JP5197080B2 - 半導体装置及びデータプロセッサ - Google Patents

半導体装置及びデータプロセッサ Download PDF

Info

Publication number
JP5197080B2
JP5197080B2 JP2008070680A JP2008070680A JP5197080B2 JP 5197080 B2 JP5197080 B2 JP 5197080B2 JP 2008070680 A JP2008070680 A JP 2008070680A JP 2008070680 A JP2008070680 A JP 2008070680A JP 5197080 B2 JP5197080 B2 JP 5197080B2
Authority
JP
Japan
Prior art keywords
clock
command
data
address
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008070680A
Other languages
English (en)
Other versions
JP2009223854A5 (ja
JP2009223854A (ja
Inventor
亨 林
元大 諏訪
和生 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2008070680A priority Critical patent/JP5197080B2/ja
Priority to US12/342,742 priority patent/US7816795B2/en
Publication of JP2009223854A publication Critical patent/JP2009223854A/ja
Priority to US12/889,607 priority patent/US8053911B2/en
Publication of JP2009223854A5 publication Critical patent/JP2009223854A5/ja
Application granted granted Critical
Publication of JP5197080B2 publication Critical patent/JP5197080B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09254Branched layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10159Memory
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、配線基板上における複数のメモリデバイスとこれを制御するデータ処理デバイスとの接続形態、並びに前記データ処理デバイスがメモリデバイスに供給するクロック信号とコマンド及びアドレス信号との出力位相関係を最適化する技術に関し、例えば、JEDEC STANDARD No.79-2Dに準拠したDDR(Double Data Rate)2−SDRAM(Synchronous Dynamic Random Access Memory)とメモリコントローラを搭載するマザーボード形態の半導体装置に適用して有効な技術に関する。
本出願人による先の出願である特許文献1には、SOC形態のデータ処理デバイスのコーナ部分の両側の縁辺に沿ってメモリコントローラをオンチップし、メモリデバイスを当該両側の縁辺に対向配置したマザーボード形態の半導体装置が開示される。その明細書中には、メモリデバイスとして2個のDDR2−SDRAMを配置してデータ処理デバイスが並列アクセスする構成が開示される。特に、コマンド及びアドレス信号はデータ処理デバイスからメモリデバイスに共通の基板配線を介して並列に供給されるが、クロック信号は別々のクロック配線を介してメモリデバイスに別々に供給されるようになっている。
特開2007−213375号公報
本発明者はマザーボード形態の半導体装置に搭載すべきメモリデバイスの数を増やすことについて検討した。このとき、DDR形態のSDRAMに供給されるクロック信号はコマンド及びアドレス信号の2倍の周波数をもつから、クロック信号配線における配線インピーダンス、総負荷容量、及び分岐数を少なく、分岐後の配線長バランスを良くしてクロック信号の遷移波形が歪まないようにすることが必要になる。この点で特許文献1に記載のようにクロック信号配線をメモリデバイス毎に分けることも可能である。しかしながら、実装すべきメモリデバイスを2個から4個に増やすときにもメモリデバイス毎にクロック信号配線を別々に設けると、配線基板上におけるクロック配線の占有面積が増え、データ処理デバイスのクロック端子も増えることになり、現実的ではない。そこで本発明者はデータ処理デバイスの2対の差動クロック端子の夫々にメモリデバイスを2個づつ共通接続することを考えた。
この場合には更にクロック信号配線とコマンド及びアドレス信号配線の等ディレイ化についても考慮しなければならない。すなわち、DDR2−SDRAMにとってクロック信号はメモリサイクルの基準クロックでありコマンド及びアドレスを取り込むための基準になるから、クロック信号配線とコマンド及びアドレス信号配線は等ディレイ化されることが必要である。したがって、差動クロック配線はシングルエンドのコマンド及びアドレス信号配線よりも低インピーダンスであるから、負荷の充放電速度が速くなり、その分クロック配線の方を長くすることが必要になる。また、データ処理デバイスの各クロック端子に2個のメモリデバイスを接続する場合には1個を接続する場合に比べて負荷容量が大きくなり、一方コマンド及びアドレス信号配線は4個のメモリデバイスに接続し、負荷容量が増えるので、この点でも上記等ディレイ化のためにクロック配線を長くしなければならない。
しかしながら、クロック信号配線を長くする度合が増せばクロック配線の占有面積が増大してしまう。さらに、クロック信号配線を長くすると、その配線遅延が大きくなり、データストローブ信号とのディレイ差がJEDECの規格を満足できなくなる虞を生ずる。しかも、データ処理デバイスがクロック信号を出力してメモリデバイスよりリードデータのデータストローブ信号を受取るまでのラウンドトリップタイム(Round Trip Time)が長くなって、規定クロックサイクル内でのメモリリード動作を保証できない場合が生ずる。
本発明の目的は、並列動作される複数のメモリデバイスに共通接続するコマンド及びアドレス信号配線と前記メモリデバイスに接続するクロック配線との夫々に伝播される信号の同期化をクロック配線長の増大を極力抑えて実現でき、これによってクロック配線による配線基板の占有面積を小さくすることができる半導体装置を提供することにある。
本発明の目的は、並列動作される複数のメモリデバイスに共通接続するコマンド及びアドレス配線の負荷容量が大きくなったときでも前記メモリデバイスに接続するクロック配線長の増大を抑えることができるデータプロセッサを提供することにある。
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
すなわち、半導体装置は配線基板に搭載されたデータ処理デバイスとこれによって並列アクセスされる複数個のメモリデバイスとを有する。データ処理デバイスはコマンド及びアドレス端子から第1の周波数でコマンド及びアドレス信号を出力し、クロック端子から第2の周波数でクロック信号を出力する。前記第2の周波数は第1の周波数の複数倍とされ、前記コマンド及びアドレス端子から出力されるコマンド及びアドレス信号には前記クロック端子から出力されるクロック信号のサイクル開始位相と同等又はそれよりも早い出力タイミングが選択可能にされる。
コマンド及びアドレス端子に例えば4個のメモリデバイスを共通接続し、1つのクロック端子に2個のメモリデバイスを共通接続し、もう1つのクロック端子に2個のメモリデバイスを接続したとき、前記クロック端子から出力されるクロック信号のサイクル開始位相よりも早い出力タイミングでコマンド及びアドレス信号を出力することにより、コマンド及びアドレス信号とクロック信号の等ディレイ化に際して当該早い出力タイミングの時間差分だけ、クロック配線を長くすることを要しない。一方、コマンド及びアドレス端子に接続するメモリデバイスの数を例えば2個に減らしてコマンド及びアドレス端子に接続されるコマンド及びアドレス配線の負荷容量を小さくした場合には、前記クロック端子から出力されるクロック信号のサイクル開始位相と同等の出力タイミングでコマンド及びアドレス信号を出力することにより、メモリデバイスとの間のクロック遅延を大幅に変えることなく対応することができる。
配線基板上でコマンド及びアドレス端子に共通接続されるメモリデバイスの数等に応じてコマンド及びアドレス配線の負荷容量に相違を生じても、等ディレイ化のために配線基板上でクロック配線の配線長を長くしたり変更したりすることを要しない。したがって、クロック配線による配線基板上の専有面積を低減でき、データプロセッサとメモリデバイスと搭載したマザーボードのような半導体装置の小型化並びにコスト低減を実現することができる。コマンド及びアドレス配線とクロック配線との間の等ディレイ化のためにクロック配線を長くすることを要しないから、データストローブ信号に対してその配線遅延が大きくなることもなく、データストローブ信号とのディレイ差がJEDECの規格を満足できなくなる事態の防止に資することができる。しかも、ラウンドトリップタイム(Round Trip Time)も不所望に長くならず、規定クロックサイクル内でのメモリリード動作を保証できなくなる事態の防止にも資することができる。
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
すなわち、並列動作される複数のメモリデバイスに共通接続するコマンド及びアドレス信号配線と前記メモリデバイスに接続するクロック配線との夫々に伝播される信号の同期化をクロック配線長の増大を極力抑え、これによってクロック配線による配線基板の占有面積を小さくすることができる。
また、並列動作される複数のメモリデバイスに共通接続するコマンド及びアドレス配線の負荷容量が大きくなったときでも前記メモリデバイスに接続するクロック配線長の増大を抑えることができる。
1.実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
〔1〕本発明の一つの実施形態に係る半導体装置は、配線基板と、前記配線基板に搭載されたデータ処理デバイス(3)と、前記配線基板に搭載され前記データ処理デバイスに接続された複数個のメモリデバイス(4)とを有する。前記データ処理デバイスは、前記複数個のメモリデバイスに接続される複数個のデータ系端子(CDT1〜CDT4)と、複数個のコマンド及びアドレス端子(CCAT)と、複数個のクロック端子(CCKT1,CCKT2)と、それら端子の入出力を制御するメモリコントローラ(7)とを有する。前記配線基板は、前記データ系端子を前記メモリデバイスに個別に接続する個別配線(DW_1〜DW_4、DW_12,DW_34)と、前記コマンド及びアドレス端子を途中で分岐して複数個の前記メモリデバイスに共通接続する第1分岐配線(CAW)と、前記クロック端子を途中で分岐して前記メモリデバイスに接続する第2分岐配線(CW1,CW2)とを有する。前記第2分岐配線は前記第1分岐配線の分岐数以下の分岐数を有する。前記メモリコントローラは、前記コマンド及びアドレス端子から第1の周波数でコマンド及びアドレス信号を出力し、前記クロック端子から第2の周波数でクロック信号を出力する。前記第2の周波数は第1の周波数の複数倍とされる。前記コマンド及びアドレス端子から出力されるコマンド及びアドレス信号には前記クロック端子から出力されるクロック信号のサイクル開始位相と同等又はそれよりも早い出力タイミングが選択可能にされる。
前記クロック端子から出力されるクロック信号のサイクル開始位相よりも早い出力タイミングでコマンド及びアドレス信号を出力することにより、コマンド及びアドレス信号とクロック信号の等ディレイ化に際して当該早い出力タイミングの時間差分だけ、クロック配線を長くすることを要しない。一方、コマンド及びアドレス端子に接続されるコマンド及びアドレス配線の負荷容量を小さくした場合には、前記クロック端子から出力されるクロック信号のサイクル開始位相と同等の出力タイミングでコマンド及びアドレス信号を出力することにより、メモリデバイスとの間のクロック遅延を大幅に変えることなく対応することができる。
配線基板上でコマンド及びアドレス端子に共通接続されるメモリデバイスの数等に応じてコマンド及びアドレス配線の負荷容量に相違を生じても、等ディレイ化のために配線基板上でクロック配線の配線長を長くしたり変更したりすることを要しない。したがって、クロック配線による配線基板上の専有面積を低減でき、データプロセッサとメモリデバイスと搭載したマザーボードのような半導体装置の小型化並びにコスト低減を実現することができる。コマンド及びアドレス配線とクロック配線との間の等ディレイ化のためにクロック配線を長くすることを要しないから、データストローブ信号に対してその配線遅延が大きくなることもなく、データストローブ信号とのディレイ差がJEDECの規格を満足できなくなる事態の防止に資することができる。しかも、ラウンドトリップタイム(Round Trip Time)も不所望に長くならず、規定クロックサイクル内でのメモリリード動作を保証できなくなる事態の防止にも資することができる。
〔2〕項1において前記データ処理デバイスは、例えば、前記早い出力タイミングを複数の出力タイミングの中から選択する。これにより、配線基板上のクロック配線長で調整できない配線遅延量に応じて最適な選択が可能になる。
〔3〕項2において前記データ処理デバイスは、例えばパワーオンリセット処理で前記コマンド及びアドレス信号の出力タイミングを初期設定する。コマンド及びアドレス信号の出力タイミングの設定をプログラムで制御することは可能になる。
〔4〕項1において前記メモリコントローラは例えば可変遅延回路(17,20)を有し、前記可変遅延回路に設定される遅延時間が小さいほど前記コマンド及びアドレス端子から出力されるコマンド及びアドレス信号は前記クロック端子から出力されるクロック信号のサイクル開始位相よりも早くされる。コマンド及びアドレス信号の出力タイミングを選択する回路構成を簡単に実現することが可能になる。
〔5〕項2においてデータ処理デバイスは例えばCPUとCPUによってアクセス可能な制御レジスタ(8)を有し、前記可変遅延回路の遅延時間は前記制御レジスタに書き込まれた制御データによって決定される。
〔6〕項4において前記可変遅延回路(17)は例えば前記コマンド及びアドレス端子から出力するコマンド及びアドレス信号の伝達経路に配置される。
〔7〕項4において前記可変遅延回路(20)は例えば前記コマンド及びアドレス端子から出力するコマンド及びアドレス信号をラッチするラッチ回路(16)におけるラッチクロックの伝達経路に配置される。項6の構成に比べて可変遅延回路の回路規模を小さくすることができる。
〔8〕本発明の別の実施形態に係る半導体装置は、配線基板と、前記配線基板に搭載されたデータ処理デバイスと、前記配線基板に搭載され前記データ処理デバイスに接続された4個のメモリデバイス(4_1〜4_4)とを有する。前記データ処理デバイスは、前記4個のメモリデバイスに別々に接続されるデータ系端子(CDT1〜CDT4)と、前記4個のメモリデバイスに共通接続されるコマンド及びアドレス端子(CCAT)と、前記4個のメモリデバイスの内の2個に接続される第1のクロック端子(CCKT1)と、前記4個のメモリデバイスの内の残りの2個に接続される第2のクロック端子(CCKT2)と、それら端子の入出力を制御するメモリコントローラ(7)とを有する。前記配線基板は、前記データ系端子を前記メモリデバイスに1対1対応で接続するデータ系配線(DW_1〜DW_4)と、前記コマンド及びアドレス端子を基点に途中で4分岐して前記4のメモリデバイスに共通接続されるコマンド及びアドレス配線(CAW)と、前記第1のクロック端子を基点に途中で2分岐して対応する2個の前記メモリデバイスに共通接続する第1のクロック配線(CW1)と、前記第2のクロック端子を基点に途中で2分岐して対応する2個の前記メモリデバイスに共通接続する第2のクロック配線(CW2)とを有する。前記メモリコントローラは前記4個のメモリデバイスを制御するとき、前記コマンド及びアドレス端子から第1の周波数でコマンド及びアドレス信号を出力し、前記第1のクロック端子及び第2のクロック端子から第2の周波数でクロック信号を出力する。前記第2の周波数は第1の周波数の複数倍とされる。前記コマンド及びアドレス端子から出力されるコマンド及びアドレス信号には前記第1のクロック端子及び第2のクロック端子から出力されるクロック信号のサイクル開始位相よりも早い出力タイミングが選択可能にされる。
コマンド及びアドレス端子に4個のメモリデバイスを共通接続し、一のクロック端子に2個のメモリデバイスを共通接続し、他のクロック端子に2個のメモリデバイスを接続したとき、前記クロック端子から出力されるクロック信号のサイクル開始位相よりも早い出力タイミングでコマンド及びアドレス信号を出力することにより、コマンド及びアドレス信号とクロック信号の等ディレイ化に際して当該早い出力タイミングの時間差分だけ、クロック配線を長くすることを要しない。
〔9〕項8において例えば、前記データ処理デバイスのコーナ部分を挟んで両辺側に前記データ系端子とコマンド及びアドレス端子と第1及び第2のクロック端子が分離して配置される。前記データ系端子はコマンド及びアドレス端子と第1及び第2のクロック端子とに比べて前記コーナ部分から離間されて配置される。前記データ処理デバイスのコーナ部分を挟む両辺に対向して前記メモリデバイスが前記配線基板の一面に2個搭載され、前記2個のメモリデバイスの裏側に位置する前記配線基板に他面には残りの2個のメモリデバイスが搭載される。前記データ系配線はデータ処理デバイスのコーナ部分を挟む各辺から対応するメモリデバイスに向けて延在される。前記コマンド及びアドレス配線と第1及び第2のクロック配線はデータ処理デバイスのコーナ部分を基点に途中で分岐して各メモリデバイスに向けて延在される。データ処理デバイスの一辺に沿って前記データ系端子とコマンド及びアドレス端子と第1及び第2のクロック端子を配置する場合に比べてデータ処理デバイスの小型化、配線基板の小型化に資することができる。
〔10〕項9において例えば前記夫々のメモリデバイスは8ビットのメモリデータ端子を有するJEDEC準拠のDDR2型のSDRAMであり、前記メモリデバイスのデータ端子寄りの短辺が前記データ処理デバイスの辺に対向配置されている。これにより、データ処理デバイスの辺に長辺を対向される場合に比べ、各メモリデバイスのメモリデータ端子を実装面の配線層で直接接続することができ、配線基板におけるデータ系配線の簡素化に資することができる。
〔11〕本発明の更に別の実施形態に係る半導体装置は、配線基板と、前記配線基板に搭載されたデータ処理デバイスと、前記配線基板に搭載され前記データ処理デバイスに接続された2個のメモリデバイス(4_12,4_34)とを有する。前記データ処理デバイスは、前記2個のメモリデバイスに別々に接続されるデータ系端子(CDT_12,CDT_34)と、前記2個のメモリデバイスに共通接続されるコマンド及びアドレス端子(CCAT)と、前記2個のメモリデバイスに接続されるクロック端子(CCKT1)と、それら端子の入出力を制御するメモリコントローラとを有する。前記配線基板は、前記データ系端子を前記メモリデバイスに1対1対応で接続するデータ系配線(DW_12,DW_34)と、前記コマンド及びアドレス端子を途中で2分岐して前記2のメモリデバイスに共通接続されるコマンド及びアドレス配線(CAW)と、前記クロック端子を途中で2分岐して対応する2個の前記メモリデバイスに共通接続するクロック配線(CW1)とを有する。前記メモリコントローラは前記2個のメモリデバイスを制御するとき、前記コマンド及びアドレス端子から第1の周波数でコマンド及びアドレス信号を出力し、前記クロック端子から第2の周波数でクロック信号を出力する。前記第2の周波数は第1の周波数の複数倍とされる。前記コマンド及びアドレス端子から出力されるコマンド及びアドレス信号は前記クロック端子から出力されるクロック信号のサイクル開始位相と同等又はそれよりも早い出力タイミングが選択可能にされる。
上記項8の半導体装置に比べて、コマンド及びアドレス端子に接続するメモリデバイスの数を2個に減らしてコマンド及びアドレス端子に接続されるコマンド及びアドレス配線の負荷容量を小さくした場合には、前記クロック端子から出力されるクロック信号のサイクル開始位相と同等の出力タイミングでコマンド及びアドレス信号を出力することにより、メモリデバイスとの間のクロック遅延を大幅に変えることなく対応することができる。
〔12〕項11において前記データ処理デバイスのコーナ部分を挟んで両辺側に前記データ系端子とコマンド及びアドレス端子と第1及び第2のクロック端子が分離して配置され、前記データ系端子はコマンド及びアドレス端子と第1及び第2のクロック端子とに比べて前記コーナ部分から離間されて配置される。前記データ処理デバイスのコーナ部分を挟む両辺に対向して前記メモリデバイスが前記配線基板の一面に2個搭載される。前記データ系配線はデータ処理デバイスのコーナ部分を挟む各辺から対応するメモリデバイスに向けて延在され、前記コマンド及びアドレス配線と第1及び第2のクロック配線はデータ処理デバイスのコーナ部分を基点に途中で分岐して各メモリデバイスに向けて延在される。データ処理デバイスの一辺に沿って前記データ系端子とコマンド及びアドレス端子と第1及び第2のクロック端子を配置する場合に比べてデータ処理デバイスの小型化、配線基板の小型化に資することができる。
〔13〕項12において前記夫々のメモリデバイスは16ビットのメモリデータ端子を有するJEDEC準拠のDDR2型のSDRAMであり、前記メモリデバイスの長辺が前記データ処理デバイスの辺に対向配置されている。データ処理デバイスの辺に短辺を対向される場合に比べ、コマンド及びアドレス端子の距離が双方のメモリデバイスの間で短くなり、配線基板の小型化に資することができる。
〔14〕本発明の更に別の実施形態に係るデータプロセッサは夫々メモリデバイスに接続される複数個のデータ系端子、コマンド及びアドレス端子並びにクロック端子と、前記データ系端子、コマンド及びアドレス端子並びにクロック端子を制御するメモリコントローラと、前記メモリコントローラを制御するCPUとを有する。前記メモリコントローラは、前記コマンド及びアドレス端子から第1の周波数でコマンド及びアドレス信号を出力し、前記クロック端子から第2の周波数でクロック信号を出力する。前記第2の周波数は第1の周波数の複数倍とされる。前記コマンド及びアドレス端子から出力されるコマンド及びアドレス信号には前記クロック端子から出力されるクロック信号のサイクル開始位相と同等又はそれよりも早い出力タイミングが選択可能にされる。これによれば、配線基板上でコマンド及びアドレス端子に共通接続されるメモリデバイスの数等に応じてコマンド及びアドレス配線の負荷容量に相違を生じても、等ディレイ化のために配線基板上でクロック配線の配線長を長くしたり変更したりすることを要しない。したがって、クロック配線による配線基板上の専有面積を低減でき、データプロセッサとメモリデバイスと搭載したマザーボードのような半導体装置の小型化並びにコスト低減を実現することができる。コマンド及びアドレス配線とクロック配線との間の等ディレイ化のためにクロック配線を長くすることを要しないから、データストローブ信号に対してその配線遅延が大きくなることもなく、データストローブ信号とのディレイ差がJEDECの規格を満足できなくなる事態の防止に資することができる。しかも、ラウンドトリップタイム(Round Trip Time)も不所望に長くならず、規定クロックサイクル内でのメモリリード動作を保証できなくなる事態の防止にも資することができる。
〔15〕項14において前記メモリコントローラは、例えば前記早い出力タイミングを複数の出力タイミングの中から選択する。配線基板上での配線長若しくは配線ディレイに差がある場合、或いは入力容量の異なるメモリデバイスの利用が想定されるときに対応することができる。
〔16〕項15において前記CPUは、パワーオンリセット処理で前記メモリコントローラによる前記コマンド及びアドレス信号に対する出力タイミングの選択状態を初期設定する。これにより、CPUのプログラム処理で前記出力タイミングの選択が可能になる。
〔17〕項15において前記メモリコントローラは可変遅延回路を有し、前記可変遅延回路に設定される遅延時間が小さいほど前記コマンド及びアドレス端子から出力されるコマンド及びアドレス信号は前記クロック端子から出力されるクロック信号のサイクル開始位相よりも早くされる。可変遅延回路はゲート遅延回路又はDLL(Delay Locked Loop)回路等によって実現される。
〔18〕項17において、例えば前記CPUによってアクセス可能な制御レジスタを更に有し、前記可変遅延回路の遅延時間は前記制御レジスタに書き込まれた制御データによって決定される。
〔19〕項17において、前記可変遅延回路は例えば前記コマンド及びアドレス端子から出力するコマンド及びアドレス信号の伝達経路に配置される。
〔20〕項17において、前記可変遅延回路は例えば前記コマンド及びアドレス端子から出力するコマンド及びアドレス信号をラッチするラッチ回路のラッチクロックの伝達経路に配置される。項19の構成に比べて可変遅延回路の回路規模を小さくすることができる。
2.実施の形態の詳細
実施の形態について更に詳述する。以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明する。なお、発明を実施するための最良の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
《マザーボードのブロックダイヤグラム》
図1には本発明の一例としてマザーボード形態の半導体装置のブロックダイヤグラムが示される。半導体装置(MDL)1は配線基板(PCB)2に搭載されたSOC形態のデータ処理デバイスであるデータプロセッサ(DPU)3、DDR形態のメモリデバイスである複数個のDDR2−SDRAM4、及び不揮発性メモリであるフラッシュメモリ(FLSH)5を有する。特に制限されないが、データプロセッサ3がマザーボード等のシステム基板に搭載されて使用されることを想定すれば、データプロセッサ3は樹脂パッケージ等により封止され、マザーボードに実装するための実装端子が露出される。データプロセッサ3は代表的に示されたCPU(Central Processing Unit)6とメモリコントローラ(MCNT)7を有する。フラッシュメモリ5は、特に制限されないが、データプロセッサのプログラムや初期化のためのトリミングデータ等の格納領域に利用され、データプロセッサ3によってアクセス制御される。フラッシュメモリ5はデータプロセッサ3にオンチップされることも可能である。CPU6は、特に制限されないが、パワーオンリセット処理の一環としてフラッシュメモリ5に格納されたトリミングデータを制御レジスタ(CREG)8にロードし、ロードされたトリミングデータがメモリコントローラ等に供給されることによってそれらに対する初期設定が行われる。メモリコントローラ7はCPU6等からのメモリアクセス制御に応答してDDR2−SDRAM4に対するメモリインタフェース制御を行う。特に制限されないが、以下の説明ではDDR2−SDRAM4に対する並列アクセスデータビット数を32ビットとする。
DDR2−SDRAMはメモリコマンド及びアドレス端子MCAT、メモリデータ系端子MDT、メモリクロック端子MCKTを有する。JEDEC標準によれば、例えばメモリコマンド及びアドレス端子MCATとして、アドレス入力端子(A0 - An)、バンク・アドレス入力端子(BA0, BA1, BA2)、チップ・セレクト入力端子(/CS)、ロウ・アドレス・ストローブ入力端子(/RAS)、カラム・アドレス・ストローブ入力端子(/CAS)、ライト・イネーブル入力端子(/WE)、オン・ダイ・ターミネーション制御入力端子(ODT)、およびクロックイネーブル入力端子(CKE)を有する。メモリデータ系端子MDTとして、データ入出力端子(DQ0 DQx)、データストローブ入出力端子(DQS, LDQS, UDQS)、ライトマスクイネーブル入力端子(DM, LDM, UDM)等を有する。メモリクロック端子MCKTとして差動クロック入力端子(CK, /CK)を有する。その他に電源系の外部端子を有する。尚、信号名に付された記号“/”はローイネーブル信号であることを意味する。図においてDDR2−SDRAM4が4個図示されているが特に制限されるものではない。図17には並列データ入出力ビット数が8ビット(×8)のDDR2−SDRAMのピン配置が例示される。図18には並列データ入出力ビット数が16ビット(×16)のDDR2−SDRAMのピン配置が例示される。
データプロセッサ3はDDR2−SDRAMを32ビット並列アクセス可能なアクセス制御端子として、バイトデータ単位のデータ系入出力端子CDT_1〜CDT_4、コマンド及びアドレス出力端子CCAT、夫々差動の2組のクロック出力端子CCKT1,CCKT2を有する。コマンド及びアドレス出力端子CCATはメモリコマンド及びアドレス端子MACTに一対一対応される。データ系入出力端子CDT1〜CDT4のデータ端子は複数個のDDR2−SDRAMのメモリデータ系端子MDTのデータ端子に個別に接続される。クロック出力端子CCKT1,CCKT2は対応するメモリクロック端子MCKTに接続される。尚、図19にはデータプロセッサ3におけるDDR2−SDRAMとの接続端子の端子配列が例示される。端子名は図17及び図18の端子名に対応される。data系Byte0〜data系Byte3はデータ系入出力端子CDT_1〜CDT_4に対応される。Clock系(2Pair)は夫々差動の2組のクロック出力端子CCKT1,CCKT2に対応される。
メモリコントローラ7は前記コマンド及びアドレス出力端子CACTから出力するコマンド及びアドレス信号の出力タイミングとして前記クロック出力端子CCKT1,CCKT2から出力するクロック信号のサイクル開始位相と同等又はそれよりも早い出力タイミングを選択可能にされる。図1にはコマンド及びアドレス信号に早いタイミングが選択された場合が示され、4個のSDRAMを搭載することによってコマンド及びアドレス配線の負荷容量等が大きくなる場合でもコマンド及びアドレス配線との等ディレイ化のためにクロック配線の遅延を大きくしなくてもよいようにしている。以下この点を、DDR2−SDRAMのデバイスレイアウトとの関係を考慮しながら詳細に説明する。
《DDR2−SDRAMの実装形態》
図2及び図3には並列データ入出力ビット数が8ビット(×8ビット)のDDR2−SDRAM4を4個用いたデバイスレイアウトが例示される。図2は配線基板の表面に配置されたDDR2−SDRAM4_1,4_3に着目したときに表面から見たレイアウトを示す。図3は裏面のDDR2−SDRAM4_2,4_4に着目したときの表面から見たレイアウトを示す。各図においてDPU3及びDDR2−SDRAM4_1〜4_4は共に実線で図示されている。
ここではDDR2−SDRAM4としてJEDEC標準品を用いる。DDR2−SDRAM4の長方形パッケージに対してメモリコマンド及びアドレス端子MACT及びメモリクロック端子MCKTと、メモリデータ系端子MDTとはその長手方向に分離されている。DPU3はそのコーナ部分を挟む両辺側に前記コマンド及びアドレス出力端子CCAT、クロック出力端子CCKT1,CCKT2及びデータ系入出力端子CDT_1〜CDT_4が分離して配置され、前記データ系入出力端子CDT_1〜CDT_4はコマンド及びアドレス出力端子CACT及びクロック出力端子CCKT1,CCKT2に比べて前記コーナ部分から離間されている。
図2に示されるように、DDR2−SDRAM4_1、4_3は前記DPU3のコーナ部分を挟む両辺に対向配置され、DDR2−SDRAM4_1、4_3のメモリデータ系端子MDT寄りの短辺がDPU3に臨んでいる。DPU3のデータ系入出力端子CDT_1はDDR2−SDRAM4_1のメモリデータ系端子MDTにデータ系配線DW_1で接続される。DPU3のデータ系入出力端子CDT_3はDDR2−SDRAM4_3のメモリデータ系端子MDTにデータ系配線DW_3で接続される。DPU3のコマンド及びアドレス出力端子CCATはDDR2−SDRAM4_1,4_3のメモリコマンド及びアドレス端子MACTにコマンド及びアドレス配線CAWで接続される。DPU3のクロック出力端子CCKT1はDDR2−SDRAM4_1のクロック入力端子MCKTに差動クロック配線CW1で接続され、DPU3のクロック出力端子CCKT2はDDR2−SDRAM4_3のクロック入力端子MCKTに差動クロック配線CW2で接続される。尚、差動クロック配線は、極性を反転させた2つのクロック信号を2本の配線で伝送するため、高い周波数の伝送が可能でノイズに強く、さらにはシングルエンドの配線よりも低インピーダンスである。
図3に示されるように、DDR2−SDRAM4_2、4_4は配線基板2の裏面に実装されDDR2−SDRAM4_1、4_3に重なる配置を有し、同じく、DDR2−SDRAM4_2、4_4のメモリデータ系端子MDT寄りの短辺がDPU3に臨んでいる。DPU3のデータ系入出力端子CDT_2はDDR2−SDRAM4_2のメモリデータ系端子MDTにデータ系配線DW_2で接続される。DPU3のデータ系入出力端子CDT_4はDDR2−SDRAM4_4のメモリデータ系端子MDTにデータ系配線DW_4で接続される。DPU3のコマンド及びアドレス出力端子CCATに接続する前記コマンド及びアドレス配線CAWにはDDR2−SDRAM4_2,4_4のメモリコマンド及びアドレス端子MACTも接続される。DPU3のクロック出力端子CCKT1に接続する差動クロック配線CW1には更にDDR2−SDRAM4_2のクロック端子MCKTが接続され、同様にDPU3のクロック出力端子CCKT2に接続する差動クロック配線CW2には更にDDR2−SDRAM4_4のクロック入力端子MCKTが接続される。
図2及び図3においてRD_CKは差動クロック配線用の差動終端抵抗、RT_CAはコマンド及びアドレス配線の終端抵抗、RS_CKはクロック配線の途中に配置されたマッチング抵抗、RS_CAはコマンド及びアドレス配線の途中に配置されたマッチング抵抗である。
配線基板2は図4に例示されるようにL1〜L6の6層の配線層を有する。CORはコア層。PPはプリプレグ層、SRは表面保護層である。L1,L3,L6が信号配線に利用され、L2はグランドパターン等に利用され、L4およびL5は電源パターン等に利用される。THは配線を層間で接続するために利用される貫通スルーホールの一例を示す。
図5には半導体装置1のクロック配線CW1、CW2に沿った縦断面構造が概略的に示される。CLK1はクロック配線CW1に伝播されるクロック信号、CLK2はクロック配線CW2に伝播されるクロック信号を意味する。図6には半導体装置1のコマンド及びアドレス配線CAWに沿った縦断面構造が概略的に示される。ADR−CMDはコマンド及びアドレス配線CAWに伝播されるコマンド及びアドレス信号を意味する。
図7には4個のDDR2−SDRAM4_1〜4_4に代えて並列データ入出力ビット数が16ビット(×16ビット)のDDR2−SDRAM4を2個用いた場合のデバイスレイアウトが例示される。2個のDDR2−SDRAM4_12,4_34は配線基板の表面に配置される。DDR2−SDRAM4_12,4_34もJEDEC標準品であり、上記同様に長方形パッケージに対してメモリコマンド及びアドレス端子MACT、メモリクロック端子MCKT、及びメモリデータ系端子MDTを有する。メモリデータ系端子MDTのデータ入出力端子は16ビットである。この場合にはDDR2−SDRAM4_12、4_34は前記DPU3のコーナ部分を挟む両辺に対向配置され、DDR2−SDRAM4_12、4_34の長辺がDPU3に臨んでいる。DPU3のデータ系入出力端子CDT_1、CDT_2はDDR2−SDRAM4_12のメモリデータ系端子MDTにデータ系配線DW_12で接続される。DPU3のデータ系入出力端子CDT_3、CDT_4はDDR2−SDRAM4_34のメモリデータ系端子MDTにデータ系配線DW_34で接続される。DPU3のコマンド及びアドレス出力端子CCATはDDR2−SDRAM4_12,4_34のメモリコマンド及びアドレス端子MACTにコマンド及びアドレス配線CAWで接続される。DPU3のクロック出力端子CCKT1はDDR2−SDRAM4_12,4_34のクロック入力端子MCKTに差動クロック配線CW1で接続され、DPU3のクロック出力端子CCKT2は不使用とされる。図4の実装形態では配線基板に対して片面実装となるので、データ系配線はDDR2−SDRAMを跨ぐことができ、DDR2−SDRAMの長辺をDPU3に対向させて実装可能になる。結果として、図2,3の場合に比べてDDR2−SDRAM間でメモリコマンド及びアドレス端子MCAT間の距離を狭めることができ、配線基板を更に小さくすることが可能になる。
図8には図2及び図3に示されるように配線基板2に4個のDDR2−SDRAM4_1〜4_4を搭載したときのコマンド及びアドレス配線CAWの配線トポロジが例示される。配線トポロジは図示のように、コマンド及びアドレス出力端子CCATi、CCATj、CCATkで代表されるように3形態あるが、何れの場合にも一つのコマンド及びアドレス出力端子CCATi、CCATj、CCATkは途中で4分岐された配線CAWを介して4個のDDR2−SDRAM4_1〜4_4の対応するコマンド及びアドレス入力端子MCATi、MCATj、MCATkに結合される。
図9には図2及び図3に示されるように配線基板2に4個のDDR2−SDRAM4_1〜4_4を搭載したときのクロック配線CWの配線トポロジが例示される。差動クロック出力端子CCKT1t、CCKT1b(サフィックスtは非反転、サフィックスbは反転を意味する)は途中で2分岐されたクロック配線CW1を介して2個のDDR2−SDRAM4_1,4_2の対応するクロック入力端子MCKTt,MCKTbに結合される。差動クロック出力端子CCKT2t、CCKT2bは途中で2分岐されたクロック配線CW2を介して2個のDDR2−SDRAM4_3,4_4の対応するクロック入力端子MCKTt,MCKTbに結合される。
図10には図7に示されるように配線基板2に2個のDDR2−SDRAM4_12,4_34を搭載したときのコマンド及びアドレス配線CAWの配線トポロジが例示される。配線トポロジは図示のように、コマンド及びアドレス出力端子CCATm、CCATnで代表されるように2形態あるが、何れの場合にも一つのコマンド及びアドレス出力端子CCATm、CCATnは途中で2分岐された配線CAWを介して2個のDDR2−SDRAM4_12,4_34の対応するコマンド及びアドレス入力端子MCATm、MCATnに結合される。図10におけるコマンド及びアドレス配線CAWの負荷容量は図8の場合の半分である。
図11には図7に示されるように配線基板2に2個のDDR2−SDRAM4_12,4_34を搭載したときのクロック配線CWの配線トポロジが例示される。差動クロック出力端子CCKT1t、CCKT1bは途中で2分岐されたクロック配線CW1を介して2個のDDR2−SDRAM4_12,4_34の対応するクロック入力端子MCKTt,MCKTbに結合される。差動クロック出力端子CCKT2t、CCKT2bは不使用である。図11におけるクロック配線CWに接続される負荷容量は図9の場合と同じである。
図12には図7で説明した配線基板2に2個のDDR2−SDRAM4_12,4_34を搭載したときのコマンド及びアドレス信号のシミュレーション波形とクロック信号のシミュレーション波形が例示される。コマンド及びアドレス信号波形として、コマンド及びアドレス出力端子CCATにおける出力波形とDDR2−SDRAM4_12,4_34のコマンド及びアドレス入力端子MCATにおける入力波形が示される。クロック信号波形として、クロック出力端子CCKTにおける出力波形とDDR2−SDRAM4_12,4_34のクロック入力端子MCKTにおける入力波形が示される。コマンド及びアドレス信号に関するDPUの出力波形に対するDDR2−SDRAMの入力波形の時間差(ディレイ)は454psになり、クロック信号に関するDPUの出力波形に対するDDR2−SDRAMの入力波形のディレイは467psになり、ディレイはほぼ同じである。このときのコマンド及びアドレス出力端子CCATから1つのアドレス入力端子MCATまでのコマンド及びアドレス信号配線の配線長は51mm、クロック出力端子CCKTから1つのクロック入力端子MCKTまでのクロック信号配線の配線長は59mmとされる。
図13には図2及び図3で説明した配線基板2に4個のDDR2−SDRAM4_1〜4_4を搭載したときのコマンド及びアドレス信号のシミュレーション波形とクロック信号のシミュレーション波形が例示される。コマンド及びアドレス信号波形として、コマンド及びアドレス出力端子CCATにおける出力波形とDDR2−SDRAM4_1〜4_4のコマンド及びアドレス入力端子MCATにおける入力波形が示される。クロック信号波形として、クロック出力端子CCKTにおける出力波形とDDR2−SDRAM4_1〜4_4のクロック入力端子MCKTにおける入力波形が示される。クロック信号波形はクロック信号線を最小長さとしたときの信号波形である。ちなみに、コマンド及びアドレス出力端子CCATから1つのアドレス入力端子MCATまでのコマンド及びアドレス信号配線の配線長は78mm、クロック出力端子CCKTから1つのクロック入力端子MCKTまでのクロック信号配線の配線長は40mmである。このとき、コマンド及びアドレス信号に関するDPUの出力波形に対するDDR2−SDRAMの入力波形のディレイは685psになり、クロック信号に関するDPUの出力波形に対するDDR2−SDRAMの入力波形のディレイは347psになり、ディレイ差は338psであり、クロック配線48mmに相当する。この相違は、DDR2−SDRAMが4個搭載される場合には2個の場合に比べてコマンド及びアドレス配線の負荷容量がほぼ2倍であることに起因する。その他に、図13の場合の配線長と図14の場合の配線長の差は図2及び図3と図7とを比べれば明らかなように、DPUに対するDDR2−SDRAMの配置方向の相違にも関係する。
《コマンド及びアドレス信号とクロック信号との等ディレイ化》
コマンド及びアドレス端子から出力されるコマンド及びアドレス信号とクロック端子から出力されるクロック信号のサイクル開始位相が同等の場合、コマンド及びアドレス配線のディレイとクロック配線のディレイは等しい事が望ましい。コマンド及びアドレス信号はクロック信号に同期されるからである。4個のDDR2−SDRAMを搭載する場合、図14のシミュレーション波形を考慮すると、クロック信号配線を48mm延長することによってコマンド及びアドレスとクロックとの等ディレイ化を図ることができる。しかしながら、クロック配線を倍以上に延長する事によって配線基板2におけるクロック配線の占有面積が大きくなり過ぎてしまう。更にそれによってクロック信号の大幅な遅延によってラウンドトリップタイムが長くなり、規定クロックサイクル内でのメモリリード動作を保証できなくなる虞を生ずる。さらに、クロック信号とデータストローブ信号とのディレイ差がJEDECの規格を満足できなくなる。そこでメモリコントローラ7は、前記コマンド及びアドレス出力端子CCATから出力するコマンド及びアドレス信号に、前記クロック出力端子CCKTから出力するクロック信号のサイクル開始位相と同等又はそれよりも早い出力タイミングが選択可能にされる。
図14にはコマンド及びアドレス信号の出力タイミングを可変にする構成が例示される。クロックパルスジェネレータ(CPG)11は図示を省略する振動子又はシステムクロックを源発振としてDPU3の内部動作の基準とされる内部クロック信号を生成する。ここでは内部クロック信号ck1,ck2が代表的に示される。ck2はDPU3の動作基準クロック信号、ck1クロック信号ck2の2分周クロック信号である。ck1、ck2で代表されるクロック信号は途中にクロックドライバが配置されたクロックツリー回路(図示せず)を経て、当各部に供給される。12はそのようなクロックツリー回路の遅延成分を模式的に示す。メモリコントローラ7において15はDDR2−SDRAMのインタフェース制御を行うためのロジック回路を総称する。図14ではコマンド及びアドレス端子CCATの出力とクロック端子CCKT(CCKTt,CCKTb)の出力を生成する構成が代表的に示される。クロック出力バッファ13はクロック信号ck2のサイクルに従ってクロック端子CCKTt,CCKTbから作動クロック信号を出力する。コマンド及びアドレス信号の出力経路にラッチ回路16が配置され、このラッチ回路のクロック端子にクロック信号ck1が供給される。ロジック回路15が出力するコマンド及びアドレス信号はラッチ回路16でクロック信号ck1に同期されて可変遅延回路(BDLY)17に供給される。可変遅延回路17は例えば直列された4段のゲート遅延回路DLY0〜DLY3を有し、その初段DLY3にラッチ回路16の出力を受け、DLY2,DLY1,DLY0の順に遅延時間を大きくした遅延出力S3,S2,S1,S0を形成する。遅延出力S3〜S0の一つがセレクタ18で選択され、選択された信号に従って出力バッファ14がコマンド及びアドレス出力端子CCATからコマンド及びアドレス信号を出力する。詳細は図示を省略しているが、コマンド及びアドレス信号系の出力経路は所要の複数ビット分形成されている。セレクタ18による選択状態はパワーオンリセット処理においてCPU6により制御レジスタ8に初期設定されたトリミングデータ(制御データ)で決まる。
図16にはセレクタで選択可能にされるコマンド及びアドレス信号の出力位相が例示される。図16においてコマンド及びアドレス信号の1アクセスサイクルは図示を簡単にするためにクロックサイクルで代表されている。CCYCはクロック出力端子CCKTから出力されるクロック信号のクロックサイクル、ACYCはコマンド及びアドレス出力端子から出力されるコマンド及びアドレス信号のアクセスサイクルを意味する。クロック信号の周波数はコマンド及びアドレス信号の周波数の2倍の場合を例として考える。
セレクタ18で選択される遅延出力S0の遅延時間は、コマンド及びアドレス出力端子CCATから出力されるコマンド及びアドレス信号のアクセスサイクルがクロック出力端子CCKTのクロックサイクルCCYCと同位相にされる遅延時間である。セレクタ18で選択される遅延出力S1の遅延時間は、遅延時間S0よりもT1(例えば300ps)短い時間である。セレクタ18で選択される遅延出力S2の遅延時間は、遅延時間S0よりもT2(例えば330ps)短い時間である。セレクタ18で選択される遅延出力S3の遅延時間は、遅延時間S0よりもT3(例えば360ps)短い時間である。
したがって、配線基板2上の配線に図13のシミュレーション波形で示されるような特性を持つ配線パターンを採用して4個のDDR2−SDRAM4_1〜4_4を搭載するとき、DPU3にはパワーンリセットで遅延時間S2を選択するトリミングデータをフラッシュメモリ5に書き込んでおくことにより、クロック配線を不所望に長くすることなく、DDR2−SDRAMのコマンド及びアドレス端子とDDR2−SDRAMのクロック端子には同じ位相で波形が到達することになる。つまり、コマンド及びアドレスとクロックとの擬似的な等ディレイ化を実現することができる。選択肢が複数あるからコマンド及びアドレスとクロックとのディレイ差がある場合にも容易に対応することができる。
一方、配線基板2上の配線に図12のシミュレーション波形で示されるような特性を持つ配線パターンを採用して2個のDDR2−SDRAM4_12〜4_34を搭載するとき、DPU3にはパワーンリセットで遅延時間S0を選択するトリミングデータをフラッシュメモリ5に書き込んでおくことにより、コマンド及びアドレスとクロックとの等ディレイ化を実現することができる。
図15にはコマンド及びアドレス信号の出力タイミングを可変にする別の構成が例示される。ここでは、可変遅延回路20とセレクタ21をラッチ回路16のラッチクロック入力経路に配置した点が図14と相違される。すなわち、可変遅延回路(BDLY)20はクロック信号を入力し、その出力S0〜S3を入力して選択するセレクタ21の出力がラッチ回路16のクロック端子CKに供給される。前記可変遅延回路20は、例えば例えば直列された4段のゲート遅延回路DLY0〜DLY3を有し、その初段遅延DLY3にクロック信号ck1を受け、DLY2,DLY1,DLY0の順に遅延時間を大きくした遅延出力S3,S2,S1,S0を形成する。遅延出力S3〜S0の一つがセレクタ21で選択される。ラッチ回路16はセレクタ21から出力されるクロック信号に同期してコマンド及びアドレス信号をラッチし、出力バッファ14に供給する。詳細は図示を省略しているが、コマンド及びアドレス信号系の出力経路は所要の複数ビット分形成されている。セレクタ21による選択状態はパワーオンリセット処理においてCPU6により制御レジスタ8に初期設定されたトリミングデータ(制御データ)で決まる。セレクタ21で選択可能にされるクロック信号S0〜S3の出力位相は図16に示されるようにコマンド及びアドレス出力端子CCATから出力されるコマンド及びアドレス信号のアクセスサイクルを決定する。
また、可変遅延回路は4段のゲート遅延回路DLY0〜DLY3を直列させた構成に限定されず、DLL回路を採用してもよい。
図15の構成を採用した場合にも図14と同様に、クロック配線を不所望に長くすることなく、コマンド及びアドレスとクロックとの等ディレイ化を実現することができる。その上、クロック信号ck1の伝達系に可変遅延回路20とセレクタ21を配置するから、可変遅延回路20及びセレクタ21は1ビット分の構成で済む。図14の構成では、可変遅延回路17セレクタ18はコマンド及びアドレス信号のビット数分だけ設けなければならない。この点で、図15は図14に比べて可変遅延回路及びセレクタの回路規模を小さくすることができる。
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、メモリデバイスはDDR2−SDRAMに限定されない。メモリデバイスの並列データ入出力ビット数は8ビット又は16ビットに限定されない。メモリデバイスは4個に限定されず、コマンド及びアドレス配線のディレイとクロック配線のディレイに差がある場合適用される。データ処理デバイスは汎用用途に限定されず、機器組み込み用途に応じて例えば画像処理、音声処理、或いは符号化復号などの処理に特化するデータ処理機能を備えるものであってもよい。初期設定用のトリミングデータなどを格納するフラッシュメモリは外付けデバイスに対してオンチップデバイスあるいはSIP(System In Package)とすることも可能である。また、データ処理デバイスはメモリデバイスに対するメモリインタフェース機能を複数セット備えてもよい。例えば、メモリコントローラ7は上述のメモリインタフェースを2チャンネル備え、各メモリインタフェースチャンネルのメモリインタフェース端子を図2及び図3のDPU3における対角線上の2箇所のコーナー部分に配置すればよい。各メモリインタフェースチャンネルは夫々独立動作すればよい。メモリインタフェイス端子はコーナ部ではなく、1辺に配置されてもよい。更に、本発明はマザーボード形態に限定されず、マザーボードに対するドータボードとして構成、SIP形態として構成する事も可能である。
図1は本発明の一例としてマザーボード形態の半導体装置のブロックダイヤグラムである。 図2は並列データ入出力ビット数が8ビット(×8ビット)のDDR2−SDRAM4を4個用いたデバイスレイアウトとして配線基板の表面に配置されたDDR2−SDRAM4_1,4_3に着目したときに表面から見たレイアウトを例示する説明図である。 図3は裏面のDDR2−SDRAM4_2,4_4に着目したときの表面から見たレイアウトを例示する説明図である。 図4は配線基板の配線層の構造を例示する断面図である。 図5は半導体装置1のクロック配線CW1、CW2に沿った縦断面構造を概略的に示す断面図である。 図6は半導体装置1のコマンド及びアドレス配線CAWに沿った縦断面構造を概略的に示す断面図である。 図7は4個のDDR2−SDRAM4_1〜4_4に代えて並列データ入出力ビット数が16ビット(×16ビット)のDDR2−SDRAM4を2個用いた場合のデバイスレイアウトを例示する説明図である。 図8は図2及び図3に示されるように配線基板2に4個のDDR2−SDRAM4_1〜4_4を搭載したときのコマンド及びアドレス配線CAWの配線トポロジを例示する説明図である。 図9は図2及び図3に示されるように配線基板2に4個のDDR2−SDRAM4_1〜4_4を搭載したときのクロック配線CWの配線トポロジを例示する説明図である。 図10は図7に示されるように配線基板2に2個のDDR2−SDRAM4_12,4_34を搭載したときのコマンド及びアドレス配線CAWの配線トポロジを例示する説明図である。 図11は図7に示されるように配線基板2に2個のDDR2−SDRAM4_12,4_34を搭載したときのクロック配線CWの配線トポロジを例示する説明図である。 図12は図7で説明した配線基板2に2個のDDR2−SDRAM4_12,4_34を搭載したときのコマンド及びアドレス信号のシミュレーション波形とクロック信号のシミュレーション波形を例示する波形図である。 図13は図2及び図3で説明した配線基板2に4個のDDR2−SDRAM4_1〜4_4を搭載したときのコマンド及びアドレス信号のシミュレーション波形とクロック信号のシミュレーション波形を例示する波形図である。 図14はコマンド及びアドレス信号の出力タイミングを可変にする構成を例示するブロックダイヤグラムである。 図15はコマンド及びアドレス信号の出力タイミングを可変にする別の構成を例示するブロックダイヤグラムである。 図16はセレクタで選択可能にされるコマンド及びアドレス信号の出力位相を例示するタイミングチャートである。 図17は並列データ入出力ビット数が8ビット(×8)のJEDEC標準のDDR2−SDRAMのピン配置を例示する説明図である。 図18は並列データ入出力ビット数が16ビット(×16)のJEDEC標準のDDR2−SDRAMのピン配置を例示する説明図である。 図19はデータプロセッサ3におけるDDR2−SDRAMとの接続端子の端子配列を例示する説明図である。
符号の説明
1 半導体装置(MDL)
2 配線基板(PCB)
3 データ処理デバイスであるデータプロセッサ(DPU)
4(4_1〜4_4、4_12、4_34) メモリデバイスであるDDR2−SDRAM
5 フラッシュメモリ(FLSH)
6 CPU
7 メモリコントローラ(MCNT)
MDT メモリデータ系端子
MCKT メモリクロック端子
CDT_1〜CDT_4 データ系入出力端子
CCAT コマンド及びアドレス出力端子
CCKT1(CCKT1t、CCKT1b) クロック出力端子
CCKT2(CCKT2t、CCKT2b) クロック出力端子
DW_1〜DW_4 データ系配線
CAW コマンド及びアドレス配線
CW1,CW2 差動クロック配線
11 クロックパルスジェネレータ(CPG)
12 クロックツリー回路の遅延成分
13 クロック出力バッファ13
16 ラッチ回路
15 ロジック回路
17 可変遅延回路(BDLY)
DLY0〜DLY3 ゲート遅延回路
S3〜S0 遅延出力
18 セレクタ
20 可変遅延回路(BDLY)
21 セレクタ

Claims (7)

  1. 第1面、および前記第1面とは反対側の第2面を有する配線基板と、
    複数の第1データ系端子、複数の第2データ系端子、複数の第3データ系端子、複数の第4データ系端子、第1クロック端子、第2クロック端子、およびコマンド・アドレス端子を有し、前記配線基板の前記第1面に搭載されたデータ処理デバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、前記配線基板の前記第1面に搭載され、かつ、平面視において前記データ処理デバイスの隣に配置された第1メモリデバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、前記配線基板の前記第1面に搭載され、かつ、平面視において前記データ処理デバイスの隣に配置された第2メモリデバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、平面視において前記第1メモリデバイスと重なるように前記配線基板の前記第2面に搭載された第3メモリデバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、平面視において前記第2メモリデバイスと重なるように前記配線基板の前記第2面に搭載され、かつ、平面視において前記第3メモリデバイスの隣に配置された第4メモリデバイスと、
    を含み、
    前記データ処理デバイスの前記複数の第1データ系端子は、前記配線基板の複数の第1データ配線を介して前記第1メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記複数の第2データ系端子は、前記配線基板の複数の第2データ配線を介して前記第2メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記複数の第3データ系端子は、前記配線基板の複数の第3データ配線を介して前記第3メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記複数の第4データ系端子は、前記配線基板の複数の第4データ配線を介して前記第4メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記第1クロック端子は、前記配線基板の第1クロック配線を介して前記第1、第2、第3および第4メモリデバイスのうちの2つのメモリデバイスのそれぞれの前記クロック端子と電気的に接続されており、
    前記データ処理デバイスの前記第2クロック端子は、前記配線基板の第2クロック配線を介して前記第1、第2、第3および第4メモリデバイスのうちの他の2つのメモリデバイスのそれぞれの前記クロック端子と電気的に接続されており、
    前記データ処理デバイスの前記コマンド・アドレス端子は、前記配線基板のコマンド・アドレス配線を介して前記第1、第2、第3および第4メモリデバイスのそれぞれの前記コマンド・アドレス端子と電気的に接続されており、
    前記データ処理デバイスは、前記コマンド・アドレス配線を介して前記第1、第2、第3および第4メモリデバイスにコマンド・アドレス信号を第1の周波数で出力し、
    前記データ処理デバイスは、前記第1クロック配線を介して前記第1、第2、第3および第4メモリデバイスのうちの前記2つのメモリデバイスのそれぞれに第1クロック信号を、前記第1の周波数よりも高い第2の周波数で出力し、
    前記データ処理デバイスは、前記第2クロック配線を介して前記第1、第2、第3および第4メモリデバイスのうちの前記他の2つのメモリデバイスのそれぞれに第2クロック信号を前記第2の周波数で出力することを特徴とする半導体装置。
  2. 前記第1クロック配線は、前記データ処理デバイスの前記第1クロック端子と、前記第1、第2、第3および第4メモリデバイスのうちの2つの前記クロック端子との間に位置する第1分岐点において、第1部分と第2部分とに分岐され、
    前記第2クロック配線は、前記データ処理デバイスの前記第2クロック端子と、前記第1、第2、第3および第4メモリデバイスのうちの他の2つの前記クロック端子との間に位置する第2分岐点において、第1部分と第2部分とに分岐されていることを特徴とする請求項1記載の半導体装置。
  3. 前記データ処理デバイスの前記第1クロック端子は、前記第1クロック配線の前記第1部分を介して前記第1メモリデバイスの前記クロック端子と電気的に接続されており、
    前記データ処理デバイスの前記第1クロック端子は、前記第1クロック配線の前記第2部分を介して前記第3メモリデバイスの前記クロック端子と電気的に接続されており、
    前記データ処理デバイスの前記第2クロック端子は、前記第2クロック配線の前記第1部分を介して前記第2メモリデバイスの前記クロック端子と電気的に接続されており、
    前記データ処理デバイスの前記第2クロック端子は、前記第2クロック配線の前記第2部分を介して前記第4メモリデバイスの前記クロック端子と電気的に接続されていることを特徴とする請求項2記載の半導体装置。
  4. 前記コマンド・アドレス配線は、前記データ処理デバイスの前記コマンド・アドレス端子と、前記第1、第2、第3および第4メモリデバイスの前記コマンド・アドレス端子との間に位置する第1分岐点において、第1部分と第2部分とに分岐され、
    前記コマンド・アドレス配線の前記第1部分は、前記第1分岐点と、前記第1、第2、第3および第4メモリデバイスのうちの2つの前記コマンド・アドレス端子との間に位置する第2分岐点において、第3部分と第4部分とに分岐され、
    前記コマンド・アドレス配線の前記第2部分は、前記第1分岐点と、前記第1、第2、第3および第4メモリデバイスのうちの他の2つの前記コマンド・アドレス端子との間に位置する第3分岐点において、第5部分と第6部分とに分岐されていることを特徴とする請求項1記載の半導体装置。
  5. 前記クロック端子から出力されるクロック信号のサイクル開始位相よりも早い出力タイミングで前記コマンド・アドレス端子からコマンド及びアドレス信号を出力することを特徴とする請求項記載の半導体装置。
  6. 第1面、および前記第1面とは反対側の第2面を有する配線基板と、
    複数の第1データ系端子、複数の第2データ系端子、複数の第3データ系端子、複数の第4データ系端子、第1クロック端子、第2クロック端子、およびコマンド・アドレス端子を有し、前記配線基板の前記第1面に搭載されたデータ処理デバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、前記配線基板の前記第1面に搭載され、かつ、平面視において前記データ処理デバイスの隣に配置された第1メモリデバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、前記配線基板の前記第1面に搭載され、かつ、平面視において前記データ処理デバイスの隣に配置された第2メモリデバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、平面視において前記第1メモリデバイスと重なるように前記配線基板の前記第2面に搭載された第3メモリデバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、平面視において前記第2メモリデバイスと重なるように前記配線基板の前記第2面に搭載され、かつ、平面視において前記第3メモリデバイスの隣に配置された第4メモリデバイスと、
    を含み、
    前記データ処理デバイスの前記複数の第1データ系端子は、前記配線基板の複数の第1データ配線を介して前記第1メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記複数の第2データ系端子は、前記配線基板の複数の第2データ配線を介して前記第2メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記複数の第3データ系端子は、前記配線基板の複数の第3データ配線を介して前記第3メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記複数の第4データ系端子は、前記配線基板の複数の第4データ配線を介して前記第4メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記第1クロック端子は、前記配線基板の第1クロック配線を介して前記第1、第2、第3および第4メモリデバイスのうちの2つのメモリデバイスのそれぞれの前記クロック端子と電気的に接続されており、
    前記データ処理デバイスの前記第2クロック端子は、前記配線基板の第2クロック配線を介して前記第1、第2、第3および第4メモリデバイスのうちの他の2つのメモリデバイスのそれぞれの前記クロック端子と電気的に接続されおり、
    前記データ処理デバイスの前記コマンド・アドレス端子は、前記配線基板のコマンド・アドレス配線を介して前記第1、第2、第3および第4メモリデバイスのそれぞれの前記コマンド・アドレス端子と電気的に接続されており、
    前記第1および第2クロック配線のそれぞれを流れる信号は、差動信号であり、
    前記コマンド・アドレス配線を流れる信号は、シングルエンド信号であることを特徴とする半導体装置。
  7. 第1面、および前記第1面とは反対側の第2面を有する配線基板と、
    複数の第1データ系端子、複数の第2データ系端子、複数の第3データ系端子、複数の第4データ系端子、第1クロック端子、第2クロック端子、およびコマンド・アドレス端子を有し、前記配線基板の前記第1面に搭載されたデータ処理デバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、前記配線基板の前記第1面に搭載され、かつ、平面視において前記データ処理デバイスの隣に配置された第1メモリデバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、前記配線基板の前記第1面に搭載され、かつ、平面視において前記データ処理デバイスの隣に配置された第2メモリデバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、平面視において前記第1メモリデバイスと重なるように前記配線基板の前記第2面に搭載された第3メモリデバイスと、
    複数のデータ系端子、クロック端子、およびコマンド・アドレス端子を有し、平面視において前記第2メモリデバイスと重なるように前記配線基板の前記第2面に搭載され、かつ、平面視において前記第3メモリデバイスの隣に配置された第4メモリデバイスと、
    を含み、
    前記データ処理デバイスの前記複数の第1データ系端子は、前記配線基板の複数の第1データ配線を介して前記第1メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記複数の第2データ系端子は、前記配線基板の複数の第2データ配線を介して前記第2メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記複数の第3データ系端子は、前記配線基板の複数の第3データ配線を介して前記第3メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記複数の第4データ系端子は、前記配線基板の複数の第4データ配線を介して前記第4メモリデバイスの前記複数のデータ系端子と電気的に接続され、
    前記データ処理デバイスの前記第1クロック端子は、前記配線基板の第1クロック配線を介して前記第1、第2、第3および第4メモリデバイスのうちの2つのメモリデバイスのそれぞれの前記クロック端子と電気的に接続されており、
    前記データ処理デバイスの前記第2クロック端子は、前記配線基板の第2クロック配線を介して前記第1、第2、第3および第4メモリデバイスのうちの他の2つのメモリデバイスのそれぞれの前記クロック端子と電気的に接続されおり、
    前記データ処理デバイスの前記コマンド・アドレス端子は、前記配線基板のコマンド・アドレス配線を介して前記第1、第2、第3および第4メモリデバイスのそれぞれの前記コマンド・アドレス端子と電気的に接続されており、
    前記第1および第2クロック配線のそれぞれは、2本の配線から成り、
    前記コマンド・アドレス配線は、1本の配線から成ることを特徴とする半導体装置。
JP2008070680A 2008-03-19 2008-03-19 半導体装置及びデータプロセッサ Expired - Fee Related JP5197080B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008070680A JP5197080B2 (ja) 2008-03-19 2008-03-19 半導体装置及びデータプロセッサ
US12/342,742 US7816795B2 (en) 2008-03-19 2008-12-23 Semiconductor device and data processor
US12/889,607 US8053911B2 (en) 2008-03-19 2010-09-24 Semiconductor device and data processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070680A JP5197080B2 (ja) 2008-03-19 2008-03-19 半導体装置及びデータプロセッサ

Publications (3)

Publication Number Publication Date
JP2009223854A JP2009223854A (ja) 2009-10-01
JP2009223854A5 JP2009223854A5 (ja) 2011-04-21
JP5197080B2 true JP5197080B2 (ja) 2013-05-15

Family

ID=41088262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070680A Expired - Fee Related JP5197080B2 (ja) 2008-03-19 2008-03-19 半導体装置及びデータプロセッサ

Country Status (2)

Country Link
US (2) US7816795B2 (ja)
JP (1) JP5197080B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332671B2 (ja) * 2009-02-05 2013-11-06 株式会社リコー メモリ制御装置及びその制御信号出力タイミングの調整方法
JP5703206B2 (ja) * 2011-12-19 2015-04-15 株式会社日立製作所 半導体装置、信号伝送システム及び信号伝送方法
KR20140008745A (ko) * 2012-07-11 2014-01-22 삼성전자주식회사 자기 메모리 장치
US9397754B2 (en) * 2012-07-25 2016-07-19 Finisar Corporation Linecards with pluggable interfaces for pluggable optical amplifiers and other pluggable devices
JP6200236B2 (ja) 2013-08-09 2017-09-20 ルネサスエレクトロニクス株式会社 電子装置
CN112687304A (zh) * 2014-12-19 2021-04-20 拉姆伯斯公司 用于存储器模块的动态随机存取存储器(dram)部件
JP6543129B2 (ja) * 2015-07-29 2019-07-10 ルネサスエレクトロニクス株式会社 電子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718008B2 (ja) * 1996-02-26 2005-11-16 株式会社日立製作所 メモリモジュールおよびその製造方法
JP4674850B2 (ja) * 2005-02-25 2011-04-20 ルネサスエレクトロニクス株式会社 半導体装置
JP4662474B2 (ja) * 2006-02-10 2011-03-30 ルネサスエレクトロニクス株式会社 データ処理デバイス

Also Published As

Publication number Publication date
US20110016345A1 (en) 2011-01-20
US20090237129A1 (en) 2009-09-24
US8053911B2 (en) 2011-11-08
US7816795B2 (en) 2010-10-19
JP2009223854A (ja) 2009-10-01

Similar Documents

Publication Publication Date Title
US10949339B2 (en) Memory module with controlled byte-wise buffers
US8422263B2 (en) Load reduced memory module and memory system including the same
US6446158B1 (en) Memory system using FET switches to select memory banks
JP4885623B2 (ja) 積層半導体装置
JP5197080B2 (ja) 半導体装置及びデータプロセッサ
US8274850B2 (en) Memory system, semiconductor memory device, and wiring substrate
US8458507B2 (en) Bus frequency adjustment circuitry for use in a dynamic random access memory device
US7965568B2 (en) Semiconductor integrated circuit device and method of testing same
JP2010282510A (ja) メモリモジュール
JP5669175B2 (ja) 電子機器
US20100312925A1 (en) Load reduced memory module
JP2011065733A (ja) 半導体メモリデバイスおよびチップ積層型の半導体デバイス
JP2007164599A (ja) メモリモジュール
JP2010123203A (ja) 半導体装置及びモジュールデバイス
JP5473649B2 (ja) 半導体装置及び半導体モジュール
JP2006065470A (ja) メモリ制御方法および装置
JP5666030B2 (ja) 半導体装置及び半導体モジュール

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5197080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees