JP5238228B2 - LED lighting device - Google Patents

LED lighting device Download PDF

Info

Publication number
JP5238228B2
JP5238228B2 JP2007301836A JP2007301836A JP5238228B2 JP 5238228 B2 JP5238228 B2 JP 5238228B2 JP 2007301836 A JP2007301836 A JP 2007301836A JP 2007301836 A JP2007301836 A JP 2007301836A JP 5238228 B2 JP5238228 B2 JP 5238228B2
Authority
JP
Japan
Prior art keywords
light source
led
led light
cooling jacket
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007301836A
Other languages
Japanese (ja)
Other versions
JP2009129642A (en
Inventor
安 谷田
尚子 田元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2007301836A priority Critical patent/JP5238228B2/en
Publication of JP2009129642A publication Critical patent/JP2009129642A/en
Application granted granted Critical
Publication of JP5238228B2 publication Critical patent/JP5238228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明はLEDを光源とする水冷式のLED照明装置に関する。   The present invention relates to a water-cooled LED illumination device using an LED as a light source.

現在、車両用前照灯や屋外用照明灯等の照明装置の光源として、従来のキセノンランプやナトリウムランプ等の放電型ランプに替わって半導体発光装置(例えば、LED)を光源とする提案がなされている。   At present, proposals have been made to use a semiconductor light emitting device (for example, an LED) as a light source in place of a conventional discharge lamp such as a xenon lamp or a sodium lamp as a light source for an illumination device such as a vehicle headlamp or an outdoor lamp. ing.

キセノンランプやナトリウムランプ等の放電型ランプは電気―光変換効率(以下、光変換効率と呼称する)が高いために発光出力(以下、出力と呼称する)が高く、多量の照射光量を必要とする照明装置においては優れた光源となるものであるが、寿命、発光色(不活性ガス固有の発光スペクトルに限定)、出力安定性(点灯開始から出力が安定するまでに時間を要する)等、多くの問題も有している。   Since discharge lamps such as xenon lamps and sodium lamps have high electro-optical conversion efficiency (hereinafter referred to as light conversion efficiency), the light emission output (hereinafter referred to as output) is high, and a large amount of irradiation light is required. It is an excellent light source in the lighting device, but life, emission color (limited to the emission spectrum unique to inert gas), output stability (it takes time from the start of lighting until the output stabilizes), etc. It also has many problems.

その点、LEDは上記放電型ランプと比較して光変換効率は劣るものの、長寿命、白色光の生成、瞬時点灯等の多くの利点を有している。但し、LEDは温度上昇によって光変換効率が低下すると共に寿命が短くなるという、使用に対して不利に働く特性も有している。具体的にはLEDの寿命は半導体材料にもよるが、LEDの温度が10℃上昇すると約半減するという特性のものもあり、光変換効率はLEDの温度が25℃の時を100%とすると、LEDの温度が100℃を越えると90%程度に低下し、150℃を超えると70%程度まで低下することが知られている。   In that respect, the LED has many advantages such as long life, generation of white light, and instantaneous lighting, although the light conversion efficiency is inferior to that of the discharge lamp. However, the LED also has a characteristic that acts disadvantageously for use in that the light conversion efficiency is lowered and the life is shortened due to the temperature rise. Specifically, the lifetime of the LED depends on the semiconductor material, but there is also a characteristic that the LED temperature is reduced by about half when the LED temperature rises by 10 ° C, and the light conversion efficiency is 100% when the LED temperature is 25 ° C. It is known that when the temperature of the LED exceeds 100 ° C., it decreases to about 90%, and when it exceeds 150 ° C., it decreases to about 70%.

そこで、LEDの高出力化のために該LEDを大電力(大電流)で駆動するに際しては、LEDの点灯時の自己発熱による光変換効率の低下および寿命の低下が生じないように、放熱手段を施すことによってLEDの温度上昇を抑制することが必要となる。従来、LEDの大電力化に対する放熱手段としては、基板に光源となるLEDが実装されてなるLED光源モジュールの放熱性を向上させることが図られてきた。   Therefore, when driving the LED with high power (large current) to increase the output of the LED, heat dissipation means is employed so that the light conversion efficiency is not lowered and the life is not shortened due to self-heating when the LED is turned on. It is necessary to suppress the temperature rise of the LED by applying. Conventionally, as a heat dissipation means for increasing the power of an LED, it has been attempted to improve the heat dissipation of an LED light source module in which an LED serving as a light source is mounted on a substrate.

その結果、実装したLEDに10W以上の電力を供給することができるようなLED光源モジュールも提案されており、該LED光源モジュールを使用することによりLEDの駆動電流を直近の過去10年間の間に数十mAから数百mAまで増加することが可能となってきている。   As a result, an LED light source module that can supply power of 10 W or more to the mounted LED has also been proposed. By using the LED light source module, the LED driving current can be reduced during the last 10 years. It has become possible to increase from several tens of mA to several hundred mA.

LED光源の更なる高出力化のためには、LED光源モジュールの更なる放熱性の向上と、発光源となるLEDチップを構成する半導体材料の適正化が必要となる。また、LEDチップと蛍光物質の組み合わせにより白色光を生成するタイプのLEDについては、蛍光物質の波長変換効率の向上もLED光源の高出力化の重要な要素となる。   In order to further increase the output of the LED light source, it is necessary to further improve the heat dissipation of the LED light source module and to optimize the semiconductor material constituting the LED chip serving as the light source. In addition, for an LED of a type that generates white light by a combination of an LED chip and a fluorescent material, improvement in wavelength conversion efficiency of the fluorescent material is also an important factor for increasing the output of the LED light source.

図11は、上記LED光源の発熱の問題を考慮した従来の照明装置を示している。その構成は、複数のLED50が実装されたLED実装基板51が金属からなる放熱固定板52に金属からなる放熱カバー53によって押圧固定され、前記LED実装基板51が固定された放熱固定板52が透光性カバー54と樹脂ケース55で形成された密閉空間56内に配置されている。   FIG. 11 shows a conventional lighting device in consideration of the problem of heat generation of the LED light source. The configuration is such that an LED mounting substrate 51 on which a plurality of LEDs 50 are mounted is pressed and fixed to a heat dissipation fixing plate 52 made of metal by a heat dissipation cover 53 made of metal, and the heat dissipation fixing plate 52 to which the LED mounting substrate 51 is fixed is transparent. It is disposed in a sealed space 56 formed by the light cover 54 and the resin case 55.

そして、放熱固定板52の下面には複数の放熱フィン57が形成され、該放熱フィン57が樹脂ケース55の底部に埋め込まれるように樹脂ケース55と一体化されている。   A plurality of heat radiating fins 57 are formed on the lower surface of the heat radiating fixing plate 52, and the heat radiating fins 57 are integrated with the resin case 55 so as to be embedded in the bottom of the resin case 55.

このとき、LED50で発生した熱は、LED実装基板51を介して放熱固定板52に伝導されると共に放熱カバー53を介して放熱固定板52に伝導され、放熱固定板52に伝導された熱は放熱フィン57から樹脂ケース55の底部の樹脂に伝導されて該樹脂の表面から外部に放散されるものである。(例えば、特許文献1参照。)。
特開2002−299700号公報
At this time, the heat generated in the LED 50 is conducted to the heat radiating fixing plate 52 through the LED mounting substrate 51 and is conducted to the heat radiating fixing plate 52 through the heat radiating cover 53, and the heat conducted to the heat radiating fixing plate 52 is The heat radiation fins 57 are conducted to the resin at the bottom of the resin case 55 and are diffused to the outside from the surface of the resin. (For example, refer to Patent Document 1).
JP 2002-299700 A

ところで、LEDは1個あるいは複数個のLEDチップにより構成されるが、いずれの場合も発光光量が上述した従来のランプと比較して少なく、従来のランプと同等の光量を得るためにはLEDを複数個配置することが必要となる。   By the way, the LED is composed of one or a plurality of LED chips. In any case, the amount of emitted light is smaller than that of the conventional lamp described above, and the LED is used to obtain the same amount of light as the conventional lamp. It is necessary to arrange a plurality.

その場合、灯具の大型化や製造コストの上昇等といった問題が生じることになり、これを回避するためにはLEDの大電力化により発光出力の増大を図り、出来る限り少ないLEDで光源を構成することが求められる。   In that case, problems such as an increase in the size of the lamp and an increase in manufacturing cost will occur. To avoid this, the light output is increased by increasing the power of the LED, and the light source is configured with as few LEDs as possible. Is required.

ところで、LEDを常温の25℃で点灯させた場合、LED光源モジュールの熱抵抗を2.5℃/W、LED光源モジュールを載置した放熱体の熱抵抗を5℃/Wとすると、LEDの消費電力が10W程度のときの該LEDの温度は約100℃となる。   By the way, when the LED is turned on at room temperature of 25 ° C., if the thermal resistance of the LED light source module is 2.5 ° C./W and the thermal resistance of the radiator on which the LED light source module is mounted is 5 ° C./W, The temperature of the LED when the power consumption is about 10 W is about 100 ° C.

そこで、LEDの温度上昇を抑制するための放熱対策として、上述したような放熱固定板に一体化された樹脂を自然冷却する方法は灯具の構造が非常にシンプルなものとなると共に、10W/(LED光源モジュール)程度の電力であれば放熱効果は良好であるが、放熱性能がほぼ放熱フィンの表面積と樹脂の熱伝導率で決まるために、更なるLEDの大電力化に対応するために放熱性能を高めようとすると、放熱固定板(放熱フィンを含む)の大型化、重量化が避けられず、樹脂の熱伝導率が放熱性能の向上を阻害する。   Therefore, as a heat dissipation measure for suppressing the temperature rise of the LED, the method of naturally cooling the resin integrated on the heat dissipation fixing plate as described above makes the structure of the lamp very simple and 10 W / ( LED power source module) power dissipation effect is good, but since the heat dissipation performance is almost determined by the surface area of the heat dissipation fin and the thermal conductivity of the resin, heat dissipation to cope with further increase in power consumption of the LED. If it is going to improve performance, the enlargement and weight of a heat-radiating fixing plate (including heat-dissipating fins) cannot be avoided, and the thermal conductivity of the resin hinders improvement of the heat-radiating performance.

また、LEDを大電力で駆動するためには、例えばトランジスタ、IC、抵抗等のLEDを駆動するための電子部品も大量の熱を発生することになり、LEDと同様に電子部品についても放熱に対する考慮をする必要がある。そのため、電子部品を実装した電子部品実装回路基板をLED実装基板を収容した灯具から分離して個別に冷却手段を設けることが考えられるが、その場合、照明装置全体が更に大型化してしまうことになる。   In addition, in order to drive an LED with high power, for example, electronic components for driving the LED, such as transistors, ICs, resistors, etc., also generate a large amount of heat. There is a need to consider. Therefore, it is conceivable that the electronic component mounting circuit board on which the electronic components are mounted is separated from the lamp housing the LED mounting board and the cooling means is individually provided. However, in that case, the entire lighting device is further increased in size. Become.

以上述べたように、従来のLED照明装置における自然冷却放熱構造の課題は、
(1)放熱性能が放熱部材(ヒートシンク)の表面積によって決まるため、放熱性能を高めようとすると大型化、重量化となってしまう。
(2)樹脂の熱伝導率が放熱性能の向上を阻害する。
(3)放熱性能が10W/(LED光源モジュール)程度までが限界であり、更なる大電力化に対しては対応が困難である。
(4)LEDを駆動する電子部品にLEDとは別に放熱手段を設ける必要がある。
(動作保障温度がLEDよりも低い電子部品もある)
As described above, the problem of the natural cooling and heat dissipation structure in the conventional LED lighting device is
(1) Since the heat dissipation performance is determined by the surface area of the heat dissipation member (heat sink), an increase in heat dissipation performance results in an increase in size and weight.
(2) The thermal conductivity of the resin hinders improvement in heat dissipation performance.
(3) The heat dissipation performance is limited to about 10 W / (LED light source module), and it is difficult to cope with further increase in power.
(4) It is necessary to provide heat dissipation means separately from the LED in the electronic component that drives the LED.
(Some electronic components have a guaranteed operating temperature lower than that of LEDs.)

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、LEDを光源とするLED照明装置を放熱性の高い構造とすることでLED光源の温度上昇を抑制し、よってLED光源の大電力化において長寿命化による高信頼性を確保しつつLED光源の発光効率の低下が抑制されて照射光量の増大化が可能となるLED照明装置を提供することにある。   Therefore, the present invention was devised in view of the above problems, and the object of the present invention is to suppress the temperature rise of the LED light source by making the LED illumination device using the LED as a light source a highly heat-radiating structure, Accordingly, it is an object of the present invention to provide an LED lighting device capable of increasing the amount of irradiation light while suppressing the decrease in the light emission efficiency of the LED light source while ensuring high reliability due to the long life in increasing the power of the LED light source.

上記課題を解決するために、本発明の請求項1に記載された発明は、カバーレンズとハウジングにより形成された閉空間内に少なくともLED光源と該LED光源を冷却する水冷ジャケットを有してなる灯体部と、前記水冷ジャケット、冷却ファンを有するラジエータ、循環ポンプ、およびタンクが配管により環状に連結された循環経路内に冷媒液が封入されてなる放熱機構部を具備し、前記水冷ジャケットは、内部に冷媒液の流路となる中空部が形成されると共に、流入口及び排出口を設けた平板形状を呈しており、平板状の前記カバーレンズ側の面には、1個以上のLED光源が実装されており、平板状の反対側の面には、前記流入口及び排出口が設けられると共に、前記LED光源を駆動するLED光源駆動回路モジュールが載置され、前記循環経路は、前記冷媒液が前記水冷ジャケットの排出口から排出した後に、前記ラジエータに流入して前記冷却ファンの供給する風で外部に熱放散して冷却され、前記ラジエータから流出する前記冷媒液が、前記水冷ジャケットの流入口から前記中空部に流入する経路を有していることを特徴とするものである。 In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention comprises at least an LED light source and a water cooling jacket for cooling the LED light source in a closed space formed by a cover lens and a housing. A lamp unit, a water cooling jacket, a radiator having a cooling fan, a circulation pump, and a heat dissipation mechanism unit in which a refrigerant liquid is sealed in a circulation path in which a tank is connected in a ring shape by a pipe, In addition, a hollow portion serving as a flow path for the refrigerant liquid is formed therein, and a flat plate shape having an inflow port and an exhaust port is provided, and one or more LEDs are provided on the flat plate-like surface on the cover lens side. light source are mounted on the surface of a flat opposite side, with the inlet and outlet are provided, LED light source driving circuit module for driving the LED light source is mounted The circulation path is configured such that after the refrigerant liquid is discharged from the discharge port of the water-cooling jacket, the refrigerant flows into the radiator, dissipates heat with the wind supplied by the cooling fan, is cooled to the outside, and flows out from the radiator The liquid has a path for flowing into the hollow portion from the inlet of the water cooling jacket .

また、本発明の請求項2に記載された発明は、請求項1において、前記LED光源は配線パターンが設けられてなる基板に実装されてLED光源モジュールが構成され、前記LED光源モジュールの1個以上が前記水冷ジャケットの前記カバーレンズ側の面に配設されていることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the LED light source is mounted on a substrate provided with a wiring pattern to form an LED light source module. One of the LED light source modules The above is arranged on the surface of the water cooling jacket on the cover lens side.

また、本発明の請求項3に記載された発明は、請求項1において、前記水冷ジャケットは前記カバーレンズ側の面に配線パターンが設けられ、該配線パターンが設けられた面に1個以上のLED光源が実装されていることを特徴とするものである。   According to a third aspect of the present invention, in the first aspect, the water cooling jacket is provided with a wiring pattern on the surface on the cover lens side, and one or more surfaces are provided on the surface on which the wiring pattern is provided. An LED light source is mounted.

また、本発明の請求項4に記載された発明は、請求項1または2のいずれか1項において、前記LED光源モジュールが、熱伝導性ベースプレートを介して前記水冷ジャケットに配設されていることを特徴とするものである。   Further, in the invention described in claim 4 of the present invention, in any one of claims 1 and 2, the LED light source module is disposed on the water cooling jacket via a heat conductive base plate. It is characterized by.

また、本発明の請求項5に記載された発明は、請求項2または3のいずれか1項において、前記水冷ジャケットの前記カバーレンズ側の面は多面体形状を呈しており、前記多面体の前記カバーレンズ側の各面に前記LED光源が配設されていることを特徴とするものである。 The invention described in claim 5 of the present invention is the cover according to any one of claims 2 and 3 , wherein the surface of the water cooling jacket on the side of the cover lens has a polyhedral shape, and the cover of the polyhedron. The LED light source is disposed on each surface on the lens side.

また、本発明の請求項6に記載された発明は、請求項において、前記基板は金属基板、セラミック基板、フレキシブル基板のうちから選ばれた一つの基板であることを特徴とするものである。 The invention described in claim 6 of the present invention is characterized in that in claim 2 , the substrate is one substrate selected from a metal substrate, a ceramic substrate, and a flexible substrate. .

また、本発明の請求項7に記載された発明は、請求項において、前記LED光源駆動回路モジュールは、定電流回路を含む回路部品を具備することを特徴とするものである。 According to a seventh aspect of the present invention, in the first aspect , the LED light source driving circuit module includes a circuit component including a constant current circuit .

また、本発明の請求項8に記載された発明は、請求項1〜6のいずれか1項に記載のLED照明装置の複数個を用いたLED大型照明装置であって、前記LED照明装置は、複数の前記灯体部がマトリックス状に配置された灯体ユニットを構成し、前記各灯体部の水冷ジャケットが、互いに直列または並列に配管されていることを特徴とするものである。 Moreover, the invention described in claim 8 of the present invention is a large LED lighting device using a plurality of the LED lighting devices according to any one of claims 1 to 6, wherein the LED lighting device includes: A plurality of the lamp body parts constitute a lamp body unit, and the water cooling jackets of the lamp body parts are connected in series or in parallel to each other .

本発明のLED照明装置は、LED光源およびLED光源を冷却する水冷ジャケットを有する灯体部と、水冷ジャケットでLED光源からの熱を受熱した冷媒液をラジエータで冷却する放熱機構部で構成した。そして、LED光源の点灯時に発生した熱は水冷ジャケットを介して該水冷ジャケット内の冷媒液に受熱され、受熱した冷媒液はラジエータで熱放散されて冷却され、冷却された冷媒液が再度水冷ジャケットに戻される、水冷式冷媒液循環系を形成している。   The LED lighting device of the present invention includes an LED light source and a lamp body having a water-cooling jacket that cools the LED light source, and a heat-dissipating mechanism that cools the refrigerant liquid that has received heat from the LED light source by the water-cooling jacket using a radiator. Then, the heat generated when the LED light source is turned on is received by the refrigerant liquid in the water cooling jacket through the water cooling jacket, and the received refrigerant liquid is dissipated and cooled by the radiator, and the cooled refrigerant liquid is again cooled by the water cooling jacket. A water-cooled refrigerant liquid circulation system is formed which is returned to

その結果、LEDを光源とするLED照明装置を放熱性の高い構造とすることでLED光源の温度上昇を抑制し、よってLED光源の大電力化において長寿命化による高信頼性を確保しつつLED光源の発光効率の低下が抑制されて照射光量の増大化が可能となるLED照明装置が実現できた。   As a result, the LED lighting device using the LED as a light source has a structure with high heat dissipation to suppress the temperature rise of the LED light source, and thus ensure high reliability by extending the life of the LED light source with high power. An LED illumination device capable of suppressing the decrease in light emission efficiency of the light source and increasing the amount of irradiation light has been realized.

以下、この発明の好適な実施形態を図1〜図10を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 10 (the same parts are denoted by the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

本発明のLED照明装置は、LED光源およびLED光源を冷却する水冷ジャケットを有する灯体部と、水冷ジャケットでLED光源からの熱を受熱した冷媒液をラジエータで冷却する放熱機構部を備えたものである。LED光源の点灯時に発生する熱は水冷ジャケットを介して該水冷ジャケット内の冷媒液に受熱され、受熱した冷媒液は循環ポンプによってラジエータに輸送され、ラジエータで冷却ファンからの冷却風により熱放散されて強制冷却され、冷却された冷媒液は再度水冷ジャケットに戻される構成となっている。   The LED lighting device of the present invention includes an LED light source and a lamp body portion having a water cooling jacket for cooling the LED light source, and a heat radiation mechanism portion for cooling the refrigerant liquid that has received heat from the LED light source by the water cooling jacket with a radiator. It is. The heat generated when the LED light source is turned on is received by the refrigerant liquid in the water cooling jacket through the water cooling jacket, and the received refrigerant liquid is transported to the radiator by the circulation pump, and is dissipated by the cooling air from the cooling fan by the radiator. Then, the refrigerant liquid is forcibly cooled, and the cooled refrigerant liquid is returned to the water cooling jacket again.

上記放熱手段によりLED光源の点灯時の温度上昇が抑制され、よって通常の自然空冷式の放熱機構の2倍以上の大電流駆動においても、長寿命化による高信頼性を確保しつつLED光源の発光効率の低下が抑制されて照射光量の増大化が可能となるLED照明装置が実現できる。   The above heat dissipation means suppresses the temperature rise when the LED light source is turned on. Therefore, even when driving a large current more than twice that of a normal natural air cooling type heat dissipation mechanism, the LED light source It is possible to realize an LED lighting device in which a decrease in light emission efficiency is suppressed and an irradiation light amount can be increased.

図1は、灯体部と放熱機構部で構成されたLED照明装置に係わる実施例1の灯体部を示す分解立体図、図2は同じく灯体部の断面図である。図1より、LED照明装置1の灯体部2は光照射方向から反対方向に向かって順にカバーレンズ3、光源となるLED(LED光源4)およびコネクタ5が基板6に実装されてなるLED光源モジュール7、熱伝導性ベースプレート8、水冷ジャケット9、LED光源駆動回路モジュール(定電流回路を含む)10、およびハウジング11が位置している。   FIG. 1 is an exploded three-dimensional view showing a lamp body according to a first embodiment relating to an LED lighting device including a lamp body and a heat dissipation mechanism, and FIG. 2 is a cross-sectional view of the lamp body. As shown in FIG. 1, the lamp body 2 of the LED lighting device 1 is an LED light source in which a cover lens 3, an LED (LED light source 4) and a connector 5 are mounted on a substrate 6 in order from the light irradiation direction to the opposite direction. The module 7, the heat conductive base plate 8, the water cooling jacket 9, the LED light source driving circuit module (including a constant current circuit) 10, and the housing 11 are located.

そして図2より、カバーレンズ3とハウジング11で形成された閉空間12内に、LED光源4およびコネクタ5が基板6に実装されてなるLED光源モジュール7、熱伝導性ベースプレート8、水冷ジャケット9、LED光源駆動回路モジュール10が収容されている。   2, the LED light source module 7 in which the LED light source 4 and the connector 5 are mounted on the substrate 6 in the closed space 12 formed by the cover lens 3 and the housing 11, the heat conductive base plate 8, the water cooling jacket 9, The LED light source drive circuit module 10 is accommodated.

LED光源は、セラミックもしくは銅など、熱伝導率の高い材料にLEDチップをマウントして蛍光物質を混入した封止樹脂で樹脂封止した白色LEDであり、これにより低熱抵抗化を図っている。   The LED light source is a white LED in which an LED chip is mounted on a material having high thermal conductivity, such as ceramic or copper, and is sealed with a sealing resin in which a fluorescent material is mixed, thereby achieving low thermal resistance.

なお、白色LEDに限定しない場合は、LEDチップから出射される光の波長と蛍光物質の種類とを適宜に組み合わせることにより白色光以外の種々の色調の光を生成することができる。   In addition, when not limiting to white LED, the light of various colors other than white light can be produced | generated by combining suitably the wavelength of the light radiate | emitted from an LED chip, and the kind of fluorescent material.

上記LED光源4を実装する基板6は、リジッド基板またはフレキシブル基板が使用され、リジッド基板の場合は基材に熱伝導性が良好な材料、例えば主材料が銅、アルミニウムなどからなる金属材料あるいはセラミック材料が採用され、フレキシブル基板の場合は基材にポリイミドが採用される。   As the substrate 6 on which the LED light source 4 is mounted, a rigid substrate or a flexible substrate is used. In the case of a rigid substrate, the base material is a material having good thermal conductivity, for example, a metal material or ceramic made mainly of copper, aluminum, or the like. A material is employed, and in the case of a flexible substrate, polyimide is employed as a base material.

金属基板では基材上に絶縁層を挟んで配線パターンが貼着され、セラミック基板ではセラミック上に配線パターンが印刷され、フレキシブル基板ではポリイミド上に配線パターンが貼着され、いずれの場合もLED光源4およびコネクタ5を実装する領域以外はレジスト層18で被覆されている(図3のLED光源モジュール7と熱伝導性ベースプレート8と水冷ジャケット9の位置関係を示す説明図参照)。   In a metal substrate, a wiring pattern is stuck on a base material with an insulating layer sandwiched. In a ceramic substrate, a wiring pattern is printed on a ceramic. On a flexible substrate, a wiring pattern is stuck on a polyimide. 4 and the region other than the region where the connector 5 is mounted are covered with a resist layer 18 (see the explanatory diagram showing the positional relationship among the LED light source module 7, the heat conductive base plate 8, and the water cooling jacket 9 in FIG. 3).

このように、本実施例では配線パターンが設けられた金属基板と、該金属基板上に実装されたLED光源と、同様に金属基板上に実装されてLED光源の駆動電力を受電するコネクタによってLED光源モジュールが構成されている。   As described above, in this embodiment, the LED is formed by the metal substrate provided with the wiring pattern, the LED light source mounted on the metal substrate, and the connector which is similarly mounted on the metal substrate and receives the driving power of the LED light source. A light source module is configured.

上記LED光源モジュールは、図2に戻って、例えば銅、アルミニウムなどの金属材料からなる熱伝導性ベースプレート8に、例えばシリコーン樹脂等からなる弾性を有する絶縁性熱伝導シート19を介して取付けられている。熱伝導性ベースプレート8はLED光源モジュール7が取付けられる側の夫々のLED光源モジュール7を取付けたときにLED光源4の直下となる領域に、絶縁性熱伝導シート19の形状、大きさに相当し、且つ絶縁性熱伝導シート19の厚みよりも多少浅い掘込部20が設けられており、絶縁性熱伝導シート19の配置にあたって該掘込部20によって絶縁性熱伝導シート19の位置決めが容易に、且つ正確に行なえるようになっている。   2, the LED light source module is attached to a heat conductive base plate 8 made of a metal material such as copper or aluminum via an insulating heat conductive sheet 19 having elasticity made of a silicone resin or the like. Yes. The heat conductive base plate 8 corresponds to the shape and size of the insulating heat conductive sheet 19 in a region immediately below the LED light source 4 when the LED light source modules 7 on the side where the LED light source module 7 is attached. In addition, a digging portion 20 that is slightly shallower than the thickness of the insulating heat conductive sheet 19 is provided, and when the insulating heat conductive sheet 19 is arranged, the insulating heat conductive sheet 19 can be easily positioned by the digging portion 20. And it can be done accurately.

そして、絶縁性熱伝導シート19の掘込部20から突出した部分をLED光源モジュール7の金属基板6で押圧して該LED光源モジュール7を熱伝導性ベースプレート8に取付けることにより、絶縁性熱伝導シート19を挟んでLED光源4が実装された金属基板6と熱伝導性ベースプレート8が一体に接続されている。   And the part which protruded from the digging part 20 of the insulating heat conductive sheet 19 is pressed with the metal substrate 6 of the LED light source module 7, and this LED light source module 7 is attached to the heat conductive base plate 8, thereby insulating heat conduction. The metal substrate 6 on which the LED light source 4 is mounted and the heat conductive base plate 8 are integrally connected with the sheet 19 interposed therebetween.

LED光源モジュールが取付けられた熱伝導性ベースプレート8の、前記LED光源の主光照射方向にはカバーレンズ3が位置している。このとき、LED光源4の光出射面の大きさはカバーレンズ3の大きさに対して比較的小さく、また互いに隣接するLED光源4同士の距離はLED光源4の光出射面の大きさに対して比較的長い。つまり、LED光源4はカバーレンズ3に対して粗に配置された点光源と見なすことができる。   The cover lens 3 is located in the main light irradiation direction of the LED light source of the heat conductive base plate 8 to which the LED light source module is attached. At this time, the size of the light emitting surface of the LED light source 4 is relatively small with respect to the size of the cover lens 3, and the distance between the LED light sources 4 adjacent to each other is relative to the size of the light emitting surface of the LED light source 4. And relatively long. That is, the LED light source 4 can be regarded as a point light source roughly arranged with respect to the cover lens 3.

そのため、カバーレンズ3には、各LED光源4の主光出射方向の該LED光源4に対応する位置に独立したレンズカット部21が設けられ、個々のLED光源4から出射された光が対応する個々のレンズカット部21で個別に配光制御されるような構成となっている。本実施例においては、カバーレンズ3のレンズカット部21は縦横夫々3つの行列数からなるマトリックス状に構成されており、9個のレンズカット領域の夫々に対応する位置にLED光源4が位置している。   For this reason, the cover lens 3 is provided with an independent lens cut portion 21 at a position corresponding to the LED light source 4 in the main light emission direction of each LED light source 4, and light emitted from each LED light source 4 corresponds to the cover lens 3. The light distribution is individually controlled by the individual lens cut portions 21. In the present embodiment, the lens cut portion 21 of the cover lens 3 is configured in a matrix shape having three matrix numbers in the vertical and horizontal directions, and the LED light source 4 is located at a position corresponding to each of the nine lens cut areas. ing.

熱伝導性ベースプレート8の上記LED光源モジュール7が取付けられた側と反対側の面には水冷ジャケット9が取付けられ、熱伝導性ベースプレート8と水冷ジャケット9の夫々の面が互いに面接触をなしている。水冷ジャケット9は平板形状を呈しており、内部に冷媒液の流路となる中空部22が形成されると共に、外部で冷却された冷媒液が流入する流入口23aと水冷ジャケット9で受熱した冷媒液を排出する排出口23bが設けられている(図1参照)。冷媒液は水に所定の割合でLLCを混入したものである。   A water cooling jacket 9 is attached to the surface of the heat conductive base plate 8 opposite to the side where the LED light source module 7 is mounted, and the surfaces of the heat conductive base plate 8 and the water cooling jacket 9 are in surface contact with each other. Yes. The water cooling jacket 9 has a flat plate shape, and a hollow portion 22 serving as a flow path for the refrigerant liquid is formed therein, and the refrigerant received by the water cooling jacket 9 and the inlet 23a into which the refrigerant liquid cooled outside flows. A discharge port 23b for discharging the liquid is provided (see FIG. 1). The refrigerant liquid is a mixture of LLC in water at a predetermined ratio.

水冷ジャケット9の熱伝導性ベースプレート8が取付けられた側と反対側の面には、LED光源4を駆動するための定電流電源回路を含む、電子部品および回路部品などで構成されたLED光源駆動回路モジュール10が取付けられ、LED光源4の駆動時に部品から発生する熱を水冷ジャケット9内の冷媒液に与熱することによって部品の温度上昇を抑制するようになっている。   The LED light source drive composed of electronic components and circuit components including a constant current power supply circuit for driving the LED light source 4 on the surface opposite to the side on which the thermally conductive base plate 8 is attached of the water cooling jacket 9 A circuit module 10 is attached, and the heat generated from the component when the LED light source 4 is driven is heated to the refrigerant liquid in the water-cooling jacket 9 to suppress the temperature rise of the component.

水冷ジャケット9のLED光源駆動回路モジュール10が位置する方向にはハウジング11が位置しており、上記LED光源モジュール7、熱伝導性ベースプレート8、水冷ジャケット9、およびLED光源駆動回路モジュール10がカバーレンズ3とハウジング11によって形成された閉空間12内に収容されている。   A housing 11 is positioned in a direction in which the LED light source driving circuit module 10 of the water cooling jacket 9 is positioned. The LED light source module 7, the heat conductive base plate 8, the water cooling jacket 9, and the LED light source driving circuit module 10 are covered lenses. 3 and the housing 11 are accommodated in a closed space 12.

このとき、ハウジング11には配管連結用の2つの配管ジョイント25a、25bが取付けられており、一方の配管ジョイント25aには水冷ジャケット9の流入口23aに連結されて閉空間12内を引き回された配管26aが連結され、他方の配管ジョイント25bには水冷ジャケット9の排出口23bに連結されて閉空間12内を引き回された配管26bが連結されている(図1参照)。   At this time, two pipe joints 25a and 25b for pipe connection are attached to the housing 11, and one pipe joint 25a is connected to the inlet 23a of the water cooling jacket 9 and is routed in the closed space 12. The other pipe joint 25b is connected to the pipe 26b connected to the outlet 23b of the water cooling jacket 9 and routed in the closed space 12 (see FIG. 1).

図4は、灯体部と放熱機構部で構成されたLED照明装置に係わる実施例1の斜視図である。なお、LED照明装置を構成する灯体部については上記で詳細に説明しているのでここでは説明は省略し、放熱機構部についてのみ以下に説明する、   FIG. 4 is a perspective view of the first embodiment related to the LED lighting device including the lamp body and the heat dissipation mechanism. In addition, since it demonstrated in detail above about the lamp | ramp part which comprises LED lighting apparatus, description is abbreviate | omitted here and only demonstrates about a thermal radiation mechanism part below.

放熱機構部は30は、水冷ジャケット9で受熱した冷媒液の熱を外部に放散して冷媒液を冷却するラジエータ31、ラジエータ31に冷却風を供給する冷却ファン32、冷媒液を循環させる循環ポンプ33、および冷媒液を貯留するリザーブタンク34で構成されており、冷却ファン32はラジエータ31と対向する位置に配置されている。   The heat radiating mechanism 30 includes a radiator 31 that radiates the heat of the refrigerant liquid received by the water cooling jacket 9 to cool the refrigerant liquid, a cooling fan 32 that supplies cooling air to the radiator 31, and a circulation pump that circulates the refrigerant liquid. 33 and a reserve tank 34 for storing the refrigerant liquid, and the cooling fan 32 is disposed at a position facing the radiator 31.

そして、水冷ジャケット9の冷媒液排出口23bに配管26bを介して連結された配管ジョイント25bに連結された配管26cはラジエータ31の冷媒液流入口31aに連結され、ラジエータ31の冷媒液流出口31bに連結された配管26dは循環ポンプ33の冷媒液吸入口33aに連結されている。循環ポンプ33の冷媒液吐出口33bに連結された配管26eはリザーブタンク34の冷媒液流入口34aに連結され、リザーブタンク34の冷媒液流出口34bに連結された配管26fは水冷ジャケット9の冷媒液流入口23aに配管26aを介して連結された配管ジョイント25aに連結されている。これにより、水冷ジャケット9、ラジエータ31、循環ポンプ33、およびリザーブタンク34が配管26a〜26fによって連結され、その循環経路内に冷媒液が封入されている。   The pipe 26c connected to the pipe joint 25b connected to the refrigerant liquid outlet 23b of the water cooling jacket 9 via the pipe 26b is connected to the refrigerant liquid inlet 31a of the radiator 31, and the refrigerant liquid outlet 31b of the radiator 31. The pipe 26 d connected to the refrigerant pump is connected to the refrigerant liquid inlet 33 a of the circulation pump 33. A pipe 26 e connected to the refrigerant liquid outlet 33 b of the circulation pump 33 is connected to the refrigerant liquid inlet 34 a of the reserve tank 34, and a pipe 26 f connected to the refrigerant liquid outlet 34 b of the reserve tank 34 is the refrigerant of the water cooling jacket 9. It is connected to a pipe joint 25a connected to the liquid inlet 23a via a pipe 26a. Thereby, the water cooling jacket 9, the radiator 31, the circulation pump 33, and the reserve tank 34 are connected by the pipes 26a to 26f, and the refrigerant liquid is enclosed in the circulation path.

このような、冷媒液の循環経路において、冷媒液は水冷ジャケット9でLED光源4の発熱を受熱してLED光源4の温度上昇を抑制し、受熱した冷媒液は配管26c内を輸送されてラジエータ31に送られる。そして、ラジエータ31で冷却ファン32の供給する冷却風で外部に熱放散されて冷却され、配管26d、26e内を輸送されて循環ポンプ33を介してリザーブタンク34に貯留され、リザーブタンク34から配管26f内を輸送されて水冷ジャケット9に送られる。   In such a circulation path of the refrigerant liquid, the refrigerant liquid receives heat generated by the LED light source 4 by the water cooling jacket 9 to suppress the temperature rise of the LED light source 4, and the received refrigerant liquid is transported through the pipe 26c to be a radiator. 31. Then, heat is dissipated to the outside by the cooling air supplied from the cooling fan 32 by the radiator 31, cooled, transported through the pipes 26 d and 26 e, stored in the reserve tank 34 via the circulation pump 33, and piped from the reserve tank 34. 26 f is transported and sent to the water cooling jacket 9.

図5は、上記水冷式のLED照明装置の実施例1を実施例とし、実施例1の放熱機構部の替わりに図6に示すハウジングを兼ねたヒートシンク35を備えた自然空冷式のLED照明装置を比較例として両者の放熱効果を比較したグラフである。放熱効果を検証するために測定した温度は、発光源となるLEDチップのジャンクション温度TjとLED光源が実装された基板裏面の該LED光源が実装された直下部温度Tpであり、比較例の自然空冷式LED照明装置のジャンクション温度をATj、基板温度をATpとし、実施例の水冷式LED照明装置のジャンクション温度をWTj、基板温度をWTpで示している。周囲温度Taも同時に測定している。   FIG. 5 shows a natural air-cooled LED lighting apparatus having a heat sink 35 that also serves as a housing shown in FIG. It is the graph which compared both the thermal radiation effect as a comparative example. The temperatures measured for verifying the heat dissipation effect are the junction temperature Tj of the LED chip serving as the light source and the temperature Tp immediately below the LED light source mounted on the back surface of the substrate on which the LED light source is mounted. The junction temperature of the air-cooled LED lighting device is ATj, the substrate temperature is ATp, the junction temperature of the water-cooled LED lighting device of the embodiment is WTj, and the substrate temperature is WTp. The ambient temperature Ta is also measured at the same time.

図5より、LEDチップに0.7Aの電流が流れると、その時点で比較例の基板温度ATpは実施例の基板温度WTpより約30℃高く、比較例のLEDチップのジャンクション温度ATjも実施例のLEDチップのジャンクション温度WTjより約30℃高い。また、WTjの温度上昇率はWTpの温度上昇率よりも大きい。そして、LEDチップに0.7Aの2倍の1.4Aの電流を流すと、その時のWTjはLEDチップに0.7Aの電流を流したときのATjとほぼ同じとなっている。   5, when a current of 0.7 A flows through the LED chip, the substrate temperature ATp of the comparative example is about 30 ° C. higher than the substrate temperature WTp of the example at that time, and the junction temperature ATj of the LED chip of the comparative example is also the example. This is about 30 ° C. higher than the junction temperature WTj of the LED chip. Further, the temperature increase rate of WTj is larger than the temperature increase rate of WTp. When a current of 1.4 A, twice 0.7A, is passed through the LED chip, the WTj at that time is substantially the same as ATj when a current of 0.7 A is passed through the LED chip.

つまり、本発明の水冷式のLED照明装置のLEDチップに、自然空冷式のLED照明装置のLEDチップに流す電流の2倍の電流を流しても、水冷式のLEDチップジャンクション温度WTjは空冷式のLEDチップジャンクション温度ATjとほぼ同等の温度にしかならないことを示している。なお、このときの水冷式のLED照明装置のLEDチップの出力は自然空冷式のLED照明装置のLEDチップの出力の1.6倍以上となる。   That is, even if a current twice as large as the current flowing through the LED chip of the natural air-cooled LED lighting device is passed through the LED chip of the water-cooled LED lighting device of the present invention, the water-cooled LED chip junction temperature WTj is the air-cooled type. The LED chip junction temperature ATj is almost equal to the temperature. At this time, the output of the LED chip of the water-cooled LED lighting device is 1.6 times or more the output of the LED chip of the natural air-cooled LED lighting device.

従って、水冷式のLED照明装置は、放熱性の高い構造であり、そのため発光源となるLEDチップの温度上昇の抑制が図られて信頼性を確保しながら従来の自然空冷式のLED照明装置の2倍以上の電流をLEDチップに流すことが可能であることが確認できた。その結果、LED光源の大電力化によって、長寿命化による信頼性を確保しながら照射光量の多い(明るい)照明装置の実現性が検証された。   Therefore, the water-cooled LED lighting device has a highly heat-dissipating structure. Therefore, the temperature rise of the LED chip serving as a light-emitting source is suppressed and reliability is ensured while ensuring reliability. It has been confirmed that it is possible to pass a current twice or more through the LED chip. As a result, the feasibility of a lighting device with a large amount of irradiation (bright) was verified while ensuring the reliability by extending the lifetime by increasing the power of the LED light source.

図7は、実施例2のLED光源モジュール7と水冷ジャケット9の関係を示す説明図である。実施例2は上記実施例1に対して、LED光源モジュール7が熱伝導性ベースプレート8を介さないで熱伝導性接着剤(図示せず)によって直接水冷ジャケット9に貼着されていることが異なり、その他の構成は実施例1と同様となっている。この場合、LED光源4が実装される基板6は実施例1と同様に金属基板、セラミック基板、フレキシブル基板が使用可能であるが、接着剤によって貼着する構造上、薄型で柔軟性を有するフレキシブル基板を使用するのが好ましい。   FIG. 7 is an explanatory diagram illustrating the relationship between the LED light source module 7 and the water cooling jacket 9 according to the second embodiment. The second embodiment is different from the first embodiment in that the LED light source module 7 is directly attached to the water-cooling jacket 9 with a heat conductive adhesive (not shown) without using the heat conductive base plate 8. Other configurations are the same as those in the first embodiment. In this case, as the substrate 6 on which the LED light source 4 is mounted, a metal substrate, a ceramic substrate, and a flexible substrate can be used as in the first embodiment. However, the substrate 6 is thin and flexible because of the structure to be attached by an adhesive. It is preferred to use a substrate.

基板はいずれの場合も、LED光源4およびコネクタ(図示せず)を実装する領域以外はレジスト層18で被覆されており、配線パターンのレジスト層18が設けられていない領域にLED光源4と該LED光源4の駆動電力を受電するコネクタが実装されている。   In any case, the substrate is covered with a resist layer 18 except for the region where the LED light source 4 and the connector (not shown) are mounted, and the LED light source 4 and the region are not provided in the region where the resist layer 18 of the wiring pattern is not provided. A connector for receiving the driving power of the LED light source 4 is mounted.

このように、LED照明装置の灯体部を熱伝導性ベースプレートが不要な構成とすることにより、LED光源の発熱が効率良く水冷ジャケットに伝導されて該LED光源の温度上昇の抑制が向上すると共に、LED照明装置の薄型化および製造コストの低減化を図ることができる。   Thus, by making the lamp body portion of the LED lighting device unnecessary for the heat conductive base plate, the heat generation of the LED light source is efficiently conducted to the water cooling jacket, and the suppression of the temperature rise of the LED light source is improved. Therefore, it is possible to reduce the thickness and manufacturing cost of the LED lighting device.

図8は、実施例3のLED光源4と水冷ジャケット9の関係を示す説明図である。実施例3は上記実施例2に対して、LED光源4が基板に実装されることなく直接水冷ジャケット9に実装されていることが異なり、その他の構成は実施例2と同様となっている。この場合、水冷ジャケット9の一方の面上には絶縁層を挟んで配線パターンが貼着され、LED光源4およびコネクタ(図示せず)を実装する領域以外はレジスト層18で被覆されている。   FIG. 8 is an explanatory diagram illustrating the relationship between the LED light source 4 and the water cooling jacket 9 according to the third embodiment. The third embodiment is different from the second embodiment in that the LED light source 4 is directly mounted on the water-cooling jacket 9 without being mounted on the substrate, and other configurations are the same as those of the second embodiment. In this case, a wiring pattern is affixed on one surface of the water-cooling jacket 9 with an insulating layer interposed therebetween, and a region other than the region where the LED light source 4 and the connector (not shown) are mounted is covered with a resist layer 18.

そして、配線パターンのレジスト層18が設けられていない領域にLED光源4と該LED光源4の駆動電力を受電するコネクタが実装されている。   The LED light source 4 and a connector that receives the driving power of the LED light source 4 are mounted in a region where the resist layer 18 of the wiring pattern is not provided.

このように、水冷ジャケット9に直接LED光源4を実装した構成とすることにより、LED光源4の発熱が効率良く水冷ジャケット9に伝導されて該LED光源4の温度上昇の抑制が更に向上すると共に、製造コストの更なる低減化を図ることができる。   In this way, by adopting a configuration in which the LED light source 4 is directly mounted on the water-cooling jacket 9, the heat generation of the LED light source 4 is efficiently conducted to the water-cooling jacket 9 and the suppression of the temperature rise of the LED light source 4 is further improved. Further, the manufacturing cost can be further reduced.

なお、上述した実施例1〜実施例3においては、水冷ジャケット9のLED光源4が位置する側と反対側の面に直接LED光源駆動回路モジュール10が取付けられているが、LED光源駆動回路モジュール10は必ずしも水冷ジャケット9に取付ける必要はなく、LED照明装置と分離して別個の位置に設けることも可能である。   In the first to third embodiments described above, the LED light source driving circuit module 10 is directly attached to the surface of the water cooling jacket 9 opposite to the side where the LED light source 4 is located. 10 does not necessarily need to be attached to the water-cooling jacket 9, and can be provided separately from the LED lighting device.

そうすることにより、LED照明装置の薄型化が可能となると共に、複数のLED照明装置によって大型の照明設備を構成する場合、各LED照明装置のLED光源駆動回路モジュールを1箇所に集めることにより集中管理することができ、発生した不具合に対して迅速に且つ効率的に対処することができる。   By doing so, it is possible to reduce the thickness of the LED lighting device, and when a large-scale lighting facility is configured by a plurality of LED lighting devices, the LED light source driving circuit modules of each LED lighting device are concentrated in one place. It is possible to manage and to deal with the trouble that has occurred quickly and efficiently.

また、LED照明装置に広範囲の照明が求められる場合、各LED光源の主光照射方向を異なる方向に向けた状態に配置することにより対応できる。この場合、水冷ジャケット9を図9のような多面体形状に形成し、多面体の外側の各面にLED光源を位置させる。   Moreover, when a wide range illumination is calculated | required by an LED lighting apparatus, it can respond by arrange | positioning in the state which orient | assigned the main light irradiation direction of each LED light source to the different direction. In this case, the water cooling jacket 9 is formed into a polyhedron shape as shown in FIG. 9, and the LED light source is positioned on each surface outside the polyhedron.

具体的には、多面体形状の水冷ジャケット9の外側の各面に熱伝導性接着剤を介してLED光源モジュールを貼着するか、あるいは、水冷ジャケットの外側の各面に絶縁層を挟んで配線パターンを貼着して該配線パターンのLED光源およびコネクタを実装する領域以外をレジスト層で被覆し、水冷ジャケットの配線パターンのレジスト層が設けられていない領域に直接LED光源と該LED光源の駆動電力を受電するコネクタを実装する。   Specifically, the LED light source module is adhered to each outer surface of the polyhedral water-cooling jacket 9 via a heat conductive adhesive, or the insulating layer is sandwiched between the outer surfaces of the water-cooling jacket. The pattern is pasted to cover the area other than the area where the LED light source and connector of the wiring pattern are mounted with a resist layer, and the LED light source and the driving of the LED light source are directly applied to the area where the resist pattern of the wiring pattern of the water cooling jacket is not provided. Mount a connector to receive power.

そして、この多面体形状の水冷ジャケット9を使用して灯体部を構成するときには、LED光源が位置する側の面(外側の面)をカバーレンズに向けた状態でカバーレンズとハウジンクで形成される閉空間内に収容する。   When the lamp body is configured using the polyhedral water-cooling jacket 9, the cover lens and the housing are formed with the surface on the side where the LED light source is located (outer surface) facing the cover lens. Store in a closed space.

LED照明装置の灯体部をこのような構成にすることにより、各LED光源の照射光が異なる方向に向かい、被照射面の広範囲の領域を照射することができる。このとき、LED光源駆動回路モジュールは直接水冷ジャケットに取付けることもできるし、あるいは、LED照明装置と分離して別個の位置に設けることもできる。   By configuring the lamp body of the LED illumination device in such a configuration, the irradiation light of each LED light source is directed in a different direction, and a wide area of the irradiated surface can be irradiated. At this time, the LED light source drive circuit module can be directly attached to the water cooling jacket, or can be provided separately from the LED lighting device.

図10は本発明のLED照明装置を応用した大型照明設備の構成を示している。カバーレンズ3とハウジング11で形成された閉空間内にLED光源(図示せず)と水冷ジャケット(図示せず)が収容された灯体部2が所定の行列数(本応用例では縦5×横6の行列)からなるマトリックス状に配置されて灯体部ユニット40が構成され、各灯体部2に収容された水冷ジャケットが互いに直列または並列に配管されている。   FIG. 10 shows the configuration of a large-scale lighting facility to which the LED lighting device of the present invention is applied. A lamp body 2 in which an LED light source (not shown) and a water-cooling jacket (not shown) are accommodated in a closed space formed by the cover lens 3 and the housing 11 has a predetermined number of matrices (in this application example, 5 × vertical). The lamp body unit 40 is configured in a matrix shape composed of 6 horizontal rows), and water-cooling jackets accommodated in the lamp bodies 2 are connected in series or in parallel to each other.

そして、灯体部ユニット40の水冷ジャケットで受熱した冷媒液の熱を外部に放散して冷媒液を冷却するラジエータ31が複数個(本応用例では3個)平行に並設されると共に、ラジエータ31に冷却風を供給する冷却ファ32ンが各ラジエータ31に対向する位置に配置され、冷媒液を循環させる循環ポンプ33および冷媒液を貯留するリザーブタンク(図示せず)も配設されて放熱機構部が構成されている。なお、水冷ジャケット(図示せず)、ラジエータ31、循環ポンプ33、およびリザーブタンクを連結する配管は省略されている。   A plurality of radiators 31 (three in this application example) are arranged in parallel to dissipate the heat of the refrigerant liquid received by the water cooling jacket of the lamp unit 40 to the outside and cool the refrigerant liquid. A cooling fan 32 for supplying cooling air to 31 is disposed at a position facing each radiator 31, and a circulation pump 33 for circulating the refrigerant liquid and a reserve tank (not shown) for storing the refrigerant liquid are also provided to dissipate heat. A mechanism part is configured. In addition, piping which connects a water cooling jacket (not shown), the radiator 31, the circulation pump 33, and a reserve tank is abbreviate | omitted.

放熱機構部をこのような構成にすることにより、ラジエータ、ラジエータに冷却風を供給する冷却ファン、循環ポンプ、およびリザーブタンクを共有して複数の灯体部を同時に冷却することが可能になり、大型照明設備の小型化、製造コストの低価格化が実現できる。   By configuring the heat dissipating mechanism as described above, it becomes possible to simultaneously cool a plurality of lamp bodies by sharing a radiator, a cooling fan that supplies cooling air to the radiator, a circulation pump, and a reserve tank. It is possible to reduce the size of large lighting equipment and reduce manufacturing costs.

以上説明したように、本発明のLED照明装置は、LED光源の放熱構造を水冷式の放熱構造にすることにより、該LED光源の発熱による温度上昇を極めて低く抑制することができるようになった。   As described above, the LED lighting device of the present invention can suppress an increase in temperature due to heat generation of the LED light source by making the heat dissipation structure of the LED light source a water-cooled heat dissipation structure. .

その結果、LED光源の大電力化において、長寿命化による高信頼性を確保しつつLED光源の発光効率の低下が抑制されて照射光量の増大化が可能となるLED照明装置が実現できた。   As a result, when the power of the LED light source is increased, it is possible to realize an LED illumination device that can suppress the decrease in the light emission efficiency of the LED light source and increase the amount of irradiation light while ensuring high reliability by extending the life.

また、従来の空冷式のLED照明装置がLED光源の冷却用に30mm程度の高さのフィンを有するヒートシンクを必要とするのに対して、本発明の水冷式のLED照明装置はLED光源を冷却する水冷ジャケットの厚みが数mmと極めて薄く、LED照明装置の大幅な薄型化が可能となった。   In addition, the conventional air-cooled LED illumination device requires a heat sink having fins with a height of about 30 mm for cooling the LED light source, whereas the water-cooled LED illumination device of the present invention cools the LED light source. The thickness of the water-cooled jacket is extremely thin, a few millimeters, and the LED lighting device can be significantly reduced in thickness.

更に、水冷ジャケットに直接LED光源駆動回路モジュールを取付けることにより、回路素子に対する熱の影響が抑制され、安定した回路動作が確保できる。特に、LED光源駆動回路モジュールにはLED光源に一定の電流を供給して明るさの変動を抑えるための定電流回路が備えられており、温度依存性を有する回路部品が温度変化の影響から逃れられることにより定電流回路からは変化量の少ない電流がLED光源に供給され、明るさ変動の少ないLED照明装置が実現できた。   Furthermore, by attaching the LED light source drive circuit module directly to the water cooling jacket, the influence of heat on the circuit elements is suppressed, and stable circuit operation can be ensured. In particular, the LED light source drive circuit module is equipped with a constant current circuit for supplying a constant current to the LED light source to suppress fluctuations in brightness, so that circuit components having temperature dependence escape from the effects of temperature changes. As a result, a current with a small amount of change is supplied from the constant current circuit to the LED light source, and an LED lighting device with little brightness fluctuation can be realized.

本発明のLED照明装置は主に、街路灯、庭園灯、各種競技場照明灯等の屋外照明機器用の照明装置として利用できる。   The LED lighting device of the present invention can be mainly used as a lighting device for outdoor lighting equipment such as street lamps, garden lights, and various stadium lightings.

本発明に係わる実施例1の灯体部を示す分解立体図である。It is a three-dimensional exploded view showing the lamp body of Example 1 according to the present invention. 本発明に係わる実施例1の灯体部を示す断面図である。It is sectional drawing which shows the lamp | ramp part of Example 1 concerning this invention. 本発明に係わる実施例1の灯体部の構成を示す説明図である。It is explanatory drawing which shows the structure of the lamp | ramp part of Example 1 concerning this invention. 本発明に係わる実施例1の斜視図である。It is a perspective view of Example 1 concerning the present invention. (電流―温度)の関係を示すグラフである。It is a graph which shows the relationship of (electric current-temperature). 比較例のヒートシンクの斜視図である。It is a perspective view of the heat sink of a comparative example. 実施例2の構成の一部を示す概略図である。6 is a schematic diagram illustrating a part of the configuration of Example 2. FIG. 実施例3の構成の一部を示す概略図である。10 is a schematic diagram illustrating a part of the configuration of Example 3. FIG. 灯体部の構成の一部示す概略図である。It is the schematic which shows a part of structure of a lamp | ramp part. 本発明の応用例を示す概略図である。It is the schematic which shows the application example of this invention. 従来例の断面図である。It is sectional drawing of a prior art example.

符号の説明Explanation of symbols

1 LED照明装置
2 灯体部
3 カバーレンズ
4 LED光源
5 コネクタ
6 基板
7 LED光源モジュール
8 熱伝導性ベースプレート
9 水冷ジャケット
10 LED光源駆動回路モジュール
11 ハウジング
12 閉空間
18 レジスト層
19 絶縁性熱伝導シート
20 掘込部
21 レンズカット部
22 中空部
23a 流入口
23b 排出口
25a 配管ジョイント
25b 配管ジョイント
26a 配管
26b 配管
26c 配管
26d 配管
26e 配管
26f 配管
30 放熱機構部
31 ラジエータ
31a 流入口
31b 流出口
32 冷却ファン
33 循環ポンプ
33a 吸入口
33b 吐出口
34 リザーブタンク
34a 流入口
34b 流出口
35 ヒートシンク
40 灯体部ユニット
DESCRIPTION OF SYMBOLS 1 LED illuminating device 2 Lamp body 3 Cover lens 4 LED light source 5 Connector 6 Board | substrate 7 LED light source module 8 Thermally conductive base plate 9 Water cooling jacket 10 LED light source drive circuit module 11 Housing 12 Closed space 18 Resist layer 19 Insulating heat conductive sheet 20 engraving portion 21 lens cut portion 22 hollow portion 23a inflow port 23b discharge port 25a piping joint 25b piping joint 26a piping 26b piping 26c piping 26d piping 26e piping 26f piping 30 heat dissipation mechanism 31 radiator 31a inlet 31b cooling outlet 31b 33 Circulation Pump 33a Suction Port 33b Discharge Port 34 Reserve Tank 34a Inlet 34b Outlet 35 Heat Sink 40 Lamp Unit

Claims (8)

カバーレンズとハウジングにより形成された閉空間内に少なくともLED光源と該LED光源を冷却する水冷ジャケットを有してなる灯体部と、
前記水冷ジャケット、冷却ファンを有するラジエータ、循環ポンプ、およびタンクが配管により環状に連結された循環経路内に冷媒液が封入されてなる放熱機構部を具備し、
前記水冷ジャケットは、内部に冷媒液の流路となる中空部が形成されると共に、流入口及び排出口を設けた平板形状を呈しており、
平板状の前記カバーレンズ側の面には、1個以上のLED光源が実装されており、
平板状の反対側の面には、前記流入口及び排出口が設けられると共に、前記LED光源を駆動するLED光源駆動回路モジュールが載置され
前記循環経路は、前記冷媒液が前記水冷ジャケットの排出口から排出した後に、前記ラジエータに流入して前記冷却ファンの供給する風で外部に熱放散して冷却され、前記ラジエータから流出する前記冷媒液が、前記水冷ジャケットの流入口から前記中空部に流入する経路を有していることを特徴とするLED照明装置。
A lamp body having at least an LED light source and a water cooling jacket for cooling the LED light source in a closed space formed by the cover lens and the housing;
The water cooling jacket, a radiator having a cooling fan, a circulation pump, and a heat dissipating mechanism unit in which a refrigerant liquid is sealed in a circulation path in which a tank is annularly connected by piping,
The water-cooling jacket has a hollow portion that serves as a flow path for the refrigerant liquid, and has a flat plate shape provided with an inlet and an outlet.
One or more LED light sources are mounted on the surface of the flat cover lens side,
On the opposite surface of the flat plate, the inflow port and the discharge port are provided, and an LED light source driving circuit module for driving the LED light source is mounted ,
The circulation path is configured such that after the refrigerant liquid is discharged from the discharge port of the water-cooling jacket, the refrigerant flows into the radiator, dissipates heat with the wind supplied by the cooling fan, is cooled to the outside, and flows out from the radiator The LED lighting device , wherein the liquid has a path for flowing into the hollow portion from an inlet of the water-cooling jacket .
前記LED光源は配線パターンが設けられてなる基板に実装されてLED光源モジュールが構成され、前記LED光源モジュールの1個以上が前記水冷ジャケットの前記カバーレンズ側の面に配設されていることを特徴とする請求項1に記載のLED照明装置。   The LED light source is mounted on a substrate provided with a wiring pattern to constitute an LED light source module, and one or more of the LED light source modules are disposed on the surface of the water cooling jacket on the cover lens side. The LED lighting device according to claim 1, wherein 前記水冷ジャケットは前記カバーレンズ側の面に配線パターンが設けられ、該配線パターンが設けられた面に1個以上のLED光源が実装されていることを特徴とする請求項1に記載のLED照明装置。   2. The LED illumination according to claim 1, wherein the water cooling jacket is provided with a wiring pattern on a surface on the cover lens side, and one or more LED light sources are mounted on the surface provided with the wiring pattern. apparatus. 前記LED光源モジュールが、熱伝導性ベースプレートを介して前記水冷ジャケットに配設されていることを特徴とする請求項1または2のいずれか1項に記載のLED照明装置。   3. The LED lighting device according to claim 1, wherein the LED light source module is disposed in the water cooling jacket via a heat conductive base plate. 前記水冷ジャケットの前記カバーレンズ側の面は多面体形状を呈しており、前記多面体の前記カバーレンズ側の各面に前記LED光源が配設されていることを特徴とする請求項2または3のいずれか1項に記載のLED照明装置。   The surface of the water cooling jacket on the cover lens side has a polyhedral shape, and the LED light source is disposed on each surface of the polyhedron on the cover lens side. The LED lighting device according to claim 1. 前記基板は金属基板、セラミック基板、フレキシブル基板のうちから選ばれた一つの基板であることを特徴とする請求項2に記載のLED照明装置。   The LED lighting device according to claim 2, wherein the substrate is one substrate selected from a metal substrate, a ceramic substrate, and a flexible substrate. 前記LED光源駆動回路モジュールは、定電流回路を含む回路部品を具備することを特徴とする請求項1に記載のLED照明装置。   The LED lighting device according to claim 1, wherein the LED light source driving circuit module includes a circuit component including a constant current circuit. 前記請求項1〜6のいずれか1項に記載のLED照明装置の複数個を用いたLED大型照明装置であって、
前記LED照明装置は、複数の前記灯体部がマトリックス状に配置された灯体ユニットを構成し、前記各灯体部の水冷ジャケットが、互いに直列または並列に配管されていることを特徴とするLED大型照明装置。
An LED large-sized illumination device using a plurality of the LED illumination devices according to any one of claims 1 to 6,
The LED lighting device includes a lamp unit in which a plurality of lamp units are arranged in a matrix, and water cooling jackets of the lamp units are connected in series or in parallel to each other. LED large illuminator.
JP2007301836A 2007-11-21 2007-11-21 LED lighting device Active JP5238228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301836A JP5238228B2 (en) 2007-11-21 2007-11-21 LED lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301836A JP5238228B2 (en) 2007-11-21 2007-11-21 LED lighting device

Publications (2)

Publication Number Publication Date
JP2009129642A JP2009129642A (en) 2009-06-11
JP5238228B2 true JP5238228B2 (en) 2013-07-17

Family

ID=40820380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301836A Active JP5238228B2 (en) 2007-11-21 2007-11-21 LED lighting device

Country Status (1)

Country Link
JP (1) JP5238228B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613353A (en) * 2015-03-09 2015-05-13 苏州昆仑工业设计有限公司 Lamp with automatic temperature lowering device
CN104930446A (en) * 2015-06-26 2015-09-23 固态照明张家口有限公司 LED underwater lamp system
CN105841114A (en) * 2016-05-19 2016-08-10 苏州昆仑工业设计有限公司 Water-cooled automatic cooling device for lamp

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465493B (en) 2008-11-25 2011-07-27 Stanley Electric Co Ltd Liquid-cooled LED lighting device
GB2469551B (en) 2009-04-15 2013-11-20 Stanley Electric Co Ltd Liquid-cooled led lighting device
JP2010287647A (en) * 2009-06-10 2010-12-24 Stanley Electric Co Ltd Water-cooled led light source, and solar cell evaluation device equipped with the same
JP2011009254A (en) * 2009-06-23 2011-01-13 Stanley Electric Co Ltd Led light source for test and solar cell evaluation device including the same
JP2011009248A (en) * 2009-06-23 2011-01-13 Stanley Electric Co Ltd Led light source for testing, and solar cell evaluation device including the same
JP2011009358A (en) * 2009-06-24 2011-01-13 Stanley Electric Co Ltd Solar cell evaluation device
JP5257308B2 (en) * 2009-09-17 2013-08-07 ウシオ電機株式会社 Light irradiation device
JP2011113639A (en) * 2009-11-24 2011-06-09 Stanley Electric Co Ltd Boiling refrigerant type led lighting system
KR100975529B1 (en) 2009-12-04 2010-08-12 정준호 Wind cooling led light
TW201120363A (en) * 2009-12-04 2011-06-16 Prolynn Technology Inc LED lamp.
KR101020063B1 (en) 2010-03-08 2011-03-07 이주동 Cooling device for led lamp
JP5444046B2 (en) * 2010-03-09 2014-03-19 スタンレー電気株式会社 Vehicle headlamp
JP5054148B2 (en) 2010-04-14 2012-10-24 株式会社日本自動車部品総合研究所 Vehicle headlamp
CN102809139A (en) * 2011-05-31 2012-12-05 上海微电子装备有限公司 Mercury lamp room with cooling system
CN102913883A (en) * 2012-11-02 2013-02-06 北京环宇蓝博科技有限公司 Water cooling device of bare engine
JP6180853B2 (en) * 2013-09-03 2017-08-16 株式会社マキタ Thermal jacket
CZ306103B6 (en) 2015-03-31 2016-08-03 Varroc Lighting Systems, s.r.o. Light source cooler
CN108692288A (en) * 2017-03-03 2018-10-23 长城汽车股份有限公司 The cooling system of car light
JP6715818B2 (en) * 2017-03-22 2020-07-01 ベジ 佐々木 Cooling structure, cooling system, heat generating device and structure
WO2018173942A1 (en) * 2017-03-22 2018-09-27 フリージア・マクロス株式会社 Cooling structure, cooling system, heating device, and structural object
CN108194856A (en) * 2017-09-15 2018-06-22 广东韩星健康家居科技有限公司 A kind of LED lamp panel of water-mist-proof
CN110566916A (en) * 2019-09-25 2019-12-13 深圳市安碁特科技有限公司 High-power multi-module lighting system and liquid cooling heat dissipation method thereof
CN116182124B (en) * 2023-04-23 2023-06-30 永林电子股份有限公司 High-power LED lamp bead
CN116300343B (en) * 2023-05-23 2023-08-29 张家港奇点光电科技有限公司 Light source head water-cooling assembly of photoetching machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3905144B2 (en) * 1995-08-31 2007-04-18 東芝ライテック株式会社 Lighting device and aviation obstacle light
JP3965929B2 (en) * 2001-04-02 2007-08-29 日亜化学工業株式会社 LED lighting device
KR20060070159A (en) * 2004-12-20 2006-06-23 삼성전자주식회사 Back light system and liquid display apparatus employing it
JP4717603B2 (en) * 2005-11-16 2011-07-06 株式会社日立製作所 Display-integrated electronic device
JP4869900B2 (en) * 2005-12-28 2012-02-08 株式会社半導体エネルギー研究所 Display device and electronic device
KR100854084B1 (en) * 2007-09-10 2008-08-25 주식회사 썬라이팅 A cooling device for lamp with power light emitting diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613353A (en) * 2015-03-09 2015-05-13 苏州昆仑工业设计有限公司 Lamp with automatic temperature lowering device
CN104930446A (en) * 2015-06-26 2015-09-23 固态照明张家口有限公司 LED underwater lamp system
CN105841114A (en) * 2016-05-19 2016-08-10 苏州昆仑工业设计有限公司 Water-cooled automatic cooling device for lamp

Also Published As

Publication number Publication date
JP2009129642A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5238228B2 (en) LED lighting device
US8159152B1 (en) High-power LED lamp
US7338186B1 (en) Assembled structure of large-sized LED lamp
US7581856B2 (en) High power LED lighting assembly incorporated with a heat dissipation module with heat pipe
JP2010272472A (en) Led lighting device
US8035284B2 (en) Distributed LED-based light source
KR100818745B1 (en) LED module having cooling apparatus
JP3126337U (en) Large LED lamp
US20090195159A1 (en) Led cooling system
US20100321950A1 (en) Water-cooling module for led headlamp
TWI658235B (en) Radiating device and light irradiation device having the same
KR20080025692A (en) Light-emitting diode cluster lamp
JP2010135181A (en) Illuminating device
TWI696788B (en) Light irradiation device
JP2007311760A (en) Led module
JP6116567B2 (en) Lighting device
US20120014099A1 (en) Lamp
JP5769307B2 (en) Lighting device
JP2017212052A (en) Vehicle lamp fitting and manufacturing method of the same
JP2006047914A (en) Projector
CN107210582B (en) Semiconductor laser light source device, semiconductor laser light source system and image display device
JP2009010050A (en) Light source device
JP5390781B2 (en) Light source cooling device
TWI659189B (en) Radiating device and light irradiation device having the same
KR200434213Y1 (en) LED module having cooling apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5238228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250