JP2007093376A - Method and apparatus for detecting radiation position - Google Patents

Method and apparatus for detecting radiation position Download PDF

Info

Publication number
JP2007093376A
JP2007093376A JP2005282866A JP2005282866A JP2007093376A JP 2007093376 A JP2007093376 A JP 2007093376A JP 2005282866 A JP2005282866 A JP 2005282866A JP 2005282866 A JP2005282866 A JP 2005282866A JP 2007093376 A JP2007093376 A JP 2007093376A
Authority
JP
Japan
Prior art keywords
scintillator
light
light receiving
radiation
scintillators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005282866A
Other languages
Japanese (ja)
Other versions
JP4534006B2 (en
JP2007093376A5 (en
Inventor
Naoko Inetama
直子 稲玉
Hideo Murayama
秀雄 村山
Kengo Shibuya
憲悟 澁谷
Keiji Kitamura
圭司 北村
Hiroyuki Ishibashi
浩之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
National Institute of Radiological Sciences
Showa Denko Materials Co Ltd
Original Assignee
Shimadzu Corp
Hitachi Chemical Co Ltd
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Hitachi Chemical Co Ltd, National Institute of Radiological Sciences filed Critical Shimadzu Corp
Priority to JP2005282866A priority Critical patent/JP4534006B2/en
Publication of JP2007093376A publication Critical patent/JP2007093376A/en
Publication of JP2007093376A5 publication Critical patent/JP2007093376A5/ja
Application granted granted Critical
Publication of JP4534006B2 publication Critical patent/JP4534006B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable emission intensity of each scintillator crystal to be detected by using light-sensitive elements whose number is less than that of scintillator crystals, by overcoming the limit of detectability due to existence of non-sensitive regions inherent in the light-sensitive elements. <P>SOLUTION: A radiation detector includes: a polyhedral scintillator block composed of a plurality of scintillators arranged thereon; and the light-sensitive elements for receiving light emitted from the scintillators caused by incidence of radiation through the scintillators where optical coupling is carried out. In a method for detecting a radiation position, which employs the radiation detector and detects a position of a light-emitting scintillator and energy of absorbed radiation, two or more groups of light-sensitive elements each having the non-sensitive region in at least one surface and coupling optically with different scintillators, are disposed at both edges of a channel passing through the plurality of scintillators, and reflectivity and transmissivity of light at border and peripheral planes of respective scintillators are adjusted, thereby controlling respective groups of light-sensitive elements in allocation of light-receiving amount. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放射線位置検出方法及び装置に係り、特に、PET等の核医学イメージングによる医療機器や放射線計測器に用いるのに好適な、複数のシンチレータが配列されたシンチレータブロックと、放射線の入射によるシンチレータの発光を、対向するシンチレータを通して受光する受光素子を含む放射線検出器で、発光したシンチレータの位置と吸収された放射線のエネルギを検出するための放射線位置検出方法及び装置に関する。   The present invention relates to a radiation position detection method and apparatus, and more particularly to a scintillator block in which a plurality of scintillators are arranged, which is suitable for use in medical equipment and radiation measuring instruments using nuclear medicine imaging such as PET, and radiation incident. The present invention relates to a radiation position detection method and apparatus for detecting the position of emitted scintillator and the energy of absorbed radiation in a radiation detector including a light receiving element that receives light emitted from the scintillator through an opposing scintillator.

ある種の物質は放射線が入射した際に、蛍光を発する性質を有する。これらの物質はシンチレータと呼ばれ、放射線センサとして広く用いられている。シンチレータが蛍光を生じるには、放射線との相互作用によってエネルギを受け取る必要がある。陽電子消滅ガンマ線などの高エネルギ光子は物質を透過する能力が高いため、効率よく検出するためには、ガンマ線の進行方向に対して2cm以上の厚さのシンチレータ結晶を設置することがある。   Certain substances have the property of emitting fluorescence when irradiated with radiation. These substances are called scintillators and are widely used as radiation sensors. In order for the scintillator to produce fluorescence, it needs to receive energy by interaction with radiation. Since high-energy photons such as positron annihilation gamma rays have a high ability to transmit substances, a scintillator crystal having a thickness of 2 cm or more may be installed in the traveling direction of gamma rays in order to detect them efficiently.

これに対して、核医学イメージングの分野では、放射線の入射方向を特定して画像の解像度を上げる目的で、シンチレータ結晶の各辺の長さは短い方が好ましい。この矛盾を解決する技術として、体積の小さなシンチレータ結晶を複数積み重ねて厚みを確保する手法が発達してきた。この場合、高エネルギ光子がある結晶を透過して背後の結晶にのみエネルギを与えることがある。この手法では、発光した結晶を正確に検知する技術が不可欠である。   On the other hand, in the field of nuclear medicine imaging, the length of each side of the scintillator crystal is preferably short for the purpose of specifying the incident direction of radiation and increasing the resolution of the image. As a technique for solving this contradiction, a technique has been developed for securing a thickness by stacking a plurality of small scintillator crystals. In this case, high energy photons may pass through a crystal and give energy only to the crystal behind it. In this method, a technique for accurately detecting the emitted crystal is indispensable.

通常、放射線検出器は、シンチレータ結晶素子と受光素子で構成され、発光した結晶素子は、受光素子で測定される結晶素子の発光量を基に位置演算することで特定できる。   Usually, the radiation detector is composed of a scintillator crystal element and a light receiving element, and the crystal element that has emitted light can be identified by calculating the position based on the light emission amount of the crystal element measured by the light receiving element.

放射線の2次元検出は、ガンマカメラ等において検出器信号の位置演算により一般的に行なわれている。3次元検出については、いくつかの方法が提案されているが、最も一般的なのは、例えば特許文献1に記載されているように、シンチレーション波形の異なる結晶素子を深さ方向に積層し、波形で結晶の種類を特定することにより、深さ情報を得る方法である。しかし、この方法では、使用する複数の種類の結晶性能の差を埋め合わせる工夫が必要となる。   Two-dimensional detection of radiation is generally performed by position calculation of a detector signal in a gamma camera or the like. Several methods have been proposed for three-dimensional detection, but the most common is, for example, as described in Patent Document 1, crystal elements having different scintillation waveforms are stacked in the depth direction, This is a method of obtaining depth information by specifying the type of crystal. However, in this method, it is necessary to devise a method to make up for the difference in the performance of a plurality of types of crystals used.

なお、特許文献1には、シンチレータセル間を、空気、光反射材(金属箔、ポリマー膜、無機粉末)、光透過材(シリコーンオイル、透明接着材)等で満たし、シンチレータセル毎の光学表面条件(鏡面又は粗面)と光反射材及び光透過材の組合せを最適化することにより、受光素子で受ける光の総量を均一化することも記載されている。   In Patent Document 1, the space between the scintillator cells is filled with air, light reflecting material (metal foil, polymer film, inorganic powder), light transmitting material (silicone oil, transparent adhesive), etc., and the optical surface for each scintillator cell It also describes that the total amount of light received by the light receiving element is made uniform by optimizing the combination of conditions (mirror surface or rough surface) and a light reflecting material and a light transmitting material.

一方、同種、同サイズの結晶素子を積層した結晶配列での3次元検出を行なうものとして、特許文献2や3には、図1に示す如く、γ線の入射によりシンチレーション発光された光が、両端の受光素子111、112まで到達する光の経路130を作り、発光した光が、受光素子111、112に到達するまでにシンチレータセル101〜106の境界面120〜126をいくつ通過するかをシンチレータセル101〜106毎に異なるようにして、受光素子111と112の出力比により発光したシンチレータセルを特定すること、及び、図2に示す如く、このシンチレータセルを縦横方向に並べると共に、各セル301〜316の境界面に、必要に応じて、全面積の反射シート331、半分程度の面積の反射シート332、1/4程度の面積の反射シート333や、シリコーンオイルを挿入して、受光素子321〜324への出力比から入射位置を図3に示す如く同定することにより、縦横方向のみならず、高さ方向についてもγ線がどのシンチレータセルに入射したかを特定して、放射線入射位置を3次元に検出することが記載されている。   On the other hand, as three-dimensional detection in a crystal arrangement in which crystal elements of the same kind and the same size are stacked, in Patent Documents 2 and 3, as shown in FIG. A light path 130 that reaches the light receiving elements 111 and 112 at both ends is formed, and the scintillator determines how many times the emitted light passes through the boundary surfaces 120 to 126 of the scintillator cells 101 to 106 before reaching the light receiving elements 111 and 112. The scintillator cells that emit light are specified by the output ratio of the light receiving elements 111 and 112 so as to be different for each of the cells 101 to 106, and, as shown in FIG. To the boundary surface of ˜316, if necessary, the reflection sheet 331 of the entire area, the reflection sheet 332 of about half the area, about 1/4 of the reflection sheet By inserting the reflective sheet 333 of the product or silicone oil and identifying the incident position from the output ratio to the light receiving elements 321 to 324 as shown in FIG. 3, not only in the vertical and horizontal directions but also in the height direction, γ rays It is described that the radiation incident position is detected three-dimensionally by identifying which scintillator cell is incident.

なお、特許文献1乃至3は、受光素子の不感領域が無いことを条件としているが、特許文献4乃至7には、ライトガイドを用いて、受光素子の感度有効領域外に配置された結晶素子の発光を、感度有効領域まで導くことが記載されている。   Patent Documents 1 to 3 are based on the condition that there is no insensitive region of the light receiving element. However, Patent Documents 4 to 7 describe a crystal element arranged outside the sensitivity effective region of the light receiving element using a light guide. It is described that the light emission of is led to the sensitivity effective region.

特開2004−132930号公報JP 2004-132930 A 特許第3597979号公報(図1、図9、図13)Japanese Patent No. 3597979 (FIGS. 1, 9, and 13) 特開平11−142524号公報JP-A-11-142524 IEEE Transaction on Nuclear Vol.33 No.1(1986年2月) pp460−463IEEE Transaction on Nuclear Vol.33 No.1 (February 1986) pp460-463 IEEE Transaction on Nuclear Vol.45 No.6(1998年12月) pp3000−3006IEEE Transaction on Nuclear Vol.45 No.6 (December 1998) pp3000−3006 IEEE Transaction on Nuclear Vol.46 No.3(1999年6月) pp542−545IEEE Transaction on Nuclear Vol.46 No.3 (June 1999) pp542-545 IEEE Transaction on Nuclear Vol.50 No.3(2003年6月) pp367−372IEEE Transaction on Nuclear Vol.50 No.3 (June 2003) pp367-372

装置の高感度達成には、シンチレータ結晶に対応して受光素子を隙間無く並べるのが理想的であるが、費用対効果を考えると、受光素子数を減らし、受光素子の不感領域の存在を克服するための技術が要求される。   To achieve high sensitivity of the device, it is ideal to arrange the light receiving elements without gaps corresponding to the scintillator crystal. However, considering the cost effectiveness, the number of light receiving elements is reduced and the existence of the insensitive area of the light receiving elements is overcome. Technology to do this is required.

なお、ライトガイドの使用は、検出器構成の複雑化や、光損失に伴う信号の揺らぎの増加による結晶識別能の劣化を引き起こす場合が多く、好ましくない。   Note that the use of a light guide is not preferable because it often causes the detector configuration to be complicated and the crystal discrimination ability to deteriorate due to an increase in signal fluctuation accompanying light loss.

又、反射シートの面積を調整する方法は、同一結晶での3次元検出が難しい。   Also, the method of adjusting the area of the reflection sheet is difficult to detect three-dimensionally with the same crystal.

又、本発明は、前記従来の問題点を解消するべくなされたもので、受光素子固有の不感領域の存在による検出能の制限を克服し、シンチレータ結晶より少ない数の受光素子を用いて、各シンチレータ結晶の発光強度を検出可能とすることを課題とする。   In addition, the present invention was made to solve the above-mentioned conventional problems, overcomes the limit of detection capability due to the presence of the insensitive region unique to the light receiving element, and uses each light receiving element having a smaller number than the scintillator crystal, It is an object to make it possible to detect the emission intensity of a scintillator crystal.

本発明は、複数のシンチレータが配列された多面体からなるシンチレータブロックと、放射線の入射によるシンチレータの発光を、光学接合するシンチレータを通して受光する受光素子を含む放射線検出器で、発光したシンチレータの位置と吸収された放射線のエネルギを検出するための放射線位置検出方法であって、異なるシンチレータと光学接合し且つ少なくとも一つの面内に不感領域を有する2群以上の受光素子を複数のシンチレータを通る径路の両端に設け、各シンチレータの境界面や外周面の光の反射率や透過率を調整することにより、例えば、受光素子に入射する各シンチレータ結晶の発光強度分布のピーク位置をずらして、前記課題を解決したものである。   The present invention is a radiation detector including a scintillator block composed of a polyhedron in which a plurality of scintillators are arranged, and a light receiving element that receives light emitted from the scintillator by incidence of radiation through a scintillator that is optically bonded, and the position and absorption of the emitted scintillator. A radiation position detection method for detecting the energy of emitted radiation, wherein two or more groups of light receiving elements optically joined to different scintillators and having a dead area in at least one plane are at both ends of a path passing through the plurality of scintillators By adjusting the reflectance and transmittance of light on the boundary surface and outer peripheral surface of each scintillator, the peak position of the emission intensity distribution of each scintillator crystal incident on the light receiving element is shifted, for example, to solve the above problem It is a thing.

又、前記受光素子の少なくとも2群を、各々シンチレータブロックの異なる向きの外面に所定のシンチレータに光学接合して設けたものである。   Further, at least two groups of the light receiving elements are provided by optically joining predetermined scintillators to the outer surfaces of the scintillator blocks in different directions.

又、前記受光素子の少なくとも2群を、各々シンチレータブロックの同一向きの外面に所定のシンチレータに光学接合して設けたものである。   Further, at least two groups of the light receiving elements are each provided by optically joining a predetermined scintillator on the outer surface in the same direction of the scintillator block.

又、前記受光素子の少なくとも1群が光学接合するシンチレータが、シンチレータブロックの一辺に接して位置するシンチレータを含むようにしたものである。   Further, the scintillator to which at least one group of the light receiving elements is optically bonded includes a scintillator positioned in contact with one side of the scintillator block.

又、前記シンチレータブロックの一辺に接して位置するシンチレータが、前記シンチレータブロックの角に位置するようにしたものである。   The scintillator positioned in contact with one side of the scintillator block is positioned at a corner of the scintillator block.

又、長方形をなす一面の一辺の両角に各々受光素子を配置し、両受光素子が各々該一辺と直交する辺方向にその辺に沿って延びる少なくとも二つ以上のシンチレータと光学接合するようにしたものである。   In addition, light receiving elements are arranged at both corners of one side of a rectangular surface, and both light receiving elements are optically joined to at least two or more scintillators extending along the side in a direction perpendicular to the one side. Is.

又、前記シンチレータでの発光が、前記非受光シンチレータ面を通過して2群の受光素子を結ぶ一筆書状の経路を経て両受光素子に入射するようにしたものである。   Further, light emitted from the scintillator passes through the non-light receiving scintillator surface and enters the light receiving elements via a one-stroke path connecting the two groups of light receiving elements.

又、前記シンチレータの境界面や外周面の光の反射率や透過率を、少なくとも光反射材、空気層、光学グリース、透明接着剤及び結晶の表面状態のいずれか一つを用いて調整するようにしたものである。   Further, the reflectance and transmittance of light on the boundary surface and outer peripheral surface of the scintillator are adjusted by using at least one of a light reflecting material, an air layer, optical grease, a transparent adhesive, and a crystal surface state. It is a thing.

ここで、光反射材としてのポリマーには、例えば住友スリーエム社製 ESRフィルム、光学グリースとしては、例えば信越化学工業社製 シリコンオイル KF96H(100万CS)、透明接着剤としては、例えば信越化学工業社製 一液型RTVゴム KE420 を用いることができる。   Here, the polymer as the light reflecting material is, for example, an ESR film manufactured by Sumitomo 3M, the optical grease is, for example, silicon oil KF96H (1 million CS) manufactured by Shin-Etsu Chemical, and the transparent adhesive is, for example, Shin-Etsu Chemical. One-component RTV rubber KE420 manufactured by the company can be used.

本発明は、又、発光したシンチレータの位置と吸収された放射線のエネルギを検出するための放射線位置検出装置であって、複数のシンチレータが配列されたシンチレータブロックと、放射線の入射によるシンチレータの発光を、対向するシンチレータを通して受光するための、複数のシンチレータを通る径路の両端に、それぞれ非受光シンチレータ面を挟んで設けられた、一つの面内に不感領域を有する2群以上の受光素子を含む放射線検出器と、各結晶素子の境界面や外周面に配設された、光の反射率や透過率を調整して、前記受光素子各群の受光量の配分を調整するための反射/透過率調整手段と、を備えることにより、前記課題を解決したものである。   The present invention is also a radiation position detecting device for detecting the position of the emitted scintillator and the energy of the absorbed radiation, and includes a scintillator block in which a plurality of scintillators are arranged, and light emission of the scintillator by incidence of radiation. Radiation including two or more groups of light receiving elements each having a non-sensitive area in one plane provided at both ends of a path passing through a plurality of scintillators for receiving light through opposing scintillators with a non-light receiving scintillator surface interposed therebetween. Reflector / transmittance for adjusting the distribution of the amount of light received by each group of the light receiving elements by adjusting the reflectance and transmittance of light disposed on the boundary surface and outer peripheral surface of the detector and each crystal element. The problem is solved by providing the adjusting means.

ここで「2群以上の受光素子」の受光素子の群は、例えば256 channel flat panel position sensitive photomultiplier tube(256 channel 位置弁別型光電子増倍管(PMT):浜松ホトニクス社製 H9500)の場合、PMT内に受光部が256個あるが、仮に一つのシンチレータに4×4個の受光素子が対面している場合、この16個が1群を構成することになる。   Here, the group of light receiving elements of “two or more light receiving elements” is, for example, a PMT in the case of a 256 channel flat panel position sensitive photomultiplier tube (256 channel position discriminating photomultiplier tube (PMT): H9500 manufactured by Hamamatsu Photonics). Although there are 256 light receiving parts, if 4 × 4 light receiving elements face one scintillator, the 16 light beams constitute one group.

以下、本発明の原理を説明する。   Hereinafter, the principle of the present invention will be described.

本発明の原理となる2次元検出の原理を図4に示す。独立した2つの受光素子12A、12B上に1×2配列のシンチレーション結晶a、bを設置した検出器を考える。簡単のため、結晶配列は、反射率100%の高反射材16で覆われていて放射線(γ線)を検出した際の発光は全て受光素子12A又は12Bに入るものとする。この結晶素子aと受光素子Aの位置関係を、両者が対向して配置されていると呼ぶ。   FIG. 4 shows the principle of two-dimensional detection that is the principle of the present invention. Consider a detector in which 1 × 2 array of scintillation crystals a and b are installed on two independent light receiving elements 12A and 12B. For simplicity, it is assumed that the crystal arrangement is covered with a highly reflective material 16 having a reflectivity of 100%, and all light emitted when detecting radiation (γ rays) enters the light receiving element 12A or 12B. The positional relationship between the crystal element a and the light receiving element A is referred to as being disposed opposite to each other.

図4(A)の上段に示す如く、結晶素子a、b間を反射率100%の高反射材18で仕切った場合は、どちらの結晶で検出した場合も隣の結晶へ光がいかないため、出力は検出結晶の真下の受光素子からのみとなる。従って横軸に出力の重心演算の結果(B−A)/(A+B)をとったヒストグラムは図1(A)の下段のようになる。検出結晶は、このようなヒストグラム上で、どの分布に属するかを見て特定される。   As shown in the upper part of FIG. 4 (A), when the crystal elements a and b are partitioned by a highly reflective material 18 having a reflectance of 100%, no light is emitted to the adjacent crystal when detected by either crystal. The output is only from the light receiving element directly below the detection crystal. Therefore, the histogram in which the horizontal axis indicates the result of the calculation of the center of gravity of the output (B−A) / (A + B) is as shown in the lower part of FIG. The detection crystal is specified by looking at which distribution it belongs to on such a histogram.

一方、図4(B)の上段に示す如く、結晶素子a、b間を反射率50%、透過率50%の低反射材20で仕切った場合は、検出結晶の発光は隣の結晶にも広がるため、隣の受光素子からも弱い出力が生じ、そのヒストグラムは図4(B)の下段のように互いに近づく。ここで低反射材とは非吸収部分透過反射材を指す。   On the other hand, as shown in the upper part of FIG. 4B, when the crystal elements a and b are separated by a low-reflecting material 20 having a reflectance of 50% and a transmittance of 50%, the light emitted from the detection crystal is also emitted to the adjacent crystal. Since it spreads, a weak output is generated from the adjacent light receiving element, and the histograms approach each other as shown in the lower part of FIG. Here, the low reflective material refers to a non-absorbing partially transmissive reflective material.

又、図4(C)の上段に示す如く、結晶素子a、b間の反射材を抜き空気層22にした場合は、光の隣の結晶への広がりは大きくなるが、結晶と空気の屈折率の違い、結晶の表面状態の特性により、発光結晶の真下の受光素子の出力がやや大きくなる。その結果、ヒストグラムは図4(C)の下段のようになる。   In addition, as shown in the upper part of FIG. 4C, when the reflecting material between the crystal elements a and b is removed and the air layer 22 is extracted, the spread of light to the next crystal increases, but the refraction of the crystal and air Due to the difference in rate and the characteristics of the surface state of the crystal, the output of the light receiving element directly below the light emitting crystal is slightly increased. As a result, the histogram is as shown in the lower part of FIG.

図5は、離れた2組の受光素子24A〜D、24E〜24Hに跨った8×8の2次元結晶配列14内に光学特性の異なる反射材18、20又は空気層22を挿入した場合の効果の例である。1つの受光素子は、縦横それぞれ2結晶分の大きさで、両端2結晶分の底が受光素子と接している。結晶識別は、図4のヒストグラムを2次元に拡張し位置演算した結果である2次元位置ヒストグラム上で行なうが、図4(B)、(C)で示したように、複数の受光素子に発光した光が届くように工夫した場合、図5(C)に示す如く、挿入した反射材の反射率が高い部分ほど分布間の距離が広がり、空気層では狭くなる。このように、結晶配列14内の光学特性を工夫することにより、2次元位置ヒストグラム分布の位置を操作することができる。   FIG. 5 shows the case where the reflectors 18 and 20 or the air layer 22 having different optical characteristics are inserted into the 8 × 8 two-dimensional crystal array 14 straddling two pairs of light receiving elements 24A to D and 24E to 24H. It is an example of an effect. One light receiving element has a size corresponding to two crystals in the vertical and horizontal directions, and the bottoms of two crystals at both ends are in contact with the light receiving element. Crystal identification is performed on a two-dimensional position histogram which is a result of expanding the histogram of FIG. 4 two-dimensionally and calculating the position. As shown in FIGS. 4B and 4C, light is emitted to a plurality of light receiving elements. When the light is devised so as to reach, as shown in FIG. 5 (C), the distance between the distributions increases as the reflectance of the inserted reflector increases, and the air layer becomes narrower. Thus, the position of the two-dimensional position histogram distribution can be manipulated by devising the optical characteristics in the crystal array 14.

放射線検出器では、各結晶素子に対応する2次元位置ヒストグラム上の分布が互いに重ならなければ検出結晶の特定が可能になる。上記のように、異なる反射、透過特性を持つ素材を用い、結晶の表面状態の特性を生かして結晶配列内の光広がりを制御し、2次元位置ヒストグラムに現われる分布の位置を結晶識別に最適にすることができる。   In the radiation detector, if the distribution on the two-dimensional position histogram corresponding to each crystal element does not overlap each other, the detection crystal can be specified. As described above, using materials with different reflection and transmission characteristics, taking advantage of the characteristics of the surface state of the crystal to control the light spread within the crystal array, the position of the distribution appearing in the two-dimensional position histogram is optimal for crystal identification can do.

本発明は、受光素子の感度有効領域に接していないその間の結晶特定に上記の手法を適用したものである。結晶の識別は感度有効領域の間の距離と結晶サイズの比率が大きいほど難しくなる。又、3次元配列の結晶識別は更に困難である。しかし、本発明を用いた場合、図6(A)(B)に示すように、下層結晶配列14の上に上層結晶配列15を重ねても、図6(C)に示すように、各結晶の識別が可能である。   In the present invention, the above-described method is applied to specify a crystal in between that is not in contact with the sensitivity effective region of the light receiving element. Crystal identification becomes more difficult as the ratio between the distance between the sensitivity effective regions and the crystal size increases. In addition, it is more difficult to identify crystals in a three-dimensional array. However, when the present invention is used, as shown in FIGS. 6A and 6B, even if the upper crystal array 15 is superimposed on the lower crystal array 14, each crystal as shown in FIG. Can be identified.

今簡単な、2×2の2次元結晶を2段に重ねた2×2×2の3次元結晶を有する放射線検出器を考える。ここで、図7(A)あるいは(B)の上段に示す如く、界面が空気とされ、外に光が漏れないよう周囲に高反射材16が巻かれた2次元結晶(配列)32、34を2段重ねにし、その底面の4つの結晶のうち2つの結晶位置に受光素子12A、12Bを配置した場合には、その各受光素子12A、12Bの出力A、出力Bの重心演算の結果(B−A)/(A+B)をとったヒストグラムは、それぞれ図7(A)、(B)の下段に示す如くとなり、図7(A)の上段に示す如く、受光素子12A、12Bを片側に配置した場合には、その下段に示す如く、結晶素子aとe、結晶素子bとf、結晶素子dとh、結晶素子cとgの出力が重なり区別できなくなる。又、図7(B)の上段に示す如く、受光素子12A、12Bを対角線位置に配置した場合には、その下段に示す如く、結晶素子aとe、結晶素子bとcとfとg、結晶素子dとhの出力が重なり、これらを識別できない。   Consider a simple radiation detector having a 2 × 2 × 2 three-dimensional crystal in which 2 × 2 two-dimensional crystals are stacked in two stages. Here, as shown in the upper part of FIG. 7 (A) or (B), the two-dimensional crystals (arrays) 32 and 34 in which the interface is air and the high reflective material 16 is wound around so that light does not leak outside. Are stacked in two stages, and the light receiving elements 12A and 12B are arranged at two crystal positions of the four crystals on the bottom surface thereof, the result of the center of gravity calculation of the outputs A and B of the light receiving elements 12A and 12B ( Histograms of (B−A) / (A + B) are as shown in the lower part of FIGS. 7A and 7B, respectively. As shown in the upper part of FIG. 7A, the light receiving elements 12A and 12B are arranged on one side. When arranged, the outputs of the crystal elements a and e, the crystal elements b and f, the crystal elements d and h, and the crystal elements c and g cannot be distinguished from each other as shown in the lower stage. 7B, when the light receiving elements 12A and 12B are arranged at diagonal positions, the crystal elements a and e, the crystal elements b, c, f and g, The outputs of the crystal elements d and h overlap and cannot be distinguished.

これらに対して、図8(A)、(B)、(C)の上段に示す如く、透過特性をもつため高反射材16よりも反射率の小さい、例えば反射率50%かつ透過率50%の低反射材20を適宜界面に挿入した場合には、その下段に示す如く、各結晶素子の出力分布が分離され、一対の受光素子12A、12Bの出力により、全ての結晶素子a〜gの出力が識別可能となる。   On the other hand, as shown in the upper part of FIGS. 8A, 8B, and 8C, since it has transmission characteristics, it has a lower reflectance than the high reflector 16, for example, a reflectance of 50% and a transmittance of 50%. When the low reflection material 20 is inserted into the interface as appropriate, the output distribution of each crystal element is separated as shown in the lower stage, and the output of the pair of light receiving elements 12A and 12B causes all the crystal elements a to g to be separated. The output can be identified.

これは、図9に示す如く、1×3の1次元結晶配列42、44を2段に重ねて1×3×2の2次元立体結晶とした場合も同様である。   The same applies to the case where the 1 × 3 one-dimensional crystal arrays 42 and 44 are stacked in two stages to form a 1 × 3 × 2 two-dimensional solid crystal as shown in FIG.

本発明は、このような知見に基づいてなされたものである。   The present invention has been made based on such knowledge.

本発明によれば、受光素子固有の不感領域の存在による検出能の制限を克服して、結晶素子より少ない数の受光素子で目的の検出器性能を達成することができ、費用と効果の比率を上げるだけでなく、信号処理回路を簡潔にして、装置の安定した運転が可能となる。更に、各結晶素子内で反射材の長さや面積を変える必要が無いので、検出器構造も単純で作り易く、装置に必須である量産にも耐え得る。   According to the present invention, it is possible to overcome the limitation of the detection capability due to the presence of the insensitive region unique to the light receiving element, and to achieve the desired detector performance with a smaller number of light receiving elements than the crystal element, and the ratio of cost to effect In addition, the signal processing circuit can be simplified and the apparatus can be operated stably. Furthermore, since it is not necessary to change the length and area of the reflecting material in each crystal element, the detector structure is simple and easy to make, and can withstand mass production essential to the apparatus.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態の放射線検出器50は、図10に示す如く、図6に示したと同様の、同種、同サイズの結晶素子を8×8の16個備えた2次元結晶配列14、15の各結晶素子の間に、適宜、100%の高反射材18、50%の低反射材20及び空気層22を介在させ、更に、外に光が漏れないようその上面及び側面を100%の高反射材16で被い、下層結晶配列14と上層結晶配列15を重ねて2段とし、下方の両側に4個で一列の2組の受光素子24A〜D、24E〜Hを配置したものである。   As shown in FIG. 10, the radiation detector 50 of the present embodiment is similar to that shown in FIG. 6, each crystal of the two-dimensional crystal arrays 14 and 15 including 16 × 8 × 8 crystal elements of the same kind and the same size. A 100% high-reflecting material 18, 50% low-reflecting material 20 and an air layer 22 are appropriately interposed between the elements, and the top and side surfaces are 100% high-reflecting material so that light does not leak outside. 16, the lower layer crystal array 14 and the upper layer crystal array 15 are overlapped to form two stages, and four pairs of light receiving elements 24 </ b> A to 24 </ b> D and 24 </ b> E to 24 </ b> H are arranged on both sides on the lower side.

前記受光素子24A〜Hとしては、例えばアバランシェフォトダイオードや光電子増倍管(PMT)を用いることができる。
前記受光素子24A〜Hの出力は、図11に示す如く、読出回路52を経て位置演算部54に入力され、ここで例えば次式に従って、受光素子出力A〜Hの位置演算が行なわれる。
For example, an avalanche photodiode or a photomultiplier tube (PMT) can be used as the light receiving elements 24A to 24H.
As shown in FIG. 11, the outputs of the light receiving elements 24A to 24H are input to the position calculating unit 54 via the readout circuit 52, where the position calculation of the light receiving element outputs A to H is performed, for example, according to the following equation.

x={4/4(A+E)+3/4(B+F)+2/4(C+G)
+1/4(D+H)}/(A+B+・・・+H) …(1)
y={4/4(E+F+G+H)+1/4(A+B+C+D)}
/(A+B+・・・+H) …(2)
x = {4/4 (A + E) +3/4 (B + F) +2/4 (C + G)
+1/4 (D + H)} / (A + B +... + H) (1)
y = {4/4 (E + F + G + H) +1/4 (A + B + C + D)}
/(A+B+...+H) (2)

この位置演算部54による位置演算結果が、表示部56で2次元位置ヒストグラムとして表示される。図において、48は電源である。   The position calculation result by the position calculation unit 54 is displayed on the display unit 56 as a two-dimensional position histogram. In the figure, reference numeral 48 denotes a power source.

本実施形態においては、同一種類、同一サイズの結晶素子を用いているので、構成が簡単であり、結晶性能の差によって問題を生じることも無い。なお、異なる種類、サイズの結晶素子を組合せて用いることもできる。又、結晶配列も2段に限定されず、1段(2次元)、又は3段以上でも良い。   In this embodiment, crystal elements of the same type and the same size are used, so the configuration is simple and no problem arises due to the difference in crystal performance. Note that different types and sizes of crystal elements may be used in combination. Further, the crystal arrangement is not limited to two stages, and may be one stage (two-dimensional) or three or more stages.

又、本実施形態においては、ライトガイドを用いていないので、ライトガイドの挿入による検出器構成の複雑化や光損失に伴う信号の揺らぎの増加による結晶識別能の劣化を引き起こすことが無い。なお、問題とならない範囲でライトガイドを使用することもできる。   In the present embodiment, since the light guide is not used, the detector configuration is not complicated by the insertion of the light guide, and the crystal discrimination ability is not deteriorated due to an increase in signal fluctuation accompanying light loss. Note that the light guide can be used as long as it does not cause a problem.

更に、受光素子の数や配設位置も前記実施形態に限定されず、図12(A)〜(F)に例示する如く、各種配置することができ、周辺でなく中央部にあってもよい。又、図13に示す如く、結晶の底面でなく、側面に配置しても良く、各層毎に配置しても良い。更に、受光素子の組合せも、1:1の2群に限定されず、3群以上として、1:nやm:nの組合せにしても良い。受光素子間の経路も一つに限定されず、各受光素子間に複数の経路を限定しても良い。   Furthermore, the number and arrangement positions of the light receiving elements are not limited to the above embodiment, and various arrangements can be made as illustrated in FIGS. 12A to 12F, and they may be in the central portion instead of the periphery. . Moreover, as shown in FIG. 13, it may be arranged on the side surface instead of the bottom surface of the crystal, or may be arranged for each layer. Further, the combination of the light receiving elements is not limited to the two groups of 1: 1, and may be a combination of 1: n or m: n as three or more groups. The number of paths between the light receiving elements is not limited to one, and a plurality of paths may be limited between the light receiving elements.

又、反射率を調整する手段も反射率100%と50%の反射材及び空気層に限定されず、反射率100%、50%以外の反射材を用いたり、光学グリース又は透明接着剤を用いて透過率を高めたり、あるいは結晶の表面状態を機械研磨による鏡面や、化学研磨による鏡面や、粗面として調整することもできる。   Also, the means for adjusting the reflectance is not limited to the reflective material and the air layer with the reflectance of 100% and 50%, but a reflective material other than the reflectance of 100% and 50% is used, or optical grease or a transparent adhesive is used. Thus, the transmittance can be increased, or the surface state of the crystal can be adjusted as a mirror surface by mechanical polishing, a mirror surface by chemical polishing, or a rough surface.

なお、コンプトン散乱のように、ガンマ線が複数の場所でエネルギを結晶に付与することにより、複数の結晶がほぼ同時に発光する場合もあり得る。このような事象では、一つの結晶に全てのエネルギが付与された場合とは異なる出力が得られるが、このような信号の要否は計測の目的によって異なり、不要であればエレクトロニクスやソフトウェアによる信号処理によって除去してもよい。   Note that, as in Compton scattering, when a gamma ray imparts energy to a crystal at a plurality of locations, the plurality of crystals may emit light almost simultaneously. In such an event, an output different from the case where all energy is applied to one crystal is obtained, but the necessity of such a signal depends on the purpose of the measurement, and if it is unnecessary, it is a signal by electronics or software It may be removed by processing.

前記実施形態の構成で、結晶素子として、大きさ1.46mm×1.46mm×4.5mmの表面が鏡面のLYSO結晶(Lu2(1-x)Y2xSiO5 (x=0.02)(LYSO), 表面状態は鏡面(機械研磨, アメリカ Proteus 社製)を8×8に配列したものを2層にし、図14に示すような反射特性及び透過特性の高反射材18(住友スリーエム社製 ESRフィルム)及び低反射材20(東レ社製 ルミラー38X20)を図10に示した如く挿入し、更に各層14、15間に光学グリース(信越化学工業社製 シリコンオイル KF96H(100万CS))を塗布し、受光素子としてサンプリング間隔(アノード間隔)3.04mmの256チャンネル位置弁別型光電子増倍管(PS−PMT)(256 channel flat panel position sensitive photomultiplier tube:浜松ホトニクス社製 H9500)を用い、感度有効領域の間を仮定しPS−PMT上に、高反射材18と同じ種類の高反射材16を敷いて、その領域への光の入射を遮った。感度有効領域間は6mmで、その領域には4×8結晶配列2層分が位置することになる。 In the configuration of the above embodiment, as a crystal element, a LYSO crystal (Lu 2 (1-x) Y 2x SiO 5 (x = 0.02) (LYSO) having a mirror surface with a size of 1.46 mm × 1.46 mm × 4.5 mm is used. ), The surface state is a mirror-like (mechanical polishing, manufactured by Proteus, USA) array of 8 × 8 in two layers, and a highly reflective material 18 with reflective and transmissive characteristics as shown in FIG. 14 (ESR manufactured by Sumitomo 3M) Film) and low reflection material 20 (Lumirror 38X20 manufactured by Toray Industries, Inc.) are inserted as shown in FIG. 10, and optical grease (silicon oil KF96H (1 million CS) manufactured by Shin-Etsu Chemical Co., Ltd.) is applied between the layers 14 and 15. Using a 256 channel position-discriminating photomultiplier tube (PS-PMT) with a sampling interval (anode interval) of 3.04 mm as the light receiving element (256 channel flat panel position sensitive photomultiplier tube: H9500 manufactured by Hamamatsu Photonics) region On the PS-PMT, a high-reflection material 16 of the same type as the high-reflection material 18 is laid on the PS-PMT to block light from entering the area. The x8 crystal arrangement two layers are located.

図15(A)に、Cs線源からの662keVγ線を一様照射して得られた2次元位置ヒストグラムを示す(請求項で「発光したシンチレータの位置とエネルギを検出」とした位置に該当)。図中「上」は上層15の結晶、「下」は下層14の結晶の分布である。計数値は濃淡で示されている。図15(B)に、3次元配列各層の中央と受光素子に接する部分の光量の比較を波高分布で示す(請求項で「発光したシンチレータの位置とエネルギを検出」としたエネルギに該当)。1、2、3、4各結晶領域の波高の比率は、1.00:0.91:0.61:0.63であり、受光素子に接していない中央部分の光損失を抑えて、高い波高を得ることができている。これにより、エネルギ分解能もそれぞれ16.3%、17.9%、22.0%、19.8%と良い値を得ることができた。これらの結果より、装置にしたときイメージングできる画像の画質が良くなり、受光素子に接していない3次元配列の結晶が、本発明により識別可能であることが確認できた。   FIG. 15A shows a two-dimensional position histogram obtained by uniformly irradiating 662 keV γ rays from a Cs ray source (corresponding to the position where “detects the position and energy of the emitted scintillator” in the claims). . In the figure, “upper” is the crystal distribution of the upper layer 15, and “lower” is the crystal distribution of the lower layer 14. The count values are shown in shades. FIG. 15B shows a comparison of the light intensity distribution at the center of each layer of the three-dimensional array and the portion in contact with the light receiving element (corresponding to the energy “detecting the position and energy of the emitted scintillator” in the claims). The ratio of the wave heights of the crystal regions 1, 2, 3, 4 is 1.00: 0.91: 0.61: 0.63, which is high by suppressing the optical loss in the central portion not in contact with the light receiving element. The wave height can be obtained. As a result, energy resolutions of 16.3%, 17.9%, 22.0%, and 19.8% were obtained. From these results, it was confirmed that the image quality of an image that can be imaged when using the apparatus is improved, and crystals of a three-dimensional array that are not in contact with the light receiving element can be identified by the present invention.

実施例のように複数の受光部を内蔵した受光素子間に設置された3次元配列の結晶識別をする場合、結晶配列の両側にのみ受光部が連続して並ぶ構造となる。その構造では、両側2個ずつの受光部と、そこに跨る結晶配列構成を1単位とすることが好ましい。   When discriminating crystals of a three-dimensional array installed between light receiving elements having a plurality of light receiving parts as in the embodiment, the light receiving parts are continuously arranged only on both sides of the crystal array. In the structure, it is preferable that two light receiving portions on both sides and a crystal arrangement configuration straddling the light receiving portions be one unit.

図9及び図16に示すような両側1個ずつの受光部構成(12A、12B)でも1単位となりうるが、特に、受光素子12Aと12Bに挟まれるシンチレータが多い図16の場合は、図9に比べてヒストグラムが重複し、識別しにくくなる。これに対して、図17に示す両側2個ずつの受光部構成(12A、12C)(12B、12D)では、例えば図17中に示すような位置演算式により位置ヒストグラムが2次元になり、2方向に対し受光素子各群の受光量の配分の微調整ができ自由度が増えるため、識別できる結晶数をかなり増やすことができ、結晶識別能が倍増する。即ち、図17のように、上面から見て2×7列の構成の場合、図16に示したような1×7が二組ある構成にすると、7個方向の弁別しかできないので位置ヒストグラムが一次元の線となる。これに対して図17のように2×7で一組の構成とすると、7個方向と2個方向との弁別が出来るので位置ヒストグラムを2次元の面で表す事が出来る。   9 and FIG. 16 can also be one unit even on each side of the light receiving section configuration (12A, 12B). In particular, in the case of FIG. 16 where there are many scintillators sandwiched between the light receiving elements 12A and 12B, FIG. Compared to the above, the histograms are duplicated and are difficult to identify. On the other hand, in the two light receiving unit configurations (12A, 12C) (12B, 12D) on each side shown in FIG. 17, the position histogram becomes two-dimensional by a position calculation expression as shown in FIG. Since the distribution of the amount of light received by each group of light receiving elements can be finely adjusted with respect to the direction and the degree of freedom increases, the number of crystals that can be identified can be increased considerably, and the crystal identification ability is doubled. That is, as shown in FIG. 17, in the case of a 2 × 7 row configuration as viewed from the top, if there are two 1 × 7 configurations as shown in FIG. It becomes a one-dimensional line. On the other hand, as shown in FIG. 17, when a set of 2 × 7 is used, the position histogram can be expressed in a two-dimensional plane because the seven directions and the two directions can be distinguished.

特許文献2に記載された放射線入射位置3次元検出器の検出原理を説明するための断面図Sectional drawing for demonstrating the detection principle of the radiation incident position three-dimensional detector described in patent document 2 同じく斜視図Same perspective view 同じく各点と3次元検出器のシンチレータセルとの対応関係を示す画像を表わす図The figure showing the image which similarly shows the correspondence of each point and the scintillator cell of a three-dimensional detector 本発明の原理を説明するための、検出結晶で発光した光の広がりを示す、(A)結晶の断面図及び(B)ヒストグラム(A) Cross section of crystal and (B) Histogram showing the spread of light emitted from the detection crystal for explaining the principle of the present invention 同じく2次元配列結晶の(A)平面図(B)側面図及び(C)2次元位置ヒストグラム(A) Plan view (B) Side view and (C) Two-dimensional position histogram of the same two-dimensional array crystal 同じく3次元配列結晶の(A)平面図(B)側面図及び(C)2次元位置ヒストグラム(A) Plan view (B) Side view and (C) Two-dimensional position histogram of the same three-dimensional array crystal 2×2×2の3次元配列結晶で単一の反射材を用いた場合の問題点を説明するための斜視図及びヒストグラムPerspective view and histogram for explaining problems when a single reflector is used in a 2 × 2 × 2 three-dimensional array crystal 同じく本発明により反射材を調整した場合の斜視図及びヒストグラムSimilarly, a perspective view and a histogram when the reflecting material is adjusted according to the present invention 同じく1×3×2の立体結晶の場合の斜視図及びヒストグラムSimilarly perspective view and histogram in the case of a 1 × 3 × 2 solid crystal 本発明に係る放射線検出器の実施形態の構成を示す分解斜視図The disassembled perspective view which shows the structure of embodiment of the radiation detector concerning this invention. 同じく信号処理回路を示すブロック図Similarly, a block diagram showing a signal processing circuit 受光素子配置の変形例を示す平面図Plan view showing a modification of light receiving element arrangement 同じく他の変形例を示す斜視図及びヒストグラムA perspective view and a histogram showing another modification example 本発明の実施例で用いた反射材の(A)反射特性及び(B)透過特性を示す図The figure which shows the (A) reflection characteristic and (B) transmission characteristic of the reflecting material used in the Example of this invention. 前記実施例における(A)2次元位置ヒストグラム及び(B)3次元配列中央と受光素子に接する部分の波高分布の測定結果を示す図The figure which shows the measurement result of the wave height distribution of the part which touches the (A) two-dimensional position histogram in the said Example, and the (B) three-dimensional array center and a light receiving element. 同じく1×7×2の立体結晶の場合の斜視図及びヒストグラムSimilarly perspective view and histogram in the case of 1 × 7 × 2 solid crystal 同じく2×7×2の立体結晶の場合の斜視図及びヒストグラムA perspective view and a histogram in the case of a 2 × 7 × 2 solid crystal

符号の説明Explanation of symbols

12A、12B、24A〜24H…受光素子
14…下層結晶配列
15…上層結晶配列
16、18…高反射材
20…低反射材
22…空気層
50…放射線検出器
52…出力読出回路
54…位置演算部
56…表示部
12A, 12B, 24A-24H ... light receiving element 14 ... lower layer crystal arrangement 15 ... upper layer crystal arrangement 16,18 ... high reflection material 20 ... low reflection material 22 ... air layer 50 ... radiation detector 52 ... output readout circuit 54 ... position calculation 56: Display unit

Claims (9)

複数のシンチレータが配列された多面体からなるシンチレータブロックと、放射線の入射によるシンチレータの発光を、光学接合するシンチレータを通して受光する受光素子を含む放射線検出器で、発光したシンチレータの位置と吸収された放射線のエネルギを検出するための放射線位置検出方法であって、
異なるシンチレータと光学接合し且つ少なくとも一つの面内に不感領域を有する2群以上の受光素子を複数のシンチレータを通る径路の両端に設け、
各シンチレータの境界面や外周面の光の反射率や透過率を調整することにより、前記受光素子各群の受光量の配分を調整することを特徴とする放射線位置検出方法。
A radiation detector including a scintillator block composed of a polyhedron in which a plurality of scintillators are arranged, and a light receiving element that receives light emitted from the scintillator by the incidence of radiation through a scintillator that is optically bonded. The position of the emitted scintillator and the absorbed radiation A radiation position detection method for detecting energy, comprising:
Two or more light-receiving elements that are optically bonded to different scintillators and have at least one insensitive area are provided at both ends of a path that passes through the plurality of scintillators.
A radiation position detection method, comprising: adjusting a distribution of received light amount of each group of the light receiving elements by adjusting a reflectance and a transmittance of light on a boundary surface and an outer peripheral surface of each scintillator.
前記受光素子の少なくとも2群を、各々シンチレータブロックの異なる向きの外面に所定のシンチレータに光学接合して設けたことを特徴とする請求項1に記載の放射線位置検出方法。   The radiation position detection method according to claim 1, wherein at least two groups of the light receiving elements are optically joined to predetermined scintillators on outer surfaces of the scintillator blocks in different directions. 前記受光素子の少なくとも2群を、各々シンチレータブロックの同一向きの外面に所定のシンチレータに光学接合して設けたことを特徴とする放射線位置検出方法。   A radiation position detecting method, wherein at least two groups of the light receiving elements are each optically bonded to a predetermined scintillator on an outer surface in the same direction of the scintillator block. 前記受光素子の少なくとも1群が光学接合するシンチレータが、シンチレータブロックの一辺に接して位置するシンチレータを含むことを特徴とする請求項1乃至3のいずれかに記載の放射線位置検出方法。   4. The radiation position detection method according to claim 1, wherein the scintillator to which at least one group of the light receiving elements is optically bonded includes a scintillator positioned in contact with one side of the scintillator block. 前記シンチレータブロックの一辺に接して位置するシンチレータが、前記シンチレータブロックの角に位置することを特徴とする請求項4に記載の放射線位置検出方法。   The radiation position detection method according to claim 4, wherein a scintillator positioned in contact with one side of the scintillator block is positioned at a corner of the scintillator block. 長方形をなす一面の一辺の両角に各々受光素子を配置し、両受光素子が各々該一辺と直交する辺方向にその辺に沿って延びる少なくとも二つ以上のシンチレータと光学接合することを特徴とする請求項1に記載の放射線位置検出方法。   Each of the light receiving elements is disposed at both corners of one side of a rectangular surface, and both the light receiving elements are optically joined to at least two or more scintillators extending along the side in a direction perpendicular to the one side. The radiation position detection method according to claim 1. 前記シンチレータでの発光が、前記非受光シンチレータ面を通過して2群の受光素子を結ぶ一筆書状の経路を経て両受光素子に入射することを特徴とする請求項1乃至6のいずれかに記載の放射線位置検出方法。   7. The light emitted from the scintillator is incident on both light receiving elements through a one-stroke path connecting the two groups of light receiving elements through the non-light receiving scintillator surface. Radiation position detection method. 前記シンチレータの境界面や外周面の光の反射率や透過率を、少なくとも光反射材、空気層、光学グリース、透明接着剤及び結晶の表面状態のいずれか一つを用いて調整することを特徴とする請求項1乃至7のいずれかに記載の放射線位置検出方法。   The light reflectance and transmittance of the boundary surface and the outer peripheral surface of the scintillator are adjusted using at least one of a light reflecting material, an air layer, optical grease, a transparent adhesive, and a crystal surface state. The radiation position detection method according to claim 1. 発光したシンチレータの位置と吸収された放射線のエネルギを検出するための放射線位置検出装置であって、
複数のシンチレータが配列されたシンチレータブロックと、放射線の入射によるシンチレータの発光を、対向するシンチレータを通して受光するための、複数のシンチレータを通る径路の両端に、それぞれ非受光シンチレータ面を挟んで設けられた、一つの面内に不感領域を有する2群以上の受光素子を含む放射線検出器と、
各結晶素子の境界面や外周面に配設された、光の反射率や透過率を調整して、前記受光素子各群の受光量の配分を調整するための反射/透過率調整手段と、
を備えたことを特徴とする放射線位置検出装置。
A radiation position detection device for detecting the position of emitted scintillator and the energy of absorbed radiation,
A scintillator block in which a plurality of scintillators are arranged, and a scintillator block that receives light emitted from the scintillator due to the incidence of radiation through opposite scintillators, provided at both ends of a path that passes through the plurality of scintillators, with a non-light-receiving scintillator surface in between A radiation detector including two or more groups of light receiving elements having insensitive areas in one plane;
Reflection / transmittance adjusting means for adjusting the reflectance and transmittance of light disposed on the boundary surface and the outer peripheral surface of each crystal element to adjust the distribution of the amount of light received by each group of the light receiving elements,
A radiation position detection apparatus comprising:
JP2005282866A 2005-09-28 2005-09-28 Radiation position detection method and apparatus Expired - Fee Related JP4534006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282866A JP4534006B2 (en) 2005-09-28 2005-09-28 Radiation position detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282866A JP4534006B2 (en) 2005-09-28 2005-09-28 Radiation position detection method and apparatus

Publications (3)

Publication Number Publication Date
JP2007093376A true JP2007093376A (en) 2007-04-12
JP2007093376A5 JP2007093376A5 (en) 2008-01-31
JP4534006B2 JP4534006B2 (en) 2010-09-01

Family

ID=37979276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282866A Expired - Fee Related JP4534006B2 (en) 2005-09-28 2005-09-28 Radiation position detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4534006B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139517A1 (en) * 2007-04-27 2008-11-20 Shimadzu Corporation Discriminatory parameter calculating method for photon detector and nuclear medical diagnostic device using same
JP2009053104A (en) * 2007-08-28 2009-03-12 Natl Inst Of Radiological Sciences Radiation position detector
US7929665B2 (en) 2008-12-02 2011-04-19 Samsung Electronics Co., Ltd. X-ray image obtaining/imaging apparatus and method
US8436312B2 (en) 2008-10-08 2013-05-07 National Institute Of Radiological Sciences DOI type radiation detector
JP2013140024A (en) * 2011-12-28 2013-07-18 Waseda Univ Radiation detector
CN103620445A (en) * 2011-04-06 2014-03-05 皇家飞利浦有限公司 Imaging detector
JP2014109573A (en) * 2012-11-30 2014-06-12 Toshiba Corp Radiation detection apparatus, radiation detector, and radiation detection method
CN104155675A (en) * 2014-08-27 2014-11-19 中国科学院高能物理研究所 Radiation source positioning and imaging device
JP2016031289A (en) * 2014-07-29 2016-03-07 浜松ホトニクス株式会社 Radiation detector
JP2016033450A (en) * 2014-07-30 2016-03-10 国立研究開発法人放射線医学総合研究所 Radiation detector
US9753149B2 (en) 2015-01-30 2017-09-05 Hamamatsu Photonics K.K. Radiation detector
JP2017181470A (en) * 2016-03-31 2017-10-05 国立研究開発法人量子科学技術研究開発機構 Lamination-type radiation three-dimensional position detector
US9804277B2 (en) 2015-01-30 2017-10-31 Hamamatsu Photonics K.K. Radiation detector
US10094937B2 (en) 2015-01-30 2018-10-09 Hamamatsu Photonics K.K. Radiation detector
JP2021012206A (en) * 2016-04-15 2021-02-04 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. Photosensors arranged on surface of scintillator
WO2024111385A1 (en) * 2022-11-24 2024-05-30 国立研究開発法人量子科学技術研究開発機構 Scintillator array, radiation detection device, and positron emission tomographic device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648560A (en) * 1979-09-29 1981-05-01 Kagaku Gijutsucho Hoshasen Igaku Sogo Kenkyusho Position detector for radiant ray
JPS62129776A (en) * 1985-12-02 1987-06-12 Hitachi Medical Corp Detector for positron ct apparatus
JPS62135787A (en) * 1985-05-20 1987-06-18 Hitachi Medical Corp Detector of positron ct device
JPS62115196U (en) * 1985-11-30 1987-07-22
JPS62206479A (en) * 1986-03-06 1987-09-10 Hitachi Medical Corp Radiation detector
JPS62178383U (en) * 1986-05-02 1987-11-12
JPS6347686A (en) * 1986-08-15 1988-02-29 Kagaku Gijutsucho Hoshasen Igaku Sogo Kenkyusho Radiation three-dimensional position detector
JPH01229995A (en) * 1988-03-10 1989-09-13 Hamamatsu Photonics Kk Radiation position detector
JPH0651069A (en) * 1992-07-28 1994-02-25 Hamamatsu Photonics Kk Radiation sensor
JPH06337289A (en) * 1993-05-27 1994-12-06 Shimadzu Corp Radiation detector and application thereof
JPH11142524A (en) * 1997-11-07 1999-05-28 National Institute Of Radiological Sciences Specifying method for light emitting position in three-dimensional radiation incident position detector
JP2002267755A (en) * 2001-03-09 2002-09-18 Shimadzu Corp Nuclear medical imaging device
US6459085B1 (en) * 1999-10-26 2002-10-01 Rush Presbyterian-St. Luke's Medical Center Depth of interaction system in nuclear imaging
JP2003240857A (en) * 2002-02-19 2003-08-27 Shimadzu Corp Radiation detector
JP2004132930A (en) * 2002-10-15 2004-04-30 Hitachi Chem Co Ltd Pulse height alignment radiation position detector
US6770884B2 (en) * 2002-07-11 2004-08-03 Triumf High resolution 3-D position sensitive detector for gamma rays
JP2005043062A (en) * 2003-07-22 2005-02-17 Natl Inst Of Radiological Sciences Depth position recognition type radiation detector

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648560A (en) * 1979-09-29 1981-05-01 Kagaku Gijutsucho Hoshasen Igaku Sogo Kenkyusho Position detector for radiant ray
JPS62135787A (en) * 1985-05-20 1987-06-18 Hitachi Medical Corp Detector of positron ct device
JPS62115196U (en) * 1985-11-30 1987-07-22
JPS62129776A (en) * 1985-12-02 1987-06-12 Hitachi Medical Corp Detector for positron ct apparatus
JPS62206479A (en) * 1986-03-06 1987-09-10 Hitachi Medical Corp Radiation detector
JPS62178383U (en) * 1986-05-02 1987-11-12
JPS6347686A (en) * 1986-08-15 1988-02-29 Kagaku Gijutsucho Hoshasen Igaku Sogo Kenkyusho Radiation three-dimensional position detector
JPH01229995A (en) * 1988-03-10 1989-09-13 Hamamatsu Photonics Kk Radiation position detector
JPH0651069A (en) * 1992-07-28 1994-02-25 Hamamatsu Photonics Kk Radiation sensor
JPH06337289A (en) * 1993-05-27 1994-12-06 Shimadzu Corp Radiation detector and application thereof
JPH11142524A (en) * 1997-11-07 1999-05-28 National Institute Of Radiological Sciences Specifying method for light emitting position in three-dimensional radiation incident position detector
US6459085B1 (en) * 1999-10-26 2002-10-01 Rush Presbyterian-St. Luke's Medical Center Depth of interaction system in nuclear imaging
JP2002267755A (en) * 2001-03-09 2002-09-18 Shimadzu Corp Nuclear medical imaging device
JP2003240857A (en) * 2002-02-19 2003-08-27 Shimadzu Corp Radiation detector
US6770884B2 (en) * 2002-07-11 2004-08-03 Triumf High resolution 3-D position sensitive detector for gamma rays
JP2004132930A (en) * 2002-10-15 2004-04-30 Hitachi Chem Co Ltd Pulse height alignment radiation position detector
JP2005043062A (en) * 2003-07-22 2005-02-17 Natl Inst Of Radiological Sciences Depth position recognition type radiation detector

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008139517A1 (en) * 2007-04-27 2010-07-29 株式会社島津製作所 Photon detector discrimination parameter calculation method and nuclear medicine diagnostic apparatus using the same
JP4605303B2 (en) * 2007-04-27 2011-01-05 株式会社島津製作所 Photon detector discrimination parameter calculation method and nuclear medicine diagnostic apparatus using the same
US8450697B2 (en) 2007-04-27 2013-05-28 Shimadzu Corporation Discrimination parameter calculation method for photon detectors, and nuclear medicine diagnostic apparatus using same
WO2008139517A1 (en) * 2007-04-27 2008-11-20 Shimadzu Corporation Discriminatory parameter calculating method for photon detector and nuclear medical diagnostic device using same
JP2009053104A (en) * 2007-08-28 2009-03-12 Natl Inst Of Radiological Sciences Radiation position detector
US8436312B2 (en) 2008-10-08 2013-05-07 National Institute Of Radiological Sciences DOI type radiation detector
US7929665B2 (en) 2008-12-02 2011-04-19 Samsung Electronics Co., Ltd. X-ray image obtaining/imaging apparatus and method
CN103620445A (en) * 2011-04-06 2014-03-05 皇家飞利浦有限公司 Imaging detector
JP2013140024A (en) * 2011-12-28 2013-07-18 Waseda Univ Radiation detector
JP2014109573A (en) * 2012-11-30 2014-06-12 Toshiba Corp Radiation detection apparatus, radiation detector, and radiation detection method
JP2016031289A (en) * 2014-07-29 2016-03-07 浜松ホトニクス株式会社 Radiation detector
JP2016033450A (en) * 2014-07-30 2016-03-10 国立研究開発法人放射線医学総合研究所 Radiation detector
CN104155675A (en) * 2014-08-27 2014-11-19 中国科学院高能物理研究所 Radiation source positioning and imaging device
US9753149B2 (en) 2015-01-30 2017-09-05 Hamamatsu Photonics K.K. Radiation detector
US9804277B2 (en) 2015-01-30 2017-10-31 Hamamatsu Photonics K.K. Radiation detector
US10094937B2 (en) 2015-01-30 2018-10-09 Hamamatsu Photonics K.K. Radiation detector
JP2017181470A (en) * 2016-03-31 2017-10-05 国立研究開発法人量子科学技術研究開発機構 Lamination-type radiation three-dimensional position detector
JP2021012206A (en) * 2016-04-15 2021-02-04 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. Photosensors arranged on surface of scintillator
JP7018106B2 (en) 2016-04-15 2022-02-09 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド Optical sensor placed on the surface of the scintillator
USRE49174E1 (en) 2016-04-15 2022-08-16 Saint-Gobain Ceramics & Plastics, Inc. Photosensors arranged on a surface of a scintillator
WO2024111385A1 (en) * 2022-11-24 2024-05-30 国立研究開発法人量子科学技術研究開発機構 Scintillator array, radiation detection device, and positron emission tomographic device

Also Published As

Publication number Publication date
JP4534006B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4534006B2 (en) Radiation position detection method and apparatus
US7326933B2 (en) Radiation or neutron detector using fiber optics
JP5011590B2 (en) Radiation position detector
RU2603240C2 (en) Radiation detector
JP4313895B2 (en) Radiation detector
US11782175B2 (en) Apparatus and method for PET detector
US7750306B2 (en) Reduced edge effect detector
JP4332613B2 (en) Pulse wave height alignment radiation position detector
JP5150219B2 (en) Radiation position detector
US7718972B2 (en) Radiation detector
JPS63282681A (en) Radiation position detector
CN102597805A (en) Scintillation pixel design and method of operation
CN107045138B (en) Back scattering detection module
CN108888286B (en) PET detector, and PET detector setting method and PET detector detection method
JPH11142523A (en) Three-dimensional radiation incident position detector
JP2015075427A (en) Radiation detector
CN111480095A (en) Multi-layered pixelated scintillator with increased fill factor
JP2009031132A (en) Radiation detector
JP6256477B2 (en) Radiation detector and manufacturing method thereof
JPH07311270A (en) Radioactive ray detector
JP5060410B2 (en) Radiation detector
JP2016145819A (en) Radiation detector
CN113359179B (en) Liquid scintillator detection device and incident particle two-dimensional position detection method
JP2016031289A (en) Radiation detector
JP2009156782A (en) Radiation detector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees