JP5235397B2 - 被覆鋼板 - Google Patents

被覆鋼板 Download PDF

Info

Publication number
JP5235397B2
JP5235397B2 JP2007323776A JP2007323776A JP5235397B2 JP 5235397 B2 JP5235397 B2 JP 5235397B2 JP 2007323776 A JP2007323776 A JP 2007323776A JP 2007323776 A JP2007323776 A JP 2007323776A JP 5235397 B2 JP5235397 B2 JP 5235397B2
Authority
JP
Japan
Prior art keywords
steel sheet
mass
particles
compound
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007323776A
Other languages
English (en)
Other versions
JP2009144208A (ja
Inventor
泰平 金藤
雅裕 布田
敦司 森下
宗士 藤田
宏一 斉藤
基寛 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Nippon Steel Corp
Nippon Paint Holdings Co Ltd
Original Assignee
Nippon Paint Co Ltd
Nippon Steel Corp
Nippon Paint Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd, Nippon Steel Corp, Nippon Paint Holdings Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2007323776A priority Critical patent/JP5235397B2/ja
Publication of JP2009144208A publication Critical patent/JP2009144208A/ja
Application granted granted Critical
Publication of JP5235397B2 publication Critical patent/JP5235397B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、被覆鋼板に関する。
亜鉛めっき鋼板、アルミニウムめっき鋼板等は、従来から、6価クロム酸塩等を用いたクロメートによる防錆処理が広く行われ、必要に応じて、更に高度の耐食性、耐指紋性、耐傷つき性、潤滑性等を付与すべく有機樹脂による被覆が行われたり、更にその後各種塗料が上塗りされたりしていた。
近年、環境問題の高まりを背景に、従来鋼材に施されていたクロメート処理が法令により規制あるいは禁止される動きがある。クロメート処理層は、それ自身で高度の耐食性及び塗装密着性を有するものであるから、このクロメート処理を行わない場合には、これらの性能が著しく低下することが予想される。そのため、クロメート処理による下地処理を行わずに、有機樹脂による一段処理のみで良好な耐食性及び塗装密着性を有する防錆層を形成することが要求されることとなってきた。
特許文献1には、水性ポリウレタン樹脂、水性ポリオレフィン樹脂、水分散性シリカ、並びに、シランカップリング剤及び/又はその加水分解縮合物を含む組成物を反応させて得られた水性樹脂組成物と、チオカルボニル基含有化合物と、リン酸イオンとを含有する防錆コーティング剤、それをコーティングする防錆処理方法、それがコーティングされている防錆処理金属材が開示されている。しかし、上記方法では、シランカップリング剤と各樹脂との反応が不十分であるため、得られた皮膜中の各成分間の複合度が低くなり、耐溶剤性や耐アルカリ性が劣るという問題がある。
特許文献2には、溶解度パラメータが相違する2種の樹脂及び無機成分を含有する複合被膜を有する被覆鋼板が記載されている。しかし、架橋が不充分な皮膜が形成されるため、例えば、溶剤ラビング試験では大きな損傷を受けてしまうという問題がある。
特許文献3には、亜鉛系めっき鋼板の表面に、金属化合物、水溶性有機樹脂及び酸を含有する水性組成物を塗布して形成された皮膜層を有する表面処理亜鉛系めっき鋼板が開示されている。しかし、水溶性樹脂中のカルボキシル基の量が比較的多いため、耐アルカリ性に乏しいという問題がある。
特許文献4には、金属板の少なくとも片面に、エポキシ樹脂及びグリコールウリル樹脂により形成した有機皮膜を有する被覆鋼板が開示されている。しかし、形成されている有機皮膜が防錆剤を含有しないものであり、耐食性が不充分であるという問題がある。
特許文献5には、亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、(a)水分散性樹脂及び/又は水溶性樹脂と、(b)シランカップリング剤と、(c)リン酸及び/又はヘキサフルオロ金属酸とを含有する表面処理組成物により形成された表面処理皮膜を有する表面処理鋼板が開示されている。しかし、処理剤の安定性や得られた皮膜の耐溶剤性が不充分であるという問題がある。
特許文献6には、架橋樹脂マトリックス及び無機防錆剤を含む皮膜が形成されている被覆鋼板が記載されている。しかし、加工部耐食性、耐テープ剥離性、耐溶剤性、耐アルカリ性、耐アブレージョン性等において、必ずしも全てに満足できる性能が得られていないため、これらの性能が改善された被覆鋼板が要求されている。
特許文献7には、水性樹脂、コロイダルシリカ、潤滑剤を含有する水性有機複合塗料によって処理された表面処理金属板が記載されている。しかし、実質的に下地処理としてクロメート処理を前提としたものであるため、有機複合塗料によって形成される皮膜だけでは、耐アブレージョン性において満足しうる性能が得られても、耐食性や密着性においては不十分であり、更に、性能を向上させた被覆鋼板が要求されている。
特開2001−164182号公報 特開2001−199003号公報 特開2001−214283号公報 特開2003−049281号公報 特開2003−105555号公報 特開2005−281863号公報 特開2001−288582号公報
本発明者らは、上記現状に鑑み、加工部耐食性、耐テープ剥離性、耐溶剤性、耐アルカリ性、耐アブレージョン性等の性質が改善された被覆鋼板について、特に、ポリウレタン樹脂粒子やエチレン−不飽和カルボン酸共重合樹脂粒子が複合化した複合化樹脂を含む複合被膜によって被覆された被覆鋼板について開発してきたところ、更に、上記性質に加え、人の手に触れても外観品位を損なわない、より優れた耐汗性を有する鋼板が求められるようになった。
しかし、今までのものではその発現レベルが十分とはいえないものであった。そこで、本発明は、耐汗性を上記性質を担保しながら更に付与することを目的とするものである。
ここで、耐テープ剥離性とは、被覆鋼板に粘着性の高いテープを貼付し任意の期間放置した後にテープを剥がした際の被覆鋼板に被覆された複合皮膜の耐剥離性を示し、耐アブレージョン性とは、鋼板のコイルや加工品を輸送する際の擦れにより発生し得る摩耗傷に対する耐性のことを示す。また、耐汗性とは、鋼板表面に人工汗液を滴下し静置した際の外観変化に対する耐性を示す。
上記のような課題を解決する本発明は、
めっき鋼板上に複合皮膜被覆た被覆鋼板であって、それぞれ平均粒子径が20〜100nmであり、シラノール基及び/又はアルコキシシリル基を有する、ポリウレタン樹脂粒子(A−1)及びエチレン−不飽和カルボン酸共重合樹脂粒子(A−2)の両方、あるいは前記(A−2)単独から選択される樹脂を含み、更に酸化ケイ素粒子(A−3)と有機チタン化合物(A−4)を含む複合化樹脂(A)、及びバナジウム化合物(B)が複合化した皮膜で、皮膜量が0.5〜3g/m2であることを特徴とする耐汗性用に優れた被覆鋼板である。
上記複合化樹脂(A)は、ポリウレタン樹脂粒子(A−1)及びエチレン−不飽和カルボン酸共重合樹脂粒子(A−2)が、質量比20:80〜90:10で含まれ、更に平均粒子径が5〜50nmである酸化ケイ素粒子(A−3)、及び有機チタン化合物(A−4)が含まれて、これらが複合化した複合化樹脂であることが好ましい。
上記複合皮膜は、酸化ケイ素粒子(A−3)が上記樹脂粒子(A−1)及び(A−2)の合計量に対して5〜100質量%であり、チタン原子の含有率が皮膜全量に対して0.05〜3質量%であることが好ましい。
記複合皮膜は、更に、リン酸化合物、チオカルボニル化合物、酸化ニオブ、及びグアニジン化合物からなる群から選択される少なくとも1種の防錆剤(E)が複合化した化合物からなる皮膜であることが好ましい。
上記ポリウレタン樹脂粒子(A−1)は、ポリカーボネート基を有するものであり、エチレン−不飽和カルボン酸共重合樹脂粒子(A−2)は、エチレン−メタクリル酸共重合樹脂のアルカリ金属、アンモニア及び/又はアミンによる中和物からの誘導体であることが好ましい。
本発明の被覆鋼板は、耐汗性に優れるとともに、加工部耐食性、耐テープ剥離性、耐溶剤性、耐アルカリ性、及び耐アブレージョン性等において優れたものであり、家電製品、事務機器、建材、自動車等の用途において、特に人の手に触れるような箇所に好適に用いることができるものである。
上記被覆鋼板は、基本的に、鋼板の表面に、それぞれ平均粒子径が20〜100nmであり、シラノール基及び/又はアルコキシシリル基を有する、ポリウレタン樹脂粒子(A−1)及びエチレン−不飽和カルボン酸共重合樹脂粒子(A−2)の両方、あるいは前記(A−2)単独から選択される樹を含み、更に酸化ケイ素粒子(A−3)と有機チタン化合物(A−4)を含む複合化樹脂(A)からなる皮膜を有するものである。
また、複合化樹脂(A)は、好ましくは、ポリウレタン樹脂粒子(A−1)とエチレン−不飽和カルボン酸共重合樹脂粒子(A−2)が質量比20:80〜90:10で含まれ、更に、平均粒子径が5〜50nmである酸化ケイ素粒子(A−3)及び有機チタン化合物(A−4)が含まれ、それらが複合化した複合化樹脂(A)からなるものである。
即ち、本発明は、基本的に、上記(A−1)、(A−2)の両方を含み、あるいは(A−2)単独から選択される樹脂を含み、更に(A−3)、(A−4)を含み、それらが複合化してなる複合樹脂(A)からなる皮膜を有するものであるため、耐テープ剥離性、耐溶剤性、耐アルカリ性に優れたものである。
また、バナジウム化合物(B)を含有することによって、耐汗性の性質を改善することができる。即ち、バナジウム化合物(B)は、クロム化合物と同様に、皮膜中に水溶性バナジウムイオンとして存在し、皮膜から優先的に溶出して人工汗液中の有機酸に作用することで、複合皮膜の損傷を抑制する効果がある。
更に、平均粒子径が0.5〜4μmであるポリオレフィンワックス粒子(C)、及び平均粒子径が50〜200nmである酸化ケイ素粒子(D)を含有することによって、耐アブレージョン性の性質を改善することができる。即ち、柔らかで潤滑性に優れるポリオレフィンワックス粒子(C)と、比較的粒子径が大きくて、硬度が高い酸化ケイ素粒子(D)を組み合わせることによって、表面の動摩擦係数と静摩擦係数とを調整し、耐アブレージョン性と被覆鋼板のハンドリング性等をバランス化させたものである。
上記複合化樹脂(A)は、上記樹脂粒子(A−1)と(A−2)の一方、又は双方と他の無機粒子や有機金属化合物、好ましくは、酸化ケイ素粒子(A−3)、及び有機チタン化合物(A−4)の反応により得られるものである。上記反応は、金属板の表面上に皮膜を形成する際に行われてもよいし、また、皮膜形成前に反応の一部を行い、皮膜形成時に反応を完結させてもよい。
以下、上記(A−1)〜(A−4)、(B)〜(E)について詳細に説明する。
上記樹脂粒子(A−1)としては、平均粒子径が20〜100nmであり、シラノール基及び/又はアルコキシシリル基を有するポリウレタン樹脂であれば特に限定されないが、ポリカーボネート系ポリウレタンが好ましい。上記ポリカーボネート系ポリウレタン樹脂粒子は、イソシアネート基含有化合物とポリカーボネートポリオール、低分子量ポリオール、及び活性水素基と親水性基を含有する化合物とを反応させてポリウレタンプレポリマーを製造し、次いで上記親水性基を中和剤により中和したのち、この中和プレポリマーを、活性水素基を含有するアルコキシシラン類及びポリアミンを含んだ水中に分散させ、鎖延長させることにより得ることができる。
上記イソシアネート基含有化合物の具体例としては、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、1,3−シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、メチル−2,4−シクロヘキサンジイソシアネート、メチル−2,6−シクロヘキサンジイソシアネート、1,3−ビス(イソシアネートメチル)シクロヘキサン等の脂環族ジイソシアネート、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、1,5−ナフタレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4−又は2,6−トリレンジイソシアネート若しくはその混合物、4,4’−トルイジンジイソシアネート等の芳香族ジイソシアネート等が挙げられる。
上記ポリカーボネートポリオールの具体例としては、例えばエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、ビスフェノール−A及び水添ビスフェノール−Aからなる群から選ばれた1種又は2種以上のグリコールとジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、ホスゲン等とを反応させることにより得られるもの等が挙げられる。
上記低分子量ポリオールの具体例としては、例えばエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール等のグリコール類や、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
上記活性水素基と親水性基を含有する化合物の具体例としては、2−ヒドロキシエタンスルホン酸等のスルホン酸含有化合物もしくはこれらの誘導体、2,2−ジメチロールプロピオン酸、2,2−ジメチロール酪酸等のカルボキシル基含有化合物もしくはこれらの誘導体が挙げられる。上記ポリウレタン樹脂粒子の製造の際には、これらの化合物を単独で、又は2種以上を組み合わせて使用する。
カルボキシル基又はスルホン酸基のような親水性基は、ポリウレタンプレポリマーを水中に良好に分散させるために、あらかじめ中和剤を用いて中和する。
上記中和剤の具体例としては、アンモニア又はトリエチルアミン、ジメチルエタノールアミン等の第3級アミン、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
上記活性水素基含有アルコキシシラン類の具体例としては、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン等のアミノ基含有シラン類、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプト基含有シラン類が挙げられる。
鎖延長に用いる上記ポリアミンの具体例としては、エチレンジアミン、1,2−プロパンジアミン、1,6−ヘキサメチレンジアミン、ピペラジン等のジアミン類、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン等のポリアミン類、ヒドラジン類等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
上記ポリオール等の活性水素化合物とイソシアネート基含有化合物からポリウレタンプレポリマーを得る反応は、有機溶剤の存在下又は非存在下で、反応温度30〜100℃で行われるのが好ましい。
有機溶剤を使用する場合は、比較的水への溶解度の高いものが好ましく、上記有機溶剤の具体例としては、アセトン、メチルエチルケトン、アセトニトリル、N−メチルピロリドン等が挙げられる。
上記ポリウレタンプレポリマーの水中への分散の方法としては、例えばホモジナイザー、ミキサー等を用いる方法が挙げられる。この際の温度は室温〜70℃程度が好ましい。
溶剤中で上記反応を行った場合には、必要に応じて溶剤を減圧下に蒸留して除くことができる。
上記樹脂粒子(A−2)としては、平均粒子径が20〜100nmであり、シラノール基及び/又はアルコキシシリル基を有するエチレン−不飽和カルボン酸共重合樹脂であれば特に限定されないが、なかでも、エチレン−メタクリル酸共重合樹脂を、アルカリ金属の水酸化物及び/又はアンモニア又はアミンで中和、水分散化させた樹脂液に、エポキシ基含有アルコキシシラン類を反応させて得られる樹脂粒子が、微粒子で、高性能皮膜を形成しうるという点で好ましい。
上記エポキシ基含有アルコキシシラン類の具体例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記エポキシ基含有アルコキシシラン類は、上記水性分散樹脂の固形分に対して、0.1〜20質量%の割合で反応させることが好ましい。さらに好ましくは1〜10質量%の範囲である。この配合量が0.1質量%未満では、鋼材表面に形成される皮膜の耐アルカリ性や塗料等の硬化性樹脂との密着性が低下し、20質量%を超えると水性被覆剤の浴安定性が低下する場合がある。
上記エポキシ基含有アルコキシシランとの反応に際しては、多官能エポキシ化合物を併用して処理を行うものであってもよい。上記エポキシ化合物としては、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、グルセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、プロピレンレングリコールジグリシジルエーテル、トリグリシジルトリス(2−ヒドロキシエチル)イソシアヌレート、ビスフェノールAジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記エポキシ基含有アルコキシシラン類及び多官能エポキシ化合物と上記エチレン−不飽和カルボン酸の水分散液との反応は、50〜100℃で0.5〜12時間行うことが好ましい。
上記ポリウレタン樹脂粒子(A−1)とエチレン−不飽和カルボン酸共重合樹脂粒子(A−2)は、いずれか一方を単独で用いることができるが、質量比20:80〜90:10の割合で併用するのが好ましい。その場合、樹脂粒子(A−1)の比率が20質量%に満たないと、皮膜の疎水性が高くなり、耐テープ剥離性が低下したり、ホワイトガソリン等の高疎水性溶剤に対する耐溶剤性が劣ったりする場合がある。一方、樹脂粒子(A−1)の比率が90質量%を超えると、皮膜の親水性が高くなり、耐アルカリ性やエタノール等の高親水性溶剤に対する耐溶剤性が低下したり、皮膜が脆くなって加工部耐食性の悪化を招いたりするおそれがある。上記樹脂粒子(A−1)と(A−2)の比率は、親水性と疎水性のバランスをとる上で、質量比で40:60〜80:20であることがより好ましい。
上記樹脂粒子(A−1)及び(A−2)は、シラノール基及び/又はアルコキシシリル基を有することによって、他の粒子や化合物、好ましくは酸化ケイ素粒子(A−3)や有機チタン化合物(A−4)との反応を生じ、複合被膜を形成することができ、耐溶剤性や耐アルカリ性等を改善することができる。
上記樹脂粒子(A−1)及び(A−2)は、いずれも平均粒子径が20〜100nmであることが好ましい。ここで、平均粒子径は動的光散乱法によって測定することができる。平均粒子径が20nm未満であると、粘度が高すぎるとか処理剤安定性が低い等の理由により、塗装作業性等が低下するという問題を生じる。平均粒子径が100nmを超えると、皮膜性能面で耐テープ剥離性や耐溶剤性等が低下するという問題を生じる。
上記樹脂粒子(A−1)は、水分散性を得るための親水性官能基、例えば、カルボン酸基やスルホン酸基の導入量及びそれを中和する中和剤の種類や量等の制御により、平均粒子径を上記範囲内に調整することができる。上記樹脂粒子(A−2)は、中和剤種、水分散条件、アルコキシシラン化合物の種類や量、多官能エポキシ化合物の種類や量等の制御により、平均粒子径を上記範囲内に調整することができる。
上記樹脂粒子(A−1)や(A−2)は、耐溶剤性や耐アルカリ性等の被膜の特性を改善するために、通常用いられている無機粒子や有機金属化合物と複合化される。そのように被膜の特性を改善するために複合化される他の物質としては、好ましくは、酸化ケイ素粒子(A−3)と有機チタン化合物(A−4)がある。
上記酸化ケイ素粒子(A−3)は、平均粒径が5〜50nm程度のものが好適であり、コロイダルシリカやヒュームドシリカ等から適宜選択して用いることができる。具体例としては、スノーテックスN、スノーテックスC(日産化学工業)やアデライトAT−20N、AT−20A(旭電化工業)やカタロイドS−20L、カタロイドSA(触媒化成工業)などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記有機チタン化合物(A−4)として用いられる具体例としては、ジプロポキシビス(トリエタノールアミナト)チタン、ジプロポキシビス(ジエタノールアミナト)チタン、ジブトキシビス(トリエタノールアミナト)チタン、ジブトキシビス(ジエタノールアミナト)チタン、ジプロポキシビス(アセチルアセトナト)チタン、ジブトキシビス(アセチルアセトナト)チタン、ジヒドロキシビス(ラクタト)チタンモノアンモニウム塩、ジヒドロキシビス(ラクタト)チタンジアンモニウム塩、プロパンジオキシチタンビス(エチルアセトアセテート)、オキソチタンビス(モノアンモニウムオキサレート)等を挙げることができる。これらは、単独でも良く、2種以上を併用してもよい。
上記複合皮膜は、より好ましい態様では、樹脂粒子(A−1)及び(A−2)、酸化ケイ素粒子(A−3)、有機チタン化合物(A−4)が相互に結合した状態のものである。すなわち、樹脂粒子表面の官能基、酸化ケイ素粒子表面の官能基、有機チタン化合物の官能基が結合を形成し、複合化した状態である。
上記結合は、主として樹脂粒子(A−1)及び(A−2)のSi−OH及び/又はSi−OR基、酸化ケイ素粒子(A−3)表面のSi−OH基、有機チタン化合物(A−4)のTi−OH及び/又はTi−OR´基が反応することによって形成される結合であり、Si−O−Si結合、Si−O−Ti−O−Si結合等であると考えられる。これらの結合によって有機樹脂粒子と無機粒子が化学的に強固な結合を形成するという有利な効果が得られる。
上記複合皮膜は、上記酸化ケイ素粒子(A−3)が上記樹脂粒子(A−1)及び(A−2)の合計量に対して5〜100質量%であることが好ましい。5質量%未満であると、鋼材表面に形成される皮膜の硬度や耐食性が低下するおそれがある。100質量%を超えると、造膜性や耐水性が低下する場合がある。より好ましくは、10〜50質量%である。
上記複合皮膜は、チタン原子の含有率が皮膜全量100質量%に対して0.05〜3質量%であることが好ましい。0.05質量%未満であると、形成される皮膜内の各成分の複合化が不十分であり、皮膜の性能が低下するおそれがある。3質量%を超えると、皮膜の親水性が高くなりすぎて皮膜の性能が低下したり、使用する水性被覆剤の浴安定性が低下したりする場合がある。より好ましくは、0.1〜2質量%である。
上記被覆鋼板における複合皮膜は、更にバナジウム化合物(B)を含有するものである。これにより、優れた耐汗性を得ることができる。
上記バナジウム化合物(B)としては、バナジウム酸アンモニウム、バナジウム酸ナトリウム、バナジウム酸カリウム、バナジウムオキシアセチルアセトネート、バナジウムアセチルアセトネート等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記被覆鋼板における皮膜中において、上記バナジウム化合物(B)の含有量は、皮膜100質量%中に、0.05〜10質量%であることが好ましい。0.05質量%未満の場合には耐汗性が不十分となり、10質量%超えると耐汗性が飽和して不経済となるだけでなく、使用する水性分散樹脂によってはゲル化して塗布不能となることがある。より好ましくは、0.1〜5質量%である。
上記バナジウム化合物(B)は、より好ましい態様では、リン酸化合物(E)と併用するものである。バナジウム化合物(B)は、リン酸化合物の存在下で安定化し、人工汗液中の有機酸に長期的に作用して複合皮膜への攻撃を緩和する。また、バナジウム化合物とリン酸化合物の組み合わせ使用は、下地亜鉛めっきの溶出を効果的に抑制する働きもある。
上記被覆鋼板における複合皮膜は、より好ましい態様では、更にポリオレフィンワック
ス粒子(C)を含有するものである。ただし、ポリオレフィンワックス粒子(C)は、上
記複合皮膜の動摩擦係数を低下させ、表面の潤滑性を高めるが、皮膜の硬度低下や静摩擦
係数の低下も招くため、ポリオレフィンワックス粒子(C)だけでは、満足できる性能は
得られない。そのため、本発明の好ましい態様においては、更に、ポリオレフィンワック
ス粒子(C)に加えて、平均粒子径が50〜200nmである酸化ケイ素粒子(D)を組
み合わせて使用する。
即ち、上記複合化樹脂(A)の一部を構成する酸化ケイ素粒子(A−3)とは別に、粒
子径が大きい酸化ケイ素粒子(D)を有するものである。
上記酸化ケイ素粒子(D)は、ポリオレフィンワックス粒子(C)によって低下した皮膜の硬度を高め、静摩擦係数を引き上げるために、皮膜の耐アブレージョン性を向上させると同時に、被覆鋼板のコイル潰れや切り板の荷崩れ等を起こさない等、ハンドリング性を向上させる効果がある。上記緒性能を満足させるには、動摩擦係数は0.10未満、静摩擦係数は0.10超が好ましい。なお、上記酸化ケイ素粒子(D)は、一部が上記複合化樹脂(A)と結合した状態のものであってもよい。
上記平均粒子径が0.5〜4μmであるポリオレフィンワックス粒子(C)としては特に限定されず、パラフィン、マイクロクリスタリン、ポリエチレン等の炭化水素系のワックス、これらの誘導体等を挙げることができる。上記誘導体としては特に限定されず、例えば、カルボキシル化ポリオレフィン、塩素化ポリオレフィン等を挙げることができる。
上記ポリオレフィンワックス粒子(C)は軟化点が80〜130℃であることが好ましい。80℃未満では加工時に軟化溶融して潤滑剤としての優れた特性が発揮されない場合がある。また、130℃を超える軟化点のものは、硬い粒子が表面に存在することとなり潤滑特性を低下させるので充分な潤滑性が得られない場合がある。
上記ポリオレフィンワックス粒子(C)は、粒子径が0.5〜4μmである。4μmを超えるものは潤滑剤の分布が不均一となったり、皮膜からの脱落が生じたりする可能性がある。また、0.5μm未満の場合は、潤滑性が不充分である場合がある。なお、ポリオレフィンワックス粒子(C)の粒子径は、動的光散乱法によって測定した値である。
上記被覆鋼板における皮膜中において、上記ポリオレフィンワックス粒子(C)の含有量は、皮膜100質量%中に、下限0.1質量%、上限20質量%であることが好ましい。0.1質量%未満であると、摩擦係数低下効果、耐アブレージョン性向上効果が小さく、20質量%を超えると、被覆鋼板の静摩擦係数が下がりすぎてハンドリング性に支障をきたすおそれがある。上記下限は0.5質量%であることがより好ましく、上記上限は10質量%であることがより好ましい。
上記平均粒子径が50〜200nmである酸化ケイ素粒子(D)は、特に限定されず、公知のものを使用することができる。市販のものとしては、ST−YL、ST−ZL、MP−1040(日産化学工業社製)、PL−7(扶桑化学工業社製)、SI−80P(触媒化成工業社製)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記酸化ケイ素粒子(D)は、粒子径が50〜200nmである。200nmを超えるものは水性被覆剤中で沈降しやすく使いづらい。また、50nm未満の場合は、静摩擦係数や表面硬度の引き上げ効果が不充分である場合がある。なお、酸化ケイ素粒子(D)の粒子径は、動的散乱光法によって測定した値である。
上記被覆鋼板における皮膜中において、上記酸化ケイ素粒子(D)の含有量は、皮膜100質量%中に、下限0.5質量%、上限30質量%であることが好ましい。0.5質量%未満であると、静摩擦係数の引き上げ及び表面硬度の向上の効果が小さく、30質量%を超えると、耐食性が低下するおそれがある。上記下限は1質量%であることがより好ましく、上記上限は15質量%であることがより好ましい。
上記被覆鋼板は、更にリン酸化合物、チオカルボニル化合物、酸化ニオブ及びグアニジン化合物からなる群から選択される少なくとも1種の防錆剤(E)が複合化した皮膜が形成されたものであってもよい。これにより、優れた耐食性を得ることができる。
上記リン酸化合物としては、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸類、リン酸三アンモニウム、リン酸水素二アンモニウム、リン酸三ナトリウム、リン酸水素二ナトリウム等のリン酸塩類等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記リン酸化合物を用いると、リン酸イオンが、金属素地表面にリン酸塩層を形成して不動態化させ、防錆性を向上させることができる。
チオカルボニル化合物、酸化ニオブ、グアニジン化合物は、従来から耐食性を付与するために使用されてきたクロム化合物と同様、特に亜鉛鋼板等の白錆防止に有効である。
上記チオカルボニル化合物は、下記一般式(1)で表される。
Figure 0005235397
式中、X、Yは、同一又は異なって、H、OH、SH若しくはNHを表すか、又は、置換基としてOH、SH若しくはNHを有していてもよく、かつ、−O−、−NH−、−S−、−CO−若しくは−CS−を含んでもいてもよい炭素数1〜15の炭化水素基を表し、XとYとが結合して環を形成してもよい。
上記一般式(1)で表されるチオカルボニル化合物とは、下記式(I)に示すチオカルボニル基
Figure 0005235397
を有する化合物を指し、その中でも下記式(II)に示す窒素原子や酸素原子を有するチオカルボニル基が好ましい。
Figure 0005235397
また、水溶液中や酸又はアルカリの存在下の条件においてチオカルボニル基含有化合物を形成することのできる化合物も使用することができる。上記チオカルボニル化合物の例としては、下記式(III)
Figure 0005235397
で表されるチオ尿素及びその誘導体、例えば、メチルチオ尿素、ジメチルチオ尿素、トリメチルチオ尿素、エチルチオ尿素、ジエチルチオ尿素、1,3−ジブチルチオ尿素、フェニルチオ尿素、ジフェニルチオ尿素、1,3−ビス(ジメチルアミノプロピル)−2−チオ尿素、エチレンチオ尿素、プロピレンチオ尿素等が挙げられる。
下記式(VI)
Figure 0005235397
で表されるカルボチオ酸類及びその塩類、例えば、チオ酢酸、チオ安息香酸、ジチオ酢酸、メチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸トリエチルアミン塩、ジエチルジチオカルバミン酸ナトリウム、ペンタメチレンジチオカルバミン酸ピペリジン塩、ピペコリルジチオカルバミン酸ピペコリン塩、o−エチルキサントゲン酸カリウム等が挙げられる。
これらのチオカルボニル化合物は、単独で用いてもよく、2種以上を併用してもよい。なお、上記チオカルボニル化合物のうち水に溶解しないものは、アルカリ溶液で一旦溶解させた後、使用する被覆剤中に配合する。
上記酸化ニオブは、酸化ニオブコロイド粒子であることが好ましい。これにより、酸化ニオブコロイド粒子を複合化した皮膜を形成することができ、耐食性をより向上させることができる。上記酸化ニオブコロイド粒子は、平均粒子径が小さい方がより安定して緻密な酸化ニオブを含有する皮膜が形成されるため、被処理物に対して安定して防錆性を付与することができ、より好ましい。
上記酸化ニオブコロイド粒子は、ニオブの酸化物が水中に微粒子状態で分散しているものをいい、例えば、厳密には酸化ニオブが形成されず、水酸化ニオブと酸化ニオブの中間状態でアモルファス状態になっているものであってもよい。
上記複合皮膜の形成に使用される水性被覆剤中に添加する酸化ニオブ粒子としては、公知の方法によって製造された酸化ニオブゾルを使用することができる。上記酸化ニオブゾルとしては特に限定されず、例えば、特開平6−321543号公報、特開平8−143314号公報、特開平8−325018号公報等に記載された公知の方法によって製造されたもの等を挙げることができる。また、多木化学株式会社によって市販されている酸化ニオブゾルを使用することもできる。
上記酸化ニオブコロイド粒子は、平均粒子径が100nm以下であることが好ましい。上記平均粒子径は、2〜50nmであることがより好ましく、2〜20nmであることが更に好ましい。上記平均粒子径は小さい方が、より安定して緻密な酸化ニオブを含んでなる皮膜が形成されるため、被処理物に対して安定して防錆性を付与することができ、より好ましい。上記酸化ニオブコロイド粒子の平均粒子径は、動的光散乱法によって測定することができる。
上記グアニジン化合物は、下記式(2)で表される。
Figure 0005235397
式中、X′及びY′は、同一又は異なって、H、NH、フェニル基若しくはメチルフェニル基(トリル基)を表すか、又は、置換基としてH、NH、フェニル基若しくはメチルフェニル基(トリル基)を有していてもよく、かつ、−C(=NH)−、−CO−若しくは−CS−を含んでもいてもよい。
上記グアニジン化合物の例としては、グアニジン、アミノグアニジン、グアニルチオ尿素、1,3−ジ−o−トリルグアニジン、1−o−トリルビグアニド、1,3−ジフェニルグアニジン等を挙げることができる。上記グアニジン化合物は、単独で用いてもよく、2種以上を併用してもよい。
上記複合皮膜がリン酸化合物を含有するものである場合、上記リン酸根の含有量は、皮膜100質量%中に、0.01〜5質量%であることが好ましい。0.01質量%未満の場合には耐食性が不十分となり、5質量%超えると使用する水性分散樹脂によってはゲル化して塗布不能となることがある。より好ましくは、0.05〜3質量%である。
上記複合皮膜がチオカルボニル化合物を含有するものである場合、上記チオカルボニル化合物の含有量は、皮膜100質量%中に、0.1〜10質量%であることが好ましい。0.1質量%未満の場合には耐食性が不十分となり、10質量%超えると耐食性が飽和して不経済となるだけでなく、使用する水性分散樹脂によってはゲル化して塗布不能となることがある。より好ましくは、0.2〜5質量%である。
上記複合皮膜が酸化ニオブを含有するものである場合、上記酸化ニオブの含有量は、皮膜100質量%中に、Nb換算で、0.1〜5質量%であることが好ましい。0.1質量%未満であると充分な防錆性が得られず、好ましくない。5質量%を超えても、効果の向上は見られず、経済的でないおそれがある。より好ましくは、0.2〜3質量%である。
上記複合皮膜がグアニジン化合物を含有するものである場合、上記グアニジン化合物の含有量は、皮膜100質量%中に、0.1〜5質量%であることが好ましい。0.1質量%未満の場合には耐食性が不十分となり、5質量%超えると耐食性が飽和して不経済となるだけでなく、使用する水性分散樹脂によってはゲル化して塗布不能となることがある。より好ましくは、0.2〜3質量%である。
上記被覆鋼板において、金属板表面に形成されている皮膜は、上記(A)〜(E)以外に、その他の成分を含有するものであってもよい。その他の成分として、例えば、顔料を配合してもよい。上記顔料としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、炭酸カルシウム(CaCO)、硫酸バリウム(BaSO)、アルミナ(Al)、カオリンクレー、カーボンブラック、酸化鉄(Fe、Fe)等の無機顔料や、有機顔料等の各種着色顔料等を用いることができる。
本発明における鋼材としては、例えば、亜鉛めっき鋼板、亜鉛−ニッケルめっき鋼板、亜鉛−鉄めっき鋼板、亜鉛−クロムめっき鋼板、亜鉛−アルミニウムめっき鋼板、亜鉛−チタンめっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−マンガンめっき鋼板、亜鉛−アルミニウム−マグネシウムめっき鋼板、亜鉛−アルミニウム−マグネシウム−シリコンめっき鋼板等の亜鉛系めっき鋼板、さらにはこれらのめっき層に少量の異種金属元素又は不純物としてコバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等を含有したもの、シリカ、アルミナ、チタニア等の無機物を分散させたものが含まれる。更には以上のめっきと他の種類のめっき、例えば鉄めっき、鉄−リンめっき、ニッケルめっき、コバルトめっき等と組み合わせた複層めっきにも適用可能である。更にはアルミニウム又はアルミニウム系合金めっきにも適応可能である。めっき方法は特に限定されるものではなく、公知の電気めっき法、溶融めっき法、蒸着めっき法、分散めっき法、真空めっき法等のいずれの方法でもよい。
上記複合皮膜の形成に使用する水性被覆剤にはより均一で平滑な皮膜を形成するために消泡剤、有機溶剤、レベリング剤を用いてもよい。有機溶剤としては、塗料に一般的に用いられるものであれば、特に限定されず、例えば、アルコール系、ケトン系、エステル系、エーテル系の親水性溶剤やシリコーン系、フッ素系等のレベリング剤を挙げることができる。
上記複合皮膜の形成に使用する水性被覆剤の被覆方法は、水性被覆剤を金属表面に塗布して皮膜を形成するものである。コーティング方法は特に限定されず、一般に使用されるロールコート、エアスプレー、エアレススプレー、浸漬等を適宜採用することができる。皮膜の硬化性を高めるために、あらかじめ被塗物を加熱しておくか、コーティング後に被塗物を熱乾燥させることが好ましい。被塗物の加熱温度は50〜250℃、好ましくは70〜220℃である。加熱温度が50℃未満では、水分の蒸発速度が遅く充分な成膜性が得られないため、耐溶剤性や耐アルカリ性が低下する。一方、250℃を超えると樹脂の熱分解が生じ、皮膜物性が低下して各種性能の低下を招き、また黄変等外観が悪くなる。コーティング後に熱乾燥させる場合の乾燥時間は1秒〜5分が好ましい。
上記複合皮膜は、皮膜量が0.5〜3g/mである。0.5g/m未満であると耐食性や耐アルカリ性が低下することがある。一方、皮膜量が多すぎると、基材密着性が低下するのみならず不経済でもある。より好ましくは0.5〜2g/mである。
また、本発明の被覆鋼板は、上記複合皮膜の上に上塗り塗料を塗布して塗膜を形成して使用することもできる。上塗り塗料としては、例えば、アクリル樹脂、アクリル変性アルキッド樹脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、フタル酸樹脂、アミノ樹脂、ポリエステル樹脂、塩化ビニル樹脂等からなる塗料などが挙げられる。
上塗り塗料の塗膜の膜厚は、防錆金属製品の用途、使用する上塗り塗料の種類等によって適宜決定され、特に制限されない。通常、5〜300μm程度、より好ましくは10〜200μm程度である。上塗り塗料の塗膜の形成は、上記水性被覆剤により形成された皮膜の上に上塗り塗料を塗布し、加熱して乾燥、硬化させて行うことができる。乾燥温度及び時間は、塗布される上塗り塗料の種類、塗膜の膜厚等に応じて適宜調整されることになるが、通常、乾燥温度としては、50〜250℃が好ましく、乾燥時間としては、5分〜1時間が好ましい。上塗り塗料の塗布方法としては、塗料形態に応じて、従来公知の方法により行うことができる。
上記被覆鋼板に更に上塗り塗料を塗布して塗膜を形成するものは、鋼板に形成された皮膜と上塗り塗膜とが良好な塗装密着性を有するものである。
次に、水性分散樹脂の製造例、その製造例を用いた実施例及び比較例を挙げて、本発明をさらに具体的に説明する。なお、各例中の%は質量%を意味する。
ポリウレタン樹脂粒子(A−1)の水分散液の製造
製造例1
反応容器に4,4’−メチレンビス(シクロヘキシルイソシアネート)、分子量2000のポリカーボネートジオール、ネオペンチルグリコール、ジメチロールプロピオン酸、及び溶剤としてN−メチルピロリドンを仕込み、80℃において6時間撹拌後、ジメチルエタノールアミンで中和してポリウレタンプレポリマー溶液を得た。次に、ヒドラジン及びγ−(2−アミノエチル)アミノプロピルトリエトキシシランを含有する水中に、上記反応により得られたポリウレタンプレポリマー溶液をホモディスパーを用いて分散させることにより、シラノール基及び/又はエトキシシリル基を含有するポリウレタン樹脂粒子の水分散液を得た。固形分濃度は30質量%、動的光散乱法によって測定した平均粒子径は39nmであった。
製造例2
上記製造例1と同様にして得られたポリウレタンプレポリマーを、ホモディスパーを用いて、ヒドラジン水溶液中に分散させることによりポリウレタン樹脂粒子の水分散液を得た。固形分濃度は30質量%、平均粒子径は36nmであった。
エチレン−不飽和カルボン酸共重合樹脂粒子(A−2)の水分散液の製造
製造例3
反応容器にエチレン−メタクリル酸共重合樹脂(メタクリル酸の含有量が20質量%)、樹脂に対して5.6質量%相当の水酸化ナトリウム及び脱イオン水を加え、95℃で6時間攪拌することにより固形分20%の水分散樹脂液を得た。この水分散樹脂液に対して、さらにγ−グリシドキシプロピルトリメトキシシランを0.8質量%、グリセロールポリグリシジルエーテルを0.8質量%を加えて、85℃で2時間反応させることによって、シラノール基及び/又はメトキシシリル基を有するエチレン−メタクリル酸共重合樹脂粒子の水分散液を得た。固形分濃度は21質量%、平均粒子径は76nmであった。
製造例4
反応容器にエチレン−メタクリル酸共重合樹脂(メタクリル酸の含有量が20質量%)、樹脂に対して3.7質量%の水酸化ナトリウム、6.3質量%のアンモニア水(25質量%)、及び脱イオン水を加え、95℃で6時間攪拌することにより固形分20%の水分散樹脂液を得た。この水分散樹脂液に対して、さらにγ−グリシドキシプロピルトリエトキシシランを1.2質量%、ペンタエリスリトールポリグリシジルエーテルを0.6質量%を加えて、85℃で2時間反応させることによって、シラノール基及び/又はメトキシシリル基を有するエチレン−メタクリル酸共重合樹脂粒子の水分散液を得た。固形分濃度は21質量%、平均粒子径は84nmであった。
製造例5
反応容器にエチレン−メタクリル酸共重合樹脂(メタクリル酸の含有量が20質量%)、樹脂に対して4.7質量%相当の水酸化ナトリウム及び脱イオン水を加え、95℃で2時間攪拌することにより固形分20%の水分散樹脂液を得た。この水分散樹脂液に対して、さらにγ−グリシドキシプロピルトリメトキシシランを1.2質量%、水添ビスフェノールAジグリシジルエーテルを1.2質量%加えて、85℃で2時間反応させることによって、シラノール基及び/又はメトキシシリル基を有するエチレン−メタクリル酸共重合樹脂粒子の水分散液を得た。固形分濃度は21%、平均粒子径は145nmであった。
実施例1〜16、比較例A1〜A12 表面被覆鋼板の作成
試験板の作成
厚さ0.8mmの電気亜鉛めっき鋼板(亜鉛付着量:20g/m)及び溶融亜鉛めっき鋼板(亜鉛付着量:60g/m)を60℃のアルカリ脱脂剤(サーフクリーナー155、日本ペイント社製)2%水溶液を用いて30秒間スプレー処理して脱脂した。次に、上記製造例で得られた樹脂粒子及び表1〜6に示した物質を表7,8に示した処方で水性被覆剤を調製し、これをバーコーターで、乾燥皮膜量1g/mになるように塗布し、雰囲気温度500℃の熱風乾燥炉を用いて到達板温150℃まで焼き付けて試験板を作成した。
評価方法
基材密着性、耐テープ剥離性、塗装密着性、加工部耐食性、耐溶剤性(エタノール、メチルエチルケトン、ホワイトガソリンの3種)、耐アルカリ性、動摩擦係数、静摩擦係数、耐アブレージョン性、及び耐汗性を評価した。評価は下記の方法で行った。
基材密着性
試験板をエリクセンテスターにて8mm押し出し加工したのち、押し出し部にセロハンテープ(ニチバン社製)を貼り、強制剥離した。試験板をメチルバイオレット染色液に浸漬し、皮膜状態を観察し下記基準で評価した。
○:剥離なし
△:剥離面積10%未満
×:剥離面積10%以上
耐テープ剥離性
試験板にフィラメンテープ(スリオンテック社製)を貼り、40℃、湿度80%の条件で1週間放置したのち、テープを強制剥離した。皮膜状態を観察し下記基準で評価した。
○:剥離ほとんどなし
△:剥離面積50%未満
×:剥離面積50%以上
塗装密着性
試験板表面にメラミンアルキッド塗料(スーパーラック100、日本ペイント社製)をバーコーターで乾燥膜厚20μmとなるように塗布し、120℃で25分間焼き付けて塗板を作製した。一昼夜放置後沸騰水中に30分間浸漬し、取り出して1日放置してから、1mm間隔の碁盤目カット疵を100個入れ、その部分にセロハンテープ(ニチバン製)を貼り、強制剥離した後の皮膜状態を観察し下記基準で評価した。
○:剥離個数0
△:剥離個数49以下
×:剥離個数50以上
加工部耐食性
試験板をエリクセンテスターにて7mm押し出した加工し、試験板のエッジと裏面をテープシールし、塩水噴霧試験SST(JIS−Z−2371)を行った。120時間後の白錆発生状況を観察し下記基準で評価した。
○:白錆ほとんどなし
△:白錆面積30%未満
×:白錆面積30%以上
耐溶剤性
試験板をラビングテスターに設置後、エタノール又はホワイトガソリンを含浸させた脱脂綿を0.5kgf/cmの荷重で5回(往復)擦った後、試験板のエッジと裏面をテープシールし、塩水噴霧試験(JIS−Z−2371)を行った。72時間後の白錆発生状況を観察し下記基準で評価した。
○:白錆ほとんどなし
△:白錆面積30%未満
×:白錆面積30%以上
耐アルカリ性
試験板を55℃のアルカリ脱脂剤(サーフクリーナー53、日本ペイント社製)2%水溶液(pH12.5)に攪拌しながら2分間浸漬した後、試験板のエッジと裏面をテープシールし、塩水噴霧試験(JIS−Z−2371)を行った。72時間後の白錆発生状況を観察し下記基準で評価した。
○:白錆ほとんどなし
△:白錆面積30%未満
×:白錆面積30%以上
動摩擦係数
試験板をHEIDON動摩擦係数測定装置にかけ、10mmφステンレス球摺動、荷重100g、摺動速度150mm/minn条件で動摩擦係数を測定した。
静摩擦係数
HEIDON静摩擦係数測定装置を用いて、0.5°/sec、平面圧子にバリを取り除いた面積25cm2の試験板を貼り付けて、重さ200gの条件で試験板同士の静摩擦係数を測定した。
耐アブレージョン性
試験板に、段ボール紙を介して10g/cm2の荷重をかけ、360回/minの楕円運動を加えて摺動部にアブレージョン(摩耗傷)を発生させた。10分間試験を行った後の試験板表面の状態を観察し下記基準で評価した。
○:黒化ほとんどなし
△:摺動部の50%未満の面積が黒化
×:摺動部の50%以上の面積が黒化
耐汗性
試験板に、人工汗液(JIS−L−0848 D法)を、1滴滴下後、65℃93%RHに48時間静置し下記基準で評価した。
<評価基準>
◎=外観変化なし
○=外観変化ほとんどなし
△=滴下部の30%未満の面積が変化
×=滴下部の30%以上の面積が変化
上記試験によって評価及び測定を行った結果を下記表7,8に示す。
Figure 0005235397
Figure 0005235397
Figure 0005235397
Figure 0005235397
Figure 0005235397
Figure 0005235397
Figure 0005235397
Figure 0005235397
上記表7,8の結果から、バナジウム化合物を含有する本発明の被覆鋼板は、耐汗性に優れることが明らかであり、更に、本発明の好ましい態様によれば、耐汗性に加えて、基材密着性、耐テープ剥離性、塗装密着性、加工部耐食性、耐溶剤性、耐アルカリ性、耐アブレージョン性においても優れた性質を有することが明らかである。
本発明の被覆鋼板は、自動車、家電、建材製品等に好適に使用することができる。

Claims (5)

  1. めっき鋼板上に複合皮膜を被覆した被覆鋼板であって、
    前記複合皮膜は、
    それぞれ、平均粒子径が20〜100nmであり、シラノール基及び/又はアルコキシシリル基を有する、ポリウレタン樹脂粒子(A−1)及びエチレン−不飽和カルボン酸共重合樹脂粒子(A−2)の両方、あるいは前記(A−2)単独から選択される樹脂を含み、更に酸化ケイ素粒子(A−3)と有機チタン化合物(A−4)を含む複合化樹脂(A)、
    及びバナジウム化合物(B)
    が複合化した皮膜で、皮膜量が0.5〜3g/mであることを特徴とする耐汗性に優れた被覆鋼板。
  2. 前記複合化樹脂(A)は、
    ポリウレタン樹脂粒子(A−1)及びエチレン−不飽和カルボン酸共重合樹脂粒子(A−2)を質量比20:80〜90:10の割合で含み、更に平均粒子径が5〜50nmである酸化ケイ素粒子(A−3)と有機チタン化合物(A−4)を含み、
    それらが複合化した複合化樹脂である請求項1記載の被覆鋼板。
  3. 前記酸化ケイ素粒子(A−3)が、前記ポリウレタン樹脂粒子(A−1)及び前記エチレン−不飽和カルボン酸共重合樹脂粒子(A−2)の合計量に対して5〜100質量%であり、チタン原子の含有率が皮膜全量に対して0.05〜3質量%である請求項1または2に記載の被覆鋼板。
  4. 前記複合皮膜は、
    更に、リン酸化合物、チオカルボニル化合物、酸化ニオブ、及びグアニジン化合物からなる群から選択される少なくとも1種の防錆剤(E)
    が複合化した化合物からなる皮膜である請求項1〜のいずれかに記載の被覆鋼板。
  5. 前記ポリウレタン樹脂粒子(A−1)は、
    ポリカーボネート基を有するものであり、エチレン−不飽和カルボン酸共重合樹脂粒子(A−2)はエチレン−メタクリル酸共重合樹脂のアルカリ金属、アンモニア及び/又はアミンによる中和物からの誘導体である請求項1〜のいずれかに記載の被覆鋼板。
JP2007323776A 2007-12-14 2007-12-14 被覆鋼板 Active JP5235397B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007323776A JP5235397B2 (ja) 2007-12-14 2007-12-14 被覆鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007323776A JP5235397B2 (ja) 2007-12-14 2007-12-14 被覆鋼板

Publications (2)

Publication Number Publication Date
JP2009144208A JP2009144208A (ja) 2009-07-02
JP5235397B2 true JP5235397B2 (ja) 2013-07-10

Family

ID=40915155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323776A Active JP5235397B2 (ja) 2007-12-14 2007-12-14 被覆鋼板

Country Status (1)

Country Link
JP (1) JP5235397B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143144A1 (en) 2008-05-19 2009-11-26 Henkel Ag & Co. Kgaa Midly alkaline thin inorganic corrosion protective coating for metal substrates
MY189062A (en) 2013-03-15 2022-01-24 Akzo Nobel Coatings Int Bv Hybrid water dispersions, (poly)ethylene (meth)acrylic acid copolymer composite latex emulsions, hybrid (poly)ethylene (meth)acrylic acid organosilane composite latex emulsions, and coating compositions formed therefrom
JP2017087501A (ja) * 2015-11-06 2017-05-25 新日鐵住金株式会社 表面処理鋼板
WO2018083784A1 (ja) * 2016-11-04 2018-05-11 新日鐵住金株式会社 表面処理鋼板
JP7230356B2 (ja) * 2018-07-06 2023-03-01 日本製鉄株式会社 表面処理鋼板及び表面処理鋼板の製造方法
JP7438078B2 (ja) * 2020-10-20 2024-02-26 日本ペイント・サーフケミカルズ株式会社 鋼材用水性被覆剤、被膜、鋼材の被覆方法、及び鋼材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075091B2 (ja) * 1994-08-02 2000-08-07 日本鋼管株式会社 有機複合被覆鋼板
JP4137247B2 (ja) * 1998-09-28 2008-08-20 三井化学ポリウレタン株式会社 潤滑表面処理用塗料組成物
JP4349712B2 (ja) * 1998-12-29 2009-10-21 新日本製鐵株式会社 クロムを含まない表面処理亜鉛めっき鋼材
JP4058393B2 (ja) * 2003-01-07 2008-03-05 新日本製鐵株式会社 無機−有機複合処理亜鉛系メッキ鋼板
JP4575047B2 (ja) * 2004-06-29 2010-11-04 関西ペイント株式会社 金属表面処理組成物および金属表面処理鋼板
JP4318610B2 (ja) * 2004-07-30 2009-08-26 株式会社神戸製鋼所 表面処理金属板
JP4969831B2 (ja) * 2004-10-26 2012-07-04 日本パーカライジング株式会社 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
JP4551847B2 (ja) * 2005-09-09 2010-09-29 株式会社神戸製鋼所 樹脂塗装金属板
JP5135669B2 (ja) * 2005-09-16 2013-02-06 新日鐵住金株式会社 塗装金属材の製造方法
JP2007321223A (ja) * 2006-06-04 2007-12-13 Jfe Steel Kk 耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板及びその製造方法

Also Published As

Publication number Publication date
JP2009144208A (ja) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4829298B2 (ja) 被覆鋼板
JP4901116B2 (ja) 表面処理金属板
JP5546097B2 (ja) 表面処理金属材及び金属表面処理剤
EP2037003B1 (en) Coated steel sheet
JP5235397B2 (ja) 被覆鋼板
TWI669415B (zh) Metal surface treatment agent for galvanized steel, coating method and coated steel
US7476445B2 (en) Surface-treated metal sheet
JP4180269B2 (ja) 鋼材用水性被覆剤、被覆方法及び被覆鋼材
JP7230356B2 (ja) 表面処理鋼板及び表面処理鋼板の製造方法
JP4180270B2 (ja) 鋼材用水性被覆剤、被覆方法及び被覆鋼材
JP4058393B2 (ja) 無機−有機複合処理亜鉛系メッキ鋼板
JP7438078B2 (ja) 鋼材用水性被覆剤、被膜、鋼材の被覆方法、及び鋼材
JP2023146317A (ja) 鋼板及び自動車部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250