45のアドレス上位に4ビット分シフトする。
図7(e)〜(h)の場合も同様に画素片を挿入するにしたがって、変換回路44から出力されるPWM点灯パターン信号を入力する場所をずらして入力される。
図7(h)は、4ビット単位で出力と格納を行うので、画素片を4つ挿入した状態を示す。
図7(h)の次に画素片挿入を行うとシフトレジスタ45が溢れてしまう。つまり図7(h)の状態になったら、次はメモリ43の出力を1回休み(シフトレジスタ45から1〜4の4ビットの出力のみを行い、5〜12のデータを1〜8にシフト)、図6(a)の状態に戻りそこから順に同じ動作を繰り返す。ここでは、3画素分のシフトレジスタとして説明したため、溢れないようにメモリからの出力を制限する説明を行ったが、画素片の挿入数に応じて長いシフトレジスタを使用しても良い。
また、ここでは挿入する箇所の前のデータと同じものを挿入したが、挿入箇所の後のデータと同じのもにしても良いし、固定値を画素片として挿入しても、挿入数を複数にしても良い。またこの場合と逆で、画素片を取り除く(削除する)構成にしてもかまわない。更に、ここでは、変換回路44から入力する1画素分のPWM点灯パターン信号の前に画素片を挿入しているが、1画素分のPWM点灯パターン信号の後に挿入しても良く、画素片を取り除く構成にすることもできる。
〈ノイズ低減を実現するための画素片挿入/削除の実施例〉
以下に、画像クロックに起因する放射ノイズを低減させることを目的として実行される画素片挿入/削除の実施例について説明する。
上述したように、変換回路44からシフトレジスタ45に1画素分のPWM点灯パターン信号を格納する際に、所要の画素片を挿入または削除して格納するようにし、擬似的に1画素の長さを変化させる。かかる本実施例の画素片挿入/削除は、画像クロックに起因する放射ノイズを低減させることを目的とし、システムコントローラ100内のCPUが、該目的の画素片挿入/削除処理を実現するための制御プログラムを実行して、実現されるものである。この制御プログラムは、コントローラ100内のメモリに格納されている。
以下、本実施例の画素片挿入/削除処理について、図8、図9、及び図10を参照して詳述する。
図8は、画素片の大きさを比較的大きく構成して、ノイズ低減のために画素片挿入/削除を施した画像データの状態を示すデータ模式図である。図9は、画素片の大きさを小さく構成して、ノイズ低減のために画素片挿入/削除を施した画像データの状態を示すデータ模式図である。
前述したように、タイミング発生回路40にBD信号が入力されたタイミングを基準として、シフトレジスタ45は、画像データにおける画像領域のタイミングでPWM点灯パターン信号をPWM信号生成回路41へ出力する。そして、PWM信号生成回路41から出力されるPWM信号に基づいて、レーザダイオード20Aの発光制御を行うことで、レーザビームを感光体11に走査し潜像を形成する。
図8の例では、画素片の大きさを1画素の1/16画素の大きさで構成し、シフトレジスタ45から出力されるPWM点灯パターン信号の画素データの配列状態を示している。図8中のG0が正規の1画素データである。また、G1が[1+1/16]画素、即ち画素片を挿入した場合の1画素データであり、G2が[1−1/16]画素、即ち画素片を削除した場合の1画素データを示している。
(A)走査の倍率を変えない場合
走査の倍率を変えない場合は、画素片挿入量と画素片削除量を等しくすることで、主走査方向の全体倍率を変えることなくノイズ低減の効果を得ることができる。本実施例では、この場合の画素片挿入量と削除量を主走査方向の1ライン(画像領域)に対し1000画素片ずつ行っている。さらに、ある所定数の画素で構成されるブロック間で挿入量と削除量を等しくすると、ブロック間の倍率差をなくすことができるので、ドット位置ズレを抑える上で効果的である。本実施例では、画像領域を2000画素ずつ4ブロックに分けている。各ブロック間の挿入、削除量はともに250画素片ずつである。
図8の例のように、画素片の大きさが比較的大きい場合には、ライン毎に、画素片の挿入または削除を行う主走査方向の位置(間隔)をランダムに変える。これは、同じ主走査位置に画素片の挿入または削除のデータが続く場合、その位置の縦線だけ正規の太さより太くなったり、または細くなったりするためである。
図9の例では、画素片の大きさを1画素の16/1024画素の大きさで構成し、シフトレジスタ45から出力されるPWM点灯パターン信号の画素データの配列状態を示している。図9中のG10が正規の1画素データである。また、G11が[1+16/1024]画素、即ち画素片を挿入した場合の1画素データであり、G12が[1−16/1024]画素、即ち画素片を削除した場合の1画素データを示している。
このように、1つ1つの画素片の大きさを小さくすることができる場合、図8の例の場合とは逆に、例えば図9に示すように、毎ライン同じ主走査位置で画素片の挿入/削除を行う。なぜなら、この方式により、擬似輪が発生しにくくなり、感光体11の理想的な位置にドットを形成することができるからである。
また、1画素片ずつ挿入/削除を行うのではなく、複数画素片ずつ所定の割合まで挿入/削除を行った方が望ましい。なぜなら、この方式により、光ビームのオン/オフを制御するための発光パターン信号であるPWM信号の周波数はより一層広がりをもつことになるので、放射ノイズのピークレベルを低減させることができ、よりノイズ低減に効果的になるからである。
また、ハーフトーン画像を出力した場合、この位置に擬似輪が発生して画像に影響を与えるため、意図的に画素片の挿入/削除の位置を変える。また、画素片の挿入/削除の、主走査方向の位置を変えた場合でも、また画素片の挿入/削除の位置を規則性をもって配列させた場合でも、擬似輪が発生し易くなる。そのため、画素片の挿入/削除の間隔は走査ライン毎にランダムにする。
また、画素片の挿入または削除のどちらかが連続した場合、ドット形成位置が理想的な位置から離れていくことになるため、画素片の挿入と削除は、主走査方向に対して交互に行う方が望ましい。
また、画素変調部38とレーザ駆動回路200は別の基板に搭載されていることが多い。そのため、画素変調部38からレーザ駆動回路200へ、発光パターン信号であるPWM信号を送る電線から放射ノイズが発生するケースが多い。感光体の表面においてレーザビームで露光したエリアにトナーを載せる方式(IAE方式)の画像形成装置の場合は、PWM信号の周波数が高くなるのは、レーザビームの発光時であることが多い。そこで、このような方式では、レーザビームを発光させる画素データに対して画素片の挿入/削除を行うことにより、ノイズ低減の効果を高めることができる。
逆に、レーザビームで露光していないエリアにトナーを載せる方式(BAE方式)の画像形成装置の場合は、PWM信号の周波数が高くなるのは、レーザビームの消灯時であることが多い。そこで、このような方式では、レーザビームを消灯させる画素データに対して画素片の挿入/削除を行うことにより、ノイズ低減の効果を高めることができる。
(B)走査の倍率を変える場合
また、図8の例において、走査の全体倍率を例えば1%大きくする場合は、
8000×0.01×16=1280
より、1主走査内に1280画素片を挿入する。
倍率を変えるために画素片挿入量と画素片削除量を等しくすることはできないが、画素片挿入量と画素片削除量を変えて、画素片挿入と画素片削除の両方を行うことで、主走査方向の全体倍率を変えながらノイズ低減の効果を得ることができる。
ここでは、画素片の全体挿入量が2280画素片、全体削除量が1000画素片、各ブロック1〜4における画素片の挿入量が570画素片、削除量が250画素片となる。
逆に、走査の全体倍率を小さくする場合には、画素片の削除量の数を多くする。
これにより、ノイズ低減をしつつ走査の全体倍率を変えることができる。
(C)走査の倍率が部分的に異なるような場合
f−θレンズの特性バラツキなどにより、部分的に走査の倍率が異なるような場合は、前記のブロック1〜4間での画素片の挿入量と削除量の割合を変える。例えば、全体倍率を変えずに、ブロック1だけ1%大きくする場合、次のような式になる。
・ブロック1
8000×101/401=2014.9626→2015画素
・ブロック2,3,4
8000×100/401=1995.0124→1995画素
これにより、ブロック1に対して、[15×16=240]画素片を挿入し、ブロック2,3,4からそれぞれ[5×16=80]画素片を削除する。
このように、ブロック毎に画素片の挿入と削除の割合を変えることで、ノイズ低減をしつつ部分倍率を変えることができる。
(D)カラー画像形成装置に適用した場合
次に、本発明をカラー画像形成装置に適用した例について説明する。
図10(a),(b)は、図8の例をカラー画像形成装置に適用し、ノイズ低減のために画素片挿入/削除を施した画像データの状態を示すデータ模式図である。同図(a)は、Y(イエロー)ステーションの画像データの状態を示し、同図(b)は、M(マゼンタ)ステーションの画像データの状態を示している。
このカラー画像形成装置は、多色トナーを重ねることでカラー画像を印刷する画像形成装置である。画像データは、複数の色にそれぞれ対応した画像データであって、感光体11(像担持体)は、複数の色毎に潜像を形成するようになっている。
このようなカラー画像形成装置において、ノイズ低減のために画素片挿入/削除を施す場合は、色ズレを防ぐために、各色毎の画像データにおける同じ位置で画素片の挿入/削除を行う。
本例では、Y(イエロー)ステーションとM(マゼンタ)ステーションしか図示していないが、実際にはC(シアン)ステーションとBk(ブラック)ステーションについても同じ位置で、画素片の挿入/削除を行う。
〈本実施の形態に係る利点〉
本実施の形態によれば、変換回路44(補助画素生成手段)は、画像データの1画素を予め設定された整数値で分割(例えば16分割)して画素片(補助画素)を生成する。コントローラ100は、PWM信号生成回路41から出力される発光パターン信号であるPWM信号の周期を変更することを意図して、シフトレジスタ45を用い、1画素に対して画素片の追加もしくは削除を所定の走査期間において部分的に行う。そして、PWM信号生成回路41は、1画素に対して画素片を追加もしくは削除した画素データに基づいて、レーザの発光パターン信号であるPWM信号を生成する。例えば、発光パターン信号がオンデータまたはオフデータのときに補助画素の追加と削除を行う。
これにより、PWM信号生成回路41(発光パターン生成手段)から出力されるPWM信号の周波数は、一定周波数の画像クロックに同期するものとはならないため、画像クロックに起因する放射ノイズのピーク値を下げることが可能となる。その際に倍率を変えない場合や倍率を変える場合であっても、画素片挿入量と画素片削除量を調整しながら画素片挿入と画素片削除の両方を行うことで更なるノイズ低減の効果を得ることができる。したがって、高精度の高価な周波数変調装置を使用したり、電線にシールドケーブルを用いたりするなどの対策が不要となり、コストダウンを図ることができる。
なお、本発明の目的は、以下の処理を実行することによっても達成される。即ち、上述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)が記憶媒体に格納されたプログラムコードを読み出す処理である。
この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施の形態の機能を実現することになり、そのプログラムコード及び該プログラムコードを記憶した記憶媒体は本発明を構成することになる。
また、プログラムコードを供給するための記憶媒体としては、次のものを用いることができる。例えば、フロッピー(登録商標)ディスク、ハードディスク、光磁気ディスク、CD−ROM、CD−R、CD−RW、DVD−ROM、DVD−RAM、DVD−RW、DVD+RW、磁気テープ、不揮発性のメモリカード、ROM等である。または、プログラムコードをネットワークを介してダウンロードしても良い。
また、コンピュータが読み出したプログラムコードを実行することにより、上記実施の形態の機能が実現される場合も本発明に含まれる。加えて、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)等が実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれる。
更に、前述した実施形態の機能が以下の処理によって実現される場合も本発明に含まれる。即ち、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれる。その後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部または全部を行う場合である。
実施の形態に係る画像形成装置の全体構成を示す断面図である。 露光制御部の構成を示す模式図である。 実施の形態に係るレーザ駆動回路を示す回路図である。 図3中の画素変調部の内部構成を示すブロック図である。 入出力タイミングを示すタイミングチャートである。 シフトレジスタにおいて画素片を挿入/削除する手法を説明する説明図である。 シフトレジスタにおいて画素片を挿入/削除する手法を説明する説明図である。 画素片の大きさを比較的大きく構成して、ノイズ低減のために画素片挿入/削除を施した画像データの状態を示すデータ模式図である。 画素片の大きさを小さく構成して、ノイズ低減のために画素片挿入/削除を施した画像データの状態を示すデータ模式図である。 図8の例をカラー画像形成装置に適用し、ノイズ低減のために画素片挿入/削除を施した画像データの状態を示すデータ模式図である。
符号の説明
40 画素変調部
41 PWM信号生成回路
42 クロック発生回路
43 メモリ
44 変換回路
46 シフトレジスタ
100 コントローラ
200 レーザ駆動回路

Claims (6)

  1. 感光体と、
    前記感光体を露光するための光ビームを出射する光源と、
    前記光ビームが前記感光体上を走査するように前記光源から出射された前記光ビームを偏向する偏向手段と、
    入力画像データに基づいて、前記光源から前記光ビームを出射させるための1画素を予め設定された整数値で分割した補助画素に対応する補助画素データを複数含む補助画素データを生成するデータ生成手段と、
    前記光ビームによって走査されることによって前記感光体上に形成される静電潜像をトナーを用いて現像する現像手段と、
    前記補助画素データ列に対して前記補助画素を挿入、または前記補助画素データ列から前記補助画素を削除するデータ処理手段であって、前記光ビームが前記感光体を走査する走査方向におけるトナー像幅を補正するために前記データ生成手段によって生成された前記補助画素データへの前記補助画素データの挿入数または前記補助画素データからの補助画素データの削除数を設定し、かつ前記トナー像幅の補正を実行するか否かに拘わらず前記データ生成手段によって生成された前記補助画素データ前記補助画素データを挿入するとともに前記データ生成手段によって生成された前記補助画素データから挿入する当該補助画素データと同数の前記補助画素データを削除するデータ処理手段と、
    前記データ処理手段によって処理された前記画素データに基づいて駆動信号を生成する信号生成手段と、
    前記信号生成手段によって生成される前記駆動信号によって前記光源から前記光ビームを出射させる駆動手段と、を備えることを特徴とする画像形成装置。
  2. 前記データ処理手段は、前記トナー像幅の補正を実行するか否かに拘わらず行う前記補助画素データ列に対する前記補助画素データの挿入及び削除を交互に行うことを特徴とする請求項1に記載の画像形成装置。
  3. 前記トナー像幅の補正を実行するか否かに拘わらず行う前記補助画素データの挿入と削除は、走査ライン毎に異なる位置で行うことを特徴とする請求項1または2に記載の画像形成装置。
  4. 前記トナー像幅の補正を実行するか否かに拘わらず行う前記補助画素データの挿入と除は、走査ライン毎に同じ位置で行うことを特徴とする請求項1または2に記載の画像形成装置。
  5. 前記駆動信号がオンデータのときに前記補助画素データの挿入数と削除数との設定を行うことを特徴とする請求項1乃至5のいずれか1項に記載の画像形成装置。
  6. 前記駆動信号がオフデータのときに前記補助画素データの挿入数と削除数との設定を行うことを特徴とする請求項1乃至5のいずれか1項に記載の画像形成装置。
JP2007304604A 2007-11-26 2007-11-26 画像形成装置 Expired - Fee Related JP5264152B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304604A JP5264152B2 (ja) 2007-11-26 2007-11-26 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304604A JP5264152B2 (ja) 2007-11-26 2007-11-26 画像形成装置

Publications (3)

Publication Number Publication Date
JP2009126091A JP2009126091A (ja) 2009-06-11
JP2009126091A5 JP2009126091A5 (ja) 2011-01-20
JP5264152B2 true JP5264152B2 (ja) 2013-08-14

Family

ID=40817478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304604A Expired - Fee Related JP5264152B2 (ja) 2007-11-26 2007-11-26 画像形成装置

Country Status (1)

Country Link
JP (1) JP5264152B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5749925B2 (ja) 2010-12-09 2015-07-15 キヤノン株式会社 画像形成装置及び画像形成方法
JP5743573B2 (ja) * 2011-01-28 2015-07-01 キヤノン株式会社 画像形成装置及び画像形成方法
JP5836684B2 (ja) * 2011-07-25 2015-12-24 キヤノン株式会社 画像形成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253215A (ja) * 1999-03-02 2000-09-14 Matsushita Electric Ind Co Ltd 画像処理装置
JP2003274116A (ja) * 2002-03-15 2003-09-26 Konica Corp 画像形成方法および画像形成装置
JP4355549B2 (ja) * 2003-09-26 2009-11-04 キヤノン株式会社 画像形成装置および走査位置の修正方法
JP4423152B2 (ja) * 2004-09-27 2010-03-03 キヤノン株式会社 画像形成装置

Also Published As

Publication number Publication date
JP2009126091A (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5947529B2 (ja) 画像形成装置
JP4355549B2 (ja) 画像形成装置および走査位置の修正方法
JP2005198006A (ja) 画素クロック及びパルス変調信号生成装置、光走査装置並びに画像形成装置
JP5554941B2 (ja) 画像形成装置およびその主走査倍率補正方法
JP2010213117A (ja) 画像形成装置、画像形成方法、画像形成プログラム及び記録媒体
JP2013045051A (ja) 画像形成装置
JP4937049B2 (ja) カラー画像形成装置、濃度ずれ補正方法および濃度ずれ補正プログラム
US6806894B2 (en) Image forming apparatus and main scanning scale correcting method therefor
JP5110867B2 (ja) 光走査装置、データ処理装置、光走査装置及び画像形成装置
JP5264152B2 (ja) 画像形成装置
JP2588880B2 (ja) 画像濃度補正装置
JP6673004B2 (ja) 画像処理装置、駆動制御装置、光源制御装置、画像形成装置、および画像処理方法
JP4395743B2 (ja) 画像形成装置及び位置ずれ補正方法
US7433074B2 (en) Image forming apparatus and image forming method
JP6776094B2 (ja) 画像形成装置
JP5978809B2 (ja) 画像形成装置
JPH11112809A (ja) 画像形成装置及びその制御方法及び記憶媒体
JP2007055250A (ja) 半導体レーザ駆動制御装置
JP2008094025A (ja) 周波数変調装置
JP4541910B2 (ja) 画像形成装置
JP7016647B2 (ja) 画像形成装置
JP2005193589A (ja) 画像形成装置
US20230269340A1 (en) Image forming apparatus configured to perform halftone processing
JP5283843B2 (ja) 画像形成装置
JP6881118B2 (ja) 画像処理装置、駆動制御装置、光源制御装置、画像形成装置、および画像処理方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R151 Written notification of patent or utility model registration

Ref document number: 5264152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees