JP2011009358A - Solar cell evaluation device - Google Patents

Solar cell evaluation device Download PDF

Info

Publication number
JP2011009358A
JP2011009358A JP2009149847A JP2009149847A JP2011009358A JP 2011009358 A JP2011009358 A JP 2011009358A JP 2009149847 A JP2009149847 A JP 2009149847A JP 2009149847 A JP2009149847 A JP 2009149847A JP 2011009358 A JP2011009358 A JP 2011009358A
Authority
JP
Japan
Prior art keywords
solar cell
led
light source
leds
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009149847A
Other languages
Japanese (ja)
Inventor
Takahiro Matsumoto
貴裕 松本
Satoru Sakai
悟 酒井
Takashi Moribayashi
隆 森林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009149847A priority Critical patent/JP2011009358A/en
Publication of JP2011009358A publication Critical patent/JP2011009358A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/006Solar simulators, e.g. for testing photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell evaluating device capable of determining the presence or the absence of faults in a solar cell.SOLUTION: The solar cell evaluating device 20 evaluates the output characteristics of a multi-junction solar cell 22, by applying dummy sunlight from an LED light source 23 for testing including a plurality of LEDs, having different light-emitting wavelengths to the multi-junction solar cell 22. The solar cell evaluation device includes a voltage application means 24 for successively applying pulse voltages to respective LEDs of the LED light source 23 for testing with a prescribed time difference, and an evaluation means 25 for determining the presence or the absence of a fault and fault location in the multi-junction solar cell 22, based on an output situation of the multi-junction solar cell 22 for generating an electromotive voltage by receiving the light emitted from the respective LEDs.

Description

本発明は、発光波長の異なる複数のLEDから疑似太陽光を太陽電池に照射して該太陽電池の出力特性を評価するための太陽電池評価装置に関するものである。   The present invention relates to a solar cell evaluation device for irradiating a solar cell with a plurality of LEDs having different emission wavelengths to evaluate the output characteristics of the solar cell.

太陽エネルギーの有効利用する一手段として太陽電池が知られているが、実用上は、この太陽電池を複数接続して成る太陽電池モジュールによって構成された太陽電池パネルをビルや一般家屋の屋根等に敷設することによって太陽エネルギーを電気エネルギーに変換することが行われている。   Solar cells are known as a means of effectively using solar energy, but in practice, solar cell panels composed of solar cell modules formed by connecting a plurality of solar cells are used on the roofs of buildings and general houses. Solar energy is converted into electric energy by laying.

ところで、太陽電池の出力特性を評価することは、太陽電池の製造後の検査や太陽電池の研究開発において重要であるが、その評価を太陽電池に太陽光を照射することによって行うことは、天候等によって太陽光の強度が変動するために常に正しい結果を期待することは困難である。   By the way, it is important to evaluate the output characteristics of the solar cell in the inspection after the manufacture of the solar cell and the research and development of the solar cell, but the evaluation is performed by irradiating the solar cell with sunlight. It is difficult to always expect a correct result because the intensity of sunlight fluctuates due to, for example.

そこで、特許文献1には、光源としてLEDを用いた太陽電池の評価方法が提案されている。この方法は、多波長のLED発光部からの光を太陽電池に照射し、多波長発光部からの各波長毎の照射光強度(W)と各波長毎の太陽電池の出力短絡電流(A)とから太陽電池の絶対分光感度(A/W)を測定するする方法である。   Therefore, Patent Document 1 proposes a solar cell evaluation method using an LED as a light source. This method irradiates a solar cell with light from a multi-wavelength LED light-emitting unit, and irradiates light intensity (W) for each wavelength from the multi-wavelength light-emitting unit and output short-circuit current (A) of the solar cell for each wavelength. To measure the absolute spectral sensitivity (A / W) of the solar cell.

又、特許文献2には、複数の要素セルを積層して成る太陽電池等の光電変換素子の基準状態での出力を評価するための出力測定方法が提案されている。   Patent Document 2 proposes an output measurement method for evaluating the output in a reference state of a photoelectric conversion element such as a solar battery formed by stacking a plurality of element cells.

特開2004−281706号公報JP 2004-281706 A 特開2006−135196号公報JP 2006-135196 A

ところで、分光感度の異なる複数の要素セルを積層することによって変換効率を高めた多接合太陽電池が知られているが、この多接合太陽電池によれば、入射光の広い波長領域に亘って光電変換が可能となり、全体としての変換効率が高められる。   By the way, a multijunction solar cell is known in which conversion efficiency is improved by stacking a plurality of element cells having different spectral sensitivities. According to this multijunction solar cell, photoelectric conversion is performed over a wide wavelength region of incident light. Conversion is possible, and overall conversion efficiency is increased.

斯かる多接合太陽電池の出力特性は特許文献1,2等において提案された方法によって評価されるが、多接合太陽電池の故障の有無の判定、特に故障が発生している箇所と故障している要素セルの特定を行うことはできなかった。   The output characteristics of such a multi-junction solar cell are evaluated by the methods proposed in Patent Documents 1 and 2, etc., but it is determined whether or not the multi-junction solar cell has failed, It was not possible to identify the element cell.

従って、本発明は、簡易な構成にて太陽電池の故障している箇所と多接合太陽電池の故障の有無を判定することができる太陽電池評価装置を提供することを目的とする。   Therefore, an object of this invention is to provide the solar cell evaluation apparatus which can determine the location of the failure of a solar cell and the presence or absence of failure of a multijunction solar cell with a simple configuration.

又、特許文献1,2には、LEDの点灯及び試験環境によってLED温度が室温以上になった場合の対策、例えば冷却手段を設けること等に関しては何ら開示されていない。一般にLEDの発光効率は温度上昇に伴って低下するため、LED温度が上昇すると該LEDからの出力が変動し、太陽電池の出力特性を高精度に評価することができないという問題が発生する。又、特に発光色の異なるLED素子を用いる場合には、異色のLEDでは温度−発光効率の特性が異なるため、LED温度が上昇すると照射光の色ムラが発生し、太陽電池の出力特性を高精度に評価することができなくなってしまう。   Further, Patent Documents 1 and 2 do not disclose any countermeasures when the LED temperature becomes room temperature or higher due to the lighting of the LED and the test environment, for example, provision of cooling means. In general, the luminous efficiency of an LED decreases as the temperature rises. Therefore, when the LED temperature rises, the output from the LED fluctuates, causing a problem that the output characteristics of the solar cell cannot be evaluated with high accuracy. In particular, when LED elements with different emission colors are used, different color LEDs have different temperature-emission efficiency characteristics. Therefore, when the LED temperature rises, color unevenness of irradiated light occurs, and the output characteristics of the solar cell are improved. The accuracy cannot be evaluated.

従って、本発明は、疑似太陽光の照度ムラや色ムラの発生を抑えて太陽電池の出力特性を高精度に評価することができる太陽電池評価装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a solar cell evaluation apparatus that can highly accurately evaluate the output characteristics of a solar cell while suppressing the occurrence of illuminance unevenness and color unevenness of pseudo-sunlight.

上記目的を達成するため、請求項1記載の発明は、太陽電池に、発光波長の異なる複数のLEDを備えた試験用LED光源から疑似太陽光を照射して該太陽電池の出力特性を評価する太陽電池評価装置において、前記試験用LED光源の各LEDにパルス電圧を所定の時間差をもって順次印加する電圧印加手段と、各LEDから出射される光の照射を受けて起電力を発生する前記太陽電池の出力状況に基づいて該太陽電池の故障の有無及び故障位置を判定する判定手段を設けたことを特徴とする。   In order to achieve the above object, the invention described in claim 1 evaluates the output characteristics of the solar cell by irradiating the solar cell with simulated sunlight from a test LED light source including a plurality of LEDs having different emission wavelengths. In the solar cell evaluation apparatus, voltage applying means for sequentially applying a pulse voltage to each LED of the test LED light source with a predetermined time difference, and the solar cell that generates an electromotive force upon irradiation with light emitted from each LED According to the present invention, there is provided a determination means for determining the presence / absence and failure position of the solar cell based on the output status.

請求項2記載の発明は、請求項1記載の発明において、前記試験用LED光源を、発光波長の異なる複数のLEDと該LEDを冷却する水冷ユニットを備えた水冷式LEDユニットを複数配置して構成したことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the test LED light source includes a plurality of water-cooled LED units including a plurality of LEDs having different emission wavelengths and a water-cooling unit that cools the LEDs. It is characterized by comprising.

請求項3記載の発明は、請求項1記載の発明において、前記太陽電池が分光感度の異なる複数の要素セルを積層して成る多接合太陽電池であることを特徴とする。   The invention described in claim 3 is the invention described in claim 1, characterized in that the solar cell is a multi-junction solar cell in which a plurality of element cells having different spectral sensitivities are stacked.

請求項4記載の発明は、請求項3記載の発明において、前記試験用LED光源と前記多接合太陽電池を相対応する複数のブロックにそれぞれ分割し、前記電圧印加手段による各LEDへのパルス電圧の印加と前記判定手段による多接合太陽電池の故障の有無の判定を各ブロックごとに順次行うことを特徴とする。   According to a fourth aspect of the present invention, in the invention of the third aspect, the test LED light source and the multi-junction solar cell are each divided into a plurality of corresponding blocks, and a pulse voltage applied to each LED by the voltage applying means. And determining whether or not there is a failure of the multi-junction solar cell by the determination means is sequentially performed for each block.

本発明によれば、太陽電池が例えば多接合太陽電池である場合、電圧印加手段によって試験用LED光源の各LEDにパルス電圧を所定の時間差をもって順次印加すると、多接合太陽電池に故障が発生していない場合には、該多接合太陽電池の複数の要素セルのうち、各LEDの発光波長に対して高い分光感度を示す要素セルが所定の時間差をもって起電力を発生するが、何れかの要素セルに故障が発生している場合には、その故障している要素セルから起電力が出力されないため、これをもって判定手段は多接合太陽電池の故障の有無と故障箇所を判定することができる。   According to the present invention, when the solar cell is, for example, a multi-junction solar cell, a failure occurs in the multi-junction solar cell if a voltage application means sequentially applies a pulse voltage to each LED of the test LED light source with a predetermined time difference. If not, among the plurality of element cells of the multi-junction solar cell, the element cell showing high spectral sensitivity with respect to the emission wavelength of each LED generates an electromotive force with a predetermined time difference. When a failure has occurred in the cell, no electromotive force is output from the failed element cell, so that the determination means can determine whether or not the multijunction solar cell has failed and the location of the failure.

又、本発明によれば、試験用LED光源を構成する各水冷式LEDユニットに設けられた水冷ユニットによって発熱源である複数のLEDが強制冷却されるため、該LEDの温度上昇が抑えられ、LED温度が一定に保たれて該LEDの出力変動及び試験用LED光源から出射される擬似太陽光の照度ムラや色ムラの発生が抑えられ、太陽電池の出力特性の評価を高精度に行うことができる。   In addition, according to the present invention, a plurality of LEDs that are heat generation sources are forcibly cooled by the water cooling units provided in each of the water-cooled LED units constituting the test LED light source, so that the temperature rise of the LEDs is suppressed, The LED temperature is kept constant, and fluctuations in the output of the LED and the occurrence of illuminance unevenness and color unevenness of the pseudo-sunlight emitted from the test LED light source are suppressed, and the output characteristics of the solar cell are evaluated with high accuracy. Can do.

更に、本発明によれば、試験用LED光源と多接合太陽電池を相対応する複数のブロックにそれぞれ分割し、電圧印加手段による各LEDへのパルス電圧の印加と判定手段による多接合太陽電池の故障の有無の判定を各ブロックごとに順次行うようにしたため、多接合太陽電池の故障が発生しているブロック(箇所)と故障している要素セルを特定することができる。   Furthermore, according to the present invention, the test LED light source and the multi-junction solar cell are divided into a plurality of corresponding blocks, and the application of the pulse voltage to each LED by the voltage application unit and the multi-junction solar cell by the determination unit Since the determination of the presence / absence of the failure is sequentially performed for each block, the block (location) where the failure of the multi-junction solar cell has occurred and the failed element cell can be specified.

本発明に係る太陽電池評価装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the solar cell evaluation apparatus which concerns on this invention. 試験用LED光源を構成する水冷式LEDユニットの斜視図である。It is a perspective view of the water cooling type | mold LED unit which comprises the LED light source for a test. 試験用LED光源を構成する水冷式LEDユニットの正面図(図2の矢視A方向の図)である。It is a front view (figure of the arrow A direction of FIG. 2) of the water cooling type | mold LED unit which comprises the LED light source for a test. 試験用LED光源を構成する水冷式LEDユニットの側面図(図2の矢視B方向の図)である。It is a side view (figure of the arrow B direction of FIG. 2) of the water cooling type | mold LED unit which comprises the LED light source for a test. 図3のC−C線断面図である。It is CC sectional view taken on the line of FIG. 図3のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 水冷式LEDユニットにおけるLEDの配置と該LEDへのパルス電圧の印加を模式的に示す図である。It is a figure which shows typically LED arrangement | positioning in a water-cooling type LED unit, and the application of the pulse voltage to this LED. LEDの温度と駆動電流との関係を示す図である。It is a figure which shows the relationship between the temperature of LED, and a drive current. 本発明に係る太陽電池評価装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the solar cell evaluation apparatus which concerns on this invention. 多接合太陽電池での起電力の発生を示す図である。It is a figure which shows generation | occurrence | production of the electromotive force in a multijunction solar cell.

以下に本発明の実施の形態を添付図面に基づいて説明する。尚、以下の説明において、「発光波長の異なるLED」とは、LED(発光ダイオード)素子からの発光波長が異なるもののみでなく、LED素子から照射された光の全部若しくは一部を波長変換することで異なる発光波長としたLEDを含むものとする。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, “LEDs having different emission wavelengths” are not only those having different emission wavelengths from LED (light emitting diode) elements, but also wavelength-converting all or part of the light emitted from the LED elements. In this way, LEDs having different emission wavelengths are included.

図1は本発明に係る多接合太陽電池評価装置の構成を示す斜視図であり、図示の多接合太陽電池評価装置20は、矩形ボックス状の試験室21内に収容されたパネル状の多接合太陽電池22に疑似太陽光を照射して該多接合太陽電池22の出力特性を評価する装置であって、多接合太陽電池22に疑似太陽光を照射する光源として試験用LED光源23が使用される。   FIG. 1 is a perspective view showing the configuration of a multijunction solar cell evaluation apparatus according to the present invention. The illustrated multijunction solar cell evaluation apparatus 20 is a panel-shaped multijunction housed in a rectangular box-shaped test chamber 21. An apparatus for evaluating the output characteristics of the multi-junction solar cell 22 by irradiating the solar cell 22 with pseudo-sunlight, and a test LED light source 23 is used as a light source for irradiating the multi-junction solar cell 22 with pseudo-sunlight. The

上記試験用LED光源23は、縦及び横方向に複数(本実施の形態では横6個×縦5個=計30個)の水冷式LEDユニット1をマトリックス状に配置して構成されている。尚、図示しないが、試験室21内に収容された多接合太陽電池22と試験用LED光源23との間には、試験用LED光源23からの疑似太陽光を透過させ且つ湿気の通過を遮断する石英ガラス等の透明部材が配置されている。   The test LED light source 23 is configured by arranging a plurality of water-cooled LED units 1 in the vertical and horizontal directions (in the present embodiment, 6 horizontal x 5 vertical = 30 in total) in a matrix. Although not shown, between the multi-junction solar cell 22 accommodated in the test chamber 21 and the test LED light source 23, the pseudo-sunlight from the test LED light source 23 is transmitted and moisture is blocked. A transparent member such as quartz glass is disposed.

次に、試験用LED光源23を構成する各水冷式LEDユニット1の構成を図2〜図7に基づいて説明する。尚、全ての水冷式LEDユニット1の構成は同じであるため、以下、1つの水冷式LEDユニット1についてのみ説明する。   Next, the configuration of each water-cooled LED unit 1 constituting the test LED light source 23 will be described with reference to FIGS. Since all the water-cooled LED units 1 have the same configuration, only one water-cooled LED unit 1 will be described below.

図2は水冷式LEDユニットの斜視図、図3は同水冷式LEDユニットの正面図(図2の矢視A方向の図)、図4は同水冷式LEDユニットの側面図(図2の矢視B方向の図)、図5は図4のC−C線断面図、図6は図4のD−D線断面図、図7は水冷式LEDユニットにおけるLEDの配置と該LEDへのパルス電圧の印加を示す図である。   2 is a perspective view of the water-cooled LED unit, FIG. 3 is a front view of the water-cooled LED unit (a view in the direction of arrow A in FIG. 2), and FIG. 4 is a side view of the water-cooled LED unit (arrow in FIG. 2). 5 is a cross-sectional view taken along the line CC of FIG. 4, FIG. 6 is a cross-sectional view taken along the line DD of FIG. 4, and FIG. 7 is an LED arrangement and a pulse to the LED in the water-cooled LED unit. It is a figure which shows application of a voltage.

水冷式LEDユニット1は、図5及び図6に示すように、矩形ボックス状のハウジング2の内部に光源ユニット3と制御回路4及び水冷ユニット5を組み込んで構成されている。尚、水冷式LEDユニット1の光照射方向は図2の下方であって、該水冷式LEDユニット1は図1に示すように光照射方向が水平方向となるよう設置されるが、以下の説明における水冷式LEDユニット1の上下は図2に示す状態における上下を言うものとする。   As shown in FIGS. 5 and 6, the water-cooled LED unit 1 is configured by incorporating a light source unit 3, a control circuit 4, and a water-cooled unit 5 inside a rectangular box-shaped housing 2. The light irradiation direction of the water-cooled LED unit 1 is the lower side of FIG. 2, and the water-cooled LED unit 1 is installed so that the light irradiation direction is horizontal as shown in FIG. The top and bottom of the water-cooled LED unit 1 in FIG.

上記ハウジング2は、PC等の樹脂或いはアルミニウム等の金属で構成されており、図2に示すように、その周面には縦方向に長い複数のスリットから成る吸気口6が形成され、上面には扇形の複数のスリットから成る排気口7が形成されている。そして、このハウジング2の下面は開口しており、この開口部には前記光源ユニット3が嵌め込まれて固定されている。   The housing 2 is made of a resin such as PC or a metal such as aluminum, and as shown in FIG. 2, an air inlet 6 composed of a plurality of slits elongated in the vertical direction is formed on the peripheral surface, and the upper surface is formed on the upper surface. Is formed with an exhaust port 7 formed of a plurality of fan-shaped slits. The lower surface of the housing 2 is open, and the light source unit 3 is fitted and fixed in the opening.

上記光源ユニット3は、図5及び図6に示すように、光源として発光波長の異なる(発光波長0.3μm〜1.5μmの間)の4種のLED8a,8b,8c,8d(図7参照)を実装して成る基板9と、該基板9を取り付ける矩形プレート状のベース10及びハウジング2の下面開口部に嵌め込まれる矩形プレート状の透明な樹脂製のレンズ11を含んで構成されている。   As shown in FIGS. 5 and 6, the light source unit 3 has four types of LEDs 8a, 8b, 8c, and 8d having different emission wavelengths (between emission wavelengths of 0.3 μm and 1.5 μm) as light sources (see FIG. 7). ), A rectangular plate-like base 10 to which the substrate 9 is attached, and a rectangular plate-like transparent resin lens 11 fitted into the lower surface opening of the housing 2.

ここで、発光波長の異なるLED8a〜8dのうち、LED8aはGaAlAs系の赤外LED(波長850nm)、LED8bはGaN系の紫外(波長365nm)LED、LED8cはGaAlAs系の赤(波長630nm)LED、LED8dはGaN系の青(波長455nm)LEDであって、これらは基板9上に配置されている。又、これらのLED8a〜8dの温度(℃)と駆動電流(A)との関係を図8に示すが、同図から明らかなように温度が50℃を超えると各LED8a〜8dへの駆動電流が下がり、各LED8a〜8dの使用最高温度は80℃である。ここで、LED8a〜8dの温度とは、チップ接合部の温度であるジャンクション温度を指す。尚、図7には2つの水冷式LEDユニット1におけるLED8a〜8dの配置と該LED8a〜8dへのパルス電圧の印加を示す。   Here, among the LEDs 8a to 8d having different emission wavelengths, the LED 8a is a GaAlAs-based infrared LED (wavelength 850 nm), the LED 8b is a GaN-based ultraviolet (wavelength 365 nm) LED, the LED 8c is a GaAlAs-based red (wavelength 630 nm) LED, The LED 8 d is a GaN-based blue (wavelength 455 nm) LED, and these are arranged on the substrate 9. FIG. 8 shows the relationship between the temperature (° C.) of these LEDs 8a to 8d and the drive current (A). As is clear from the figure, when the temperature exceeds 50 ° C., the drive current to each LED 8a to 8d is shown. The maximum operating temperature of each LED 8a to 8d is 80 ° C. Here, the temperature of the LEDs 8a to 8d refers to a junction temperature that is the temperature of the chip joint. FIG. 7 shows the arrangement of the LEDs 8a to 8d in the two water-cooled LED units 1 and the application of the pulse voltage to the LEDs 8a to 8d.

又、前記制御回路4は、図5に示すように、下面が開口する矩形ボックス状の回路ケース12の内部に各種電子部品が実装された不図示の回路基板を組み込み、回路ケース12の下面開口部を矩形プレート状のカバー13によって覆うことによって構成されている。ここで、回路ケース12は熱伝導率の高いアルミダイキャスト等によって成形されており、その上面には放熱部を構成する多数の放熱ピン14が一体に突設されている。   In addition, as shown in FIG. 5, the control circuit 4 incorporates a circuit board (not shown) on which various electronic components are mounted in a rectangular box-shaped circuit case 12 whose bottom surface is open, and opens the bottom surface of the circuit case 12. It is configured by covering the portion with a rectangular plate-shaped cover 13. Here, the circuit case 12 is formed by aluminum die casting or the like having high thermal conductivity, and a large number of heat radiation pins 14 constituting a heat radiation portion are integrally projected on the upper surface thereof.

前記水冷ユニット5は、図5及び図6に示すように、熱交換器である水冷ジャケット15と、該水冷ジャケット15において受熱して温度が高くなった冷却水を外気(冷却風)との熱交換によって冷却するラジエータ16と、該ラジエータ16に冷却風を供給するファン17と、冷却水を閉ループの循環経路内で循環させる循環ポンプ18及び冷却水を貯留するリザーブタンク19を備えており、ファン17はラジエータ16と対向してこれの上方に配置されている。   As shown in FIGS. 5 and 6, the water cooling unit 5 includes a water cooling jacket 15 that is a heat exchanger and heat of the cooling water that has received heat in the water cooling jacket 15 and increased in temperature to the outside air (cooling air). A radiator 16 for cooling by replacement, a fan 17 for supplying cooling air to the radiator 16, a circulation pump 18 for circulating the cooling water in a closed loop circulation path, and a reserve tank 19 for storing the cooling water. 17 is disposed above and facing the radiator 16.

本実施の形態では、図5及び図6に示すように、ハウジング2内下部の底部に水冷ジャケット15が水平に配置されており、この水冷ジャケット15を挟んでこれの上下に制御回路4と光源ユニット3が配置されている。ここで、制御回路4は、そのカバー13が水冷ジャケット15の上面に密着する状態で該水冷ジャケット15の上面側に配置されている。尚、本実施の形態では、冷却水として水にプロピレングリコールを混合して成る不凍液が使用されている。   In the present embodiment, as shown in FIGS. 5 and 6, a water cooling jacket 15 is horizontally disposed at the bottom of the lower portion in the housing 2, and the control circuit 4 and the light source are disposed above and below the water cooling jacket 15. Unit 3 is arranged. Here, the control circuit 4 is disposed on the upper surface side of the water cooling jacket 15 in a state where the cover 13 is in close contact with the upper surface of the water cooling jacket 15. In this embodiment, an antifreeze liquid obtained by mixing water with propylene glycol is used as the cooling water.

他方、図5及び図6に示すように、ハウジング2内の水冷ジャケット15から離間した上部には前記ラジエータ16とファン17が配置されており、水冷ジャケット15とラジエータ16との間の空間部には制御回路4と循環ポンプ18及びリザーブタンク19が配置されている。   On the other hand, as shown in FIGS. 5 and 6, the radiator 16 and the fan 17 are disposed in the upper portion of the housing 2 apart from the water cooling jacket 15, and the space between the water cooling jacket 15 and the radiator 16 is disposed. The control circuit 4, the circulation pump 18 and the reserve tank 19 are arranged.

而して、以上のように構成された水冷式LEDユニット1が起動されて光源ユニット3と制御回路4及び水冷ユニット5に電源が供給されると、光源ユニット3の発光波長の異なる4種のLED8a〜8dが発光し、各色の光が合成されて疑似太陽光がレンズ11を透過して図2の下方に向かって照射される。このとき、光源ユニット3の点灯制御は制御回路4によってなされ、駆動中において光源ユニット3のLED8a〜8d及び制御回路4の各種電子部品(不図示)が発熱し、そのままでは光源ユニット3と制御回路4が過熱されてこれらの温度が上昇する。光源ユニット3の各種LED8a〜8dの温度が上昇すると発光効率が低下することは前述の通りであり、供給電流も低下することは図8に示す通りである。   Thus, when the water-cooled LED unit 1 configured as described above is activated and power is supplied to the light source unit 3, the control circuit 4, and the water-cooled unit 5, the light source unit 3 emits four types of light having different emission wavelengths. The LEDs 8a to 8d emit light, the lights of the respective colors are combined, and pseudo sunlight passes through the lens 11 and is irradiated downward in FIG. At this time, the lighting control of the light source unit 3 is performed by the control circuit 4, and the LEDs 8a to 8d of the light source unit 3 and various electronic components (not shown) of the control circuit 4 generate heat during driving, and the light source unit 3 and the control circuit remain as they are. 4 is overheated and these temperatures rise. As described above, the luminous efficiency decreases as the temperatures of the various LEDs 8a to 8d of the light source unit 3 increase, and the supply current also decreases as shown in FIG.

然るに、本実施の形態では、水冷ユニット5が同時に駆動され、光源ユニット3と制御回路4は、閉ループを形成する循環経路を循環する冷却水によって強制冷却されてその温度上昇が抑えられる。即ち、循環ポンプ18によって循環経路を循環する冷却水は、水冷ジャケット15において光源ユニット3及び制御回路4において発生する熱を受熱して光源ユニット3及び制御回路4を冷却し、受熱して温度の高くなった冷却水はラジエータ16へと導入される。   However, in the present embodiment, the water cooling unit 5 is driven at the same time, and the light source unit 3 and the control circuit 4 are forcibly cooled by the cooling water circulating in the circulation path forming the closed loop, and the temperature rise is suppressed. That is, the cooling water circulated through the circulation path by the circulation pump 18 receives heat generated in the light source unit 3 and the control circuit 4 in the water cooling jacket 15 to cool the light source unit 3 and the control circuit 4, and receives the heat to change the temperature. The raised cooling water is introduced into the radiator 16.

他方、ファン17が不図示のモータによって回転駆動されると、外気がハウジング2の周面に形成された吸気口6から冷却風としてハウジング2内に側方から吸引され、この冷却風は水冷ジャケット15とラジエータ16との間に形成された空間部を上方に向かって流れ、その過程でラジエータ16を通過し、ハウジング2の上面に開口する排気口7から外部に排出される。そして、ラジエータ16においては、ここを通過する冷却風によって冷却水の熱が外部に放熱されて該冷却水が冷却され、温度の下がった冷却液水は循環ポンプ18に吸引される。   On the other hand, when the fan 17 is rotationally driven by a motor (not shown), outside air is sucked into the housing 2 from the side as the cooling air from the intake port 6 formed in the peripheral surface of the housing 2, and this cooling air is supplied to the water cooling jacket. 15 flows upward through a space formed between the radiator 15 and the radiator 16, passes through the radiator 16 in the process, and is discharged to the outside through the exhaust port 7 opened on the upper surface of the housing 2. In the radiator 16, the heat of the cooling water is radiated to the outside by the cooling air passing therethrough to cool the cooling water, and the cooling liquid water whose temperature has decreased is sucked into the circulation pump 18.

循環ポンプ18に吸引された冷却水は、昇圧された後に循環ポンプ18からリザーブタンク19へと送り出され、その一部はリザーブタンク19に貯留され、残りの冷却水はリザーブタンク19から水冷ジャケット15へと導入されて光源ユニット3と制御回路4の冷却に供される。そして、以上の作用(冷却サイクル)が連続的に繰り返されて光源ユニット3と制御回路4が水冷ジャケット15を流れる冷却水によって強制冷却され、それらの温度上昇が一定値以下に抑えられる。又、本実施の形態では、制御回路4の下面を水冷ジャケット15に密着させ、上面に放熱部を構成する多数の放熱ピン14を突設したため、制御回路4が冷却水によって強制冷却されると同時に放熱ピン14から自然放熱され、該制御回路4が効率良く冷却されてその温度上昇が一層効果的に抑えられる。   The cooling water sucked into the circulation pump 18 is increased in pressure and then sent out from the circulation pump 18 to the reserve tank 19, a part of which is stored in the reserve tank 19, and the remaining cooling water is supplied from the reserve tank 19 to the water cooling jacket 15. The light source unit 3 and the control circuit 4 are cooled. Then, the above operation (cooling cycle) is continuously repeated, and the light source unit 3 and the control circuit 4 are forcibly cooled by the cooling water flowing through the water cooling jacket 15, and the temperature rise thereof is suppressed to a certain value or less. In the present embodiment, the lower surface of the control circuit 4 is brought into close contact with the water cooling jacket 15, and a large number of heat radiation pins 14 constituting the heat radiation portion are projected on the upper surface, so that the control circuit 4 is forcibly cooled by the cooling water. At the same time, natural heat is radiated from the radiating pins 14, the control circuit 4 is efficiently cooled, and the temperature rise is more effectively suppressed.

以上のように各LED8a〜8dの温度上昇が防がれ、その温度が一定に保たれる結果、各LED8a〜8dの出力変動及び照射光である疑似太陽光の照度ムラや色ムラの発生が抑えられる。   As described above, the temperature rise of each of the LEDs 8a to 8d is prevented and the temperature is kept constant. As a result, the output fluctuation of each of the LEDs 8a to 8d and the generation of illuminance unevenness and color unevenness of the pseudo-sunlight which is irradiation light. It can be suppressed.

而して、試験用LED光源23を備えた図1に示す多接合太陽電池評価装置20は、所定の試験環境(湿度10%〜100%、温度20℃〜90℃)において試験用LED光源23から出射される疑似太陽光を不図示の透明部材を介して多接合太陽電池22に照射する加速試験を行うことによって該多接合太陽電池22の出力特性を評価するが、本実施の形態では、図2〜図6に示した水冷式LEDユニット1を複数設置して構成された試験用LED光源23によって多接合太陽電池22に疑似太陽光を照射するようにしたため、前述のように各水冷式LEDユニット1の各種LED8a〜8d(図7参照)の温度が一定に保たれる。このため、試験用LED光源23から出射される擬似太陽光の照度ムラや色ムラの発生が抑えられ、多接合太陽電池22の出力特性が高精度に評価される。   Thus, the multi-junction solar cell evaluation apparatus 20 shown in FIG. 1 equipped with the test LED light source 23 has the test LED light source 23 in a predetermined test environment (humidity 10% to 100%, temperature 20 ° C. to 90 ° C.). The output characteristics of the multi-junction solar cell 22 are evaluated by performing an accelerated test in which the pseudo-sunlight emitted from the multi-junction solar cell 22 is irradiated through a transparent member (not shown). Since the multi-junction solar cell 22 is irradiated with the pseudo-sunlight by the test LED light source 23 configured by installing a plurality of the water-cooled LED units 1 shown in FIGS. 2 to 6, each water-cooled type as described above. The temperatures of the various LEDs 8a to 8d (see FIG. 7) of the LED unit 1 are kept constant. For this reason, generation | occurrence | production of the illumination intensity nonuniformity and color nonuniformity of the pseudo-sunlight radiate | emitted from the test LED light source 23 is suppressed, and the output characteristic of the multijunction solar cell 22 is evaluated with high precision.

又、本実施の形態では、試験室21内に収容された多接合太陽電池22と試験用LED光源23との間に石英ガラス等の不図示の透明部材を配置したため、試験室21内の湿気の試験用LED光源23への侵入が透明部材によって遮断され、試験用LED光源23が湿気によって悪影響を受けることがなく、該試験用LED光源23の安定した動作が可能となる。この場合、試験用LED光源23からの擬似太陽光は透明部材を透過して多接合太陽電池22に安定的に照射される。   In this embodiment, since a transparent member (not shown) such as quartz glass is disposed between the multi-junction solar cell 22 accommodated in the test chamber 21 and the test LED light source 23, the moisture in the test chamber 21 Intrusion into the test LED light source 23 is blocked by the transparent member, the test LED light source 23 is not adversely affected by moisture, and the test LED light source 23 can be stably operated. In this case, the pseudo-sunlight from the test LED light source 23 passes through the transparent member and is stably irradiated to the multi-junction solar cell 22.

ところで、多接合太陽電池22は、試験用LED光源23の各LED8a〜8dの発光波長に対して異なる分光感度を示す要素セルを積層して構成されている。要素セルが直列に接続された場合、多接合太陽電池の出力特性は各要素セルにより出力される電流値により制限される。例えば、薄膜Si型太陽電池として実用化されている2接合タンデム構造の太陽電池では、トップ層としてアモルファスシリコンを用い、ボトム層として微結晶シリコンを用いた太陽電池がある。3接合(トリプル構造)になると材料の組み合わせが多様になり、例えばトップ層から順にアモルファスSi、アモルファスSiGe、微結晶Si等の要素セルの直列接合がある。又、多接合太陽電池22は、試験用LED光源23を構成する1つの水冷式LEDユニット1と対応する区画を1つのセルとする複数のセルから成るモジュール(本実施の形態では、30個のセル)から成る。尚、該モジュールは太陽電池セルを多数枚接続した後にガラスとバック・フィルムで封止された既知の構成とされている。   By the way, the multi-junction solar cell 22 is configured by laminating element cells that exhibit different spectral sensitivities with respect to the emission wavelengths of the LEDs 8 a to 8 d of the test LED light source 23. When the element cells are connected in series, the output characteristics of the multijunction solar cell are limited by the current value output by each element cell. For example, a solar cell having a two-junction tandem structure that has been put into practical use as a thin-film Si type solar cell includes a solar cell that uses amorphous silicon as a top layer and microcrystalline silicon as a bottom layer. In the case of three junctions (triple structure), there are various combinations of materials. For example, there are series junctions of element cells such as amorphous Si, amorphous SiGe, and microcrystalline Si in order from the top layer. In addition, the multi-junction solar cell 22 is a module composed of a plurality of cells having one cell as a section corresponding to one water-cooled LED unit 1 constituting the test LED light source 23 (in this embodiment, 30 cells). Cell). The module has a known structure in which a large number of solar cells are connected and then sealed with glass and a back film.

而して、本発明に係る多接合太陽電池評価装置20は、多接合太陽電池22の故障の有無の判定を行うことができ、更に故障が発生しているセルを特定することができる。更に、モジュール内における故障箇所と故障している要素セルをLED光源の並びに照射波長に対応して特定することができる。以下、これについて図7、図9及び図10を参照しながら説明する。   Thus, the multi-junction solar cell evaluation device 20 according to the present invention can determine whether or not the multi-junction solar cell 22 has failed, and can further identify the cell in which the failure has occurred. Furthermore, the failure location in the module and the failed element cell can be specified in correspondence with the irradiation wavelength of the LED light source. Hereinafter, this will be described with reference to FIG. 7, FIG. 9 and FIG.

図7は水冷式LEDユニットにおけるLEDの配置と該LEDへのパルス電圧の印加を模式的に示す図、図9は本発明に係る多接合太陽電池評価装置の基本構成を示すブロック図、図10は多接合太陽電池での起電力の発生を示す図である。   FIG. 7 is a diagram schematically showing LED arrangement and application of pulse voltage to the LED in the water-cooled LED unit, FIG. 9 is a block diagram showing the basic configuration of the multi-junction solar cell evaluation apparatus according to the present invention, and FIG. FIG. 4 is a diagram showing generation of electromotive force in a multijunction solar cell.

水冷式LEDユニット1におけるLEDの配置は4種類のLEDが列状に繰り返して配列され、各々の列は上段と下段とに分かれており、各々が同一種類の複数のLEDから成るブロックを形成する。尚、図7はLEDユニットの列状に配列したLEDの一部を模式的に示すもので、8個のLEDブロック(8a×2、8b×2、8c×2、8d×2)を示している。   The arrangement of the LEDs in the water-cooled LED unit 1 is such that four types of LEDs are repeatedly arranged in a row, and each row is divided into an upper row and a lower row, each forming a block composed of a plurality of LEDs of the same type. . FIG. 7 schematically shows a part of the LEDs arranged in a row of LED units, and shows eight LED blocks (8a × 2, 8b × 2, 8c × 2, 8d × 2). Yes.

本発明に係る多接合太陽電池評価装置20には、図9に示すように、試験用LED光源23を構成する各水冷式LEDユニット1の各LED8a〜8dに図7に示すようなパルス電圧を所定の時間差をもって順次印加する電圧印加手段24と、各LED8a〜8dから出射される光の照射を受けて起電力を発生する多接合太陽電池22の出力状況(起電力)をモニターする電気出力測定装置及び多接合太陽電池22の故障の有無を判定する判定装置を備えた評価手段25が設けられている。   In the multi-junction solar cell evaluation device 20 according to the present invention, as shown in FIG. 9, pulse voltages as shown in FIG. 7 are applied to the LEDs 8 a to 8 d of the water-cooled LED units 1 constituting the test LED light source 23. Electrical output measurement for monitoring the output status (electromotive force) of the voltage application means 24 that sequentially applies with a predetermined time difference and the multijunction solar cell 22 that generates an electromotive force upon irradiation with light emitted from the LEDs 8a to 8d. An evaluation means 25 including a determination device for determining whether or not the device and the multi-junction solar cell 22 have failed is provided.

而して、本実施の形態では、試験用LED光源23と多接合太陽電池22を相対応する複数のブロック(本実施の形態では、試験用LED光源23を構成する水冷式LEDユニット1を1つのセルとして30個のセルから成るミジュール)にそれぞれ分割し、前記電圧印加手段24による各LED8a〜8dへのパルス電圧の印加と前記判定装置(評価手段25)による多接合太陽電池22の故障の有無の判定を各セルごとに順次行うようにしている。   Thus, in the present embodiment, a plurality of blocks corresponding to the test LED light source 23 and the multi-junction solar cell 22 (in this embodiment, the water-cooled LED unit 1 constituting the test LED light source 23 is 1 A module comprising 30 cells as a single cell), the application of a pulse voltage to each of the LEDs 8a to 8d by the voltage application means 24 and the failure of the multi-junction solar cell 22 by the determination device (evaluation means 25). The presence / absence determination is sequentially performed for each cell.

上述のように電圧印加手段24によって試験用LED光源23を構成する各水冷式LEDユニット1に配置されたLED8a〜8dに図7に示すようなDC電圧にパルス電圧が重畳されたV1〜V4を所定の時間差をもって順次印加する。図10では時間T1を繰り返して順次駆動している。   As described above, V1 to V4 in which a pulse voltage is superimposed on a DC voltage as shown in FIG. 7 are applied to the LEDs 8a to 8d arranged in each of the water-cooled LED units 1 constituting the test LED light source 23 by the voltage application means 24. Sequentially applied with a predetermined time difference. In FIG. 10, the driving is sequentially performed by repeating the time T1.

多接合太陽電池22に故障が発生していない場合には、図10(B)にPにて示すように、LEDの発光に対応して、例えばV1,V2,V3及びV4を印加している時間(発光時間)に対応して多接合太陽電池22に印加パルス電圧から予想された起電力Pが発生する。尚、LED8bは紫外線であり、主に太陽電池に用いている樹脂材料の劣化を評価するために用いており、ここでは単純化するために起電力を生じないものとして説明する。   When no failure has occurred in the multi-junction solar cell 22, as shown by P in FIG. 10B, for example, V1, V2, V3, and V4 are applied corresponding to the light emission of the LED. The electromotive force P predicted from the applied pulse voltage is generated in the multi-junction solar cell 22 corresponding to the time (light emission time). The LED 8b is an ultraviolet ray, and is used mainly for evaluating the deterioration of the resin material used in the solar cell. Here, for simplification, it is assumed that no electromotive force is generated.

このとき、以前得られた起電力Pを基準として規格化したとき、例えばLED8dに対応する時間の起電力が低下している信号P2が得られた場合には、当該波長に発光感度を有する太陽電池に故障が存在すると判定する。   At this time, when standardizing the electromotive force P obtained previously as a reference, for example, when a signal P2 having a reduced electromotive force in the time corresponding to the LED 8d is obtained, the sun having light emission sensitivity at the wavelength. It is determined that a failure exists in the battery.

多接合太陽電池22が2接合の場合、要素セルのうち第1層と第2層の要素セルの分光感度特性が異なる。そこで、LED8d(波長455nm)に対応する分光感度の相違により何れかの要素セルにて生じる電流量が減少し、結果として多接合太陽電池22全体の起電力が低下する。波長455nmにおける第1層及び第2層の各々の分光感度を事前に調べておくことで、何れの要素セルが故障しているのかについて判断することができる。   When the multi-junction solar cell 22 has two junctions, the spectral sensitivity characteristics of the element cells of the first layer and the second layer among the element cells are different. Therefore, the amount of current generated in any of the element cells is reduced due to the difference in spectral sensitivity corresponding to the LED 8d (wavelength 455 nm), and as a result, the electromotive force of the entire multijunction solar cell 22 is reduced. By examining the spectral sensitivities of the first layer and the second layer at a wavelength of 455 nm in advance, it is possible to determine which element cell has failed.

同様に、例えばLED8d(波長455nm)に対応して多接合太陽電池22全体の起電力が低下したときには、V4に対応する時間の起電力が低下したP1が得られる。この場合、何れの要素セルが故障しているのかについて判断することができる。   Similarly, for example, when the electromotive force of the entire multi-junction solar cell 22 is reduced corresponding to the LED 8d (wavelength 455 nm), P1 in which the electromotive force of the time corresponding to V4 is reduced is obtained. In this case, it is possible to determine which element cell has failed.

これら個別のセルに対して行われた一連の手続きをモジュールを構成する各セル全てに亘って順次行うことによって、起電力が低下している時間を特定することによって故障している要素セルの位置及び多接合の要素セルを特定することができる。具体的には、上記したパルス電圧V1〜V4の印加を、図7に示す各LEDブロックごとに順次走査することで、多接合太陽電池22の1つのモジュール内において、どのLEDブロックに対応する領域に故障が存在するかを特定することができる。詳細には、各々の起電力P同士を比較又は上記した要素セル故障の判断を行うことで、故障の区画をLEDブロックに対応する範囲で特定することが可能となる。   The location of the failed element cell by identifying the time during which the electromotive force is lowered by sequentially performing a series of procedures performed on these individual cells over all the cells constituting the module. And multi-junction element cells can be identified. Specifically, the region corresponding to which LED block in one module of the multijunction solar cell 22 by sequentially scanning the application of the pulse voltages V1 to V4 for each LED block shown in FIG. It is possible to specify whether or not a fault exists. Specifically, by comparing the electromotive forces P with each other or determining the above-described element cell failure, it is possible to specify the failure section within a range corresponding to the LED block.

又、本実施の形態では、試験用LED光源23としてLED8a〜8dを冷却する水冷ユニット5を備えた水冷式LEDユニット1を複数配置しているため、LED8a〜8dの出力特性のバラツキを抑えることができ、多接合太陽電池22の出力特性の変化も高精度に評価することができ、これにより故障箇所を簡易な構成で特定することができる。   In this embodiment, since a plurality of water-cooled LED units 1 including the water-cooling unit 5 that cools the LEDs 8a to 8d are arranged as the test LED light source 23, variation in output characteristics of the LEDs 8a to 8d is suppressed. Therefore, the change in the output characteristics of the multi-junction solar cell 22 can be evaluated with high accuracy, and the failure location can be specified with a simple configuration.

以上のように、本実施の形態では、試験用LED光源23と多接合太陽電池22を相対応する複数のブロックにそれぞれ分割し、電圧印加手段24による各LED8a〜8dへのパルス電圧の印加と評価手段25による多接合太陽電池22の故障の有無の判定を各ブロックごとに順次行うようにしたため、多接合太陽電池22の故障が発生しているブロック(箇所)と故障している要素セルを特定することができる。   As described above, in the present embodiment, the test LED light source 23 and the multi-junction solar cell 22 are respectively divided into a plurality of corresponding blocks, and the voltage application means 24 applies the pulse voltage to each of the LEDs 8a to 8d. Since the evaluation unit 25 sequentially determines whether or not the multi-junction solar cell 22 has failed, for each block, the block (location) where the multi-junction solar cell 22 has failed and the element cell that has failed are displayed. Can be identified.

尚、各水冷式LEDユニット1の各種LED8a〜8dの基板9上への配置は図7に示したものに限定されず、任意に設定し得るものである。又、LEDの発光波長及び種類も上記してものに限定されず、任意に設定し得るものである。例えば、LED8a〜8dとしてGaAlAs系、GaN系のLEDを用いたが、GaAlInP系等の他の結晶材料系統のものを使用しても良く、又、GaN系の結晶材料とYAG蛍光体等の波長変換材料との組み合わせから成るLEDを用いても良い。LED8a〜8dを同じ結晶材料系統、例えばGaN系(GaInN、GaInAlN)とし、これと組み合わせる波長変換材料を異なるものとすることによって、異なる発光波長のLED8a〜8dを得ることもできる。利用する発光変換材料により異なる発光波長のLEDとした場合には、LED素子自体は同一材料系であるためジャンクション温度がほぼ同一となる。よって、LED8a〜8dの温度特性が同じになるため、温度による発光効率変動のバラツキをより一層低減することができる。   In addition, arrangement | positioning on the board | substrate 9 of various LED8a-8d of each water-cooled LED unit 1 is not limited to what was shown in FIG. 7, It can set arbitrarily. Further, the emission wavelength and type of the LED are not limited to those described above, and can be arbitrarily set. For example, although LEDs of GaAlAs and GaN are used as the LEDs 8a to 8d, other crystal materials such as GaAlInP may be used, and wavelengths of GaN crystal and YAG phosphors may be used. You may use LED which consists of a combination with conversion material. LEDs 8a to 8d having different emission wavelengths can be obtained by making the LEDs 8a to 8d the same crystal material system, for example, GaN-based (GaInN, GaInAlN) and using different wavelength conversion materials. In the case of an LED having a different emission wavelength depending on the light emitting conversion material to be used, the junction temperature is almost the same because the LED elements themselves are of the same material system. Therefore, since the temperature characteristics of the LEDs 8a to 8d are the same, the variation in the luminous efficiency variation due to the temperature can be further reduced.

1 水冷式LEDユニット
2 ハウジング
3 光源ユニット
4 制御回路
5 水冷ユニット
6 吸気口
7 排気口
8a〜8d LED
9 基板
10 ベース
11 レンズ
12 回路ケース
13 カバー
14 放熱ピン
15 水冷ジャケット
16 ラジエータ
17 ファン
18 循環ポンプ
19 リザーブタンク
20 多接合太陽電池評価装置
21 試験室
22 多接合太陽電池
23 試験用LED光源
24 電圧印加手段
25 評価手段
DESCRIPTION OF SYMBOLS 1 Water-cooled LED unit 2 Housing 3 Light source unit 4 Control circuit 5 Water-cooled unit 6 Intake port 7 Exhaust port 8a-8d LED
DESCRIPTION OF SYMBOLS 9 Board | substrate 10 Base 11 Lens 12 Circuit case 13 Cover 14 Radiation pin 15 Water cooling jacket 16 Radiator 17 Fan 18 Circulation pump 19 Reserve tank 20 Multijunction solar cell evaluation apparatus 21 Test room 22 Multijunction solar cell 23 LED light source for test 24 Voltage application Means 25 Evaluation means

Claims (4)

太陽電池に、発光波長の異なる複数のLEDを備えた試験用LED光源から疑似太陽光を照射して該太陽電池の出力特性を評価する太陽電池評価装置において、
前記試験用LED光源の各LEDにパルス電圧を所定の時間差をもって順次印加する電圧印加手段と、各LEDから出射される光の照射を受けて起電力を発生する前記太陽電池の出力状況に基づいて該太陽電池の故障の有無及び故障位置を判定する判定手段を設けたことを特徴とする太陽電池評価装置。
In a solar cell evaluation apparatus that evaluates the output characteristics of the solar cell by irradiating the solar cell with simulated sunlight from a test LED light source including a plurality of LEDs having different emission wavelengths,
Based on the voltage application means for sequentially applying a pulse voltage to each LED of the test LED light source with a predetermined time difference, and the output status of the solar cell that generates an electromotive force upon irradiation with light emitted from each LED A solar cell evaluation apparatus, comprising: a determination unit that determines the presence / absence and failure position of the solar cell.
前記試験用LED光源を、発光波長の異なる複数のLEDと該LEDを冷却する水冷ユニットを備えた水冷式LEDユニットを複数配置して構成したことを特徴とする請求項1記載の太陽電池評価装置。   2. The solar cell evaluation apparatus according to claim 1, wherein the test LED light source is configured by arranging a plurality of water-cooled LED units each having a plurality of LEDs having different emission wavelengths and a water-cooling unit for cooling the LEDs. . 前記太陽電池が分光感度の異なる複数の要素セルを積層して成る多接合太陽電池であることを特徴とする請求項1記載の太陽電池評価装置。   The solar cell evaluation apparatus according to claim 1, wherein the solar cell is a multi-junction solar cell in which a plurality of element cells having different spectral sensitivities are stacked. 前記試験用LED光源と前記多接合太陽電池を相対応する複数のブロックにそれぞれ分割し、前記電圧印加手段による各LEDへのパルス電圧の印加と前記判定手段による多接合太陽電池の故障の有無の判定を各ブロックごとに順次行うことを特徴とする請求項3記載の太陽電池評価装置。   The test LED light source and the multi-junction solar cell are each divided into a plurality of corresponding blocks, and the application of a pulse voltage to each LED by the voltage application unit and the presence or absence of failure of the multi-junction solar cell by the determination unit 4. The solar cell evaluation apparatus according to claim 3, wherein the determination is sequentially performed for each block.
JP2009149847A 2009-06-24 2009-06-24 Solar cell evaluation device Pending JP2011009358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149847A JP2011009358A (en) 2009-06-24 2009-06-24 Solar cell evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149847A JP2011009358A (en) 2009-06-24 2009-06-24 Solar cell evaluation device

Publications (1)

Publication Number Publication Date
JP2011009358A true JP2011009358A (en) 2011-01-13

Family

ID=43565691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149847A Pending JP2011009358A (en) 2009-06-24 2009-06-24 Solar cell evaluation device

Country Status (1)

Country Link
JP (1) JP2011009358A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147593A1 (en) * 2011-04-27 2012-11-01 シャープ株式会社 Concentrating solar cell inspection system, inspection device, control method, and program
KR101294860B1 (en) 2012-01-20 2013-08-09 주식회사 신성솔라에너지 Stage for solar simulator to measure solar cell of different patterns
WO2014044603A1 (en) 2012-09-24 2014-03-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for characterising a photovoltaic element, device for characterising said photovoltaic element, and associated recording support and program
JP2014525227A (en) * 2011-07-19 2014-09-25 アプライド マテリアルズ イタリア エス. アール. エル. Method and apparatus for testing photovoltaic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247325A (en) * 2002-12-19 2004-09-02 National Institute Of Advanced Industrial & Technology Evaluation device and evaluation method of integrated thin film solar cell
JP2004281706A (en) * 2003-03-14 2004-10-07 Japan Science & Technology Agency Method and device for evaluating solar battery using led
JP2009129642A (en) * 2007-11-21 2009-06-11 Stanley Electric Co Ltd Led illumination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247325A (en) * 2002-12-19 2004-09-02 National Institute Of Advanced Industrial & Technology Evaluation device and evaluation method of integrated thin film solar cell
JP2004281706A (en) * 2003-03-14 2004-10-07 Japan Science & Technology Agency Method and device for evaluating solar battery using led
JP2009129642A (en) * 2007-11-21 2009-06-11 Stanley Electric Co Ltd Led illumination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147593A1 (en) * 2011-04-27 2012-11-01 シャープ株式会社 Concentrating solar cell inspection system, inspection device, control method, and program
JP2014525227A (en) * 2011-07-19 2014-09-25 アプライド マテリアルズ イタリア エス. アール. エル. Method and apparatus for testing photovoltaic device
KR101294860B1 (en) 2012-01-20 2013-08-09 주식회사 신성솔라에너지 Stage for solar simulator to measure solar cell of different patterns
WO2014044603A1 (en) 2012-09-24 2014-03-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for characterising a photovoltaic element, device for characterising said photovoltaic element, and associated recording support and program
FR2996079A1 (en) * 2012-09-24 2014-03-28 Commissariat Energie Atomique METHOD FOR CHARACTERIZING A PHOTOVOLTAIC ELEMENT, DEVICE FOR CHARACTERIZING THE PHOTOVOLTAIC ELEMENT, PROGRAM, AND RECORDING MEDIUM THEREOF

Similar Documents

Publication Publication Date Title
JP2010287647A (en) Water-cooled led light source, and solar cell evaluation device equipped with the same
US8686644B2 (en) Light generator systems and methods
Tavakoli et al. Adjustable high-power-LED solar simulator with extended spectrum in UV region
US9048782B2 (en) Evaluation method for solar module and manufacturing method for solar module
JP2018153083A (en) Method and device for testing photocell device
EP3767825B1 (en) Inspection system for concentrating photovoltaic apparatus and inspection method for light receiving part
EP1787336A4 (en) Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
JP2011009248A (en) Led light source for testing, and solar cell evaluation device including the same
Chi et al. Analysis of thermal and luminous performance of MR-16 LED lighting module
US8653484B2 (en) Detection of emission radiation of UV light emitting diode by structurally identical UV light receiving diode
JP2011009358A (en) Solar cell evaluation device
US8987756B2 (en) Diffusion type LED apparatus utilizing dye-sensitized solar cells
CN102062674A (en) Contactless detection method and apparatus for heat radiation of semiconductor lighting product
JP2011009254A (en) Led light source for test and solar cell evaluation device including the same
CN108253370A (en) A kind of sunlight LED luminescent systems
JP5630457B2 (en) Light irradiation device for solar cell testing
CN113740036A (en) Mass detection device
JP2011009251A (en) Led light source for test and solar cell evaluation device with the same
KR102000358B1 (en) Apparatus for Measuring Characteristic for Solar Cell Using Controlling of LED Light
KR101261724B1 (en) Board chamber for heating package
TW552409B (en) Apparatus for testing solar cells
KR20110012288A (en) Light emitting diode street lamp
US8482224B2 (en) Light emitting apparatus
JP2021524225A (en) Equipment for testing satellite photovoltaics
CN107204389A (en) A kind of quick light decay device of silicon solar cell using LED as light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130821