WO2012147593A1 - Concentrating solar cell inspection system, inspection device, control method, and program - Google Patents

Concentrating solar cell inspection system, inspection device, control method, and program Download PDF

Info

Publication number
WO2012147593A1
WO2012147593A1 PCT/JP2012/060501 JP2012060501W WO2012147593A1 WO 2012147593 A1 WO2012147593 A1 WO 2012147593A1 JP 2012060501 W JP2012060501 W JP 2012060501W WO 2012147593 A1 WO2012147593 A1 WO 2012147593A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solar cell
power generation
light source
generation amount
Prior art date
Application number
PCT/JP2012/060501
Other languages
French (fr)
Japanese (ja)
Inventor
内田 秀樹
前田 強
英臣 由井
時由 梅田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012147593A1 publication Critical patent/WO2012147593A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a concentrating solar cell inspection system, an inspection apparatus, a control method, and a program.
  • the present invention relates to an inspection system for inspecting concentrating solar cells, an inspection apparatus, a control method for controlling the inspection apparatus, and a program for the inspection apparatus.
  • a solar cell is a device that directly converts sunlight into electricity. Therefore, the solar cell can use the infinitely infinite sun as an energy source.
  • the solar cell devices that have been developed and are actually operating can be broadly divided into flat plates that are used as they are, where sunlight is poured, and solar cells that have been densified using optical systems. It depends on two types of condensing type that enter the element.
  • a concentrating solar cell effectively utilizes a solar cell element by allowing high-density sunlight to enter the solar cell element.
  • a general condensing device collects light by an optical system composed of a lens or a mirror (see, for example, Patent Document 1). However, a dye that absorbs and emits light is placed in a transparent plate, and a light emitting component is placed in the plate. A special one that has been guided in the lateral direction has been developed (for example, see Patent Document 2).
  • a concentrating solar cell is roughly divided into a concentrating plate and a solar cell element, and power generation performance deteriorates regardless of which one is deteriorated. Therefore, in order to operate the concentrating solar cell, it is required to periodically inspect the degree of deterioration.
  • Patent Document 3 The technology described in Patent Document 3 is an abnormality detection device for a photovoltaic power generation facility that can reliably detect the above with simple equipment, can be easily inspected, and can simplify operation management.
  • This abnormality detection device compares the electric power generated by the solar cell with the theoretical generated electric power obtained from the amount of solar radiation detected by the solar radiation amount sensor. When the compared power difference is greater than a predetermined value, the abnormality detection device determines that the solar cell is abnormal and outputs an abnormality signal to the outside.
  • Patent Document 3 is useful for inspecting concentrating solar cells.
  • a concentrating solar cell inspection system for inspecting concentrating solar cells is attached to a concentrating plate of the concentrating solar cells.
  • a power generation amount determination unit that determines whether or not an actual measurement value of the power generation amount measured by the power generation amount measurement device is equal to or greater than a predetermined threshold when light is irradiated by the irradiation unit.
  • the inspection apparatus may further include an irradiation control unit that controls the irradiation unit.
  • the irradiation control unit may control the irradiation unit so that light is incident on the solar cell element without using the light collecting function of the light collector.
  • the irradiation control unit may control the irradiation unit so that light is incident on the solar cell element using the light collecting function of the light collector.
  • the concentrating solar cell inspection system determines whether the solar cell element or the concentrating plate is deteriorated based on the control state of the irradiation unit by the irradiation control unit and the determination result determined by the power generation amount determination unit. You may further have a deterioration determination part to determine.
  • the degradation determination unit uses the measured value of the power generation amount as a threshold value. If the power generation amount determination unit determines that it is not the above, it may be determined that the solar cell element has deteriorated.
  • the degradation determination unit When the irradiation control unit controls the irradiation unit so that light is incident on the solar cell element using the condensing function of the light collector, the degradation determination unit has an actual value of power generation equal to or greater than a threshold value. If the power generation amount determination unit determines that it is not, it may be determined that the light collector is deteriorated.
  • the concentrating solar cell inspection system may further include a light quantity measuring unit that is attached to the light collecting plate and measures the light quantity when the light collecting plate is a fluorescent light collecting plate.
  • the inspection apparatus determines whether the light amount measured by the light amount measurement unit is equal to or greater than a threshold value; You may further have the fluorescence light-condensing plate deterioration determination part which determines whether the light absorption performance of the fluorescent substance mixed in the fluorescence light-condensing plate is deteriorated based on the determination result which the light quantity determination part determined.
  • the irradiation unit When a plurality of solar cells are arranged side by side, the irradiation unit is individually provided for each concentrating solar cell, and the inspection device is an irradiation unit to be irradiated simultaneously among the irradiation units. You may further have a pattern data storage part in which the data which show the pattern of these is stored. In this case, the irradiation control unit may control each irradiation unit according to the combination of irradiation units to be simultaneously irradiated, which is indicated by the data stored in the pattern data storage unit.
  • the inspection device for inspecting the concentrating solar cell has the power generation amount measured by the power generation amount measuring device when the concentrating solar cell is irradiated by the irradiation unit. Is provided with a power generation amount determination unit that determines whether or not the actual measurement value is equal to or greater than a predetermined threshold value.
  • the control method for controlling the inspection device for inspecting the concentrating solar cell is performed by the power generation amount measuring device when the concentrating solar cell is irradiated by the irradiation unit.
  • the program for the inspection device for inspecting the concentrating solar cell is measured by the power generation amount measuring device when the concentrating solar cell is irradiated by the irradiation unit.
  • the computer of the inspection apparatus executes a step of determining whether or not the actual measurement value of the generated power is equal to or greater than a predetermined threshold value.
  • the other example of the light source attached to the fluorescence light-condensing plate and a photosensor is shown.
  • Another example of the light source attached to the fluorescent light collector is shown.
  • FIG. shows an example of the hardware constitutions when a test
  • FIG. 1 shows an example of a usage environment of a concentrating solar cell inspection system 100 according to an embodiment of the present invention.
  • the concentrating solar cell inspection system 100 is a system for inspecting concentrating solar cells.
  • a concentrating solar cell effectively utilizes a solar cell element by allowing high-density sunlight to enter the solar cell element.
  • the concentrating solar cells to be inspected by the concentrating solar cell inspection system 100 constitute a solar cell array. More specifically, the solar cell array A is obtained by electrically connecting a plurality of solar cell modules M1, M2,... (Hereinafter collectively referred to as solar cell module M). And the solar cell module M is electrically in a state where a plurality of concentrating solar cells C1, C2,... (Hereinafter collectively referred to as concentrating solar cells C) are arranged in a matrix. It is connected.
  • the concentrating solar cell inspection system 100 includes an inspection device 110, a plurality of light sources 130a, b,... (Hereinafter collectively referred to as light sources 130), a plurality of photosensors 140a, b,.
  • the light source 130 may be an example of an “irradiation unit” in the present invention.
  • the photosensor 140 may be an example of the “light quantity measurement unit” in the present invention.
  • the secondary battery 180 may be an example of the “power storage device” in the present invention.
  • the inspection apparatus 110 is an apparatus for inspecting the concentrating solar cell C. More specifically, the inspection device 110 is communicatively connected to each light source 130, each photosensor 140, and the power generation amount measuring device 150. Then, the inspection device 110 controls the operation of each light source 130, the actual value of the power generation amount of each concentrating solar cell C measured by the power generation amount measurement device 150, and the electricity output from each photosensor. The concentrating solar cell C is inspected using the signal.
  • the light source 130 is an instrument that irradiates the concentrating solar cell C. More specifically, each light source 130 is individually attached to each concentrating solar cell C. In addition, each light source 130 is connected to the inspection apparatus 110 in communication. Each light source 130 is electrically connected to the power distributor 170. Each light source 130 operates under the control of the inspection apparatus 110. At this time, each light source 130 operates using the power supplied from the power distributor 170.
  • the photo sensor 140 is an instrument that measures the amount of light. More specifically, each photosensor 140 is individually attached to each concentrating solar cell C. In addition, each photosensor 140 is connected to the inspection apparatus 110 in communication. When each photosensor 140 senses light, the photosensor 140 transmits data indicating the amount of light to the inspection apparatus 110.
  • the power generation amount measuring device 150 is a device that measures the power generation amount of the solar cell element of the concentrating solar cell C. More specifically, the power generation amount measuring device 150 is electrically connected to the solar cell element of each concentrating solar cell C. In addition, the power generation amount measuring device 150 is connected to the inspection device 110 in communication. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element, and transmits data indicating the measurement result to the inspection device 110.
  • the power conditioner 160 is a device that converts the electric power generated by the solar cell array A from direct current to alternating current. More specifically, the power conditioner 160 is electrically connected to the solar cell array A and the power distributor 170, respectively. When power conditioner 160 receives an input of power generated by solar cell array A, power conditioner 160 converts the direct current into alternating current and outputs it to power distributor 170.
  • the power distributor 170 is a device that distributes and outputs power. More specifically, the power distributor 170 includes each light source 130, a power conditioner 160, a secondary battery 180, a plurality of power loads L1, L2,... (Hereinafter collectively referred to as a power load L), and commercial power. Each is electrically connected to a power source P. When the power distributor 170 receives power from the power conditioner 160 or the commercial power source P, the power distributor 170 distributes the power to the light sources 130 and the power load L and outputs the power. The power distributor 170 controls charging / discharging of the secondary battery 180.
  • the secondary battery 180 is a battery that can be recharged and reused when it is used up. More specifically, the secondary battery 180 is electrically connected to the power distributor 170. The secondary battery 180 is charged and discharged under the control of the power distributor 170.
  • the output device 190 is a device that receives data from the inspection device 110 and presents it in a form that can be recognized by humans. More specifically, the output device 190 is communicatively connected to the inspection device 110. Typically, a display or projector that displays a screen, a printer or plotter that performs printing or printing on paper, a speaker or an earphone that emits sound, and the like are included.
  • FIG. 2 shows an example of the concentrating solar cell C.
  • FIG. 2 shows a state in which each member is separated in order to easily explain the structure of the concentrating solar cell C.
  • a shape condensing plate 210 Inside the housing 200 of the concentrating solar cell C, a shape condensing plate 210, a fluorescent concentrating plate 220, and two solar cell elements 230a and 230b (hereinafter collectively referred to as the solar cell element 230) are housed. Yes.
  • the fluorescent light collector 220 is housed below the shape light collector 210.
  • the shape condensing plate 210 is a member for concentrating sunlight on the solar cell element 230a using an optical shape. More specifically, the shape light collector 210 is a rectangular plate in plan view, and is formed of a resin having a predetermined refractive index. The light receiving surface 231a side of the solar cell element 230a is bonded to one side surface 211 of the shape light collector 210 via an adhesive material 240a. A plurality of convex portions 213 are formed on the lower surface of the shape light collector 210 in a direction orthogonal to the side surface 211 (Y-axis direction in the drawing). Each convex portion 213 extends in parallel to the side surface 211 (X direction in the drawing), and has a long slope 213a and a short 212b. The long slope 213a faces the side surface 211. The short slope 213b faces the opposite surface of the side surface 211.
  • the fluorescent light collecting plate 220 is a member for condensing the light emitted from the light emitter onto the solar cell element 230b. More specifically, the fluorescent light collector 220 is a rectangular plate in plan view, and is formed of a resin having a predetermined refractive index mixed with the fluorescent material.
  • the light receiving surface 231b of the solar cell element 230b is bonded to one side surface 221 of the fluorescent light collector 220 via an adhesive material 240b.
  • a reflective plate 250 that reflects light is attached to the other side surface of the fluorescent light collector 220.
  • a reflection plate 260 that reflects light is attached to the lower surface 223 of the fluorescent light collector 220.
  • the sunlight S is incident from the region 202 facing the shape light collector 210 on the upper surface 201 of the concentrating solar cell C, and is incident on the upper surface 212 of the shape light collector 210.
  • Light incident from the outside of the shape light collector 210 to the upper surface 212 at a predetermined angle or more is guided to the inside of the shape light collector 210.
  • light incident from the outside of the shape light collector 210 with respect to the upper surface 212 at an angle less than a predetermined angle is reflected by the upper surface 212 of the shape light collector 210.
  • the light guided from the upper surface 212 to the inside of the shape light collector 210 is incident on the long slope 213a of the convex portion 213.
  • Light that is incident on the long inclined surface 213 a from the inside of the shape light collector 210 at an angle of a predetermined angle or more is guided to the outside of the shape light collector 210.
  • light incident at an angle less than a predetermined angle with respect to the long inclined surface 213a from the inside of the shape light collector 210 is reflected by the long inclined surface 213a.
  • the light reflected by the long slope 213a is incident on the upper face 212 or the short slope 213b of the convex portion 213.
  • Light incident from the inside of the shape light collector 210 to the upper surface 212 at an angle of a predetermined angle or more is guided to the outside of the shape light collector 210.
  • light incident at an angle less than a predetermined angle with respect to the upper surface 212 from the inside of the shape light collector 210 is reflected by the upper surface 212.
  • light that is incident on the short inclined surface 213 b from the inside of the shape light collector 210 at an angle of a predetermined angle or more is guided to the outside of the shape light collector 210.
  • light incident at an angle less than a predetermined angle with respect to the short slope 213b from the inside of the shape light collector 210 is reflected by the short slope 213b.
  • the light guided to the outside of the shape light collector 210 from the short slope 213b is incident on the long slope 213a.
  • Light that is incident on the long inclined surface 213 a from the outside of the shape light collector 210 at an angle of a predetermined angle or more is guided to the inside of the shape light collector 210.
  • light incident at an angle less than a predetermined angle with respect to the long inclined surface 213a from the outside of the shape light collector 210 is reflected by the long inclined surface 213a.
  • the light reflected on the inner side of the shape light collector 210 is gradually incident on the side surface 211 and is incident on the light receiving surface 231a of the solar cell element 230a via the adhesive material 240a.
  • the solar cell element 230a converts incident light energy into electricity and outputs the electricity.
  • the light guided from the long inclined surface 213 a to the outside of the shape light collector 210 or the light reflected by the long inclined surface 213 a outside the shape light collector 210 is incident on the upper surface 222 of the fluorescent light collector 220.
  • Light incident from the outside of the fluorescent light collector 220 at an angle of a predetermined angle or more with respect to the upper surface 222 is guided to the inner side of the fluorescent light collector 220.
  • light that is incident on the upper surface 222 from the outside of the fluorescent light collector 220 at an angle less than a predetermined angle is reflected by the upper surface 222.
  • the light incident on the inside of the fluorescent light collecting plate 220 is absorbed by the phosphor mixed in the fluorescent light collecting plate 220.
  • the phosphor that has absorbed the light emits light.
  • the light that has not been absorbed by the phosphor enters the upper surface 222 or is reflected by the reflector 250 or the reflector 260.
  • Light incident from the inside of the fluorescent light collector 220 to the upper surface 222 at an angle of a predetermined angle or more is guided to the outer side of the fluorescent light collector 220.
  • light incident from the inside of the fluorescent light collector 220 at an angle less than a predetermined angle with respect to the upper surface 222 is reflected by the upper surface 222.
  • the light reflected on the inner side of the fluorescent light collector 220 and the light emitted from the phosphor gradually enter the side surface 221 and enter the light receiving surface 231b of the solar cell element 230b via the adhesive 240b. Is done.
  • the solar cell element 230b converts incident light energy into electricity and outputs the electricity.
  • FIG. 3 shows an example of the fluorescent light collector 220.
  • Three kinds of phosphors of red phosphor R, green phosphor G, and blue phosphor B are mixed in the fluorescent light collector 220.
  • Each phosphor has a characteristic of absorbing light having a different wavelength.
  • Each phosphor has a characteristic of emitting light having a different wavelength.
  • FIG. 4 shows an example of the light source 130 attached to the shape light collector 210.
  • the light source 130 of this example is attached to the upper part of the side surface 214 facing the side surface 211 to which the solar cell element 230a is attached.
  • the light source 130 of this example includes a laser light source 131 and an LED (Light Emitting Diode) light source 132. Then, the light source 130 of this example emits light from either the laser light source 131 or the LED light source 132 by being controlled by the inspection apparatus 110.
  • LED Light Emitting Diode
  • the laser light source 131 is provided so that the emitted laser light does not hit each surface other than the side surface 211 of the shape light collector 210 and is incident on the side surface 211 at an angle of a predetermined angle or more. Therefore, the laser light emitted from the laser light source 131 is incident on the light receiving surface 231a of the solar cell element 230a without being reflected inside the shape light collector 210.
  • the LED light source 132 has directivity with a predetermined spread angle. Therefore, the light emitted from the LED light source 132 is reflected inside the shape light collector 210 and then enters the light receiving surface 231a of the solar cell element 230a.
  • FIG. 5 shows another example of the light source 130 attached to the shape light collector 210.
  • the light source 130 of this example is attached to the upper part of the side surface 214 facing the side surface 211 to which the solar cell element 230a is attached.
  • the light source 130 of this example includes an LED light source 131. Then, the light source 130 of this example is rotated in the vertical direction by being controlled by the inspection apparatus 110.
  • the laser light source 131 is not incident on each surface other than the side surface 211 of the shape light collector 210 and is incident on the side surface 211 at an angle greater than or equal to a predetermined angle as the inspection device 110 rotates.
  • the first positioning is performed, or the second positioning is performed such that the emitted laser light is reflected inside the shape light collector 210 and then incident on the light receiving surface 231a of the solar cell element 230a. Therefore, when the laser light source 131 takes the first positioning, the laser light emitted from the laser light source 131 is incident on the light receiving surface 231a of the solar cell element 230a without being reflected inside the shape light collector 210. Will be.
  • the laser light source 131 takes the second positioning, the laser light emitted from the laser light source 131 is reflected inside the shape light collector 210 and then incident on the light receiving surface 231a of the solar cell element 230a. Will be.
  • FIG. 6 shows still another example of the light source 130 attached to the shape light collector 210.
  • This example shows an example in which a plurality of light sources 130 are attached to the shape light collector 210.
  • Each light source 130 of this example is attached to the upper part of the side surfaces 214, 215, and 216 other than the side surface 211 to which the solar cell element 230a is attached.
  • Each light source 130 in this example includes an LED light source 132.
  • at least one of the light sources 130 of this example includes a laser light source 131.
  • each light source 130 of this example makes the LED light source 132 light-emit by being controlled from the test
  • the light source 130 including the laser light source 131 of the present example emits one of the laser light source 131 and the LED light source 132 by being controlled by the inspection apparatus 110.
  • the laser light source 131 is provided so that the emitted laser light does not hit each surface other than the side surface 211 of the shape light collector 210 and is incident on the side surface 211 at an angle of a predetermined angle or more. Therefore, the laser light emitted from the laser light source 131 is incident on the light receiving surface 231a of the solar cell element 230a without being reflected inside the shape light collector 210.
  • the LED light source 132 has directivity with a predetermined spread angle. Therefore, the light emitted from each LED light source 132 is reflected inside the shape light collector 210 and then enters the light receiving surface 231a of the solar cell element 230a.
  • FIG. 7 shows an example of the light source 130 and the photo sensor 140 attached to the fluorescent light collector 220.
  • the light source 130 of this example is attached to the upper part of the side surface 224 facing the side surface 221 to which the solar cell element 230b is attached.
  • the light source 130 of this example includes a laser light source 133 and an ultraviolet LED light source 134.
  • the light source 130 of this example emits light from either the laser light source 133 or the ultraviolet LED light source 134 as controlled by the inspection apparatus 110.
  • the laser light source 133 is provided so that the emitted laser light does not strike each surface other than the side surface 221 of the fluorescent light collector 220 and is incident on the side surface 221 at an angle greater than or equal to a predetermined angle. Further, the light emitted from the laser light source 133 is difficult to be absorbed by each phosphor mixed in the fluorescent light collector 220. Therefore, the laser light emitted from the laser light source 133 is not reflected inside the fluorescent light collector 220 and is incident on the light receiving surface 231b of the solar cell element 230b without being absorbed by each phosphor. .
  • the ultraviolet LED light source 134 has directivity with a predetermined spread angle. Light emitted from the ultraviolet LED light source 134 is easily absorbed by each phosphor mixed in the fluorescent light collector 220. Therefore, the light emitted from the ultraviolet LED light source 134 is absorbed by each phosphor. The phosphor that has absorbed the light emits light. And the light which the fluorescent substance light-emitted enters into the light-receiving surface 231b of the solar cell element 230b.
  • the photo sensor 140 of this example is attached to the lower surface 223 of the fluorescent light collector 220 at a position where it can receive light emitted from the ultraviolet LED light source 134.
  • a filter that transmits light emitted from the ultraviolet LED light source 134 and does not transmit light emitted by each light emitter is interposed between the lower surface 223 of the fluorescent light collector 220 and the light receiving surface of the photosensor 140. Yes.
  • FIG. 8 shows another example of the light source 130 and the photo sensor 140 attached to the fluorescent light collector 220.
  • the light source 130 of this example is attached to the upper part of the side surface 224 facing the side surface 221 to which the solar cell element 230b is attached.
  • the light source 130 of this example includes a laser light source 133 and an ultraviolet LED light source 134.
  • the light source 130 of this example emits light from either the laser light source 133 or the ultraviolet LED light source 134 as controlled by the inspection apparatus 110.
  • the laser light source 133 is provided so that the emitted laser light does not strike each surface other than the side surface 221 of the fluorescent light collector 220 and is incident on the side surface 221 at an angle greater than or equal to a predetermined angle. Further, the light emitted from the laser light source 133 is difficult to be absorbed by each phosphor mixed in the fluorescent light collector 220. Therefore, the laser light emitted from the laser light source 133 is not reflected inside the fluorescent light collector 220 and is incident on the light receiving surface 231b of the solar cell element 230b without being absorbed by each phosphor. .
  • the ultraviolet LED light source 134 has directivity with a predetermined spread angle.
  • the light emitted from the ultraviolet LED light source 134 is easily absorbed by the phosphor mixed in the fluorescent light collector 220. Therefore, the light emitted from the ultraviolet LED light source 134 is absorbed by each phosphor.
  • the phosphor that has absorbed the light emits light. And the light which the fluorescent substance light-emitted enters into the light-receiving surface 231b of the solar cell element 230b.
  • the photosensor 140 of this example is attached to the side surface 221 of the fluorescent light collecting plate 220 at a position where it can receive light emitted from the ultraviolet LED light source 134.
  • a filter that transmits the light emitted from the ultraviolet LED light source 134 and does not transmit the light emitted from each light emitter is interposed between the side surface 221 of the fluorescent light collector 220 and the light receiving surface of the photosensor 140. Yes.
  • FIG. 9 shows still another example of the light source 130 attached to the fluorescent light collector 220.
  • This example shows an example in which a plurality of light sources 130 are attached to a fluorescent light collector 220.
  • Each light source 130 of this example is attached to the upper part of the side surfaces 224, 225, and 226 other than the side surface 221 to which the solar cell element 230b is attached.
  • Each light source 130 in this example includes an ultraviolet LED light source 134.
  • at least one of the light sources 130 in this example includes a laser light source 133.
  • each light source 130 of this example makes the ultraviolet LED light source 134 light-emit by being controlled from the inspection apparatus 110.
  • the light source 130 including the laser light source 133 of the present example emits light from either the laser light source 133 or the ultraviolet LED light source 134 by being controlled by the inspection apparatus 110.
  • the laser light source 133 is provided so that the emitted laser light does not strike each surface other than the side surface 221 of the fluorescent light collector 220 and is incident on the side surface 221 at an angle greater than or equal to a predetermined angle. Further, the light emitted from the laser light source 133 is difficult to be absorbed by each phosphor mixed in the fluorescent light collector 220. Therefore, the laser light emitted from the laser light source 133 is not reflected inside the fluorescent light collector 220 and is incident on the light receiving surface 231b of the solar cell element 230b without being absorbed by each phosphor. .
  • the ultraviolet LED light source 134 has directivity with a predetermined spread angle.
  • the light emitted from the ultraviolet LED light source 134 is easily absorbed by the phosphor mixed in the fluorescent light collector 220. Therefore, the light emitted from each ultraviolet LED light source 134 is absorbed by each phosphor.
  • the phosphor that has absorbed the light emits light. And the light which the fluorescent substance light-emitted enters into the light-receiving surface 231b of the solar cell element 230b.
  • FIG. 10 shows an example of a block configuration of the inspection apparatus 110.
  • the inspection apparatus 110 includes a pattern data storage unit 111, a light source control unit 112, a power generation amount data reception unit 113, a power generation amount determination unit 114, a deterioration determination unit 115, a light amount data reception unit 116, a light amount determination unit 117, and a light absorption performance deterioration determination unit. 118, and a determination result data output unit 119.
  • the light source control unit 112 may be an example of the “irradiation control unit” in the present invention.
  • functions and operations of each component will be described.
  • the pattern data storage unit 111 stores data indicating a combination pattern of the light sources 130 to be irradiated simultaneously among the light sources 130 individually provided for the respective concentrating solar cells C. .
  • the light source control unit 112 controls the light source 130.
  • the light source control unit 112 controls the light source 130 so that light is incident on the solar cell element 230 without using the light collecting function of the shape light collecting plate 210 or the fluorescent light collecting plate 220.
  • the light source control unit 112 controls the light source 130 so that light is incident on the solar cell element 230 using the light collecting function of the shape light collecting plate 210 and the fluorescent light collecting plate 220.
  • the light source control unit 112 controls each light source 130 according to the combination of the light sources 130 that should be irradiated at the same time indicated by the data stored in the pattern data storage unit 111.
  • the power generation amount data receiving unit 113 receives data indicating the power generation amount of the solar cell element 230 from the power generation amount measuring device 150.
  • the power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount measured by the power generation amount measuring device 150 is equal to or greater than a predetermined threshold when light is emitted from the light source 130. To do.
  • the deterioration determination unit 115 deteriorates the solar cell element 230, the shape light collector 210, or the fluorescent light collector 220. It is determined whether or not. For example, in the deterioration determination unit 115, the light source control unit 112 controls the light source 130 so that light is incident on the solar cell element 230 without using the light collecting function of the shape light collecting plate 210 or the fluorescent light collecting plate 220. Sometimes, when the power generation amount determination unit 114 determines that the actual measurement value of the power generation amount is not equal to or greater than the threshold value, it is determined that the solar cell element 230 has deteriorated.
  • the deterioration determination unit 115 controls the light source 130 so that the light source control unit 112 controls the light source 130 so that light is incident on the solar cell element 230 using the light collecting function of the shape light collecting plate 210 and the fluorescent light collecting plate 220.
  • the power generation amount determination unit 114 determines that the actual measurement value of the power generation amount is not equal to or greater than the threshold value, it is determined that the shape light collector 210 and the fluorescent light collector 220 are deteriorated.
  • the light quantity data receiving unit 116 receives data indicating the light quantity from the photosensor 140.
  • the light amount determination unit 117 determines whether or not the light amount measured by the photosensor 140 is equal to or greater than a threshold when the deterioration determination unit determines that the fluorescent light collector 220 is deteriorated.
  • the light absorption performance deterioration determination unit 118 determines whether the light absorption performance of the phosphor mixed in the fluorescent light collector 220 is deteriorated based on the determination result determined by the light amount determination unit 117.
  • the determination result data output unit 119 outputs the determination result determined by the deterioration determination unit 115 and the data indicating the determination result determined by the light absorption performance deterioration determination unit 118 to the output device 190.
  • FIG. 11 shows an example of data stored in the pattern data storage unit 111 in a table format.
  • the pattern data storage unit 111 stores a light source ID (identifier) and light emission control in association with each other.
  • the light source ID is an identification code for uniquely identifying each light source 130.
  • the light emission control is data indicating whether the light emission control of the light source 130 identified by the light source ID should be validated or invalidated.
  • FIG. 12 shows an example of the solar cell module M when the light source 130 emits light.
  • Each square in the figure indicates a concentrating solar cell C.
  • the hatched cells in the figure are the concentrating solar cells C from which the attached light source 130 emits light.
  • the unhatched mass in the figure is a concentrating solar cell C in which the attached light source 130 does not emit light.
  • FIG. 13 and 14 show an example of an operation flow of the inspection apparatus 110.
  • FIG. This operation flow is an operation flow in which the concentrating solar cell C is inspected in the order of the solar battery element 230a, the shape light collector 210, the solar battery element 230b, and the fluorescent light collector 220.
  • the following description refers to FIGS. 1 to 12 together.
  • the inspection apparatus 110 starts the inspection process at a preset time such as at night.
  • the light source control unit 112 of the inspection apparatus 110 controls the light source 130 so that light is incident on the solar cell element 230a without using the light collecting function of the shape light collector 210 (S101). .
  • the light source control unit 112 controls the light emission of the laser light source 131.
  • the light source control unit 112 controls the rotation of the light source 130 so that the laser light source 131 takes the first positioning. .
  • the light source control unit 112 controls the light emission of the laser light source 131 of the light source 130 including the laser light source 131. Then, the light source control unit 112 sends data indicating the control status of the light source 130 to the deterioration determination unit 115.
  • the solar cell element 230a when the light source 130 is controlled, the solar cell element 230a outputs electric power. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element 230a and transmits data indicating the actual measurement value to the inspection device 110.
  • the power generation amount data receiving unit 113 of the inspection device 110 receives data indicating the power generation amount of the solar cell element 230a from the power generation amount measuring device 150 (S102), and sends the data to the power generation amount determination unit 114.
  • the power generation amount determination unit 114 of the inspection apparatus 110 receives data from the power generation amount data reception unit 113, the power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount indicated by the data is equal to or greater than a predetermined threshold value. (S103).
  • the threshold value referred to by the power generation amount determination unit 114 is the guaranteed output value of the solar cell element 230. Then, the power generation amount determination unit 114 sends data indicating the determination result to the deterioration determination unit 115.
  • the deterioration determination unit 115 of the inspection apparatus 110 receives data indicating the control status of the light source 130 from the light source control unit 112.
  • the data received from the light source control unit 112 indicates that the light source 130 is controlled so that light is incident on the solar cell element 230a without using the light collecting function of the shape light collector 210. Yes. Therefore, when the deterioration determination unit 115 receives the data indicating the determination result from the power generation amount determination unit 114, the determination result indicated by the data is a determination result indicating that the actual measurement value of the power generation amount is equal to or greater than the threshold value. In the case (S103: Yes), it is determined that the solar cell element 230a has not deteriorated (S104).
  • the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
  • the determination result indicated by the data received from the power generation amount determination unit 114 is the determination result that the actual measurement value of the power generation amount is not equal to or greater than the threshold value (S103: No)
  • the deterioration determination unit 115 is a solar cell. It is determined that the element 230a has deteriorated (S105). Then, the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
  • the determination result indicated by the data is the determination result that the solar cell element 230a is not deteriorated.
  • the light source 130 is controlled so that light is incident on the solar cell element 230a using the light collecting function (S106).
  • the light source control unit 112 controls the light emission of the LED light source 132.
  • the light source control unit 112 controls the rotation of the light source 130 so that the laser light source 131 takes the second positioning. .
  • the light source control unit 112 controls the light emission of the LED light sources 132 of the respective light sources 130. Then, the light source control unit 112 sends data indicating the control status of the light source 130 to the deterioration determination unit 115.
  • the solar cell element 230a when the light source 130 is controlled, the solar cell element 230a outputs electric power. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element 230a and transmits data indicating the actual measurement value to the inspection device 110.
  • the power generation amount data receiving unit 113 receives data indicating the power generation amount of the solar cell element 230a from the power generation amount measuring apparatus 150 (S107), the data is sent to the power generation amount determination unit 114.
  • the power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount indicated by the data is greater than or equal to a predetermined threshold (S108).
  • a predetermined threshold For example, the threshold value referred to by the power generation amount determination unit 114 is the guaranteed output value of the solar cell element 230. Then, the power generation amount determination unit 114 sends data indicating the determination result to the deterioration determination unit 115.
  • the deterioration determination unit 115 of the inspection apparatus 110 receives data indicating the control status of the light source 130 from the light source control unit 112.
  • the data received from the light source control unit 112 indicates that the light source 130 is controlled so that light is incident on the solar cell element 230a using the light collecting function of the shape light collector 210. . Therefore, when the deterioration determination unit 115 receives the data indicating the determination result from the power generation amount determination unit 114, the determination result indicated by the data is a determination result indicating that the actual measurement value of the power generation amount is equal to or greater than the threshold value. In the case (S108: Yes), it is determined that the shape light collector 210 is not deteriorated (S109).
  • the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
  • the determination result indicated by the data received from the power generation amount determination unit 114 is a determination result that the actual measurement value of the power generation amount is not equal to or greater than the threshold value (S108: No)
  • the degradation determination unit 115 It is determined that the optical plate 210 has deteriorated (S110). Then, the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
  • the determination result indicated by the data is the determination result that the solar cell element 230a is deteriorated, or the shape light collector 210 is In the case of the determination result that the shape light collector 210 is not deteriorated or the determination result that the shape light collector 210 is deteriorated, light is incident on the solar cell element 230b without using the light condensing function of the fluorescent light collector 220.
  • the light source 130 is controlled (S111). For example, when the light source 130 as shown in FIG. 7 or FIG. 8 is attached to the fluorescent light collector 220, the light source control unit 112 controls the light emission of the laser light source 133.
  • the light source control unit 112 controls the light emission of the laser light source 133 of the light source 130 including the laser light source 133. Then, the light source control unit 112 sends data indicating the control status of the light source 130 to the deterioration determination unit 115.
  • the solar cell element 230b outputs electric power. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element 230b and transmits data indicating the actual measurement value to the inspection device 110.
  • the power generation amount data receiving unit 113 When the power generation amount data receiving unit 113 receives the data indicating the power generation amount of the solar cell element 230b from the power generation amount measuring apparatus 150 (S112), the data is transmitted to the power generation amount determination unit 114.
  • the power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount indicated by the data is greater than or equal to a predetermined threshold value (S113).
  • a predetermined threshold value For example, the threshold value referred to by the power generation amount determination unit 114 is the guaranteed output value of the solar cell element 230. Then, the power generation amount determination unit 114 sends data indicating the determination result to the deterioration determination unit 115.
  • the deterioration determination unit 115 receives data indicating the control status of the light source 130 from the light source control unit 112.
  • the data received from the light source control unit 112 indicates that the light source 130 is controlled so that light is incident on the solar cell element 230b without using the light collecting function of the fluorescent light collector 220. Yes. Therefore, when the deterioration determination unit 115 receives the data indicating the determination result from the power generation amount determination unit 114, the determination result indicated by the data is a determination result indicating that the actual measurement value of the power generation amount is equal to or greater than the threshold value. In the case (S113: Yes), it is determined that the solar cell element 230b has not deteriorated (S114).
  • the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
  • the determination result indicated by the data received from the power generation amount determination unit 114 is a determination result that the actual measurement value of the power generation amount is not equal to or greater than the threshold value (S113: No)
  • the deterioration determination unit 115 is a solar cell. It is determined that the element 230b has deteriorated (S115). Then, the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
  • the determination result indicated by the data is a determination result that the solar cell element 230b is not deteriorated.
  • the light source 130 is controlled so as to make light incident on the solar cell element 230b using the condensing function (S116).
  • the light source control unit 112 controls the emission of the ultraviolet LED light source 134.
  • the light source control unit 112 controls the light emission of the ultraviolet LED light sources 134 of the respective light sources 130. Then, the light source control unit 112 sends data indicating the control status of the light source 130 to the deterioration determination unit 115.
  • the solar cell element 230b outputs electric power. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element 230b and transmits data indicating the actual measurement value to the inspection device 110.
  • the power generation amount data receiving unit 113 receives data indicating the power generation amount of the solar cell element 230b from the power generation amount measuring device 150 (S117), the data is transmitted to the power generation amount determination unit 114.
  • the power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount indicated by the data is greater than or equal to a predetermined threshold value (S118).
  • a predetermined threshold value For example, the threshold value referred to by the power generation amount determination unit 114 is the guaranteed output value of the solar cell element 230. Then, the power generation amount determination unit 114 sends data indicating the determination result to the deterioration determination unit 115.
  • the deterioration determination unit 115 of the inspection apparatus 110 receives data indicating the control status of the light source 130 from the light source control unit 112.
  • the data received from the light source control unit 112 indicates that the light source 130 is controlled so that light is incident on the solar cell element 230b using the light condensing function of the fluorescent light collector 220. . Therefore, when the deterioration determination unit 115 receives the data indicating the determination result from the power generation amount determination unit 114, the determination result indicated by the data is a determination result indicating that the actual measurement value of the power generation amount is equal to or greater than the threshold value. In the case (S118: Yes), it is determined that the fluorescent light collector 220 is not deteriorated (S120).
  • the degradation determination unit 115 sends data indicating the determination result to the determination result data output unit 119.
  • the determination result indicated by the data received from the power generation amount determination unit 114 is a determination result that the actual measurement value of the power generation amount is not equal to or greater than the threshold value (S118: No)
  • the deterioration determination unit 115 It is determined that the optical plate 210 has deteriorated (S119). Then, the deterioration determination unit 115 sends data indicating the determination result to the light amount control unit 117 and the determination result data output unit 119.
  • the photo sensor 140 when the photo sensor 140 senses light, the photo sensor 140 transmits data indicating the light amount to the inspection apparatus 110.
  • the light amount data receiving unit 116 of the inspection apparatus 110 receives data indicating the light amount from the photosensor 140 (S121), the light amount data receiving unit 116 sends the data to the light amount determining unit 117.
  • the light amount determination unit 117 of the inspection apparatus 110 receives data indicating the light amount from the light amount data reception unit 116.
  • the light amount determination unit 117 determines whether or not the light amount measured by the photosensor 140 is equal to or greater than a threshold value (S122).
  • the threshold value referred to by the light amount determination unit 117 is a limit value of the transmitted light amount that can be allowed when the light absorption performance of the phosphor is normal. Then, the light quantity determination unit 117 sends data indicating the determination result to the light absorption performance deterioration determination unit 118.
  • the determination result indicated by the data indicates that the light amount measured by the photosensor 140 is greater than or equal to the threshold value.
  • the determination result that there is S122: Yes
  • it is determined that the light absorption performance of the phosphor mixed in the fluorescent light collector 220 is deteriorated S123. Then, the light absorption performance deterioration determination unit 118 sends data indicating the determination result to the determination result data output unit 119.
  • the light absorption performance deterioration determination unit 118 determines that the determination result indicated by the data received from the light amount determination unit 117 is a determination result that the light amount measured by the photosensor 140 is not equal to or greater than the threshold (S122: No). ), It is determined that the light absorption performance of the phosphor mixed in the fluorescent light collector 220 is not deteriorated (S124). Then, the light absorption performance deterioration determination unit 118 sends data indicating the determination result to the determination result data output unit 119.
  • the determination result data output unit 119 When the determination result data output unit 119 receives data indicating the determination result from the deterioration determination unit 115 or the light absorption performance deterioration determination unit 118, the determination result data output unit 119 outputs data indicating each determination result indicated by the data to the output device 190. (S125). For example, when the output device 190 is a display or a projector, the determination result data output unit 119 outputs data for displaying information indicating each determination result on the screen. For example, when the output device 190 is a printer or a plotter, the determination result data output unit 119 outputs data for printing and printing information indicating each determination result. For example, when the output device 190 is a speaker or an earphone, the determination result data output unit 119 outputs data for outputting information indicating each determination result as a sound.
  • the concentrating solar cell inspection system 100 can inform the user which member of the concentrating solar cell C has deteriorated.
  • the example in which the light source 130 is attached to the shape light collector 210 or the fluorescence light collector 220 has been described.
  • the light source 130 is detachable from the shape light collector 210 or the fluorescence light collector 220. May be.
  • this embodiment demonstrated the example which test
  • a concentrating solar cell is demonstrated.
  • the order of inspecting the battery cell C is such that the shape light collector 210 is inspected after the solar battery element 230a and the fluorescent light collector 220 is inspected after the solar battery element 230b. It does not matter.
  • the light source control unit 112 when not inspecting the concentrating solar cell C, according to the combination of the light sources 130 to be simultaneously irradiated indicated by the data stored in the pattern data storage unit 111, Each light source 130 may be controlled. For example, if data as shown in FIG. 11 is stored in the pattern data storage unit 111, the light source control unit 112 does not cause the light source 130 with the light source ID “L001” to emit light, and the light source 130 with the light source ID “L002”. And the light source 130 with the light source ID “L003” is controlled not to emit light.
  • the solar cell module M has a plurality of concentrating solar cells C arranged in a matrix.
  • the light source 130 emits light so that a predetermined character, picture, or the like can be visually recognized with the solar cell module M or the solar cell array A as an electric bulletin board.
  • the concentrating solar cell C to be determined is determined, and the light source ID of the light source 130 attached to each concentrating solar cell C is associated with data indicating whether or not the light source 130 emits light. If stored in the data storage unit 111, the solar cell module M or the solar cell array A can be used as an electric bulletin board.
  • the concentrating solar cell C made into an inspection object is Further, only the shape light collector 210 may be provided, or only the fluorescent light collector 220 may be provided.
  • FIG. 15 shows an example of a hardware configuration when the inspection apparatus 110 is configured by an electronic information processing apparatus such as a computer.
  • the inspection apparatus 110 includes a CPU (Central Processing Unit) peripheral part, an input / output part, and a legacy input / output part.
  • the CPU peripheral section includes a CPU 802, a RAM (Random Access Memory) 803, a graphic controller 804, and a display device 805 that are connected to each other by a host controller 801.
  • the input / output unit includes a communication interface 807, a hard disk drive 808, and a CD-ROM (Compact Disk Only Memory) drive 809 connected to the host controller 801 by the input / output controller 806.
  • the legacy input / output unit includes a ROM (Read Only Memory) 810, a flexible disk drive 811, and an input / output chip 812 connected to the input / output controller 806.
  • the host controller 801 connects the RAM 803, the CPU 802 that accesses the RAM 803 at a high transfer rate, and the graphic controller 804.
  • the CPU 802 operates based on programs stored in the ROM 810 and the RAM 803 to control each unit.
  • the graphic controller 804 acquires image data generated by the CPU 802 or the like on a frame buffer provided in the RAM 803 and displays the image data on the display device 805.
  • the graphic controller 804 may include a frame buffer for storing image data generated by the CPU 802 or the like.
  • the input / output controller 806 connects the host controller 801 to the hard disk drive 808, the communication interface 807, and the CD-ROM drive 809, which are relatively high-speed input / output devices.
  • the hard disk drive 808 stores programs and data used by the CPU 802.
  • the communication interface 807 is connected to the network communication device 891 to transmit / receive programs or data.
  • the CD-ROM drive 809 reads a program or data from the CD-ROM 892 and provides it to the hard disk drive 808 and the communication interface 807 via the RAM 803.
  • the input / output controller 806 is connected to the ROM 810, the flexible disk drive 811, and the relatively low-speed input / output device of the input / output chip 812.
  • the ROM 810 stores a boot program executed when the inspection apparatus 110 is started, a program depending on the hardware of the inspection apparatus 110, and the like.
  • the flexible disk drive 811 reads a program or data from the flexible disk 893 and provides it to the hard disk drive 808 and the communication interface 807 via the RAM 803.
  • the input / output chip 812 connects various input / output devices via a flexible disk drive 811 or a parallel port, a serial port, a keyboard port, a mouse port, and the like.
  • the program executed by the CPU 802 is stored in a recording medium such as a flexible disk 893, a CD-ROM 892, or an IC (Integrated Circuit) card and provided by the user.
  • the program stored in the recording medium may be compressed or uncompressed.
  • the program is installed in the hard disk drive 808 from the recording medium, read into the RAM 803, and executed by the CPU 802.
  • the program executed by the CPU 802 includes the system control device 110, the pattern data storage unit 111, the light source control unit 112, the power generation amount data reception unit 113, the power generation amount determination unit 114, and the deterioration described with reference to FIGS.
  • the determination unit 115, the light amount data reception unit 116, the light amount determination unit 117, the light absorption performance deterioration determination unit 118, and the determination result data output unit 119 are caused to function.
  • Storage media include flexible disk 893 and CD-ROM 892, optical recording media such as DVD (Digital Versatile Disk) or PD (Phase Disk), magneto-optical recording media such as MD (MiniDisk), tape media, and IC cards.
  • DVD Digital Versatile Disk
  • PD Phase Disk
  • magneto-optical recording media such as MD (MiniDisk)
  • tape media and IC cards.
  • a semiconductor memory or the like can be used.
  • a storage medium such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium and provided as a program via the network.
  • the present invention can be applied to a system, apparatus, method and the like for inspecting a concentrating solar cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A concentrating solar cell inspection system (100) is provided with: an irradiation unit (130) which is attached to a concentrating plate for concentrating solar cells (C1, C2), and irradiates light; an electricity production measuring device (150) which measures the electricity production of solar cell elements of the concentrating solar cells; and an inspection device (110) which inspects the concentrating solar cells. The inspection device (110) has an electricity production assessment unit that assesses whether or not a measured value for the electricity production measured by the electricity production measuring device (150) is greater than or equal to a predetermined threshold value when light is being irradiated by the irradiation unit (130).

Description

集光型太陽電池セル検査システム、検査装置、制御方法、及びプログラムConcentrated solar cell inspection system, inspection apparatus, control method, and program
 本発明は、集光型太陽電池セル検査システム、検査装置、制御方法、及びプログラムに関する。特に本発明は、集光型太陽電池セルを検査する検査システム、検査装置、当該検査装置を制御する制御方法、並びに当該検査装置用のプログラムに関する。
 本願は、2011年4月27日に、日本に出願された特願2011-100158号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a concentrating solar cell inspection system, an inspection apparatus, a control method, and a program. In particular, the present invention relates to an inspection system for inspecting concentrating solar cells, an inspection apparatus, a control method for controlling the inspection apparatus, and a program for the inspection apparatus.
This application claims priority based on Japanese Patent Application No. 2011-1000015 filed in Japan on April 27, 2011, the contents of which are incorporated herein by reference.
 太陽電池は、太陽の光を直接電気に変えるものである。したがって、太陽電池は、半永久的に無尽蔵な太陽をエネルギー源として使用できる。現在までに開発され実際に動作している太陽電池装置は、大別すると、太陽光を降り注ぐそのままの状態で利用する平板型と、光学系等を使って太陽光を高密度化してから太陽電池素子に入射させる集光型の2つの方式に依る。 A solar cell is a device that directly converts sunlight into electricity. Therefore, the solar cell can use the infinitely infinite sun as an energy source. The solar cell devices that have been developed and are actually operating can be broadly divided into flat plates that are used as they are, where sunlight is poured, and solar cells that have been densified using optical systems. It depends on two types of condensing type that enter the element.
 集光型太陽電池は、太陽電池素子に密度の高い太陽光を入射させることによって、太陽電池素子を有効に利用するものである。一般的な集光装置は、レンズ又は鏡により構成された光学系によって光を集めるが(例えば、特許文献1参照)、透明板中に吸光と発光を行う染料を入れ、発光成分を板の中で横方向に導くようにした特殊なものが開発されている(例えば、特許文献2参照)。 A concentrating solar cell effectively utilizes a solar cell element by allowing high-density sunlight to enter the solar cell element. A general condensing device collects light by an optical system composed of a lens or a mirror (see, for example, Patent Document 1). However, a dye that absorbs and emits light is placed in a transparent plate, and a light emitting component is placed in the plate. A special one that has been guided in the lateral direction has been developed (for example, see Patent Document 2).
 集光型太陽電池は、大別すると、集光板と太陽電池素子によって構成されており、いずれが劣化したとしても、発電性能が劣化してしまう。そのため、集光型太陽電池は、運用するにあたり、劣化の度合いを定期的に検査することが求められる。 A concentrating solar cell is roughly divided into a concentrating plate and a solar cell element, and power generation performance deteriorates regardless of which one is deteriorated. Therefore, in order to operate the concentrating solar cell, it is required to periodically inspect the degree of deterioration.
 特許文献3に記載の技術は、簡単な設備で確実に以上を検出でき、且つ点検が容易で運転管理の簡素化等が可能な太陽光発電設備の異常検出装置である。この異常検出装置は、太陽電池で発生する電力と日射量センサーで検出された日射量より得られる理論発電電力を比較する。そして、この異常検出装置は、比較した電力差が所定値より大きいと太陽電池の異常と判断して外部に異常信号を出力する。 The technology described in Patent Document 3 is an abnormality detection device for a photovoltaic power generation facility that can reliably detect the above with simple equipment, can be easily inspected, and can simplify operation management. This abnormality detection device compares the electric power generated by the solar cell with the theoretical generated electric power obtained from the amount of solar radiation detected by the solar radiation amount sensor. When the compared power difference is greater than a predetermined value, the abnormality detection device determines that the solar cell is abnormal and outputs an abnormality signal to the outside.
特開2004-047752号公報JP 2004-047752 A 特許第2815666号公報Japanese Patent No. 2815666 特開2000-040838号公報JP 2000-040838 A
 しかしながら、特許文献3に記載の技術は、集光型太陽電池セルの検査に有用な技術とは言い難い。 However, it is difficult to say that the technique described in Patent Document 3 is useful for inspecting concentrating solar cells.
 上記課題を解決するために、本発明の第1の態様によると、集光型太陽電池セルを検査する集光型太陽電池セル検査システムは、集光型太陽電池セルの集光板に取り付けられて、光を照射する照射部と、集光型太陽電池セルの太陽電池素子の発電量を測定する発電量測定装置と、集光型太陽電池セルを検査する検査装置とを備え、検査装置は、照射部によって光が照射されているときに、発電量測定装置によって測定された発電量の実測値が、予め定められたしきい値以上であるか否かを判定する発電量判定部を有する。 In order to solve the above problem, according to the first aspect of the present invention, a concentrating solar cell inspection system for inspecting concentrating solar cells is attached to a concentrating plate of the concentrating solar cells. An irradiation unit that irradiates light, a power generation amount measuring device that measures the power generation amount of the solar cell element of the concentrating solar cell, and an inspection device that inspects the concentrating solar cell, A power generation amount determination unit that determines whether or not an actual measurement value of the power generation amount measured by the power generation amount measurement device is equal to or greater than a predetermined threshold when light is irradiated by the irradiation unit.
 検査装置は、照射部を制御する照射制御部を更に有してもよい。 The inspection apparatus may further include an irradiation control unit that controls the irradiation unit.
 照射制御部は、集光板の集光機能を利用せずに太陽電池素子へ光を入射させるように照射部を制御してもよい。 The irradiation control unit may control the irradiation unit so that light is incident on the solar cell element without using the light collecting function of the light collector.
 照射制御部は、集光板の集光機能を利用して太陽電池素子へ光を入射させるように照射部を制御してもよい。 The irradiation control unit may control the irradiation unit so that light is incident on the solar cell element using the light collecting function of the light collector.
 集光型太陽電池セル検査システムは、照射制御部による照射部の制御状況と、発電量判定部が判定した判定結果とに基づいて、太陽電池素子、又は集光板が劣化しているか否かを判定する劣化判定部を更に有してもよい。 The concentrating solar cell inspection system determines whether the solar cell element or the concentrating plate is deteriorated based on the control state of the irradiation unit by the irradiation control unit and the determination result determined by the power generation amount determination unit. You may further have a deterioration determination part to determine.
 劣化判定部は、集光板の集光機能を利用せずに太陽電池素子へ光を入射させるように、照射制御部が照射部を制御しているときに、発電量の実測値がしきい値以上ではないと発電量判定部が判定した場合、太陽電池素子が劣化していると判定してもよい。 When the irradiation control unit controls the irradiation unit so that light is incident on the solar cell element without using the light collecting function of the light collector, the degradation determination unit uses the measured value of the power generation amount as a threshold value. If the power generation amount determination unit determines that it is not the above, it may be determined that the solar cell element has deteriorated.
 劣化判定部は、集光板の集光機能を利用して太陽電池素子へ光を入射させるように、照射制御部が照射部を制御しているときに、発電量の実測値がしきい値以上ではないと発電量判定部が判定した場合、集光板が劣化していると判定してもよい。 When the irradiation control unit controls the irradiation unit so that light is incident on the solar cell element using the condensing function of the light collector, the degradation determination unit has an actual value of power generation equal to or greater than a threshold value. If the power generation amount determination unit determines that it is not, it may be determined that the light collector is deteriorated.
 集光型太陽電池セル検査システムは、集光板が蛍光集光板である場合に、集光板に取り付けられて、光量を測定する光量測定部を更に備えてもよい。また、検査装置は、蛍光集光板が劣化していると劣化判定部が判定した場合に、光量測定部によって測定された光量がしきい値以上であるか否かを判定する光量判定部と、光量判定部が判定した判定結果に基づいて、蛍光集光板に混入されている蛍光体の吸光性能が劣化しているか否かを判定する蛍光集光板劣化判定部とを更に有してもよい。 The concentrating solar cell inspection system may further include a light quantity measuring unit that is attached to the light collecting plate and measures the light quantity when the light collecting plate is a fluorescent light collecting plate. In addition, when the deterioration determination unit determines that the fluorescent light collector is deteriorated, the inspection apparatus determines whether the light amount measured by the light amount measurement unit is equal to or greater than a threshold value; You may further have the fluorescence light-condensing plate deterioration determination part which determines whether the light absorption performance of the fluorescent substance mixed in the fluorescence light-condensing plate is deteriorated based on the determination result which the light quantity determination part determined.
 複数の太陽電池セルが並べて配置されている場合、照射部は、各集光型太陽電池セルに対してそれぞれ個別に設けられ、検査装置は、各照射部のうち、同時に照射動作させるべき照射部の組合せのパターンを示すデータが格納されているパターンデータ格納部を更に有してもよい。この場合、照射制御部は、パターンデータ格納部に格納されているデータによって示される同時に照射動作させるべき照射部の組合せにしたがって、各照射部を制御してもよい。 When a plurality of solar cells are arranged side by side, the irradiation unit is individually provided for each concentrating solar cell, and the inspection device is an irradiation unit to be irradiated simultaneously among the irradiation units. You may further have a pattern data storage part in which the data which show the pattern of these is stored. In this case, the irradiation control unit may control each irradiation unit according to the combination of irradiation units to be simultaneously irradiated, which is indicated by the data stored in the pattern data storage unit.
 本発明の第2の態様によると、集光型太陽電池セルを検査する検査装置は、照射部によって集光型太陽電池セルが照射されているときに、発電量測定装置によって測定された発電量の実測値が、予め定められたしきい値以上であるか否かを判定する発電量判定部を備える。 According to the second aspect of the present invention, the inspection device for inspecting the concentrating solar cell has the power generation amount measured by the power generation amount measuring device when the concentrating solar cell is irradiated by the irradiation unit. Is provided with a power generation amount determination unit that determines whether or not the actual measurement value is equal to or greater than a predetermined threshold value.
 本発明の第3の態様によると、集光型太陽電池セルを検査する検査装置を制御する制御方法は、照射部によって集光型太陽電池セルが照射されているときに、発電量測定装置によって測定された発電量の実測値が、予め定められたしきい値以上であるか否かを判定する工程を含む。 According to the third aspect of the present invention, the control method for controlling the inspection device for inspecting the concentrating solar cell is performed by the power generation amount measuring device when the concentrating solar cell is irradiated by the irradiation unit. A step of determining whether or not the actual measurement value of the measured power generation amount is equal to or greater than a predetermined threshold value.
 本発明の第4の態様によると、集光型太陽電池セルを検査する検査装置用のプログラムは、照射部によって集光型太陽電池セルが照射されているときに、発電量測定装置によって測定された発電量の実測値が、予め定められたしきい値以上であるか否かを判定する工程を検査装置のコンピュータに実行させる。 According to the fourth aspect of the present invention, the program for the inspection device for inspecting the concentrating solar cell is measured by the power generation amount measuring device when the concentrating solar cell is irradiated by the irradiation unit. The computer of the inspection apparatus executes a step of determining whether or not the actual measurement value of the generated power is equal to or greater than a predetermined threshold value.
 なおまた、上記の発明の態様の概要は、本発明の態様の全てを列挙したものではなく、これらの態様の組み合せもまた、発明の態様となり得る。 In addition, the outline of the above-described aspects of the invention does not enumerate all the aspects of the present invention, and a combination of these aspects can also be an aspect of the invention.
 上述した本発明の態様によれば、集光型太陽電池セルの検査に有用な検査システムを提供することができる。 According to the above-described aspect of the present invention, it is possible to provide an inspection system useful for inspecting concentrating solar cells.
一実施形態に係る集光型太陽電池セル検査システムの利用環境の一例を示す図である。It is a figure which shows an example of the utilization environment of the concentrating photovoltaic cell inspection system which concerns on one Embodiment. 集光型太陽電池セルの一例を示す図である。It is a figure which shows an example of a concentrating solar cell. 蛍光集光板の一例を示す図である。It is a figure which shows an example of a fluorescence light-condensing plate. 形状集光板に取り付けられた光源の一例を示す。An example of the light source attached to the shape light-condensing plate is shown. 形状集光板に取り付けられた光源の他の例を示す。The other example of the light source attached to the shape light-condensing plate is shown. 形状集光板に取り付けられた光源の更に他の例を示す図である。It is a figure which shows the further another example of the light source attached to the shape light-condensing plate. 蛍光集光板に取り付けられた光源、及びフォトセンサーの一例を示す図である。It is a figure which shows an example of the light source and photosensor which were attached to the fluorescence light-condensing plate. 蛍光集光板に取り付けられた光源、及びフォトセンサーの他の例を示す。The other example of the light source attached to the fluorescence light-condensing plate and a photosensor is shown. 蛍光集光板に取り付けられた光源の更に他の例を示す。Another example of the light source attached to the fluorescent light collector is shown. 検査装置のブロック構成の一例を示す図である。It is a figure which shows an example of the block configuration of an inspection apparatus. パターンデータ格納部に格納されているデータの一例をテーブル形式で示す図である。It is a figure which shows an example of the data stored in the pattern data storage part in a table format. 光源が発光しているときの太陽電池モジュールの一例を示す図である。It is a figure which shows an example of the solar cell module when the light source is light-emitting. 検査装置の動作フローの一例を示す図である。It is a figure which shows an example of the operation | movement flow of an inspection apparatus. 検査装置の動作フローの一例を示す図である。It is a figure which shows an example of the operation | movement flow of an inspection apparatus. 検査装置をコンピュータ等の電子情報処理装置で構成した場合のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions when a test | inspection apparatus is comprised with electronic information processing apparatuses, such as a computer.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the claimed invention, and all combinations of features described in the embodiments are described below. However, this is not always essential for the solution of the invention.
 図1は、本発明の一実施形態に係る集光型太陽電池セル検査システム100の利用環境の一例を示す。集光型太陽電池セル検査システム100は、集光型太陽電池セルを検査するシステムである。集光型太陽電池セルは、太陽電池素子に密度の高い太陽光を入射させることによって、太陽電池素子を有効に利用するものである。 FIG. 1 shows an example of a usage environment of a concentrating solar cell inspection system 100 according to an embodiment of the present invention. The concentrating solar cell inspection system 100 is a system for inspecting concentrating solar cells. A concentrating solar cell effectively utilizes a solar cell element by allowing high-density sunlight to enter the solar cell element.
 集光型太陽電池セル検査システム100の検査対象の集光型太陽電池セルは、太陽電池アレイを構成するものである。より具体的に説明すると、太陽電池アレイAは、複数の太陽電池モジュールM1、M2、・・・(以下、太陽電池モジュールMと総称する)が電気的に接続されたものである。そして、太陽電池モジュールMは、複数の集光型太陽電池セルC1、C2、・・・(以下、集光型太陽電池セルCと総称する)がマトリクス状に配置された状態で、電気的に接続されたものである。 The concentrating solar cells to be inspected by the concentrating solar cell inspection system 100 constitute a solar cell array. More specifically, the solar cell array A is obtained by electrically connecting a plurality of solar cell modules M1, M2,... (Hereinafter collectively referred to as solar cell module M). And the solar cell module M is electrically in a state where a plurality of concentrating solar cells C1, C2,... (Hereinafter collectively referred to as concentrating solar cells C) are arranged in a matrix. It is connected.
 集光型太陽電池セル検査システム100は、検査装置110、複数の光源130a、b、・・・(以下、光源130と総称する)、複数のフォトセンサー140a、b、・・・(以下、フォトセンサー140と総称する)、発電量測定装置150、パワーコンディショナー160、電力分配器170、二次電池180、及び出力装置190を備える。
 なお、光源130は、この発明における「照射部」の一例であってよい。また、フォトセンサー140は、この発明における「光量測定部」の一例であってよい。また、二次電池180は、この発明における「蓄電装置」の一例であってよい。
The concentrating solar cell inspection system 100 includes an inspection device 110, a plurality of light sources 130a, b,... (Hereinafter collectively referred to as light sources 130), a plurality of photosensors 140a, b,. A power generation amount measuring device 150, a power conditioner 160, a power distributor 170, a secondary battery 180, and an output device 190.
The light source 130 may be an example of an “irradiation unit” in the present invention. The photosensor 140 may be an example of the “light quantity measurement unit” in the present invention. The secondary battery 180 may be an example of the “power storage device” in the present invention.
 検査装置110は、集光型太陽電池セルCを検査する装置である。より具体的に説明すると、検査装置110は、各光源130、各フォトセンサー140、及び発電量測定装置150とそれぞれ通信接続されている。そして、検査装置110は、各光源130の動作を制御すると共に、発電量測定装置150によって測定された各集光型太陽電池セルCの発電量の実測値、及び各フォトセンサーから出力された電気信号を利用して、集光型太陽電池セルCを検査する。 The inspection apparatus 110 is an apparatus for inspecting the concentrating solar cell C. More specifically, the inspection device 110 is communicatively connected to each light source 130, each photosensor 140, and the power generation amount measuring device 150. Then, the inspection device 110 controls the operation of each light source 130, the actual value of the power generation amount of each concentrating solar cell C measured by the power generation amount measurement device 150, and the electricity output from each photosensor. The concentrating solar cell C is inspected using the signal.
 光源130は、集光型太陽電池セルCを照射する器具である。より具体的に説明すると、各光源130は、各集光型太陽電池セルCに対してそれぞれ個別に取り付けられている。また、各光源130は、検査装置110と通信接続されている。また、各光源130は、電力分配器170と電気的に接続されている。そして、各光源130は、検査装置110に制御されて動作する。このとき、各光源130は、電力分配器170から供給される電力を利用して稼働する。 The light source 130 is an instrument that irradiates the concentrating solar cell C. More specifically, each light source 130 is individually attached to each concentrating solar cell C. In addition, each light source 130 is connected to the inspection apparatus 110 in communication. Each light source 130 is electrically connected to the power distributor 170. Each light source 130 operates under the control of the inspection apparatus 110. At this time, each light source 130 operates using the power supplied from the power distributor 170.
 フォトセンサー140は、光量を測定する器具である。より具体的に説明すると、各フォトセンサー140は、各集光型太陽電池セルCに対してそれぞれ個別に取り付けられている。また、各フォトセンサー140は、検査装置110と通信接続されている。そして、各フォトセンサー140は、光を感知すると、その光量を示すデータを、検査装置110へ送信する。 The photo sensor 140 is an instrument that measures the amount of light. More specifically, each photosensor 140 is individually attached to each concentrating solar cell C. In addition, each photosensor 140 is connected to the inspection apparatus 110 in communication. When each photosensor 140 senses light, the photosensor 140 transmits data indicating the amount of light to the inspection apparatus 110.
 発電量測定装置150は、集光型太陽電池セルCの太陽電池素子の発電量を測定する装置である。より具体的に説明すると、発電量測定装置150は、各集光型太陽電池セルCの太陽電池素子と電気的に接続されている。また、発電量測定装置150は、検査装置110と通信接続されている。そして、発電量測定装置150は、太陽電池素子の発電量を測定して、その測定結果を示すデータを、検査装置110へ送信する。 The power generation amount measuring device 150 is a device that measures the power generation amount of the solar cell element of the concentrating solar cell C. More specifically, the power generation amount measuring device 150 is electrically connected to the solar cell element of each concentrating solar cell C. In addition, the power generation amount measuring device 150 is connected to the inspection device 110 in communication. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element, and transmits data indicating the measurement result to the inspection device 110.
 パワーコンディショナー160は、太陽電池アレイAによって発電された電力を直流から交流に変換する装置である。より具体的に説明すると、パワーコンディショナー160は、太陽電池アレイA、及び電力分配器170とそれぞれ電気的に接続されている。そして、パワーコンディショナー160は、太陽電池アレイAによって発電された電力の入力を受け付けると、直流から交流に変換して、電力分配器170へ出力する。 The power conditioner 160 is a device that converts the electric power generated by the solar cell array A from direct current to alternating current. More specifically, the power conditioner 160 is electrically connected to the solar cell array A and the power distributor 170, respectively. When power conditioner 160 receives an input of power generated by solar cell array A, power conditioner 160 converts the direct current into alternating current and outputs it to power distributor 170.
 電力分配器170は、電力を分配して出力する装置である。より具体的に説明すると、電力分配器170は、各光源130、パワーコンディショナー160、二次電池180、複数の電力負荷L1、L2、・・・(以下、電力負荷Lと総称する)、及び商用電源Pとそれぞれ電気的に接続されている。そして、電力分配器170は、パワーコンディショナー160、又は商用電源Pから電力の供給を受けると、その電力を、各光源130や電力負荷Lに分配して出力する。また、電力分配器170は、二次電池180の充放電を制御する。 The power distributor 170 is a device that distributes and outputs power. More specifically, the power distributor 170 includes each light source 130, a power conditioner 160, a secondary battery 180, a plurality of power loads L1, L2,... (Hereinafter collectively referred to as a power load L), and commercial power. Each is electrically connected to a power source P. When the power distributor 170 receives power from the power conditioner 160 or the commercial power source P, the power distributor 170 distributes the power to the light sources 130 and the power load L and outputs the power. The power distributor 170 controls charging / discharging of the secondary battery 180.
 二次電池180は、使い切ったら充電して何度も再利用できる電池である。より具体的に説明すると、二次電池180は、電力分配器170と電気的に接続されている。そして、二次電池180は、電力分配器170による制御を受けて充放電する。 The secondary battery 180 is a battery that can be recharged and reused when it is used up. More specifically, the secondary battery 180 is electrically connected to the power distributor 170. The secondary battery 180 is charged and discharged under the control of the power distributor 170.
 出力装置190は、検査装置110からデータを受け取って、人間に認識できる形で提示する装置である。より具体的に説明すると、出力装置190は、検査装置110と通信接続されている。典型的には、画面表示を行うディスプレイやプロジェクタ、紙等に印字、印刷を行うプリンタやプロッタ、音声を発するスピーカーやイヤフォン等が含まれる。 The output device 190 is a device that receives data from the inspection device 110 and presents it in a form that can be recognized by humans. More specifically, the output device 190 is communicatively connected to the inspection device 110. Typically, a display or projector that displays a screen, a printer or plotter that performs printing or printing on paper, a speaker or an earphone that emits sound, and the like are included.
 図2は、集光型太陽電池セルCの一例を示す。また、図2は、集光型太陽電池セルCの構造を分かり易く説明するために、各部材を離した状態を示している。 FIG. 2 shows an example of the concentrating solar cell C. FIG. 2 shows a state in which each member is separated in order to easily explain the structure of the concentrating solar cell C.
 集光型太陽電池セルCの筐体200の内部には、形状集光板210、蛍光集光板220、及び2つの太陽電池素子230a、230b(以下、太陽電池素子230と総称する)が収められている。蛍光集光板220は、形状集光板210の下側に収められている。 Inside the housing 200 of the concentrating solar cell C, a shape condensing plate 210, a fluorescent concentrating plate 220, and two solar cell elements 230a and 230b (hereinafter collectively referred to as the solar cell element 230) are housed. Yes. The fluorescent light collector 220 is housed below the shape light collector 210.
 形状集光板210は、光学形状を利用して太陽光を太陽電池素子230aに集光させる部材である。より具体的に説明すると、形状集光板210は、平面視において四角形の板体であって、所定の屈折率を有する樹脂によって形成されている。形状集光板210の一側面211には、粘着材240aを介して太陽電池素子230aの受光面231a側が接着されている。また、形状集光板210の下面には、側面211と直交する方向(図中Y軸方向)に、複数の凸部213が並んで形成されている。各凸部213は、側面211と平行(図中X方向)に延在しており、長い斜面213aと短い212bを有している。長い斜面213aは、側面211を向いている。短い斜面213bは、側面211の対向面を向いている。 The shape condensing plate 210 is a member for concentrating sunlight on the solar cell element 230a using an optical shape. More specifically, the shape light collector 210 is a rectangular plate in plan view, and is formed of a resin having a predetermined refractive index. The light receiving surface 231a side of the solar cell element 230a is bonded to one side surface 211 of the shape light collector 210 via an adhesive material 240a. A plurality of convex portions 213 are formed on the lower surface of the shape light collector 210 in a direction orthogonal to the side surface 211 (Y-axis direction in the drawing). Each convex portion 213 extends in parallel to the side surface 211 (X direction in the drawing), and has a long slope 213a and a short 212b. The long slope 213a faces the side surface 211. The short slope 213b faces the opposite surface of the side surface 211.
 蛍光集光板220は、発光体が発光した光を太陽電池素子230bに集光させる部材である。より具体的に説明すると、蛍光集光板220は、平面視において四角形の板体であって、蛍光体が混入された所定の屈折率を有する樹脂によって形成されている。蛍光集光板220の一側面221には、粘着材240bを介して太陽電池素子230bの受光面231bが接着されている。また、蛍光集光板220の他の側面には、光を反射させる反射板250が貼り付けられている。また、蛍光集光板220の下面223には、光を反射させる反射板260が貼り付けられている。 The fluorescent light collecting plate 220 is a member for condensing the light emitted from the light emitter onto the solar cell element 230b. More specifically, the fluorescent light collector 220 is a rectangular plate in plan view, and is formed of a resin having a predetermined refractive index mixed with the fluorescent material. The light receiving surface 231b of the solar cell element 230b is bonded to one side surface 221 of the fluorescent light collector 220 via an adhesive material 240b. A reflective plate 250 that reflects light is attached to the other side surface of the fluorescent light collector 220. A reflection plate 260 that reflects light is attached to the lower surface 223 of the fluorescent light collector 220.
 太陽光Sは、集光型太陽電池セルCの上面201の形状集光板210と対向する領域202から入射して、形状集光板210の上面212へ入射する。形状集光板210の外側から上面212に対して所定角度以上の角度にて入射する光は、形状集光板210の内側へ導光される。一方、形状集光板210の外側から上面212に対して所定角度未満の角度にて入射する光は、形状集光板210の上面212にて反射される。 The sunlight S is incident from the region 202 facing the shape light collector 210 on the upper surface 201 of the concentrating solar cell C, and is incident on the upper surface 212 of the shape light collector 210. Light incident from the outside of the shape light collector 210 to the upper surface 212 at a predetermined angle or more is guided to the inside of the shape light collector 210. On the other hand, light incident from the outside of the shape light collector 210 with respect to the upper surface 212 at an angle less than a predetermined angle is reflected by the upper surface 212 of the shape light collector 210.
 上面212から形状集光板210の内側へ導光された光は、凸部213の長い斜面213aへ入射する。形状集光板210の内側から長い斜面213aに対して所定角度以上の角度にて入射する光は、形状集光板210の外側へ導光される。一方、形状集光板210の内側から長い斜面213aに対して所定角度未満の角度にて入射する光は、長い斜面213aにて反射される。 The light guided from the upper surface 212 to the inside of the shape light collector 210 is incident on the long slope 213a of the convex portion 213. Light that is incident on the long inclined surface 213 a from the inside of the shape light collector 210 at an angle of a predetermined angle or more is guided to the outside of the shape light collector 210. On the other hand, light incident at an angle less than a predetermined angle with respect to the long inclined surface 213a from the inside of the shape light collector 210 is reflected by the long inclined surface 213a.
 長い斜面213aにて反射された光は、上面212、又は凸部213の短い斜面213bへ入射する。形状集光板210の内側から上面212に対して所定角度以上の角度にて入射する光は、形状集光板210の外側へ導光される。一方、形状集光板210の内側から上面212に対して所定角度未満の角度にて入射する光は、上面212にて反射される。また、形状集光板210の内側から短い斜面213bに対して所定角度以上の角度にて入射する光は、形状集光板210の外側へ導光される。一方、形状集光板210の内側から短い斜面213bに対して所定角度未満の角度にて入射する光は、短い斜面213bにて反射される。 The light reflected by the long slope 213a is incident on the upper face 212 or the short slope 213b of the convex portion 213. Light incident from the inside of the shape light collector 210 to the upper surface 212 at an angle of a predetermined angle or more is guided to the outside of the shape light collector 210. On the other hand, light incident at an angle less than a predetermined angle with respect to the upper surface 212 from the inside of the shape light collector 210 is reflected by the upper surface 212. In addition, light that is incident on the short inclined surface 213 b from the inside of the shape light collector 210 at an angle of a predetermined angle or more is guided to the outside of the shape light collector 210. On the other hand, light incident at an angle less than a predetermined angle with respect to the short slope 213b from the inside of the shape light collector 210 is reflected by the short slope 213b.
 短い斜面213bから形状集光板210の外側へ導光された光は、長い斜面213aへ入射する。形状集光板210の外側から長い斜面213aに対して所定角度以上の角度にて入射する光は、形状集光板210の内側へ導光される。一方、形状集光板210の外側から長い斜面213aに対して所定角度未満の角度にて入射する光は、長い斜面213aにて反射される。 The light guided to the outside of the shape light collector 210 from the short slope 213b is incident on the long slope 213a. Light that is incident on the long inclined surface 213 a from the outside of the shape light collector 210 at an angle of a predetermined angle or more is guided to the inside of the shape light collector 210. On the other hand, light incident at an angle less than a predetermined angle with respect to the long inclined surface 213a from the outside of the shape light collector 210 is reflected by the long inclined surface 213a.
 このようにして、形状集光板210の内側にて反射する光は、次第に側面211へ入射されて、粘着材240aを介して太陽電池素子230aの受光面231aへ入射される。太陽電池素子230aは、入射された光エネルギーを電気に変換して出力する。 In this way, the light reflected on the inner side of the shape light collector 210 is gradually incident on the side surface 211 and is incident on the light receiving surface 231a of the solar cell element 230a via the adhesive material 240a. The solar cell element 230a converts incident light energy into electricity and outputs the electricity.
 長い斜面213aから形状集光板210の外側へ導光された光、又は形状集光板210の外側において長い斜面213aにて反射された光は、蛍光集光板220の上面222へ入射する。蛍光集光板220の外側から上面222に対して所定角度以上の角度にて入射する光は、蛍光集光板220の内側へ導光される。一方、蛍光集光板220の外側から上面222に対して所定角度未満の角度にて入射する光は、上面222にて反射される。 The light guided from the long inclined surface 213 a to the outside of the shape light collector 210 or the light reflected by the long inclined surface 213 a outside the shape light collector 210 is incident on the upper surface 222 of the fluorescent light collector 220. Light incident from the outside of the fluorescent light collector 220 at an angle of a predetermined angle or more with respect to the upper surface 222 is guided to the inner side of the fluorescent light collector 220. On the other hand, light that is incident on the upper surface 222 from the outside of the fluorescent light collector 220 at an angle less than a predetermined angle is reflected by the upper surface 222.
 蛍光集光板220の内側へ入射された光は、蛍光集光板220に混入されている蛍光体に吸収される。そして、光を吸収した蛍光体は、発光する。一方、蛍光体に吸収されなかった光は、上面222へ入射するか、反射板250、又は反射板260によって反射される。蛍光集光板220の内側から上面222に対して所定角度以上の角度にて入射する光は、蛍光集光板220の外側へ導光される。一方、蛍光集光板220の内側から上面222に対して所定角度未満の角度にて入射する光は、上面222にて反射される。 The light incident on the inside of the fluorescent light collecting plate 220 is absorbed by the phosphor mixed in the fluorescent light collecting plate 220. The phosphor that has absorbed the light emits light. On the other hand, the light that has not been absorbed by the phosphor enters the upper surface 222 or is reflected by the reflector 250 or the reflector 260. Light incident from the inside of the fluorescent light collector 220 to the upper surface 222 at an angle of a predetermined angle or more is guided to the outer side of the fluorescent light collector 220. On the other hand, light incident from the inside of the fluorescent light collector 220 at an angle less than a predetermined angle with respect to the upper surface 222 is reflected by the upper surface 222.
 このようにして、蛍光集光板220の内側にて反射する光、及び蛍光体が発光した光は、次第に側面221へ入射されて、粘着材240bを介して太陽電池素子230bの受光面231bへ入射される。太陽電池素子230bは、入射された光エネルギーを電気に変換して出力する。 In this way, the light reflected on the inner side of the fluorescent light collector 220 and the light emitted from the phosphor gradually enter the side surface 221 and enter the light receiving surface 231b of the solar cell element 230b via the adhesive 240b. Is done. The solar cell element 230b converts incident light energy into electricity and outputs the electricity.
 図3は、蛍光集光板220の一例を示す。蛍光集光板220には、赤色蛍光体R、緑色蛍光体G、青色蛍光体Bの3種類の蛍光体が混入されている。各蛍光体は、それぞれ異なる波長の光を吸収する特性を有する。また、各蛍光体は、それぞれ異なる波長の光を発光する特性を有する。 FIG. 3 shows an example of the fluorescent light collector 220. Three kinds of phosphors of red phosphor R, green phosphor G, and blue phosphor B are mixed in the fluorescent light collector 220. Each phosphor has a characteristic of absorbing light having a different wavelength. Each phosphor has a characteristic of emitting light having a different wavelength.
 図4は、形状集光板210に取り付けられた光源130の一例を示す。本例の光源130は、太陽電池素子230aが取り付けられている側面211と対向する側面214の上部に取り付けられている。また、本例の光源130は、レーザー光源131、及びLED(Light Emitting Diode)光源132を備えている。そして、本例の光源130は、検査装置110から制御されることによって、レーザー光源131、又はLED光源132のいずれか一方の光源を発光させる。 FIG. 4 shows an example of the light source 130 attached to the shape light collector 210. The light source 130 of this example is attached to the upper part of the side surface 214 facing the side surface 211 to which the solar cell element 230a is attached. The light source 130 of this example includes a laser light source 131 and an LED (Light Emitting Diode) light source 132. Then, the light source 130 of this example emits light from either the laser light source 131 or the LED light source 132 by being controlled by the inspection apparatus 110.
 レーザー光源131は、出射されたレーザー光が形状集光板210の側面211以外の各面に当たらず、側面211に対して所定の角度以上の角度にて入射するように設けられている。したがって、レーザー光源131から出射されたレーザー光は、形状集光板210の内部において反射されることなく、太陽電池素子230aの受光面231aへ入射されることになる。 The laser light source 131 is provided so that the emitted laser light does not hit each surface other than the side surface 211 of the shape light collector 210 and is incident on the side surface 211 at an angle of a predetermined angle or more. Therefore, the laser light emitted from the laser light source 131 is incident on the light receiving surface 231a of the solar cell element 230a without being reflected inside the shape light collector 210.
 LED光源132は、所定の広がり角の指向性を有している。したがって、LED光源132から放射された光は、形状集光板210の内部において反射されてから、太陽電池素子230aの受光面231aへ入射されることになる。 The LED light source 132 has directivity with a predetermined spread angle. Therefore, the light emitted from the LED light source 132 is reflected inside the shape light collector 210 and then enters the light receiving surface 231a of the solar cell element 230a.
 図5は、形状集光板210に取り付けられた光源130の他の例を示す。本例の光源130は、太陽電池素子230aが取り付けられている側面211と対向する側面214の上部に取り付けられている。また、本例の光源130は、LED光源131を備えている。そして、本例の光源130は、検査装置110から制御されることによって、上下方向に回動する。 FIG. 5 shows another example of the light source 130 attached to the shape light collector 210. The light source 130 of this example is attached to the upper part of the side surface 214 facing the side surface 211 to which the solar cell element 230a is attached. The light source 130 of this example includes an LED light source 131. Then, the light source 130 of this example is rotated in the vertical direction by being controlled by the inspection apparatus 110.
 レーザー光源131は、検査装置110が回動することによって、出射されたレーザー光が形状集光板210の側面211以外の各面に当たらず、側面211に対して所定の角度以上の角度にて入射されるような第1のポジショニングか、出射されたレーザー光が形状集光板210の内部において反射されてから、太陽電池素子230aの受光面231aへ入射されるような第2のポジショニングをとる。したがって、レーザー光源131が第1のポジショニングをとっている場合、レーザー光源131から出射されたレーザー光は、形状集光板210の内部において反射されることなく、太陽電池素子230aの受光面231aへ入射されることになる。一方、レーザー光源131が第2のポジショニングをとっている場合、レーザー光源131から出射されたレーザー光は、形状集光板210の内部において反射されてから、太陽電池素子230aの受光面231aへ入射されることになる。 The laser light source 131 is not incident on each surface other than the side surface 211 of the shape light collector 210 and is incident on the side surface 211 at an angle greater than or equal to a predetermined angle as the inspection device 110 rotates. The first positioning is performed, or the second positioning is performed such that the emitted laser light is reflected inside the shape light collector 210 and then incident on the light receiving surface 231a of the solar cell element 230a. Therefore, when the laser light source 131 takes the first positioning, the laser light emitted from the laser light source 131 is incident on the light receiving surface 231a of the solar cell element 230a without being reflected inside the shape light collector 210. Will be. On the other hand, when the laser light source 131 takes the second positioning, the laser light emitted from the laser light source 131 is reflected inside the shape light collector 210 and then incident on the light receiving surface 231a of the solar cell element 230a. Will be.
 図6は、形状集光板210に取り付けられた光源130の更に他の例を示す。本例は、複数の光源130を形状集光板210に取り付けた例を示している。本例の各光源130は、太陽電池素子230aが取り付けられている側面211以外の側面214、215、216の上部にそれぞれ取り付けられている。また、本例の各光源130は、LED光源132を備えている。また、本例の各光源130のうち、少なくとも1つの光源130は、レーザー光源131を備えている。そして、本例の各光源130は、検査装置110から制御されることによって、LED光源132を発光させる。また、本例のレーザー光源131を備える光源130は、検査装置110から制御されることによって、レーザー光源131、又はLED光源132のいずれか一方の光源を発光させる。 FIG. 6 shows still another example of the light source 130 attached to the shape light collector 210. This example shows an example in which a plurality of light sources 130 are attached to the shape light collector 210. Each light source 130 of this example is attached to the upper part of the side surfaces 214, 215, and 216 other than the side surface 211 to which the solar cell element 230a is attached. Each light source 130 in this example includes an LED light source 132. In addition, at least one of the light sources 130 of this example includes a laser light source 131. And each light source 130 of this example makes the LED light source 132 light-emit by being controlled from the test | inspection apparatus 110. FIG. In addition, the light source 130 including the laser light source 131 of the present example emits one of the laser light source 131 and the LED light source 132 by being controlled by the inspection apparatus 110.
 レーザー光源131は、出射されたレーザー光が形状集光板210の側面211以外の各面に当たらず、側面211に対して所定の角度以上の角度にて入射するように設けられている。したがって、レーザー光源131から出射されたレーザー光は、形状集光板210の内部において反射されることなく、太陽電池素子230aの受光面231aへ入射されることになる。 The laser light source 131 is provided so that the emitted laser light does not hit each surface other than the side surface 211 of the shape light collector 210 and is incident on the side surface 211 at an angle of a predetermined angle or more. Therefore, the laser light emitted from the laser light source 131 is incident on the light receiving surface 231a of the solar cell element 230a without being reflected inside the shape light collector 210.
 LED光源132は、所定の広がり角の指向性を有している。したがって、各LED光源132から放射された光は、形状集光板210の内部において反射されてから、太陽電池素子230aの受光面231aへ入射されることになる。 The LED light source 132 has directivity with a predetermined spread angle. Therefore, the light emitted from each LED light source 132 is reflected inside the shape light collector 210 and then enters the light receiving surface 231a of the solar cell element 230a.
 図7は、蛍光集光板220に取り付けられた光源130、及びフォトセンサー140の一例を示す。本例の光源130は、太陽電池素子230bが取り付けられている側面221と対向する側面224の上部に取り付けられている。また、本例の光源130は、レーザー光源133、及び紫外線LED光源134を備えている。そして、本例の光源130は、検査装置110から制御されることによって、レーザー光源133、又は紫外線LED光源134のいずれか一方の光源を発光させる。 FIG. 7 shows an example of the light source 130 and the photo sensor 140 attached to the fluorescent light collector 220. The light source 130 of this example is attached to the upper part of the side surface 224 facing the side surface 221 to which the solar cell element 230b is attached. The light source 130 of this example includes a laser light source 133 and an ultraviolet LED light source 134. The light source 130 of this example emits light from either the laser light source 133 or the ultraviolet LED light source 134 as controlled by the inspection apparatus 110.
 レーザー光源133は、出射されたレーザー光が蛍光集光板220の側面221以外の各面に当たらず、側面221に対して所定の角度以上の角度にて入射するように設けられている。また、レーザー光源133から出射される光は、蛍光集光板220に混入されている各蛍光体に吸収され難い。したがって、レーザー光源133から出射されたレーザー光は、蛍光集光板220の内部において反射されず、各蛍光体にも吸収されることなく、太陽電池素子230bの受光面231bへ入射されることになる。 The laser light source 133 is provided so that the emitted laser light does not strike each surface other than the side surface 221 of the fluorescent light collector 220 and is incident on the side surface 221 at an angle greater than or equal to a predetermined angle. Further, the light emitted from the laser light source 133 is difficult to be absorbed by each phosphor mixed in the fluorescent light collector 220. Therefore, the laser light emitted from the laser light source 133 is not reflected inside the fluorescent light collector 220 and is incident on the light receiving surface 231b of the solar cell element 230b without being absorbed by each phosphor. .
 紫外線LED光源134は、所定の広がり角の指向性を有している。紫外線LED光源134から放射される光は、蛍光集光板220に混入されている各蛍光体に吸収され易い。したがって、紫外線LED光源134から放射された光は、各蛍光体に吸収される。そして、光を吸収した蛍光体は、発光する。そして、蛍光体が発光した光は、太陽電池素子230bの受光面231bへ入射されることになる。 The ultraviolet LED light source 134 has directivity with a predetermined spread angle. Light emitted from the ultraviolet LED light source 134 is easily absorbed by each phosphor mixed in the fluorescent light collector 220. Therefore, the light emitted from the ultraviolet LED light source 134 is absorbed by each phosphor. The phosphor that has absorbed the light emits light. And the light which the fluorescent substance light-emitted enters into the light-receiving surface 231b of the solar cell element 230b.
 本例のフォトセンサー140は、蛍光集光板220の下面223における、紫外線LED光源134から放射された光を受光し得る位置に取り付けられている。また、蛍光集光板220の下面223とフォトセンサー140の受光面との間には、紫外線LED光源134から放射された光を透過させ、各発光体が発光した光を透過させないフィルターが介在されている。 The photo sensor 140 of this example is attached to the lower surface 223 of the fluorescent light collector 220 at a position where it can receive light emitted from the ultraviolet LED light source 134. In addition, a filter that transmits light emitted from the ultraviolet LED light source 134 and does not transmit light emitted by each light emitter is interposed between the lower surface 223 of the fluorescent light collector 220 and the light receiving surface of the photosensor 140. Yes.
 図8は、蛍光集光板220に取り付けられた光源130、及びフォトセンサー140の他の例を示す。本例の光源130は、太陽電池素子230bが取り付けられている側面221と対向する側面224の上部に取り付けられている。また、本例の光源130は、レーザー光源133、及び紫外線LED光源134を備えている。そして、本例の光源130は、検査装置110から制御されることによって、レーザー光源133、又は紫外線LED光源134のいずれか一方の光源を発光させる。 FIG. 8 shows another example of the light source 130 and the photo sensor 140 attached to the fluorescent light collector 220. The light source 130 of this example is attached to the upper part of the side surface 224 facing the side surface 221 to which the solar cell element 230b is attached. The light source 130 of this example includes a laser light source 133 and an ultraviolet LED light source 134. The light source 130 of this example emits light from either the laser light source 133 or the ultraviolet LED light source 134 as controlled by the inspection apparatus 110.
 レーザー光源133は、出射されたレーザー光が蛍光集光板220の側面221以外の各面に当たらず、側面221に対して所定の角度以上の角度にて入射するように設けられている。また、レーザー光源133から出射される光は、蛍光集光板220に混入されている各蛍光体に吸収され難い。したがって、レーザー光源133から出射されたレーザー光は、蛍光集光板220の内部において反射されず、各蛍光体にも吸収されることなく、太陽電池素子230bの受光面231bへ入射されることになる。 The laser light source 133 is provided so that the emitted laser light does not strike each surface other than the side surface 221 of the fluorescent light collector 220 and is incident on the side surface 221 at an angle greater than or equal to a predetermined angle. Further, the light emitted from the laser light source 133 is difficult to be absorbed by each phosphor mixed in the fluorescent light collector 220. Therefore, the laser light emitted from the laser light source 133 is not reflected inside the fluorescent light collector 220 and is incident on the light receiving surface 231b of the solar cell element 230b without being absorbed by each phosphor. .
 紫外線LED光源134は、所定の広がり角の指向性を有している。紫外線LED光源134から放射される光は、蛍光集光板220に混入されている蛍光体に吸収され易い。したがって、紫外線LED光源134から放射された光は、各蛍光体に吸収される。そして、光を吸収した蛍光体は、発光する。そして、蛍光体が発光した光は、太陽電池素子230bの受光面231bへ入射されることになる。 The ultraviolet LED light source 134 has directivity with a predetermined spread angle. The light emitted from the ultraviolet LED light source 134 is easily absorbed by the phosphor mixed in the fluorescent light collector 220. Therefore, the light emitted from the ultraviolet LED light source 134 is absorbed by each phosphor. The phosphor that has absorbed the light emits light. And the light which the fluorescent substance light-emitted enters into the light-receiving surface 231b of the solar cell element 230b.
 本例のフォトセンサー140は、蛍光集光板220の側面221における、紫外線LED光源134から放射された光を受光し得る位置に取り付けられている。また、蛍光集光板220の側面221とフォトセンサー140の受光面との間には、紫外線LED光源134から放射された光を透過させ、各発光体が発光した光を透過させないフィルターが介在されている。 The photosensor 140 of this example is attached to the side surface 221 of the fluorescent light collecting plate 220 at a position where it can receive light emitted from the ultraviolet LED light source 134. In addition, a filter that transmits the light emitted from the ultraviolet LED light source 134 and does not transmit the light emitted from each light emitter is interposed between the side surface 221 of the fluorescent light collector 220 and the light receiving surface of the photosensor 140. Yes.
 図9は、蛍光集光板220に取り付けられた光源130の更に他の例を示す。本例は、複数の光源130を蛍光集光板220取り付けた例を示している。本例の各光源130は、太陽電池素子230bが取り付けられている側面221以外の側面224、225、226の上部にそれぞれ取り付けられている。また、本例の各光源130は、紫外線LED光源134を備えている。また、本例の各光源130のうち、少なくとも1つの光源130は、レーザー光源133を備えている。そして、本例の各光源130は、検査装置110から制御されることによって、紫外線LED光源134を発光させる。また、本例のレーザー光源133を備える光源130は、検査装置110から制御されることによって、レーザー光源133、又は紫外線LED光源134のいずれか一方の光源を発光させる。 FIG. 9 shows still another example of the light source 130 attached to the fluorescent light collector 220. This example shows an example in which a plurality of light sources 130 are attached to a fluorescent light collector 220. Each light source 130 of this example is attached to the upper part of the side surfaces 224, 225, and 226 other than the side surface 221 to which the solar cell element 230b is attached. Each light source 130 in this example includes an ultraviolet LED light source 134. In addition, at least one of the light sources 130 in this example includes a laser light source 133. And each light source 130 of this example makes the ultraviolet LED light source 134 light-emit by being controlled from the inspection apparatus 110. Further, the light source 130 including the laser light source 133 of the present example emits light from either the laser light source 133 or the ultraviolet LED light source 134 by being controlled by the inspection apparatus 110.
 レーザー光源133は、出射されたレーザー光が蛍光集光板220の側面221以外の各面に当たらず、側面221に対して所定の角度以上の角度にて入射するように設けられている。また、レーザー光源133から出射される光は、蛍光集光板220に混入されている各蛍光体に吸収され難い。したがって、レーザー光源133から出射されたレーザー光は、蛍光集光板220の内部において反射されず、各蛍光体にも吸収されることなく、太陽電池素子230bの受光面231bへ入射されることになる。 The laser light source 133 is provided so that the emitted laser light does not strike each surface other than the side surface 221 of the fluorescent light collector 220 and is incident on the side surface 221 at an angle greater than or equal to a predetermined angle. Further, the light emitted from the laser light source 133 is difficult to be absorbed by each phosphor mixed in the fluorescent light collector 220. Therefore, the laser light emitted from the laser light source 133 is not reflected inside the fluorescent light collector 220 and is incident on the light receiving surface 231b of the solar cell element 230b without being absorbed by each phosphor. .
 紫外線LED光源134は、所定の広がり角の指向性を有している。紫外線LED光源134から放射される光は、蛍光集光板220に混入されている蛍光体に吸収され易い。したがって、各紫外線LED光源134から放射された光は、各蛍光体に吸収される。そして、光を吸収した蛍光体は、発光する。そして、蛍光体が発光した光は、太陽電池素子230bの受光面231bへ入射されることになる。 The ultraviolet LED light source 134 has directivity with a predetermined spread angle. The light emitted from the ultraviolet LED light source 134 is easily absorbed by the phosphor mixed in the fluorescent light collector 220. Therefore, the light emitted from each ultraviolet LED light source 134 is absorbed by each phosphor. The phosphor that has absorbed the light emits light. And the light which the fluorescent substance light-emitted enters into the light-receiving surface 231b of the solar cell element 230b.
 図10は、検査装置110のブロック構成の一例を示す。検査装置110は、パターンデータ格納部111、光源制御部112、発電量データ受信部113、発電量判定部114、劣化判定部115、光量データ受信部116、光量判定部117、吸光性能劣化判定部118、及び判定結果データ出力部119を有する。なお、光源制御部112は、この発明における「照射制御部」の一例であってよい。以下、各構成要素の機能及び動作を説明する。 FIG. 10 shows an example of a block configuration of the inspection apparatus 110. The inspection apparatus 110 includes a pattern data storage unit 111, a light source control unit 112, a power generation amount data reception unit 113, a power generation amount determination unit 114, a deterioration determination unit 115, a light amount data reception unit 116, a light amount determination unit 117, and a light absorption performance deterioration determination unit. 118, and a determination result data output unit 119. The light source control unit 112 may be an example of the “irradiation control unit” in the present invention. Hereinafter, functions and operations of each component will be described.
 パターンデータ格納部111には、各集光型太陽電池セルCに対してそれぞれ個別に設けられている光源130のうち、同時に照射動作させるべき光源130の組合せのパターンを示すデータが格納されている。 The pattern data storage unit 111 stores data indicating a combination pattern of the light sources 130 to be irradiated simultaneously among the light sources 130 individually provided for the respective concentrating solar cells C. .
 光源制御部112は、光源130を制御する。例えば、光源制御部112は、形状集光板210や蛍光集光板220の集光機能を利用せずに太陽電池素子230へ光を入射させるように光源130を制御する。また、例えば、光源制御部112は、形状集光板210や蛍光集光板220の集光機能を利用して太陽電池素子230へ光を入射させるように光源130を制御する。また、例えば、光源制御部112は、パターンデータ格納部111に格納されているデータによって示される同時に照射動作させるべき光源130の組合せにしたがって、各光源130を制御する。 The light source control unit 112 controls the light source 130. For example, the light source control unit 112 controls the light source 130 so that light is incident on the solar cell element 230 without using the light collecting function of the shape light collecting plate 210 or the fluorescent light collecting plate 220. Further, for example, the light source control unit 112 controls the light source 130 so that light is incident on the solar cell element 230 using the light collecting function of the shape light collecting plate 210 and the fluorescent light collecting plate 220. Further, for example, the light source control unit 112 controls each light source 130 according to the combination of the light sources 130 that should be irradiated at the same time indicated by the data stored in the pattern data storage unit 111.
 発電量データ受信部113は、太陽電池素子230の発電量を示すデータを、発電量測定装置150から受信する。 The power generation amount data receiving unit 113 receives data indicating the power generation amount of the solar cell element 230 from the power generation amount measuring device 150.
 発電量判定部114は、光源130によって光が照射されているときに、発電量測定装置150によって測定された発電量の実測値が、予め定められたしきい値以上であるか否かを判定する。 The power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount measured by the power generation amount measuring device 150 is equal to or greater than a predetermined threshold when light is emitted from the light source 130. To do.
 劣化判定部115は、光源制御部112による光源130の制御状況と、発電量判定部114が判定した判定結果とに基づいて、太陽電池素子230、形状集光板210、又は蛍光集光板220が劣化しているか否かを判定する。例えば、劣化判定部115は、形状集光板210や蛍光集光板220の集光機能を利用せずに太陽電池素子230へ光を入射させるように、光源制御部112が光源130を制御しているときに、発電量の実測値がしきい値以上ではないと発電量判定部114が判定した場合、太陽電池素子230が劣化していると判定する。また、例えば、劣化判定部115は、形状集光板210や蛍光集光板220の集光機能を利用して太陽電池素子230へ光を入射させるように、光源制御部112が光源130を制御しているときに、発電量の実測値がしきい値以上ではないと発電量判定部114が判定した場合、形状集光板210や蛍光集光板220が劣化していると判定する。 Based on the control status of the light source 130 by the light source control unit 112 and the determination result determined by the power generation amount determination unit 114, the deterioration determination unit 115 deteriorates the solar cell element 230, the shape light collector 210, or the fluorescent light collector 220. It is determined whether or not. For example, in the deterioration determination unit 115, the light source control unit 112 controls the light source 130 so that light is incident on the solar cell element 230 without using the light collecting function of the shape light collecting plate 210 or the fluorescent light collecting plate 220. Sometimes, when the power generation amount determination unit 114 determines that the actual measurement value of the power generation amount is not equal to or greater than the threshold value, it is determined that the solar cell element 230 has deteriorated. In addition, for example, the deterioration determination unit 115 controls the light source 130 so that the light source control unit 112 controls the light source 130 so that light is incident on the solar cell element 230 using the light collecting function of the shape light collecting plate 210 and the fluorescent light collecting plate 220. When the power generation amount determination unit 114 determines that the actual measurement value of the power generation amount is not equal to or greater than the threshold value, it is determined that the shape light collector 210 and the fluorescent light collector 220 are deteriorated.
 光量データ受信部116は、光量を示すデータを、フォトセンサー140から受信する。 The light quantity data receiving unit 116 receives data indicating the light quantity from the photosensor 140.
 光量判定部117は、蛍光集光板220が劣化していると劣化判定部が判定した場合に、フォトセンサー140によって測定された光量がしきい値以上であるか否かを判定する。 The light amount determination unit 117 determines whether or not the light amount measured by the photosensor 140 is equal to or greater than a threshold when the deterioration determination unit determines that the fluorescent light collector 220 is deteriorated.
 吸光性能劣化判定部118は、光量判定部117が判定した判定結果に基づいて、蛍光集光板220に混入されている蛍光体の吸光性能が劣化しているか否かを判定する。 The light absorption performance deterioration determination unit 118 determines whether the light absorption performance of the phosphor mixed in the fluorescent light collector 220 is deteriorated based on the determination result determined by the light amount determination unit 117.
 判定結果データ出力部119は、劣化判定部115が判定した判定結果や、吸光性能劣化判定部118が判定した判定結果を示すデータを、出力装置190へ出力する。 The determination result data output unit 119 outputs the determination result determined by the deterioration determination unit 115 and the data indicating the determination result determined by the light absorption performance deterioration determination unit 118 to the output device 190.
 図11は、パターンデータ格納部111に格納されているデータの一例をテーブル形式で示す。パターンデータ格納部111には、光源ID(identifier)と、発光制御とが対応付けて格納されている。 FIG. 11 shows an example of data stored in the pattern data storage unit 111 in a table format. The pattern data storage unit 111 stores a light source ID (identifier) and light emission control in association with each other.
 光源IDは、各光源130を一意に識別するための識別符号である。発光制御は、光源IDによって識別される光源130の発光制御を有効にすべきか無効にすべきかを示すデータである。 The light source ID is an identification code for uniquely identifying each light source 130. The light emission control is data indicating whether the light emission control of the light source 130 identified by the light source ID should be validated or invalidated.
 図12は、光源130が発光しているときの太陽電池モジュールMの一例を示す。図中の各マスは、集光型太陽電池セルCを示す。図中のハッチングされているマスは、取り付けられた光源130が発光している集光型太陽電池セルCである。一方、図中のハッチングされていないマスは、取り付けられた光源130が発光していない集光型太陽電池セルCである。 FIG. 12 shows an example of the solar cell module M when the light source 130 emits light. Each square in the figure indicates a concentrating solar cell C. The hatched cells in the figure are the concentrating solar cells C from which the attached light source 130 emits light. On the other hand, the unhatched mass in the figure is a concentrating solar cell C in which the attached light source 130 does not emit light.
 図13、及び図14は、検査装置110の動作フローの一例を示す。この動作フローは、集光型太陽電池セルCを、太陽電池素子230a、形状集光板210、太陽電池素子230b、蛍光集光板220の順に検査する動作フローである。以下の説明は、図1から図12を共に参照する。 13 and 14 show an example of an operation flow of the inspection apparatus 110. FIG. This operation flow is an operation flow in which the concentrating solar cell C is inspected in the order of the solar battery element 230a, the shape light collector 210, the solar battery element 230b, and the fluorescent light collector 220. The following description refers to FIGS. 1 to 12 together.
 本実施形態に係る集光型太陽電池セルCは、光源130を利用して検査されるため、太陽光Sが照射されていないことが望ましい。したがって、検査装置110は、例えば、夜間等の予め設定された時刻に検査処理を開始する。 Since the concentrating solar cell C according to the present embodiment is inspected using the light source 130, it is desirable that the sunlight S is not irradiated. Accordingly, the inspection apparatus 110 starts the inspection process at a preset time such as at night.
 検査処理が開始されると、検査装置110の光源制御部112は、形状集光板210の集光機能を利用せずに太陽電池素子230aへ光を入射させるように光源130を制御する(S101)。例えば、図4に示すような光源130が形状集光板210に取り付けられている場合、光源制御部112は、レーザー光源131を発光制御する。また、例えば、図5に示すような光源130が形状集光板210に取り付けられている場合、光源制御部112は、レーザー光源131が第1のポジショニングをとるように、光源130を回動制御する。また、図6に示すような複数の光源130が形状集光板210に取り付けられている場合、光源制御部112は、レーザー光源131を備えている光源130のレーザー光源131を発光制御する。そして、光源制御部112は、光源130の制御状況を示すデータを、劣化判定部115へ送る。 When the inspection process is started, the light source control unit 112 of the inspection apparatus 110 controls the light source 130 so that light is incident on the solar cell element 230a without using the light collecting function of the shape light collector 210 (S101). . For example, when the light source 130 as shown in FIG. 4 is attached to the shape light collector 210, the light source control unit 112 controls the light emission of the laser light source 131. For example, when the light source 130 as shown in FIG. 5 is attached to the shape light collector 210, the light source control unit 112 controls the rotation of the light source 130 so that the laser light source 131 takes the first positioning. . When a plurality of light sources 130 as shown in FIG. 6 are attached to the shape light collector 210, the light source control unit 112 controls the light emission of the laser light source 131 of the light source 130 including the laser light source 131. Then, the light source control unit 112 sends data indicating the control status of the light source 130 to the deterioration determination unit 115.
 このようにして、光源130が制御されると、太陽電池素子230aは、電力を出力する。そうして、発電量測定装置150は、太陽電池素子230aの発電量を測定して、その実測値を示すデータを、検査装置110へ送信する。 Thus, when the light source 130 is controlled, the solar cell element 230a outputs electric power. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element 230a and transmits data indicating the actual measurement value to the inspection device 110.
 検査装置110の発電量データ受信部113は、太陽電池素子230aの発電量を示すデータを、発電量測定装置150から受信すると(S102)、そのデータを、発電量判定部114へ送る。 The power generation amount data receiving unit 113 of the inspection device 110 receives data indicating the power generation amount of the solar cell element 230a from the power generation amount measuring device 150 (S102), and sends the data to the power generation amount determination unit 114.
 検査装置110の発電量判定部114は、発電量データ受信部113からデータを受け取ると、そのデータによって示される発電量の実測値が、予め定められたしきい値以上であるか否かを判定する(S103)。例えば、発電量判定部114が参照するしきい値は、太陽電池素子230の出力保証値とする。そして、発電量判定部114は、その判定結果を示すデータを、劣化判定部115へ送る。 When the power generation amount determination unit 114 of the inspection apparatus 110 receives data from the power generation amount data reception unit 113, the power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount indicated by the data is equal to or greater than a predetermined threshold value. (S103). For example, the threshold value referred to by the power generation amount determination unit 114 is the guaranteed output value of the solar cell element 230. Then, the power generation amount determination unit 114 sends data indicating the determination result to the deterioration determination unit 115.
 検査装置110の劣化判定部115は、光源130の制御状況を示すデータを、光源制御部112から受け取る。ここでは、光源制御部112から受け取ったデータには、形状集光板210の集光機能を利用せずに太陽電池素子230aへ光を入射させるように光源130を制御していることが示されている。したがって、劣化判定部115は、判定結果を示すデータを、発電量判定部114から受け取ると、そのデータによって示される判定結果が、発電量の実測値がしきい値以上であるとする判定結果の場合(S103:Yes)、太陽電池素子230aは劣化していないと判定する(S104)。そして、劣化判定部115は、その判定結果を示すデータを、光源制御部112、及び判定結果データ出力部119へ送る。一方、劣化判定部115は、発電量判定部114から受け取ったデータによって示される判定結果が、発電量の実測値がしきい値以上ではないとする判定結果の場合(S103:No)、太陽電池素子230aは劣化していると判定する(S105)。そして、劣化判定部115は、その判定結果を示すデータを、光源制御部112、及び判定結果データ出力部119へ送る。 The deterioration determination unit 115 of the inspection apparatus 110 receives data indicating the control status of the light source 130 from the light source control unit 112. Here, the data received from the light source control unit 112 indicates that the light source 130 is controlled so that light is incident on the solar cell element 230a without using the light collecting function of the shape light collector 210. Yes. Therefore, when the deterioration determination unit 115 receives the data indicating the determination result from the power generation amount determination unit 114, the determination result indicated by the data is a determination result indicating that the actual measurement value of the power generation amount is equal to or greater than the threshold value. In the case (S103: Yes), it is determined that the solar cell element 230a has not deteriorated (S104). Then, the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119. On the other hand, when the determination result indicated by the data received from the power generation amount determination unit 114 is the determination result that the actual measurement value of the power generation amount is not equal to or greater than the threshold value (S103: No), the deterioration determination unit 115 is a solar cell. It is determined that the element 230a has deteriorated (S105). Then, the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
 光源制御部112は、判定結果を示すデータを、劣化判定部115から受け取ると、そのデータによって示される判定結果が、太陽電池素子230aは劣化していないとする判定結果の場合、形状集光板210の集光機能を利用して太陽電池素子230aへ光を入射させるように光源130を制御する(S106)。例えば、図4に示すような光源130が形状集光板210に取り付けられている場合、光源制御部112は、LED光源132を発光制御する。また、例えば、図5に示すような光源130が形状集光板210に取り付けられている場合、光源制御部112は、レーザー光源131が第2のポジショニングをとるように、光源130を回動制御する。また、図6に示すような複数の光源130が形状集光板210に取り付けられている場合、光源制御部112は、各光源130のLED光源132を発光制御する。そして、光源制御部112は、光源130の制御状況を示すデータを、劣化判定部115へ送る。 When the light source control unit 112 receives the data indicating the determination result from the deterioration determination unit 115, the determination result indicated by the data is the determination result that the solar cell element 230a is not deteriorated. The light source 130 is controlled so that light is incident on the solar cell element 230a using the light collecting function (S106). For example, when the light source 130 as shown in FIG. 4 is attached to the shape light collector 210, the light source control unit 112 controls the light emission of the LED light source 132. For example, when the light source 130 as shown in FIG. 5 is attached to the shape light collector 210, the light source control unit 112 controls the rotation of the light source 130 so that the laser light source 131 takes the second positioning. . When a plurality of light sources 130 as shown in FIG. 6 are attached to the shape light collector 210, the light source control unit 112 controls the light emission of the LED light sources 132 of the respective light sources 130. Then, the light source control unit 112 sends data indicating the control status of the light source 130 to the deterioration determination unit 115.
 このようにして、光源130が制御されると、太陽電池素子230aは、電力を出力する。そうして、発電量測定装置150は、太陽電池素子230aの発電量を測定して、その実測値を示すデータを、検査装置110へ送信する。 Thus, when the light source 130 is controlled, the solar cell element 230a outputs electric power. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element 230a and transmits data indicating the actual measurement value to the inspection device 110.
 発電量データ受信部113は、太陽電池素子230aの発電量を示すデータを、発電量測定装置150から受信すると(S107)、そのデータを、発電量判定部114へ送る。 When the power generation amount data receiving unit 113 receives data indicating the power generation amount of the solar cell element 230a from the power generation amount measuring apparatus 150 (S107), the data is sent to the power generation amount determination unit 114.
 発電量判定部114は、発電量データ受信部113からデータを受け取ると、そのデータによって示される発電量の実測値が、予め定められたしきい値以上であるか否かを判定する(S108)。例えば、発電量判定部114が参照するしきい値は、太陽電池素子230の出力保証値とする。そして、発電量判定部114は、その判定結果を示すデータを、劣化判定部115へ送る。 When the power generation amount determination unit 114 receives data from the power generation amount data reception unit 113, the power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount indicated by the data is greater than or equal to a predetermined threshold (S108). . For example, the threshold value referred to by the power generation amount determination unit 114 is the guaranteed output value of the solar cell element 230. Then, the power generation amount determination unit 114 sends data indicating the determination result to the deterioration determination unit 115.
 検査装置110の劣化判定部115は、光源130の制御状況を示すデータを、光源制御部112から受け取る。ここでは、光源制御部112から受け取ったデータには、形状集光板210の集光機能を利用して太陽電池素子230aへ光を入射させるように光源130を制御していることが示されている。したがって、劣化判定部115は、判定結果を示すデータを、発電量判定部114から受け取ると、そのデータによって示される判定結果が、発電量の実測値がしきい値以上であるとする判定結果の場合(S108:Yes)、形状集光板210は劣化していないと判定する(S109)。そして、劣化判定部115は、その判定結果を示すデータを、光源制御部112、及び判定結果データ出力部119へ送る。一方、劣化判定部115は、発電量判定部114から受け取ったデータによって示される判定結果が、発電量の実測値がしきい値以上ではないとする判定結果の場合(S108:No)、形状集光板210は劣化していると判定する(S110)。そして、劣化判定部115は、その判定結果を示すデータを、光源制御部112、及び判定結果データ出力部119へ送る。 The deterioration determination unit 115 of the inspection apparatus 110 receives data indicating the control status of the light source 130 from the light source control unit 112. Here, the data received from the light source control unit 112 indicates that the light source 130 is controlled so that light is incident on the solar cell element 230a using the light collecting function of the shape light collector 210. . Therefore, when the deterioration determination unit 115 receives the data indicating the determination result from the power generation amount determination unit 114, the determination result indicated by the data is a determination result indicating that the actual measurement value of the power generation amount is equal to or greater than the threshold value. In the case (S108: Yes), it is determined that the shape light collector 210 is not deteriorated (S109). Then, the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119. On the other hand, when the determination result indicated by the data received from the power generation amount determination unit 114 is a determination result that the actual measurement value of the power generation amount is not equal to or greater than the threshold value (S108: No), the degradation determination unit 115 It is determined that the optical plate 210 has deteriorated (S110). Then, the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
 光源制御部112は、判定結果を示すデータを、劣化判定部115から受け取ると、そのデータによって示される判定結果が、太陽電池素子230aは劣化しているとする判定結果か、形状集光板210は劣化していないとする判定結果か、形状集光板210は劣化しているとする判定結果の場合、蛍光集光板220の集光機能を利用せずに太陽電池素子230bへ光を入射させるように光源130を制御する(S111)。例えば、図7、又は図8に示すような光源130が蛍光集光板220に取り付けられている場合、光源制御部112は、レーザー光源133を発光制御する。また、図9に示すような複数の光源130が蛍光集光板220に取り付けられている場合、光源制御部112は、レーザー光源133を備えている光源130のレーザー光源133を発光制御する。そして、光源制御部112は、光源130の制御状況を示すデータを、劣化判定部115へ送る。 When the light source control unit 112 receives data indicating the determination result from the deterioration determination unit 115, the determination result indicated by the data is the determination result that the solar cell element 230a is deteriorated, or the shape light collector 210 is In the case of the determination result that the shape light collector 210 is not deteriorated or the determination result that the shape light collector 210 is deteriorated, light is incident on the solar cell element 230b without using the light condensing function of the fluorescent light collector 220. The light source 130 is controlled (S111). For example, when the light source 130 as shown in FIG. 7 or FIG. 8 is attached to the fluorescent light collector 220, the light source control unit 112 controls the light emission of the laser light source 133. When a plurality of light sources 130 as shown in FIG. 9 are attached to the fluorescent light collector 220, the light source control unit 112 controls the light emission of the laser light source 133 of the light source 130 including the laser light source 133. Then, the light source control unit 112 sends data indicating the control status of the light source 130 to the deterioration determination unit 115.
 このようにして、光源130が制御されると、太陽電池素子230bは、電力を出力する。そうして、発電量測定装置150は、太陽電池素子230bの発電量を測定して、その実測値を示すデータを、検査装置110へ送信する。 Thus, when the light source 130 is controlled, the solar cell element 230b outputs electric power. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element 230b and transmits data indicating the actual measurement value to the inspection device 110.
 発電量データ受信部113は、太陽電池素子230bの発電量を示すデータを、発電量測定装置150から受信すると(S112)、そのデータを、発電量判定部114へ送る。 When the power generation amount data receiving unit 113 receives the data indicating the power generation amount of the solar cell element 230b from the power generation amount measuring apparatus 150 (S112), the data is transmitted to the power generation amount determination unit 114.
 発電量判定部114は、発電量データ受信部113からデータを受け取ると、そのデータによって示される発電量の実測値が、予め定められたしきい値以上であるか否かを判定する(S113)。例えば、発電量判定部114が参照するしきい値は、太陽電池素子230の出力保証値とする。そして、発電量判定部114は、その判定結果を示すデータを、劣化判定部115へ送る。 When the power generation amount determination unit 114 receives data from the power generation amount data reception unit 113, the power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount indicated by the data is greater than or equal to a predetermined threshold value (S113). . For example, the threshold value referred to by the power generation amount determination unit 114 is the guaranteed output value of the solar cell element 230. Then, the power generation amount determination unit 114 sends data indicating the determination result to the deterioration determination unit 115.
 劣化判定部115は、光源130の制御状況を示すデータを、光源制御部112から受け取る。ここでは、光源制御部112から受け取ったデータには、蛍光集光板220の集光機能を利用せずに太陽電池素子230bへ光を入射させるように光源130を制御していることが示されている。したがって、劣化判定部115は、判定結果を示すデータを、発電量判定部114から受け取ると、そのデータによって示される判定結果が、発電量の実測値がしきい値以上であるとする判定結果の場合(S113:Yes)、太陽電池素子230bは劣化していないと判定する(S114)。そして、劣化判定部115は、その判定結果を示すデータを、光源制御部112、及び判定結果データ出力部119へ送る。
 一方、劣化判定部115は、発電量判定部114から受け取ったデータによって示される判定結果が、発電量の実測値がしきい値以上ではないとする判定結果の場合(S113:No)、太陽電池素子230bは劣化していると判定する(S115)。そして、劣化判定部115は、その判定結果を示すデータを、光源制御部112、及び判定結果データ出力部119へ送る。
The deterioration determination unit 115 receives data indicating the control status of the light source 130 from the light source control unit 112. Here, the data received from the light source control unit 112 indicates that the light source 130 is controlled so that light is incident on the solar cell element 230b without using the light collecting function of the fluorescent light collector 220. Yes. Therefore, when the deterioration determination unit 115 receives the data indicating the determination result from the power generation amount determination unit 114, the determination result indicated by the data is a determination result indicating that the actual measurement value of the power generation amount is equal to or greater than the threshold value. In the case (S113: Yes), it is determined that the solar cell element 230b has not deteriorated (S114). Then, the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
On the other hand, when the determination result indicated by the data received from the power generation amount determination unit 114 is a determination result that the actual measurement value of the power generation amount is not equal to or greater than the threshold value (S113: No), the deterioration determination unit 115 is a solar cell. It is determined that the element 230b has deteriorated (S115). Then, the degradation determination unit 115 sends data indicating the determination result to the light source control unit 112 and the determination result data output unit 119.
 光源制御部112は、判定結果を示すデータを、劣化判定部115から受け取ると、そのデータによって示される判定結果が、太陽電池素子230bは劣化していないとする判定結果の場合、形状集光板220の集光機能を利用して太陽電池素子230bへ光を入射させるように光源130を制御する(S116)。例えば、図7、又は図8に示すような光源130が蛍光集光板220に取り付けられている場合、光源制御部112は、紫外線LED光源134を発光制御する。また、図9に示すような複数の光源130が蛍光集光板220に取り付けられている場合、光源制御部112は、各光源130の紫外線LED光源134を発光制御する。そして、光源制御部112は、光源130の制御状況を示すデータを、劣化判定部115へ送る。 When the light source control unit 112 receives data indicating the determination result from the deterioration determination unit 115, the determination result indicated by the data is a determination result that the solar cell element 230b is not deteriorated. The light source 130 is controlled so as to make light incident on the solar cell element 230b using the condensing function (S116). For example, when the light source 130 as shown in FIG. 7 or 8 is attached to the fluorescent light collector 220, the light source control unit 112 controls the emission of the ultraviolet LED light source 134. In addition, when a plurality of light sources 130 as shown in FIG. 9 are attached to the fluorescent light collector 220, the light source control unit 112 controls the light emission of the ultraviolet LED light sources 134 of the respective light sources 130. Then, the light source control unit 112 sends data indicating the control status of the light source 130 to the deterioration determination unit 115.
 このようにして、光源130が制御されると、太陽電池素子230bは、電力を出力する。そうして、発電量測定装置150は、太陽電池素子230bの発電量を測定して、その実測値を示すデータを、検査装置110へ送信する。 Thus, when the light source 130 is controlled, the solar cell element 230b outputs electric power. Then, the power generation amount measuring device 150 measures the power generation amount of the solar cell element 230b and transmits data indicating the actual measurement value to the inspection device 110.
 発電量データ受信部113は、太陽電池素子230bの発電量を示すデータを、発電量測定装置150から受信すると(S117)、そのデータを、発電量判定部114へ送る。 When the power generation amount data receiving unit 113 receives data indicating the power generation amount of the solar cell element 230b from the power generation amount measuring device 150 (S117), the data is transmitted to the power generation amount determination unit 114.
 発電量判定部114は、発電量データ受信部113からデータを受け取ると、そのデータによって示される発電量の実測値が、予め定められたしきい値以上であるか否かを判定する(S118)。例えば、発電量判定部114が参照するしきい値は、太陽電池素子230の出力保証値とする。そして、発電量判定部114は、その判定結果を示すデータを、劣化判定部115へ送る。 When the power generation amount determination unit 114 receives data from the power generation amount data reception unit 113, the power generation amount determination unit 114 determines whether or not the actual measurement value of the power generation amount indicated by the data is greater than or equal to a predetermined threshold value (S118). . For example, the threshold value referred to by the power generation amount determination unit 114 is the guaranteed output value of the solar cell element 230. Then, the power generation amount determination unit 114 sends data indicating the determination result to the deterioration determination unit 115.
 検査装置110の劣化判定部115は、光源130の制御状況を示すデータを、光源制御部112から受け取る。ここでは、光源制御部112から受け取ったデータには、蛍光集光板220の集光機能を利用して太陽電池素子230bへ光を入射させるように光源130を制御していることが示されている。したがって、劣化判定部115は、判定結果を示すデータを、発電量判定部114から受け取ると、そのデータによって示される判定結果が、発電量の実測値がしきい値以上であるとする判定結果の場合(S118:Yes)、蛍光集光板220は劣化していないと判定する(S120)。そして、劣化判定部115は、その判定結果を示すデータを、判定結果データ出力部119へ送る。一方、劣化判定部115は、発電量判定部114から受け取ったデータによって示される判定結果が、発電量の実測値がしきい値以上ではないとする判定結果の場合(S118:No)、形状集光板210は劣化していると判定する(S119)。そして、劣化判定部115は、その判定結果を示すデータを、光量制御部117、及び判定結果データ出力部119へ送る。 The deterioration determination unit 115 of the inspection apparatus 110 receives data indicating the control status of the light source 130 from the light source control unit 112. Here, the data received from the light source control unit 112 indicates that the light source 130 is controlled so that light is incident on the solar cell element 230b using the light condensing function of the fluorescent light collector 220. . Therefore, when the deterioration determination unit 115 receives the data indicating the determination result from the power generation amount determination unit 114, the determination result indicated by the data is a determination result indicating that the actual measurement value of the power generation amount is equal to or greater than the threshold value. In the case (S118: Yes), it is determined that the fluorescent light collector 220 is not deteriorated (S120). Then, the degradation determination unit 115 sends data indicating the determination result to the determination result data output unit 119. On the other hand, when the determination result indicated by the data received from the power generation amount determination unit 114 is a determination result that the actual measurement value of the power generation amount is not equal to or greater than the threshold value (S118: No), the deterioration determination unit 115 It is determined that the optical plate 210 has deteriorated (S119). Then, the deterioration determination unit 115 sends data indicating the determination result to the light amount control unit 117 and the determination result data output unit 119.
 ところで、フォトセンサー140は、光を感知すると、その光量を示すデータを、検査装置110へ送信する。 By the way, when the photo sensor 140 senses light, the photo sensor 140 transmits data indicating the light amount to the inspection apparatus 110.
 検査装置110の光量データ受信部116は、光量を示すデータを、フォトセンサー140から受信すると(S121)、そのデータを、光量判定部117へ送る。 When the light amount data receiving unit 116 of the inspection apparatus 110 receives data indicating the light amount from the photosensor 140 (S121), the light amount data receiving unit 116 sends the data to the light amount determining unit 117.
 検査装置110の光量判定部117は、光量を示すデータを、光量データ受信部116から受け取る。そして、光量判定部117は、判定結果を示すデータを、劣化判定部115から受け取ると、フォトセンサー140によって測定された光量がしきい値以上であるか否かを判定する(S122)。例えば、光量判定部117が参照するしきい値は、蛍光体の吸光性能が正常な場合に許容され得る透過光量の限界値とする。そして、光量判定部117は、その判定結果を示すデータを、吸光性能劣化判定部118へ送る。 The light amount determination unit 117 of the inspection apparatus 110 receives data indicating the light amount from the light amount data reception unit 116. When the light amount determination unit 117 receives data indicating the determination result from the deterioration determination unit 115, the light amount determination unit 117 determines whether or not the light amount measured by the photosensor 140 is equal to or greater than a threshold value (S122). For example, the threshold value referred to by the light amount determination unit 117 is a limit value of the transmitted light amount that can be allowed when the light absorption performance of the phosphor is normal. Then, the light quantity determination unit 117 sends data indicating the determination result to the light absorption performance deterioration determination unit 118.
 検査装置110の吸光性能劣化判定部118は、判定結果を示すデータを、光量判定部117から受け取ると、そのデータによって示される判定結果が、フォトセンサー140によって測定された光量がしきい値以上であるとする判定結果の場合(S122:Yes)、蛍光集光板220に混入されている蛍光体の吸光性能は劣化していると判定する(S123)。そして、吸光性能劣化判定部118は、その判定結果を示すデータを、判定結果データ出力部119へ送る。一方、吸光性能劣化判定部118は、光量判定部117から受け取ったデータによって示される判定結果が、フォトセンサー140によって測定された光量がしきい値以上ではないとする判定結果の場合(S122:No)、蛍光集光板220に混入されている蛍光体の吸光性能は劣化していないと判定する(S124)。そして、吸光性能劣化判定部118は、その判定結果を示すデータを、判定結果データ出力部119へ送る。 When the light absorption performance degradation determination unit 118 of the inspection apparatus 110 receives data indicating the determination result from the light amount determination unit 117, the determination result indicated by the data indicates that the light amount measured by the photosensor 140 is greater than or equal to the threshold value. In the case of the determination result that there is (S122: Yes), it is determined that the light absorption performance of the phosphor mixed in the fluorescent light collector 220 is deteriorated (S123). Then, the light absorption performance deterioration determination unit 118 sends data indicating the determination result to the determination result data output unit 119. On the other hand, the light absorption performance deterioration determination unit 118 determines that the determination result indicated by the data received from the light amount determination unit 117 is a determination result that the light amount measured by the photosensor 140 is not equal to or greater than the threshold (S122: No). ), It is determined that the light absorption performance of the phosphor mixed in the fluorescent light collector 220 is not deteriorated (S124). Then, the light absorption performance deterioration determination unit 118 sends data indicating the determination result to the determination result data output unit 119.
 判定結果データ出力部119は、判定結果を示すデータを、劣化判定部115や吸光性能劣化判定部118から受け取ると、それのデータによって示される各判定結果を示すデータを、出力装置190へ出力する(S125)。例えば、出力装置190がディスプレイやプロジェクタの場合、判定結果データ出力部119は、各判定結果を示す情報を画面表示させるデータを出力する。また、例えば、出力装置190がプリンタやプロッタの場合、判定結果データ出力部119は、各判定結果を示す情報を印字、印刷させるデータを出力する。また、例えば、出力装置190がスピーカーやイヤフォンの場合、判定結果データ出力部119は、各判定結果を示す情報を音声出力させるデータを出力する。 When the determination result data output unit 119 receives data indicating the determination result from the deterioration determination unit 115 or the light absorption performance deterioration determination unit 118, the determination result data output unit 119 outputs data indicating each determination result indicated by the data to the output device 190. (S125). For example, when the output device 190 is a display or a projector, the determination result data output unit 119 outputs data for displaying information indicating each determination result on the screen. For example, when the output device 190 is a printer or a plotter, the determination result data output unit 119 outputs data for printing and printing information indicating each determination result. For example, when the output device 190 is a speaker or an earphone, the determination result data output unit 119 outputs data for outputting information indicating each determination result as a sound.
 このようにして、集光型太陽電池セル検査システム100は、集光型太陽電池セルCの何れの部材が劣化しているのかを、ユーザに知らせることができる。 Thus, the concentrating solar cell inspection system 100 can inform the user which member of the concentrating solar cell C has deteriorated.
 なお、本実施形態においては、光源130が形状集光板210や蛍光集光板220に取り付けられている例について説明したが、光源130は、形状集光板210や蛍光集光板220に対して着脱自在にしてもよい。 In this embodiment, the example in which the light source 130 is attached to the shape light collector 210 or the fluorescence light collector 220 has been described. However, the light source 130 is detachable from the shape light collector 210 or the fluorescence light collector 220. May be.
 また、本実施形態においては、集光型太陽電池セルCを、太陽電池素子230a、形状集光板210、太陽電池素子230b、蛍光集光板220の順に検査する例について説明したが、集光型太陽電池セルCを検査する順番は、太陽電池素子230aよりも後に形状集光板210が検査されて、太陽電池素子230bよりも後に蛍光集光板220が検査されれば、その他の検査の順は如何様であっても構わない。 Moreover, although this embodiment demonstrated the example which test | inspects the concentrating photovoltaic cell C in order of the solar cell element 230a, the shape light-condensing plate 210, the solar cell element 230b, and the fluorescence light-condensing plate 220, a concentrating solar cell is demonstrated. The order of inspecting the battery cell C is such that the shape light collector 210 is inspected after the solar battery element 230a and the fluorescent light collector 220 is inspected after the solar battery element 230b. It does not matter.
 また、光源制御部112は、集光型太陽電池セルCの検査を行っていないときに、パターンデータ格納部111に格納されているデータよって示される同時に照射動作させるべき光源130の組合せにしたがって、各光源130を制御するようにしてもよい。例えば、図11に示すようなデータがパターンデータ格納部111に格納されているとすると、光源制御部112は、光源ID「L001」の光源130を発光させず、光源ID「L002」の光源130を発光させて、光源ID「L003」の光源130を発光させないようにそれぞれ制御する。上述したように、太陽電池モジュールMは、複数の集光型太陽電池セルCがマトリクス状に配置されている。そのため、集光型太陽電池セル検査システム100においては、太陽電池モジュールM、又は太陽電池アレイAを電光掲示板に見立てて、予め決められた文字や絵等が視認されるように、光源130を発光させる集光型太陽電池セルCを決めておき、各集光型太陽電池セルCに取り付けられている光源130の光源IDと、その光源130を発光させるか否かを示すデータを対応付けてパターンデータ格納部111に格納しておけば、太陽電池モジュールM、又は太陽電池アレイAを電光掲示板として利用することができる。 Further, the light source control unit 112, when not inspecting the concentrating solar cell C, according to the combination of the light sources 130 to be simultaneously irradiated indicated by the data stored in the pattern data storage unit 111, Each light source 130 may be controlled. For example, if data as shown in FIG. 11 is stored in the pattern data storage unit 111, the light source control unit 112 does not cause the light source 130 with the light source ID “L001” to emit light, and the light source 130 with the light source ID “L002”. And the light source 130 with the light source ID “L003” is controlled not to emit light. As described above, the solar cell module M has a plurality of concentrating solar cells C arranged in a matrix. Therefore, in the concentrating solar cell inspection system 100, the light source 130 emits light so that a predetermined character, picture, or the like can be visually recognized with the solar cell module M or the solar cell array A as an electric bulletin board. The concentrating solar cell C to be determined is determined, and the light source ID of the light source 130 attached to each concentrating solar cell C is associated with data indicating whether or not the light source 130 emits light. If stored in the data storage unit 111, the solar cell module M or the solar cell array A can be used as an electric bulletin board.
 また、本実施形態においては、形状集光板210と蛍光集光板220とを備える集光型太陽電池セルCを検査対象とする例について説明したが、検査対象とする集光型太陽電池セルCは、形状集光板210のみを備えるものであってもよいし、蛍光集光板220のみを備えるものであってもよい。 Moreover, in this embodiment, although the example which makes the condensing type photovoltaic cell C provided with the shape light-condensing plate 210 and the fluorescence light-concentrating plate 220 an inspection object was demonstrated, the concentrating solar cell C made into an inspection object is Further, only the shape light collector 210 may be provided, or only the fluorescent light collector 220 may be provided.
 図15は、検査装置110をコンピュータ等の電子情報処理装置で構成した場合のハードウェア構成の一例を示す。検査装置110は、CPU(Central Processing Unit)周辺部と、入出力部と、レガシー入出力部とを備える。CPU周辺部は、ホスト・コントローラ801により相互に接続されるCPU802、RAM(Random Access Memory)803、グラフィック・コントローラ804、及び表示装置805を有する。入出力部は、入出力コントローラ806によりホスト・コントローラ801に接続される通信インターフェース807、ハードディスクドライブ808、及びCD-ROM(Compact Disk Read Only Memory)ドライブ809を有する。レガシー入出力部は、入出力コントローラ806に接続されるROM(Read Only Memory)810、フレキシブルディスク・ドライブ811、及び入出力チップ812を有する。 FIG. 15 shows an example of a hardware configuration when the inspection apparatus 110 is configured by an electronic information processing apparatus such as a computer. The inspection apparatus 110 includes a CPU (Central Processing Unit) peripheral part, an input / output part, and a legacy input / output part. The CPU peripheral section includes a CPU 802, a RAM (Random Access Memory) 803, a graphic controller 804, and a display device 805 that are connected to each other by a host controller 801. The input / output unit includes a communication interface 807, a hard disk drive 808, and a CD-ROM (Compact Disk Only Memory) drive 809 connected to the host controller 801 by the input / output controller 806. The legacy input / output unit includes a ROM (Read Only Memory) 810, a flexible disk drive 811, and an input / output chip 812 connected to the input / output controller 806.
 ホスト・コントローラ801は、RAM803と、高い転送レートでRAM803をアクセスするCPU802、及びグラフィック・コントローラ804とを接続する。CPU802は、ROM810、及びRAM803に格納されたプログラムに基づいて動作して、各部の制御をする。グラフィック・コントローラ804は、CPU802等がRAM803内に設けたフレーム・バッファ上に生成する画像データを取得して、表示装置805上に表示させる。これに代えて、グラフィック・コントローラ804は、CPU802等が生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。 The host controller 801 connects the RAM 803, the CPU 802 that accesses the RAM 803 at a high transfer rate, and the graphic controller 804. The CPU 802 operates based on programs stored in the ROM 810 and the RAM 803 to control each unit. The graphic controller 804 acquires image data generated by the CPU 802 or the like on a frame buffer provided in the RAM 803 and displays the image data on the display device 805. Alternatively, the graphic controller 804 may include a frame buffer for storing image data generated by the CPU 802 or the like.
 入出力コントローラ806は、ホスト・コントローラ801と、比較的高速な入出力装置であるハードディスクドライブ808、通信インターフェース807、CD-ROMドライブ809を接続する。ハードディスクドライブ808は、CPU802が使用するプログラム、及びデータを格納する。通信インターフェース807は、ネットワーク通信装置891に接続してプログラム又はデータを送受信する。CD-ROMドライブ809は、CD-ROM892からプログラム又はデータを読み取り、RAM803を介してハードディスクドライブ808、及び通信インターフェース807に提供する。 The input / output controller 806 connects the host controller 801 to the hard disk drive 808, the communication interface 807, and the CD-ROM drive 809, which are relatively high-speed input / output devices. The hard disk drive 808 stores programs and data used by the CPU 802. The communication interface 807 is connected to the network communication device 891 to transmit / receive programs or data. The CD-ROM drive 809 reads a program or data from the CD-ROM 892 and provides it to the hard disk drive 808 and the communication interface 807 via the RAM 803.
 入出力コントローラ806には、ROM810と、フレキシブルディスク・ドライブ811、及び入出力チップ812の比較的低速な入出力装置とが接続される。ROM810は、検査装置110が起動時に実行するブート・プログラム、あるいは検査装置110のハードウェアに依存するプログラム等を格納する。フレキシブルディスク・ドライブ811は、フレキシブルディスク893からプログラム又はデータを読み取り、RAM803を介してハードディスクドライブ808、及び通信インターフェース807に提供する。入出力チップ812は、フレキシブルディスク・ドライブ811、あるいはパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポート等を介して各種の入出力装置を接続する。 The input / output controller 806 is connected to the ROM 810, the flexible disk drive 811, and the relatively low-speed input / output device of the input / output chip 812. The ROM 810 stores a boot program executed when the inspection apparatus 110 is started, a program depending on the hardware of the inspection apparatus 110, and the like. The flexible disk drive 811 reads a program or data from the flexible disk 893 and provides it to the hard disk drive 808 and the communication interface 807 via the RAM 803. The input / output chip 812 connects various input / output devices via a flexible disk drive 811 or a parallel port, a serial port, a keyboard port, a mouse port, and the like.
 CPU802が実行するプログラムは、フレキシブルディスク893、CD-ROM892、又はIC(Integrated Circuit)カード等の記録媒体に格納されて利用者によって提供される。記録媒体に格納されたプログラムは圧縮されていても非圧縮であってもよい。プログラムは、記録媒体からハードディスクドライブ808にインストールされ、RAM803に読み出されてCPU802により実行される。CPU802により実行されるプログラムは、システム制御装置110を、図1から図14に関連して説明したパターンデータ格納部111、光源制御部112、発電量データ受信部113、発電量判定部114、劣化判定部115、光量データ受信部116、光量判定部117、吸光性能劣化判定部118、及び判定結果データ出力部119として機能させる。 The program executed by the CPU 802 is stored in a recording medium such as a flexible disk 893, a CD-ROM 892, or an IC (Integrated Circuit) card and provided by the user. The program stored in the recording medium may be compressed or uncompressed. The program is installed in the hard disk drive 808 from the recording medium, read into the RAM 803, and executed by the CPU 802. The program executed by the CPU 802 includes the system control device 110, the pattern data storage unit 111, the light source control unit 112, the power generation amount data reception unit 113, the power generation amount determination unit 114, and the deterioration described with reference to FIGS. The determination unit 115, the light amount data reception unit 116, the light amount determination unit 117, the light absorption performance deterioration determination unit 118, and the determination result data output unit 119 are caused to function.
 以上に示したプログラムは、外部の記憶媒体に格納されてもよい。記憶媒体としては、フレキシブルディスク893、CD-ROM892の他に、DVD(Digital Versatile Disk)又はPD(Phase Disk)等の光学記録媒体、MD(MiniDisk)等の光磁気記録媒体、テープ媒体、ICカード等の半導体メモリ等を用いることができる。また、専用通信ネットワークあるいはインターネットに接続されたサーバシステムに設けたハードディスク又はRAM等の記憶媒体を記録媒体として使用して、ネットワークを介したプログラムとして提供してもよい。 The programs shown above may be stored in an external storage medium. Storage media include flexible disk 893 and CD-ROM 892, optical recording media such as DVD (Digital Versatile Disk) or PD (Phase Disk), magneto-optical recording media such as MD (MiniDisk), tape media, and IC cards. A semiconductor memory or the like can be used. Alternatively, a storage medium such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium and provided as a program via the network.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は、上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 本発明は、集光型太陽電池を検査するシステム、装置、方法などに適用できる。 The present invention can be applied to a system, apparatus, method and the like for inspecting a concentrating solar cell.
 100  太陽電池セル検査システム
 110  検査装置
 111  パターンデータ格納部
 112  光源制御部
 113  発電量データ受信部
 114  発電量判定部
 115  劣化判定部
 116  光量データ受信部
 117  光量判定部
 118  吸光性能劣化判定部
 119  判定結果データ出力部
 130  光源
 131  レーザー光源
 132  LED光源
 133  レーザー光源
 133  紫外線LED光源
 140  フォトセンサー
 150  発電量測定装置
 160  パワーコンディショナー
 170  電力分配器
 180  二次電池
 190  出力装置
 200  筐体
 201  筐体の上面
 202  領域
 210  形状集光板
 211  側面
 212  上面
 213  凸部
 213a  長い斜面
 213b  短い斜面
 214  側面
 215  側面
 216  側面
 220  蛍光集光板
 221  側面
 222  上面
 223  下面
 224  側面
 225  側面
 226  側面
 230  太陽電池素子
 231  受光面
 240  粘着材
 250  反射板
 260  反射板
 801  ホスト・コントローラ
 802  CPU
 803  RAM
 804  グラフィック・コントローラ
 805  表示装置
 806  入出力コントローラ
 807  通信インターフェース
 808  ハードディスクドライブ
 809  CD-ROMドライブ
 810  ROM
 811  フレキシブルディスク・ドライブ
 812  入出力チップ
 891  ネットワーク通信装置
 892  CD-ROM
 893  フレキシブルディスク
 A  太陽電池アレイ
 M  太陽電池モジュール
 C  太陽電池セル
 L  電力負荷
 P  商用電源
 S  太陽光
DESCRIPTION OF SYMBOLS 100 Solar cell inspection system 110 Inspection apparatus 111 Pattern data storage part 112 Light source control part 113 Power generation amount data reception part 114 Power generation amount determination part 115 Degradation determination part 116 Light quantity data reception part 117 Light quantity determination part 118 Light absorption performance degradation determination part 119 Determination Result data output unit 130 Light source 131 Laser light source 132 LED light source 133 Laser light source 133 UV LED light source 140 Photo sensor 150 Power generation amount measuring device 160 Power conditioner 170 Power distributor 180 Secondary battery 190 Output device 200 Case 201 Upper surface 202 of the case Area 210 Shaped light collector 211 Side surface 212 Top surface 213 Protruding portion 213a Long slope 213b Short slope 214 Side surface 215 Side surface 216 Side surface 220 Fluorescent light collector plate 221 Surface 222 upper surface 223 bottom surface 224 side 225 side 226 side 230 solar cell element 231 the light-receiving surface 240 adhesive 250 reflection plate 260 reflecting plate 801 the host controller 802 CPU
803 RAM
804 Graphic controller 805 Display device 806 Input / output controller 807 Communication interface 808 Hard disk drive 809 CD-ROM drive 810 ROM
811 Flexible disk drive 812 I / O chip 891 Network communication device 892 CD-ROM
893 Flexible disk A Solar cell array M Solar cell module C Solar cell L Power load P Commercial power source S Sunlight

Claims (12)

  1.  集光型太陽電池セルを検査する集光型太陽電池セル検査システムであって、
     前記集光型太陽電池セルの集光板に取り付けられて、光を照射する照射部と、
     前記集光型太陽電池セルの太陽電池素子の発電量を測定する発電量測定装置と、
     前記集光型太陽電池セルを検査する検査装置と
    を備え、
     前記検査装置は、
     前記照射部によって光が照射されているときに、前記発電量測定装置によって測定された発電量の実測値が、予め定められたしきい値以上であるか否かを判定する発電量判定部
    を有する集光型太陽電池セル検査システム。
    A concentrating solar cell inspection system for inspecting concentrating solar cells,
    An irradiating part that is attached to the light concentrating plate of the concentrating solar cell and emits light;
    A power generation amount measuring device for measuring the power generation amount of the solar cell element of the concentrating solar cell;
    An inspection device for inspecting the concentrating solar cells,
    The inspection device includes:
    A power generation amount determination unit that determines whether or not an actual measurement value of the power generation amount measured by the power generation amount measurement device is equal to or greater than a predetermined threshold when light is irradiated by the irradiation unit; A concentrating solar cell inspection system.
  2.  前記検査装置は、
     前記照射部を制御する照射制御部
    を更に有する請求項1に記載の検査システム。
    The inspection device includes:
    The inspection system according to claim 1, further comprising an irradiation control unit that controls the irradiation unit.
  3.  前記照射制御部は、前記集光板の集光機能を利用せずに前記太陽電池素子へ光を入射させるように前記照射部を制御する
    請求項2に記載の集光型太陽電池セル検査システム。
    The concentrating solar cell inspection system according to claim 2, wherein the irradiation control unit controls the irradiation unit so that light is incident on the solar cell element without using a condensing function of the light collector.
  4.  前記照射制御部は、前記集光板の集光機能を利用して前記太陽電池素子へ光を入射させるように前記照射部を制御する
    請求項2又は3に記載の集光型太陽電池セル検査システム。
    The said irradiation control part controls the said irradiation part so that light may inject into the said solar cell element using the condensing function of the said light-condensing plate, The concentrating photovoltaic cell inspection system of Claim 2 or 3 .
  5.  前記照射制御部による前記照射部の制御状況と、前記発電量判定部が判定した判定結果とに基づいて、前記太陽電池素子、又は前記集光板が劣化しているか否かを判定する劣化判定部
    を更に有する請求項4に記載の集光型太陽電池セル検査システム。
    A deterioration determination unit that determines whether or not the solar cell element or the light collector is deteriorated based on the control state of the irradiation unit by the irradiation control unit and the determination result determined by the power generation amount determination unit. The concentrating solar cell inspection system according to claim 4, further comprising:
  6.  前記劣化判定部は、前記集光板の集光機能を利用せずに前記太陽電池素子へ光を入射させるように、前記照射制御部が前記照射部を制御しているときに、発電量の実測値がしきい値以上ではないと前記発電量判定部が判定した場合、前記太陽電池素子が劣化していると判定する
    請求項5に記載の集光型太陽電池セル検査システム。
    The degradation determination unit measures the amount of power generation when the irradiation control unit controls the irradiation unit so that light is incident on the solar cell element without using the light collecting function of the light collector. The concentrating solar cell inspection system according to claim 5, wherein when the power generation amount determination unit determines that the value is not equal to or greater than a threshold value, the solar cell element is determined to be deteriorated.
  7.  前記劣化判定部は、前記集光板の集光機能を利用して前記太陽電池素子へ光を入射させるように、前記照射制御部が前記照射部を制御しているときに、発電量の実測値がしきい値以上ではないと前記発電量判定部が判定した場合、前記集光板が劣化していると判定する
    請求項5又は6に記載の集光型太陽電池セル検査システム。
    The deterioration determination unit is a measured value of the amount of power generated when the irradiation control unit controls the irradiation unit so that light is incident on the solar cell element using the light collecting function of the light collector. 7. The concentrating solar cell inspection system according to claim 5, wherein the power generation amount determination unit determines that the light collecting plate is deteriorated when it is determined that the power generation amount is not equal to or greater than a threshold.
  8.  前記集光板が蛍光集光板である場合に、
     前記集光板に取り付けられて、光量を測定する光量測定部
    を更に備え、
     前記検査装置は、
     前記蛍光集光板が劣化していると前記劣化判定部が判定した場合に、前記光量測定部によって測定された光量がしきい値以上であるか否かを判定する光量判定部と、
     前記光量判定部が判定した判定結果に基づいて、前記蛍光集光板に混入されている蛍光体の吸光性能が劣化しているか否かを判定する蛍光集光板劣化判定部と
    を更に有する請求項5から請求項7のいずれか一項に記載の集光型太陽電池セル検査システム。
    When the light collector is a fluorescent light collector,
    A light amount measurement unit that is attached to the light collector and measures the amount of light is further provided,
    The inspection device includes:
    A light amount determination unit that determines whether or not the light amount measured by the light amount measurement unit is equal to or greater than a threshold when the deterioration determination unit determines that the fluorescent light collector is deteriorated;
    The fluorescent light collecting plate deterioration determining unit that determines whether the light absorption performance of the phosphor mixed in the fluorescent light collecting plate is deteriorated based on the determination result determined by the light amount determining unit. The concentrating photovoltaic cell inspection system according to claim 7.
  9.  複数の前記太陽電池セルが並べて配置されている場合、
     前記照射部は、前記各集光型太陽電池セルに対してそれぞれ個別に設けられ、
     前記検査装置は、
     前記各照射部のうち、同時に照射動作させるべき照射部の組合せのパターンを示すデータが格納されているパターンデータ格納部
    を更に有し、
     前記照射制御部は、前記パターンデータ格納部に格納されているデータによって示される同時に照射動作させるべき照射部の組合せにしたがって、前記各照射部を制御する
    請求項2から請求項8のいずれか一項に記載の集光型太陽電池セル検査システム。
    When a plurality of the solar cells are arranged side by side,
    The irradiation unit is individually provided for each of the concentrating solar cells,
    The inspection device includes:
    Of each of the irradiation units, further having a pattern data storage unit storing data indicating a pattern of a combination of irradiation units to be simultaneously irradiated,
    The said irradiation control part controls any one said irradiation part according to the combination of the irradiation part which should perform irradiation operation simultaneously shown by the data stored in the said pattern data storage part. 4. The concentrating solar cell inspection system according to item.
  10.  集光型太陽電池セルを検査する検査装置であって、
     照射部によって前記集光型太陽電池セルが照射されているときに、発電量測定装置によって測定された発電量の実測値が、予め定められたしきい値以上であるか否かを判定する発電量判定部
    を備える検査装置。
    An inspection device for inspecting concentrating solar cells,
    Power generation that determines whether or not the actual measurement value of the power generation amount measured by the power generation amount measuring device is equal to or greater than a predetermined threshold when the concentrating solar cell is irradiated by the irradiation unit An inspection apparatus provided with a quantity determination unit.
  11.  集光型太陽電池セルを検査する検査装置を制御する制御方法であって、
     照射部によって前記集光型太陽電池セルが照射されているときに、発電量測定装置によって測定された発電量の実測値が、予め定められたしきい値以上であるか否かを判定する工程
    を含む制御方法。
    A control method for controlling an inspection device for inspecting a concentrating solar cell,
    A step of determining whether or not an actual measurement value of the power generation amount measured by the power generation amount measuring device is equal to or more than a predetermined threshold when the concentrating solar cell is irradiated by the irradiation unit. Control method.
  12.  集光型太陽電池セルを検査する検査装置用のプログラムであって、前記検査装置のコンピュータに、
     照射部によって前記集光型太陽電池セルが照射されているときに、発電量測定装置によって測定された発電量の実測値が、予め定められたしきい値以上であるか否かを判定する工程
    を実行させるプログラム。
    A program for an inspection apparatus for inspecting a concentrating solar cell, the computer of the inspection apparatus,
    A step of determining whether or not an actual measurement value of the power generation amount measured by the power generation amount measuring device is equal to or more than a predetermined threshold when the concentrating solar cell is irradiated by the irradiation unit. A program that executes
PCT/JP2012/060501 2011-04-27 2012-04-18 Concentrating solar cell inspection system, inspection device, control method, and program WO2012147593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-100158 2011-04-27
JP2011100158A JP2014135304A (en) 2011-04-27 2011-04-27 Concentrating solar cell inspection system, inspection device, control method, and program

Publications (1)

Publication Number Publication Date
WO2012147593A1 true WO2012147593A1 (en) 2012-11-01

Family

ID=47072114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060501 WO2012147593A1 (en) 2011-04-27 2012-04-18 Concentrating solar cell inspection system, inspection device, control method, and program

Country Status (2)

Country Link
JP (1) JP2014135304A (en)
WO (1) WO2012147593A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131051A (en) * 1993-09-07 1995-05-19 Mitsubishi Motors Corp Solar cell panel
JP2000068546A (en) * 1998-08-19 2000-03-03 Honda Motor Co Ltd Testing method and device of solar beam tracking power generating system
JP2000147262A (en) * 1998-11-11 2000-05-26 Nobuyuki Higuchi Converging device and photovoltaic power generation system utilizing the device
JP2007218540A (en) * 2006-02-17 2007-08-30 Nagaoka Univ Of Technology Solar collector, and solar battery and solar heat collector using it
JP2009099607A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Failure diagnostic device of solar cell module
JP2011009358A (en) * 2009-06-24 2011-01-13 Stanley Electric Co Ltd Solar cell evaluation device
JP2011009536A (en) * 2009-06-26 2011-01-13 Toppan Printing Co Ltd Solar cell condensing sheet and solar cell condensing sheet with module
JP2011071185A (en) * 2009-09-24 2011-04-07 Tomoo Matsushita Device and method for evaluating characteristic of solar cell
JP2011075296A (en) * 2009-09-29 2011-04-14 Canon Inc Thin display device, and method for detecting damage of front glass

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131051A (en) * 1993-09-07 1995-05-19 Mitsubishi Motors Corp Solar cell panel
JP2000068546A (en) * 1998-08-19 2000-03-03 Honda Motor Co Ltd Testing method and device of solar beam tracking power generating system
JP2000147262A (en) * 1998-11-11 2000-05-26 Nobuyuki Higuchi Converging device and photovoltaic power generation system utilizing the device
JP2007218540A (en) * 2006-02-17 2007-08-30 Nagaoka Univ Of Technology Solar collector, and solar battery and solar heat collector using it
JP2009099607A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Failure diagnostic device of solar cell module
JP2011009358A (en) * 2009-06-24 2011-01-13 Stanley Electric Co Ltd Solar cell evaluation device
JP2011009536A (en) * 2009-06-26 2011-01-13 Toppan Printing Co Ltd Solar cell condensing sheet and solar cell condensing sheet with module
JP2011071185A (en) * 2009-09-24 2011-04-07 Tomoo Matsushita Device and method for evaluating characteristic of solar cell
JP2011075296A (en) * 2009-09-29 2011-04-14 Canon Inc Thin display device, and method for detecting damage of front glass

Also Published As

Publication number Publication date
JP2014135304A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
CN101936505B (en) Fluorescent wheel, light source device and projector
CN101846250B (en) Light source unit utilizing laser for light source and projector
CN101271368B (en) Near-normal incidence optical mouse illumination system with prism
KR102125532B1 (en) Reflowable opto-electronic module
TWI287117B (en) Light guide lens and light emitting diode package structure having the light guide lens
JP2017152698A (en) Optoelectronic module
EP2853942A1 (en) Luminescent light emitting device having luminescent material plate that is caused to be luminous by excitation light source and projector including same luminescent light emitting device
CN106170735A (en) Light supply apparatus and the image projection apparatus with light supply apparatus
JP2007093376A (en) Method and apparatus for detecting radiation position
CN107045138B (en) Back scattering detection module
CN104718481A (en) Actively aligned detectors for optical and optoelectronic arrays
KR20130105498A (en) Light source unit and projector
WO2011152082A1 (en) Solar simulator and solar cell inspection apparatus
CN105247582A (en) Image acquisition device and image acquisition method
US20130258322A1 (en) Lens testing device
CN103674490B (en) Optical detection system and optical detection device thereof
CN114500808A (en) Laser projector, depth camera and electronic device
WO2012147593A1 (en) Concentrating solar cell inspection system, inspection device, control method, and program
WO2012147758A1 (en) Solar cell array management system, solar cell array inspection device, control method, and program
WO2016174907A1 (en) Information transmitting apparatus
WO2012144431A1 (en) Solar cell module and solar power generation apparatus
CN217098924U (en) Combined matrix optical lens's projection arrangement and 3D printer
TWM345349U (en) Optical receiver device of solar cell and the entire luminous flux detection system with it
JP2014139957A (en) Management device, management method, and management program
CN102788769A (en) Wafer detection device and wafer detection method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP