JP5239425B2 - 冷凍サイクル装置および冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器 - Google Patents

冷凍サイクル装置および冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器 Download PDF

Info

Publication number
JP5239425B2
JP5239425B2 JP2008068197A JP2008068197A JP5239425B2 JP 5239425 B2 JP5239425 B2 JP 5239425B2 JP 2008068197 A JP2008068197 A JP 2008068197A JP 2008068197 A JP2008068197 A JP 2008068197A JP 5239425 B2 JP5239425 B2 JP 5239425B2
Authority
JP
Japan
Prior art keywords
pressure refrigerant
refrigeration cycle
flow path
oil storage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008068197A
Other languages
English (en)
Other versions
JP2009222313A (ja
Inventor
伸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008068197A priority Critical patent/JP5239425B2/ja
Publication of JP2009222313A publication Critical patent/JP2009222313A/ja
Application granted granted Critical
Publication of JP5239425B2 publication Critical patent/JP5239425B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Compressor (AREA)

Description

本発明は、冷凍サイクル装置および冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器に関するものであり、特に、冷凍サイクル内に封入された潤滑油を圧縮機に供給することのできる冷凍サイクル装置および冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器に関するものである。
従来、冷凍サイクルの圧縮機に対する潤滑油の供給は、圧縮機の吐出側に下記特許文献1に示すようなオイルセパレータを設置して、吐出気相冷媒の中の油滴や配管内面の油膜を分離して圧縮機の吸入側へ戻すことで行っている。こうすることで、圧縮機の潤滑に必要な量の潤滑油を循環させるとともに、冷凍サイクルに封入する潤滑油の量を低減して、冷凍サイクルの成績係数(COP)の向上を図っている。
特開平9−72634号公報
しかしながら、上記の従来技術においては、オイルセパレータを配設することで、その配設スペースを確保しなくてはならないうえ、冷凍装置のコストが上昇するという課題がある。これは特に、車両用空調装置のように、搭載スペースが限られるうえ、コストも厳しく抑えられる場合においては問題となっていた。本発明は、このような従来の問題点に着目して成されたものであり、その目的は、搭載場所の制約、および掛かるコストを最小限に抑えつつ、潤滑油を圧縮機に供給することのできる冷凍サイクル装置を提供することにある。
本発明は上記目的を達成するために、下記の技術的手段を採用する。すなわち、請求項1に記載の発明では、少なくとも、冷媒を吸入し圧縮する圧縮機(10)と、圧縮機(10)から吐出される高温高圧冷媒の放熱を行う放熱器(20)と、放熱器(20)から流出する冷媒を減圧膨張させる減圧膨張手段(40)と、減圧膨張手段(40)から流出する冷媒を蒸発させる蒸発器(30)とから構成された冷凍サイクル構成機器を備える冷凍サイクル装置であり、放熱器(20)から流出した高圧冷媒が流通する高圧冷媒流路(411、511)と、蒸発器(30)から流出して前記圧縮機(10)へ戻る低圧冷媒が流通する低圧冷媒流路(414、512)と、を備える冷凍サイクル装置において、
低圧冷媒流路(414、512)の潤滑油が貯まり易い下方側に配置された高圧冷媒流路(411、511)と、低圧冷媒流路(414、512)との間の金属部材の一部に低圧冷媒流路(414、512)の流路壁面を局部的に高圧冷媒流路(411、511)の方である下方に窪ませて、冷凍サイクル内に封入された潤滑油の一部を貯留する貯油部(416、517)を備え、貯油部(416、517)の下方部が高圧冷媒流路(411、511)に隣接するとともに、高圧冷媒流路(411、511)を流通する高圧冷媒の熱が、貯油部(416、517)の下方部を介して貯油部(416、517)に溜まった潤滑油に伝わり潤滑油中の冷媒を蒸発させることを特徴としている。
この請求項1に記載の発明によれば、前提条件に合う既存の冷凍サイクル装置内に、貯油部(416、517)を設け、その貯油部(416、517)から圧縮機(10)へ潤滑油を供給することで、従来のオイルセパレータの配設スペースが不要となり、省スペースとすることができる。また、冷凍サイクル装置内の低圧冷媒流路(414、512)の一部に貯油部(416、517)を設けるという簡単な構成追加であるため、掛かるコストも抑えることができる。
さらに、貯油部(416、517)に溜まった潤滑油は、その中に溶解している冷媒が高圧冷媒の熱で蒸発させられることより、濃度の高い潤滑油が溜められることとなる。これは、高圧冷媒の温度が高いほど潤滑油の濃度が高められることより、冷凍サイクルが高負荷であるほど貯油部(416、517)の潤滑油濃度が高められる。つまり、冷凍サイクルが高負荷であるほど冷凍サイクル中の潤滑油循環率が抑えられて冷凍サイクルの成績係数(COP)を向上させることができる。
また、請求項2に記載の発明では、減圧膨張手段(40)の本体部材(B1)、または、圧縮機(10)と放熱器(20)とに接続される接続ブロック(50)の本体部材(51)の低圧冷媒流路(414、512)と高圧冷媒流路(411、511)との間の部分に低圧冷媒流路(414、512)側から下方である高圧冷媒流路(411、511)側に穿孔されて窪んだ凹部を設け、その凹部が貯油部(416、517)になっていることを特徴としている。
この請求項2に記載の発明によれば、蒸発器(30)から圧縮機(10)へ戻る潤滑油は、通常管路の内面を伝って流れるため、低圧冷媒流路(414、512)に凹部を設けて潤滑油を捕集するだけの簡単な構造で貯油部(416、517)とすることができる。
また、請求項3に記載の発明では、減圧膨張手段(40)としての箱型膨張弁(40A)に貯油部(416)を備えることを特徴としている。この請求項3に記載の発明によれば、具体的な冷凍サイクル装置として、箱型膨張弁(40A)に貯油部(416)を設けることができる。
また、請求項4に記載の発明では、冷媒を吸入し圧縮する圧縮機(10)と、圧縮機(10)から吐出される高温高圧冷媒の放熱を行う放熱器(20)と、放熱器(20)から流出する冷媒を減圧膨張させる減圧膨張手段(40)と、減圧膨張手段(40)から流出する冷媒を蒸発させる蒸発器(30)とを備える冷凍サイクル装置であり、放熱器(20)から流出した高圧冷媒が流通する高圧冷媒流路(411、511)と、蒸発器(30)から流出して前記圧縮機(10)へ戻る低圧冷媒が流通する低圧冷媒流路(414、512)と、を備える冷凍サイクル装置において、
冷凍サイクル内に封入された潤滑油の一部を貯留する貯油部(416、517)を前記低圧冷媒流路(414、512)の一部に備えるとともに、前記高圧冷媒流路(411、511)を流通する高圧冷媒の熱が、前記貯油部(416、517)に貯まった潤滑油に伝わるようになっており、減圧膨張手段(40)としての箱型膨張弁(40A)に前記貯油部(416)を備え、貯油部(416)は、前記本体部材(B1)に開設されたエレメント部(43)を組み付けるための組付孔(415)から前記本体部材(B1)の内部に向けて穿孔されていることを特徴としている。この請求項4に記載の発明によれば、箱型膨張弁(40A)の本体部材(B1)の一端に開設されるエレメント部(43)の組付孔(415)を利用して、本体部材(B1)内部の低圧冷媒流路(414)に貯油部(416)を穿孔することができるため、掛かるコストを抑えることができる。
また、請求項5に記載の発明では、貯油部(416、517)の容積は、冷凍サイクル内に封入された潤滑油容量の60%〜95%であることを特徴としている。この請求項5に記載の発明によれば、冷凍サイクル内の潤滑油循環率を適正に保つことができる。
また、請求項6に記載の発明では、減圧膨張手段(40)としての箱型膨張弁(40B)と圧縮機(10)とを接続する冷媒配管(53)と、箱型膨張弁(40B)と放熱器(20)とを接続する冷媒配管(52)とを箱型膨張弁(40B)に接続するために、冷媒配管(52、53)の端部に設けられた接続ブロック(50)に貯油部(517)を備えることを特徴としている。
この請求項6に記載の発明によれば、具体的な冷凍サイクル装置として、箱型膨張弁(40B)に冷媒配管(52、53)を接続するための接続ブロック(50)に貯油部(517)を設けることができる。
また、請求項7に記載の発明では、放熱器(20)から流出する高圧冷媒と、蒸発器(30)から流出する低圧冷媒との間で熱交換を行う内部熱交換器(60)の接続ブロック(50)に貯油部(517)を備えることを特徴としている。
この請求項7に記載の発明によれば、具体的な冷凍サイクル装置として、放熱器(20)から流出した高圧冷媒が流通する高圧冷媒流路(511、60a)と、蒸発器(30)から流出して圧縮機(10)へ戻る低圧冷媒が流通する低圧冷媒流路(512、62)とを備える内部熱交換器(60)に貯油部(517)を設けることができる。
また、請求項8に記載の発明では、膨張弁の本体部材(B1)に形成されるとともに、冷凍サイクル(1)の放熱器(20)に接続され、放熱器(20)からの高圧冷媒が流れる高圧冷媒流路(411)と、本体部材(B1)において高圧冷媒流路(411)の上方に形成されるとともに、冷凍サイクル(1)の圧縮機(10)に接続され、冷凍サイクル(1)の蒸発器(30)からの低圧冷媒を圧縮機(10)に流通させる低圧冷媒流路(414)と、本体部材(B1)に形成されるとともに、低圧冷媒流路(414)と高圧冷媒流路(411)間の金属部材の一部に低圧冷媒流路(414)の流路壁面を局部的に下方である高圧冷媒流路(411)側に窪ませて、冷凍サイクル(1)内に封入された潤滑油の一部を貯える貯油部(416)とを有し、貯油部(416)の下方部が高圧冷媒流路(411)に隣接するとともに、高圧冷媒流路(411)を流通する高圧冷媒の熱が、貯油部(416)の下方部を介して貯油部(416)に貯まった潤滑油に伝達され潤滑油中の冷媒を蒸発させることを特徴としている。
また、請求項9に記載の発明では、冷凍サイクル(1)の膨張弁(40B)を、冷凍サイクル(1)の圧縮機(10)および放熱器(20)に接続する接続ブロック(50A)において、 接続ブロック(50A)の本体部材(51)に形成されるとともに、放熱器(20)に接続され、放熱器(20)からの高圧冷媒が流れる高圧冷媒流路(511)と、 接続ブロック(50A)の本体部材(51)において高圧冷媒流路(511)の上方に形成されるとともに、圧縮機(10)に接続され、冷凍サイクル(1)の蒸発器(30)からの低圧冷媒を圧縮機(10)に流通させる低圧冷媒流路(512)と、接続ブロック(50A)の本体部材(51)に形成されるとともに、低圧冷媒流路(512)と高圧冷媒流路(511)間の金属部材の一部に低圧冷媒流路(512)の流路壁面を局部的に下方である高圧冷媒流路(511)の方に窪ませて、冷凍サイクル(1)内に封入された潤滑油の一部を貯える貯油部(517)とを有し、貯油部(517)の下方部が高圧冷媒流路(511)に隣接するとともに、高圧冷媒流路(511)を流通する高圧冷媒の熱が、貯油部(517)の下方部を介して貯油部(517)に貯まった潤滑油に伝達され潤滑油中の冷媒を蒸発させることを特徴としている。
また、請求項10に記載の発明では、冷凍サイクル(1)の圧縮機(10)および放熱器(20)に接続して、放熱器(20)から流出する高圧冷媒と、蒸発器(30)から流出する低圧冷媒との間で熱交換を行う内部熱交換器(60)において、内部熱交換器(60)の一部をなす接続ブロック(50B)の本体部材(51)に形成されるとともに、放熱器(20)に接続され、放熱器(20)からの高圧冷媒が流れる高圧冷媒流路(511)と、接続ブロック(50B)の本体部材(51)において、高圧冷媒流路(511)の上方に形成されるとともに、圧縮機(10)に接続され、冷凍サイクル(1)の蒸発器(30)からの低圧冷媒を圧縮機(10)に流通させる低圧冷媒流路(512)と、接続ブロック(50B)の本体部材(51)に形成されるとともに、低圧冷媒流路(512)と高圧冷媒流路(511)間の金属部材の一部に低圧冷媒流路(512)の流路壁面を局部的に下方である高圧冷媒流路(511)の方に窪ませて、冷凍サイクル(1)内に封入された潤滑油の一部を貯える貯油部(517)とを有し、貯油部(517)の下方部が高圧冷媒流路(511)に隣接するとともに、高圧冷媒流路(511)を流通する高圧冷媒の熱が、貯油部(517)の下方部を介して貯油部(517)に貯まった潤滑油に伝達され潤滑油中の冷媒を蒸発させることを特徴としている。
これら請求項8ないし10に記載の発明によれば、冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器のいずれかに、貯油部(416、517)を設け、その貯油部(416、517)から圧縮機(10)へ潤滑油を供給することで、従来のオイルセパレータの配設スペースが不要となり、省スペースとすることができる。また、膨張弁、接続ブロック、内部熱交換器のいずれか内の低圧冷媒流路(414、512)の一部に貯油部(416、517)を設けるという簡単な構成追加であるため、掛かるコストも抑えることができる。
さらに、貯油部(416、517)に溜まった潤滑油は、その中に溶解している冷媒が高圧冷媒の熱で蒸発させられることより、濃度の高い潤滑油が溜められることとなる。これは、高圧冷媒の温度が高いほど潤滑油の濃度が高められることより、冷凍サイクルが高負荷であるほど貯油部(416、517)の潤滑油濃度が高められる。つまり、冷凍サイクルが高負荷であるほど冷凍サイクル中の潤滑油循環率が抑えられて冷凍サイクルの成績係数(COP)を向上させることができる。なお、特許請求の範囲および上記各手段に記載の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
(第1実施形態)
以下、本発明の第1実施形態について、添付した図1ないし図3を用いて詳細に説明する。図1は、本発明の第1実施形態における箱型膨張弁(以下、膨張弁と略す)40Aの構造を示す断面図である。本実施形態の膨張弁40Aは、いわゆるボックス型と呼ばれるものであり、例えば、車両用空調装置(いわゆるカーエアコン)の冷凍サイクルなどに用いられる。
図1の冷凍サイクル1は、気相冷媒を圧縮する圧縮機10と、この圧縮機10で圧縮された高圧冷媒を冷却して液化する凝縮器(放熱器)20と、この凝縮器20で液化した冷媒を減圧させる膨張弁(減圧膨張手段40)40Aと、この膨張弁40Aで減圧された冷媒を車室内へ送風される空気との熱交換によって蒸発させる蒸発器30などより構成されている。
膨張弁40Aは、本体ブロック(本体部材B)B1、伝熱部41、伝達ロッド42、エレメント部43、およびボール弁44などより構成されている。本体ブロックB1は、例えば、アルミニウム製で略直方体形状に設けられ、高圧側の冷媒通路と低圧側の冷媒通路とを有している。
高圧側の冷媒通路は、凝縮器20の出口側に接続される第1流入ポート(高圧冷媒流路)411、蒸発器30の入口側に接続される第1流出ポート412、および第1流入ポート411側と第1流出ポート412側とを連通する高圧側の連通孔を有し、この連通孔の入口側(第1流入ポート411側)に円錐状のシート面が設けられている。
低圧側の冷媒通路は、蒸発器30の出口側に接続される第2流入ポート413、圧縮機10の入口側に接続される第2流出ポート(低圧冷媒流路)414、および第2流入ポート413と第2流出ポート414とを連通し、伝熱部41へも連通する連通路を有している。
エレメント部43は、可撓性のある薄い金属板から成るダイヤフラム431と、このダイヤフラム431を挟持する受け部432と蓋部433とを具備し、本体ブロックB1の上部にパッキン49aを介して、本体ブロックB1の上部に開設された組付孔415に螺子結合される。
受け部432と蓋部433とは、例えば、TIG溶接により接合され、ダイヤフラム431と蓋部433とでダイヤフラム室45を形成している。このダイヤフラム室45には、例えば、冷凍サイクル1に使用される冷媒ガスと同一種類の飽和ガスが封入されている。なお、蓋部433には、ダイヤフラム室45に飽和ガスを入れるための孔が開けられており、飽和ガスを入れた後、プラグ45aによって気密に閉塞されている。
伝熱部41は、熱伝導率の高い金属材料(例えば、アルミニウムまたは黄銅など)を使用して円柱状に形成されており、エレメント部43のダイヤフラム431と受け部432との間に納められている。そして、略円柱状の上面は下方からの後述する付勢力を受けてダイヤフラム431の下面に密着しており、低圧側の冷媒通路を流れる冷媒(蒸発器30で蒸発した気相冷媒)の温度変化をダイヤフラム431に伝達するとともに、略円柱状の下面には伝達ロッド42が当接しており、ダイヤフラム431の変位を伝達ロッド42と協動してボール弁44に伝達するものである。
なお、ダイヤフラム431下面側の伝熱部41には鍔部が形成されており、ダイヤフラム431が図1の下方へ変位した時に伝熱部41の鍔部が受け部432の内面に当接することでダイヤフラム431の下方への最大変位量(ボール弁44の最大リフト量)を規制するようになっている。また、このエレメント部43を構成する各部品(ダイヤフラム431、受け部432、蓋部433およびプラグ45a)は、全て同一の金属材料(例えば、ステンレス)を使用して形成されている。
伝達ロッド42は、伝熱部41の下部に配されて、本体ブロックB1に摺動自在に保持されている。その上端部は伝熱部41の下面に当接するとともに、低圧側の冷媒通路(連通路)を上下方向に貫通し、高圧側の冷媒通路の連通孔内部に挿通され、下端部は円錐状のシート面に押し当たるボール弁44の上面に当接している。また、上下方向に摺動自在に嵌挿されている伝達ロッド42に対して、高圧側の冷媒通路と低圧側の冷媒通路との間の本体ブロックB1部には、図示しないシール部が設けられている。
ボール弁44は、図1に示すように、高圧側の連通孔の入口側に配されて、伝達ロッド42と弁受け部材46との間に保持され、シート面に着座することで高圧側の連通孔を閉じ、シート面から離脱(リフト)することで高圧側の連通孔を開くことができる。このボール弁44は、図1において、ダイヤフラム431を下方へ押し下げる力(ダイヤフラム室45の圧力−ダイヤフラム431の下側に作用する冷媒蒸気の圧力)と弁受け部材46を介してボール弁44を図1の上方へ付勢するスプリング47の荷重とが釣り合った位置に静止している。
スプリング47は、本体ブロックB1の下端部に取り付けられた調節螺子48と弁受け部材46との間に配され、弁受け部材46を介してボール弁44を図1の上方(弁開度が小さくなる方向)へ付勢している。調節螺子48は、ボール弁44の開弁圧(ボール弁44を付勢するスプリング47の荷重)を調節するもので、Oリング49bを介して本体ブロックB1の下端部に螺子結合されている。
次に、本実施形態での特徴構造について説明する。まず、冷凍サイクル1内に封入された潤滑油の一部を貯留する貯油部416を、膨張弁40Aの低圧側の冷媒流路である第2流出ポート414の一部に備えている。これにより、冷凍サイクル1内の潤滑油循環率を適正に保ちながら、圧縮機10へ適当量の潤滑油を供給することができる。
この貯油部416は、本体ブロックB1の第2流出ポート414と高圧側の第1流入ポート411との間の部分に第2流出ポート414側から凹部を設け、その凹部を貯油部416としたものである。これは、蒸発器30から膨張弁40Aへ流入する気相冷媒に含まれて戻ってくる潤滑油は、一般的に管路の内面を伝って流れるので、膨張弁40Aの内部に凹部を設けることで潤滑油が貯まって貯油部となる。
具体的にこの貯油部416は、本体ブロックB1に開設されたエレメント部43を組み付けるための組付孔415から本体ブロックB1の内部に向けて穿孔されて形成されている。この貯油部416の容積は、冷凍サイクル1内に封入された潤滑油容量の60%〜95%となっている。また、貯油部416の穴の底は、第1流入ポート411近くまで達するようにし、第1流入ポート411を流通する高圧冷媒の熱が、貯油部416に溜まった潤滑油に伝わるようになっている。
これは、冷媒と一緒に戻ってくる潤滑油が、純粋な潤滑油だけではなく冷媒を溶かし込んでおり、その冷媒溶解度は、冷媒温度が高いほど、また、冷媒圧力が低いほど少なくなる(つまり、潤滑油中の冷媒が少なくなる)。この冷媒溶解度は、冷媒と潤滑油との組み合わせによって決まるが、一般的なカーエアコンの冷媒と潤滑油との場合では、図2に示すようになる。図2は、冷媒温度(0、20、40、60、80℃)と冷媒圧力とに対する潤滑油中の冷媒溶解度の関係を示すグラフである。
蒸発器30の出口気相冷媒中の潤滑油は、代表的な運転条件(圧力0.3MPa、温度10℃)では約30%wtの冷媒を溶解している(図2中のa点)。一方、貯油部416に貯まった潤滑油は、温度の高い第1流入ポート411の凝縮冷媒からの伝熱で加熱されるので、潤滑油中の冷媒は蒸発して潤滑油の濃度が高まる。これは、温度が高くなるほどその濃度は高くなる(例えば、図2中のb点もしくはc点)。
つまり、一般的に冷凍サイクル1が高負荷であるほど、貯油部416の潤滑油濃度が高くなって冷凍サイクル1内の潤滑油循環率が低減できることになる。以上の特性により、冷凍サイクル1内の潤滑油循環率は、図3に示すような特性となる。図3は、従来と本発明との冷媒流量に対する潤滑油循環量の関係を示すグラフである。従来は、冷房負荷が大きくなって冷媒流量が増えるほど、潤滑油循環率が上昇する傾向であった。
本来、冷房負荷が大きい状況では、冷凍サイクルの成績係数(COP)を向上させて圧縮機動力を低減したいが、潤滑油循環率の影響で成績係数(COP)は芳しくないのが実情であった。これに対して本実施形態では、前述の通り高負荷になるほど第1流入ポート411の冷媒温度が高くなるので、貯油部416の潤滑油濃度が高くなり、結果として潤滑油循環率を低減できて成績係数(COP)を向上させることができる。
逆に冷房負荷が小さくて冷媒流量が少量の状況においては、高圧冷媒の温度が低く、貯油部416の潤滑油に冷媒が溶解して、その結果潤滑油循環率が上昇する。このような運転条件では、圧縮機10への潤滑油供給が必要なため、むしろ潤滑油循環率を低減し過ぎないことが重要なので、目的に合う特性となる。また、膨張弁40Aの内部に潤滑油を貯める貯油部416を設けたので、新たに貯油タンクを設ける必要がなく、搭載面で有利であるうえ、コストの上昇も抑えることができる。
次に、膨張弁40Aの作動を説明する。高圧側の連通孔を通過する冷媒流量は、ボール弁44の開度、すなわちシート面に対するボール弁44の位置(リフト量)によって決定される。そのボール弁44は、ダイヤフラム431を図1の下方へ付勢するダイヤフラム室45の圧力と、ダイヤフラム431を図1の上方へ付勢するスプリング47の荷重、および冷凍サイクル1内の低圧圧力(ダイヤフラム431の下側に作用する冷媒蒸気の圧力)とが釣り合った位置に移動する。
そこで、蒸発圧力が安定している状態から車室内の温度が上昇し、蒸発器30で急速に冷媒が蒸発すると、蒸発器30の出口部の冷媒蒸気の温度(過熱度)が高くなる。これにより、低圧側の冷媒通路を流れる冷媒蒸気の温度変化が伝熱部41およびダイヤフラム431を介してダイヤフラム室45に封入されているガスに伝達され、そのガスの温度上昇に伴ってダイヤフラム室45の圧力が上昇する。
その結果、ダイヤフラム431が図1の下方へ押し下げられ、伝熱部41および伝達ロッド42を介してボール弁44が図1の下方へ移動することにより、弁開度が大きくなって蒸発器30へ供給される冷媒流量が増加する。一方、車室内の温度が低下して蒸発器30の出口部の過熱度が低くなると、低圧側の冷媒通路を流れる冷媒蒸気の温度変化がダイヤフラム室45のガスに伝達され、そのガスの温度低下に伴ってダイヤフラム室45の圧力が低下する。
その結果、ダイヤフラム431が図1の上方へ押し上げられてボール弁44が図1の上方へ移動することにより、弁開度が小さくなって蒸発器30へ供給される冷媒流量が減少する。以上の動作により、通常のサイクル運転時には、蒸発器30で蒸発した冷媒蒸気の温度(過熱度)が、例えば、略5℃になるように弁開度を調節して、高圧側の連通孔を流れる冷媒流量をコントロールしている。
次に、本実施形態の特徴と、その効果について述べる。まず、冷凍サイクル内に封入された潤滑油の一部を貯留する貯油部416を、第2流出ポート414に開口するように、膨張弁40Aに形成するとともに、第1流入ポート411に近接して形成している。この構成により、第1流入ポート411を流通する高圧冷媒の熱が、貯油部416に溜まった潤滑油に伝わるようになっている。
これによれば、冷凍サイクル装置としての箱型膨張弁40A内に、貯油部416を設け、その貯油部416から圧縮機10へ潤滑油を供給することで、従来のオイルセパレータの配設スペースが不要となり、省スペースとすることができる。また、箱型膨張弁40A内の第2流出ポート414に開口するように貯油部416を設けるという簡単な構成追加であるため、掛かるコストも抑えることができる。
さらに、貯油部416に溜まった潤滑油は、その中に溶解している冷媒が高圧冷媒の熱で蒸発させられることより、濃度の高い潤滑油が溜められることとなる。これは、高圧冷媒の温度が高いほど潤滑油の濃度が高められることより、冷凍サイクルが高負荷であるほど貯油部416の潤滑油濃度が高められる。つまり、冷凍サイクルが高負荷であるほど冷凍サイクル中の潤滑油循環率が抑えられて冷凍サイクルの成績係数(COP)を向上させることができる。
また、本体ブロックB1の低圧側の第2流出ポート414と高圧側の第1流入ポート411との間の部分に第2流出ポート414側から凹部を設け、その凹部が貯油部416になっている。これによれば、蒸発器30から圧縮機10へ戻る潤滑油は、通常管路の内面を伝って流れるため、第2流出ポート414に凹部を設けて潤滑油を捕集するだけの簡単な構造で貯油部416とすることができる。
また、貯油部416の容積は、冷凍サイクル内に封入された潤滑油容量の60%〜95%であるようにしている。これによれば、冷凍サイクル内の潤滑油循環率を適正に保つことができる。また、減圧膨張手段40としての箱型膨張弁40Aに貯油部416を備えている。これによれば、具体的な冷凍サイクル装置として、箱型膨張弁40Aに貯油部416を設けることができる。
また、貯油部416は、本体ブロックB1に開設されたエレメント部43を組み付けるための組付孔415から本体ブロックB1の内部に向けて穿孔されている。これによれば、箱型膨張弁40Aの本体ブロックB1の一端に開設されるエレメント部43の組付孔415を利用して、本体ブロックB1内部の第2流出ポート414部に貯油部416を穿孔することができるため、掛かるコストを抑えることができる。
(第2実施形態)
次に、本発明の第2実施形態について説明する。図4は、本発明の第2実施形態における膨張弁40Bに接続する配管組立体の接続ブロック50Aの構造を示す断面図である。なお、以降の各実施形態においては、上述した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成および特徴について説明する。
本実施形態における膨張弁40Bは、本体ブロックB2に第1実施形態で説明した貯油部416の無い通常の膨張弁であり、その貯油部を、膨張弁40Bに接続する配管組立体の接続ブロック50A内に設けたものである。接続ブロック50Aも、凝縮器20から流出した高圧冷媒が流通する高圧冷媒流路511と、蒸発器30から流出して圧縮機10へ戻る低圧冷媒が流通する低圧冷媒流路512とを備えている。
接続ブロック50Aの本体部材51において、高低圧冷媒流路511、512の反接続側には、配管接続穴513、514が形成されており、冷媒配管52、53の一端側の先端部を挿入してろう付け接合している。また、高低圧冷媒流路511、512の接続側には嵌合凸部515、516が形成されており、シール用のOリング54a、54bが嵌められている。
そして、この嵌合凸部515、516が膨張弁40Bの第1流入ポート411と第2流出ポート414とに嵌まって接続されるようになっている。本実施形態では、冷凍サイクル1内に封入された潤滑油の一部を貯留する貯油部517を、接続ブロック50Aの低圧冷媒流路512の一部に備えている(低圧冷媒流路512に開口するように形成されている)。
この貯油部517は、本体部材51の高圧冷媒流路511と低圧冷媒流路512との間の部分に低圧冷媒流路512側から凹部を設け、その凹部を貯油部517としたものである。具体的には、本体部材51の図4上方から本体部材51の内部に向けて穿孔されており、貯油部517を開けた後の本体部材51上方の孔部は、Oリング54cが嵌められた蓋部材55で密閉されている。
この貯油部517の容積は、冷凍サイクル1内に封入された潤滑油容量の60%〜95%となっている。また、貯油部517の穴の底は、高圧冷媒流路511近くまで達するようにし、高圧冷媒流路511を流通する高圧冷媒の熱が、貯油部517に溜まった潤滑油に伝わるようになっている。なお、蓋部材55の材質は、アルミニウムなどの金属やポリフェニレンスルフィド(PPS)などの樹脂であっても良い。また、蓋部材55の固定は、接合であっても良いし、上部をピールかしめのように3〜4点かしめて固定しても良い。
冷凍サイクル1内の容積が大きく、冷媒封入量も多い構成において、低負荷時の潤滑油戻りを確保するためには潤滑油の封入量も多くする必要がある。このような場合には、高負荷時に貯油すべき潤滑油量が多くて必要な貯油容積が膨張弁40Aの内部に収まらない場合がある。膨張弁40Aの体格を大きくして貯油容積を稼ぐことも可能だが、貯油部517を内蔵した接続ブロック50Aを設置することが有効である。こうすることで、膨張弁40Bは標準のままで良く、搭載面においても大きなスペースを占めることがない。
つまり、本実施形態は、減圧膨張手段40としての箱型膨張弁40Bと圧縮機10とを接続する冷媒配管53と、箱型膨張弁40Bと凝縮器20とを接続する冷媒配管52とを箱型膨張弁40Bに接続するために、冷媒配管52、53の端部に設けられた接続ブロック50Aに貯油部517を備えている。これによれば、具体的な冷凍サイクル装置として、箱型膨張弁40Bに冷媒配管52、53を接続するための接続ブロック50Aに貯油部517を設けることができる。
(第3実施形態)
次に、本発明の第3実施形態について説明する。図5は、本発明の第3実施形態における冷凍サイクル1Aの構成を示す模式図である。第1、第2実施形態の冷凍サイクル1と異なるのは、凝縮器20から流出する高圧冷媒と、蒸発器30から流出する低圧冷媒との間で熱交換を行う内部熱交換器60を備えている点である。
そして図6は、図5中のVI部における内部熱交換器60の構造を示す部分断面図である。本実施形態の内部熱交換器60には、二重管を用いている。二重管は、それぞれ個別に形成された外管61と内管62とを備え、外管61の内部を内管62が貫通するように配設されている。
外管61の両端部は、内管62と組み合わされた後に、その全周が径方向内側へ向けて縮管されて、内管62の外周表面に気密あるいは液密となるように溶接されている。よって、外管61と内管62との間には空間が形成され、この空間が内外間流路60aとなっている。
そして、内外間流路60aが形成される領域に対応する内管62の表面には、周回溝部62cと螺旋溝部62aとが設けられている。周回溝部62cはリキッド配管63の外管61との接続部位置に対応して設けられた、内管62の周方向に延びる溝である。また、螺旋溝部62aは各周回溝部62cと接続されて、両周回溝部62c間で内管62の長手方向に螺旋状に延びる多条の溝である。
螺旋溝部62aの間には、内管62の外径寸法がほぼ保持された峰部62bが形成されている。これらの溝部62c、62aによって内外間流路60aは拡大され、また内管62の表面積が増加して、高圧冷媒と低圧冷媒との熱交換効率が向上する。なお、周回溝部62cおよび螺旋溝部62aは、例えば、溝付け工具によって形成されている。
外管61の両端部側の外周壁面には、外部と内外間流路60aとを連通させるとともに、高圧配管を成すアルミニウム製のリキッド配管63、64がろう付けされている。リキッド配管63の他端は、本実施形態では1ヶ所の曲げ部を介して凝縮器20側に延びており、先端に接続ジョイント50Bが設けられている。また、外管61の一端部は、本実施形態では圧縮機10側に延びており、先端に接続ジョイント50Bが設けられている。
つまり、二重管を用いた内部熱交換器60の一端に、第2実施形態と同様の貯油部517を備えた接続ジョイント50Bを配設したものである。これは、内部熱交換器60に設けられる接続ブロック50Bも、凝縮器20から流出した高圧冷媒が流通する高圧冷媒流路511と、蒸発器30から流出して圧縮機10へ戻る低圧冷媒が流通する低圧冷媒流路512とを備えている。
このため、高圧冷媒流路511の一端側に内部熱交換器60のリキッド配管63をろう付け接合し、他端側に凝縮器20を接続するようにするとともに、低圧冷媒流路512の一端側に内部熱交換器60の内管62をろう付け接合し、他端側に圧縮機10を接続するようにしている。
そして、冷凍サイクル内に封入された潤滑油の一部を貯留する貯油部517を、低圧冷媒流路512の一部に備えるとともに、高圧冷媒流路511を流通する高圧冷媒の熱が、貯油部517に溜まった潤滑油に伝わるようにしている。なお、リキッド配管64の他端は、膨張弁などの減圧膨張手段40に延びており、先端に図示しない接続ジョイントが設けられており、外管61の他端部は、本実施形態では蒸発器30側に延びており、先端に図示しない接続ジョイントが設けられている。
上述した第1、第2実施形態と異なる特徴部分を説明する。本実施形態は、凝縮器20から流出する高圧冷媒と、蒸発器30から流出する低圧冷媒との間で熱交換を行う内部熱交換器60に貯油部517を備えている。このように、具体的な冷凍サイクル装置として、凝縮器20から流出した高圧冷媒が流通する高圧冷媒流路511、60aと、蒸発器30から流出して圧縮機10へ戻る低圧冷媒が流通する低圧冷媒流路512、62とを備える内部熱交換器60に貯油部517を設けることができる。
(その他の実施形態)
本発明は上述した実施形態にのみ限定されるものではなく、次のように変形または拡張することができる。例えば、上述の実施形態では、本冷凍サイクル装置を車両用空調装置に適用した例を示したが、蒸気圧縮式の冷凍サイクルを用いるものであれば他の装置に適用しても良い。
また、上述の実施形態では、減圧膨張手段に膨張弁を用いているが、減圧膨張手段にエジェクタを用いたエジェクタ式冷凍サイクルであっても良いし、冷凍サイクル中にレシーバやアキュムレータを構成したものであっても良い。また、上述の実施形態では、凝縮器20で冷媒が凝縮する亜臨界圧サイクルとしたが、ガスクーラ(放熱器)で冷媒が凝縮しない超臨界圧サイクルであっても良い。
本発明の第1実施形態における箱型膨張弁40Aの構造を示す断面図である。 冷媒温度と冷媒圧力とに対する潤滑油中の冷媒溶解度の関係を示すグラフである。 従来と本発明との冷媒流量に対するオイル循環量の関係を示すグラフである。 本発明の第2実施形態における膨張弁40Bに接続する配管組立体の接続ブロック50Aの構造を示す断面図である。 本発明の第3実施形態における冷凍サイクル1Aの構成を示す模式図である。 図5中のVI部における内部熱交換器60の構造を示す部分断面図である。
符号の説明
10…圧縮機
20…凝縮器(放熱器)
30…蒸発器
40、40A、40B…箱型膨張弁(減圧膨張手段)
43…エレメント部
50…接続ブロック
51…本体部材
52、53…冷媒配管
60…内部熱交換器
411…第1流入ポート(高圧冷媒流路)
414…第2流出ポート(低圧冷媒流路)
415…組付孔
416…貯油部
511…高圧冷媒流路
512…低圧冷媒流路
517…貯油部
B1…本体ブロック(本体部材)

Claims (10)

  1. 少なくとも、冷媒を吸入し圧縮する圧縮機(10)と、
    前記圧縮機(10)から吐出される高温高圧冷媒の放熱を行う放熱器(20)と、
    前記放熱器(20)から流出する冷媒を減圧膨張させる減圧膨張手段(40)と、
    前記減圧膨張手段(40)から流出する冷媒を蒸発させる蒸発器(30)とから構成された冷凍サイクル構成機器を備える冷凍サイクル装置であり、
    前記放熱器(20)から流出した高圧冷媒が流通する高圧冷媒流路(411、511)と、
    前記蒸発器(30)から流出して前記圧縮機(10)へ戻る低圧冷媒が流通する低圧冷媒流路(414、512)と、を備える冷凍サイクル装置において、
    前記低圧冷媒流路(414、512)の潤滑油が貯まり易い下方側に配置された前記高圧冷媒流路(411、511)と、前記低圧冷媒流路(414、512)との間の金属部材の一部に前記低圧冷媒流路(414、512)の流路壁面を局部的に前記高圧冷媒流路(411、511)の方である下方に窪ませて、冷凍サイクル内に封入された潤滑油の一部を貯留する貯油部(416、517)を備え、
    前記貯油部(416、517)の下方部が前記高圧冷媒流路(411、511)に隣接するとともに、前記高圧冷媒流路(411、511)を流通する高圧冷媒の熱が、前記貯油部(416、517)の前記下方部を介して前記貯油部(416、517)に溜まった潤滑油に伝わり潤滑油中の冷媒を蒸発させることを特徴とする冷凍サイクル装置。
  2. 前記減圧膨張手段(40)の本体部材(B1)、または、前記圧縮機(10)と前記放熱器(20)とに接続される接続ブロック(50)の本体部材(51)の前記低圧冷媒流路(414、512)と前記高圧冷媒流路(411、511)との間の部分に前記低圧冷媒流路(414、512)側から下方である前記高圧冷媒流路(411、511)側に穿孔されて窪んだ凹部を設け、その凹部が前記貯油部(416、517)になっていることを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記減圧膨張手段(40)としての箱型膨張弁(40A)に前記貯油部(416)を備えることを特徴とする請求項1または2に記載の冷凍サイクル装置。
  4. 冷媒を吸入し圧縮する圧縮機(10)と、
    前記圧縮機(10)から吐出される高温高圧冷媒の放熱を行う放熱器(20)と、
    前記放熱器(20)から流出する冷媒を減圧膨張させる減圧膨張手段(40)と、
    前記減圧膨張手段(40)から流出する冷媒を蒸発させる蒸発器(30)とを備える冷凍サイクル装置であり、
    前記放熱器(20)から流出した高圧冷媒が流通する高圧冷媒流路(411、511)と、
    前記蒸発器(30)から流出して前記圧縮機(10)へ戻る低圧冷媒が流通する低圧冷媒流路(414、512)とを備える冷凍サイクル装置において、
    冷凍サイクル内に封入された潤滑油の一部を貯留する貯油部(416、517)を前記低圧冷媒流路(414、512)の一部に備えるとともに、前記高圧冷媒流路(411、511)を流通する高圧冷媒の熱が、前記貯油部(416、517)に貯まった潤滑油に伝わるようになっており、
    前記減圧膨張手段(40)としての箱型膨張弁(40A)に前記貯油部(416)を備え、
    前記貯油部(416)は、前記本体部材(B1)に開設されたエレメント部(43)を組み付けるための組付孔(415)から前記本体部材(B1)の内部に向けて穿孔されていることを特徴とする冷凍サイクル装置。
  5. 前記貯油部(416、517)の容積は、冷凍サイクル内に封入された潤滑油容量の60%〜95%であることを特徴とする請求項1ないし4のいずれか一項に記載の冷凍サイクル装置。
  6. 前記減圧膨張手段(40)としての箱型膨張弁(40B)と前記圧縮機(10)とを接続する冷媒配管(53)と、前記箱型膨張弁(40B)と前記放熱器(20)とを接続する冷媒配管(52)とを前記箱型膨張弁(40B)に接続するために、前記冷媒配管(52、53)の端部に設けられた前記接続ブロック(50)に前記貯油部(517)を備えることを特徴とする請求項2に記載の冷凍サイクル装置。
  7. 前記放熱器(20)から流出する高圧冷媒と、前記蒸発器(30)から流出する低圧冷媒との間で熱交換を行う内部熱交換器(60)の前記接続ブロック(50)に前記貯油部(517)を備えることを特徴とする請求項2に記載の冷凍サイクル装置。
  8. 膨張弁の本体部材(B1)に形成されるとともに、冷凍サイクル(1)の放熱器(20)に接続され、前記放熱器(20)からの高圧冷媒が流れる高圧冷媒流路(411)と、
    前記本体部材(B1)において前記高圧冷媒流路(411)の上方に形成されるとともに、前記冷凍サイクル(1)の圧縮機(10)に接続され、前記冷凍サイクル(1)の蒸発器(30)からの低圧冷媒を前記圧縮機(10)に流通させる低圧冷媒流路(414)と、
    前記本体部材(B1)に形成されるとともに、前記低圧冷媒流路(414)と前記高圧冷媒流路(411)間の金属部材の一部に前記低圧冷媒流路(414)の流路壁面を局部的に、潤滑油が貯まり易い下方である前記高圧冷媒流路(411)側に窪ませて形成され、前記冷凍サイクル(1)内に封入された潤滑油の一部を貯える貯油部(416)とを有し、
    前記貯油部(416)の下方部が前記高圧冷媒流路(411)に隣接するとともに、前記高圧冷媒流路(411)を流通する高圧冷媒の熱が、前記貯油部(416)の前記下方部を介して前記貯油部(416)に貯まった潤滑油に伝達され潤滑油中の冷媒を蒸発させることを特徴とする冷凍サイクル用の膨張弁。
  9. 冷凍サイクル(1)の膨張弁(40B)を、前記冷凍サイクル(1)の圧縮機(10)および放熱器(20)に接続する接続ブロック(50A)において、
    前記接続ブロック(50A)の本体部材(51)に形成されるとともに、前記放熱器(20)に接続され、前記放熱器(20)からの高圧冷媒が流れる高圧冷媒流路(511)と、
    前記接続ブロック(50A)の本体部材(51)において前記高圧冷媒流路(511)の上方に形成されるとともに、前記圧縮機(10)に接続され、前記冷凍サイクル(1)の蒸発器(30)からの低圧冷媒を前記圧縮機(10)に流通させる低圧冷媒流路(512)と、
    前記接続ブロック(50A)の本体部材(51)に形成されるとともに、前記低圧冷媒流路(512)と前記高圧冷媒流路(511)間の金属部材の一部に前記低圧冷媒流路(512)の流路壁面を局部的に、潤滑油が貯まり易い下方である前記高圧冷媒流路(511)の方に窪ませて形成され、前記冷凍サイクル(1)内に封入された潤滑油の一部を貯える貯油部(517)とを有し、
    前記貯油部(517)の下方部が前記高圧冷媒流路(511)に隣接するとともに、前記高圧冷媒流路(511)を流通する高圧冷媒の熱が、前記貯油部(517)の前記下方部を介して前記貯油部(517)に貯まった潤滑油に伝達され潤滑油中の冷媒を蒸発させることを特徴とする冷凍サイクル用の接続ブロック。
  10. 冷凍サイクル(1)の圧縮機(10)および放熱器(20)に接続して、前記放熱器(20)から流出する高圧冷媒と、蒸発器(30)から流出する低圧冷媒との間で熱交換を行う内部熱交換器(60)において、
    前記内部熱交換器(60)の一部をなす接続ブロック(50B)の本体部材(51)に形成されるとともに、前記放熱器(20)に接続され、前記放熱器(20)からの高圧冷媒が流れる高圧冷媒流路(511)と、
    前記接続ブロック(50B)の本体部材(51)において、前記高圧冷媒流路(511)の上方に形成されるとともに、前記圧縮機(10)に接続され、前記冷凍サイクル(1)の前記蒸発器(30)からの低圧冷媒を前記圧縮機(10)に流通させる低圧冷媒流路(512)と、
    前記接続ブロック(50B)の本体部材(51)に形成されるとともに、前記低圧冷媒流路(512)と前記高圧冷媒流路(511)間の金属部材の一部に前記低圧冷媒流路(512)の流路壁面を局部的に、潤滑油が貯まり易い下方である前記高圧冷媒流路(511)の方に窪ませて形成され、前記冷凍サイクル(1)内に封入された潤滑油の一部を貯える貯油部(517)とを有し、
    前記貯油部(517)の下方部が前記高圧冷媒流路(511)に隣接するとともに、前記高圧冷媒流路(511)を流通する高圧冷媒の熱が、前記貯油部(517)の前記下方部を介して前記貯油部(517)に貯まった潤滑油に伝達され潤滑油中の冷媒を蒸発させることを特徴とする冷凍サイクル用の内部熱交換器。
JP2008068197A 2008-03-17 2008-03-17 冷凍サイクル装置および冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器 Expired - Fee Related JP5239425B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068197A JP5239425B2 (ja) 2008-03-17 2008-03-17 冷凍サイクル装置および冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068197A JP5239425B2 (ja) 2008-03-17 2008-03-17 冷凍サイクル装置および冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器

Publications (2)

Publication Number Publication Date
JP2009222313A JP2009222313A (ja) 2009-10-01
JP5239425B2 true JP5239425B2 (ja) 2013-07-17

Family

ID=41239284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068197A Expired - Fee Related JP5239425B2 (ja) 2008-03-17 2008-03-17 冷凍サイクル装置および冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器

Country Status (1)

Country Link
JP (1) JP5239425B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128531B1 (ko) * 2009-11-30 2012-03-27 기아자동차주식회사 리퀴드 과냉 시스템

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721486Y1 (ja) * 1970-12-15 1972-07-15
JPS58190359U (ja) * 1982-06-14 1983-12-17 三菱電機株式会社 液圧縮防止装置
JP3134435B2 (ja) * 1991-12-26 2001-02-13 株式会社デンソー 冷凍装置の水分除去装置
JPH0747834A (ja) * 1993-06-02 1995-02-21 Nippondenso Co Ltd 冷凍サイクル装置のブロックジョイント
JPH07139825A (ja) * 1993-11-15 1995-06-02 Nippondenso Co Ltd 冷凍装置
JP2000179999A (ja) * 1998-12-11 2000-06-30 Sanyo Electric Co Ltd 冷凍装置
JP4292676B2 (ja) * 2000-03-16 2009-07-08 株式会社日本自動車部品総合研究所 膨張弁
JP2007315638A (ja) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2008309451A (ja) * 2007-06-18 2008-12-25 Tgk Co Ltd 膨張弁固定装置

Also Published As

Publication number Publication date
JP2009222313A (ja) 2009-10-01

Similar Documents

Publication Publication Date Title
JP4897298B2 (ja) 気液分離器モジュール
US7654108B2 (en) Unit for refrigerant cycle device
US7685839B2 (en) Refrigeration system
JP4259531B2 (ja) エジェクタ式冷凍サイクル用ユニット
US6343486B1 (en) Supercritical vapor compression cycle
JP3925158B2 (ja) 冷媒凝縮器
WO2011046099A1 (ja) 中間熱交換器
JP4776438B2 (ja) 冷凍サイクル
KR20080018795A (ko) 팽창 장치
GB2316738A (en) A combined refrigerant accumulator and heat transfer unit
JP2010112616A (ja) 温度式膨張弁
JP5239425B2 (ja) 冷凍サイクル装置および冷凍サイクル用の膨張弁、接続ブロック、内部熱交換器
JP2009058221A (ja) エジェクタ式冷凍サイクル用ユニット
JP2008215797A (ja) 膨張弁
JP2007071511A (ja) アキュームレータ構造
JP2006234207A (ja) 冷凍サイクル用減圧装置
JP4897464B2 (ja) 蒸気圧縮式冷凍サイクル
JP4842022B2 (ja) 蒸気圧縮式冷凍回路及び当該回路を用いた車両用空調システム
JP4789891B2 (ja) 冷蔵庫
JP2008039262A (ja) 膨張弁
JP3955770B2 (ja) レシーバタンク付き熱交換器及び冷凍システム
JP2013217623A (ja) アキュムレータ及び冷凍サイクル装置
JP6763381B2 (ja) 冷却装置、冷媒処理装置、および冷媒処理方法
JP6507071B2 (ja) 気液分離器および冷凍サイクル装置
JP2008196731A (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5239425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees