JP5196711B2 - LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME - Google Patents

LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME Download PDF

Info

Publication number
JP5196711B2
JP5196711B2 JP2005216416A JP2005216416A JP5196711B2 JP 5196711 B2 JP5196711 B2 JP 5196711B2 JP 2005216416 A JP2005216416 A JP 2005216416A JP 2005216416 A JP2005216416 A JP 2005216416A JP 5196711 B2 JP5196711 B2 JP 5196711B2
Authority
JP
Japan
Prior art keywords
light
light emitting
wavelength conversion
phosphor
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005216416A
Other languages
Japanese (ja)
Other versions
JP2007035885A (en
Inventor
徹 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005216416A priority Critical patent/JP5196711B2/en
Publication of JP2007035885A publication Critical patent/JP2007035885A/en
Application granted granted Critical
Publication of JP5196711B2 publication Critical patent/JP5196711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Landscapes

  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光素子を用いた発光装置およびそれを用いた照明装置に関し、より詳細には半導体発光素子等が発する光に励起されて蛍光を発する複数種の蛍光体を用いた発光装置およびそれを用いた照明装置に関する。   The present invention relates to a light-emitting device using a light-emitting element and an illumination device using the same, and more specifically, a light-emitting device using a plurality of types of phosphors that emit fluorescence when excited by light emitted from a semiconductor light-emitting element or the like. It is related with the illuminating device using.

従来、発光ダイオード(LED)等の発光素子が発する近紫外光や青色光等の光を励起光として、赤色,緑色,青色,黄色等の可視領域波長の蛍光を発する複数種の蛍光体を用い、所望の波長スペクトルの光を放出する発光装置が知られている。従来の発光装置の例を図14に示す。図14において、11は基体、12は枠体、12aは枠体12の内周面に形成された光反射面、13は発光素子、14は透明部材に蛍光体15を含有した波長変換部材、16は導電性部材を示す。   Conventionally, a plurality of types of phosphors that emit fluorescence in the visible region such as red, green, blue, yellow, etc., using light such as near-ultraviolet light and blue light emitted from light-emitting elements such as light-emitting diodes (LEDs) as excitation light. A light-emitting device that emits light having a desired wavelength spectrum is known. An example of a conventional light emitting device is shown in FIG. In FIG. 14, 11 is a base, 12 is a frame, 12a is a light reflecting surface formed on the inner peripheral surface of the frame 12, 13 is a light emitting element, 14 is a wavelength conversion member containing a phosphor 15 in a transparent member, Reference numeral 16 denotes a conductive member.

従来の発光装置は、図14に示すように、上側主面に発光素子13を搭載するための搭載部11aを有し、搭載部11aおよびその周辺から発光装置の内外を電気的に導通接続する配線導体11bが形成された絶縁体からなる基体11と、搭載部11aを取り囲むように基体11の上側主面の外周部に接着固定され、上側開口が下側開口より大きい貫通孔が形成されているとともに、内周面が発光素子13や蛍光体15から発せられる光を反射する光反射面12aとされている枠体12と、搭載部11aに導電性部材16を介して配線導体11bと電気的に接続された発光素子13と、発光素子13を被覆するように形成された波長変換部材14とを具備しており、波長変換部材14は透明部材の中に発光素子13の発する励起光により励起され蛍光を発する蛍光体15が含有された構成とされている。   As shown in FIG. 14, the conventional light emitting device has a mounting portion 11a for mounting the light emitting element 13 on the upper main surface, and electrically connects the inside and outside of the light emitting device from the mounting portion 11a and its periphery. A base body 11 made of an insulator having a wiring conductor 11b formed thereon and an outer peripheral portion of the upper main surface of the base body 11 are bonded and fixed so as to surround the mounting portion 11a, and a through hole having an upper opening larger than the lower opening is formed. In addition, the frame 12 has an inner peripheral surface that is a light reflecting surface 12a that reflects light emitted from the light-emitting element 13 and the phosphor 15, and the mounting portion 11a is electrically connected to the wiring conductor 11b via the conductive member 16. Light-emitting elements 13 connected to each other, and a wavelength conversion member 14 formed so as to cover the light-emitting elements 13. The wavelength conversion member 14 is formed by excitation light emitted from the light-emitting elements 13 in a transparent member. The phosphor 15 that is excited and emits fluorescence is included.

そして、波長変換部材14に含有された蛍光体15は、赤色,緑色,青色,黄色等の所望の可視領域波長の蛍光を得るために、例えば発光素子13が発する光(以下、発光素子からの光、または、発光素子からの励起光ともいう)によって励起され、第1の可視領域波長の蛍光を発する第1の蛍光体15aと、第2の可視領域波長の蛍光を発する第2の蛍光体15bとの複数の蛍光体15a,15bから成っている。これら複数の蛍光体15a,15bは、それぞれ所望の可視領域波長の蛍光を発する第1および第2の蛍光体15a,15bに応じて、発光素子13が発する光の吸収率や励起される蛍光の強度等の特性が異なっている。従って、得られる蛍光の強度を調整するために、例えば、波長変換部材14に含有させる蛍光体15a,15bの配合比を調整することによって所望の蛍光強度の分布を有する波長変換部材14としている。
特開2004−253747号公報 特開2004−179644号公報 特開2000−31531号公報
Then, the phosphor 15 contained in the wavelength conversion member 14 is, for example, light emitted from the light emitting element 13 (hereinafter referred to as a light emitting element from the light emitting element) in order to obtain fluorescence of a desired visible region wavelength such as red, green, blue, and yellow. A first phosphor 15a that emits fluorescence with a first visible region wavelength and a second phosphor that emits fluorescence with a second visible region wavelength. It consists of a plurality of phosphors 15a and 15b with 15b. The plurality of phosphors 15a and 15b each have an absorptance of light emitted from the light-emitting element 13 and excitation fluorescence depending on the first and second phosphors 15a and 15b that emit fluorescence having a desired visible region wavelength. Properties such as strength are different. Therefore, in order to adjust the intensity of the obtained fluorescence, for example, the wavelength conversion member 14 having a desired fluorescence intensity distribution is obtained by adjusting the blending ratio of the phosphors 15a and 15b contained in the wavelength conversion member 14.
JP 2004-253747 A JP 2004-179644 A JP 2000-31531 A

しかしながら、上記従来の発光装置において、発光素子13の発する光の吸収率が低い第1の蛍光体15aと、吸収率が高い第2の蛍光体15bとを混合して波長変換部材14に含有させた場合、発光素子13からの励起光に対して吸収率が高い第2の蛍光体15bが吸収する励起光の量が多くなるために、吸収率が低い第1の蛍光体15aに十分な励起光が行き渡らなくなる。その結果、波長変換部材14に含まれる第2の蛍光体15bの励起光に対する量子効率(第2の蛍光体15bに照射された励起光の光子数に対する第2の蛍光体15bから発せられる蛍光の光子数の比を示す)に応じて第2の蛍光体15bが発する蛍光の量は多くなるものの、第1の蛍光体15aが吸収して波長変換されるべき励起光は減少してしまうことから、第1の蛍光体15aの量子効率に応じた第1の蛍光体15aが発する蛍光の量は減少する。   However, in the conventional light emitting device, the wavelength conversion member 14 is mixed with the first phosphor 15a having a low absorption rate of light emitted from the light emitting element 13 and the second phosphor 15b having a high absorption rate. In this case, since the amount of excitation light absorbed by the second phosphor 15b having a high absorption rate with respect to the excitation light from the light emitting element 13 is increased, sufficient excitation is performed for the first phosphor 15a having a low absorption rate. The light will not spread. As a result, the quantum efficiency with respect to the excitation light of the second phosphor 15b included in the wavelength conversion member 14 (the fluorescence emitted from the second phosphor 15b with respect to the number of photons of the excitation light irradiated to the second phosphor 15b). Although the amount of fluorescence emitted from the second phosphor 15b increases in accordance with the ratio of the number of photons), the amount of excitation light to be wavelength-converted by absorption by the first phosphor 15a decreases. The amount of fluorescence emitted by the first phosphor 15a corresponding to the quantum efficiency of the first phosphor 15a decreases.

すなわち、第1の蛍光体15aと第2の蛍光体15bとを混合して波長変換部材14に含有させる場合、吸収率が高い第2の蛍光体15bによる蛍光は十分得られるものの、第1の蛍光体15aによって吸収されるべき励起光は第2の蛍光体15bに吸収されてしまって減少することから、第1の蛍光体15aによる蛍光は著しく少なくなることになる。   That is, when the first phosphor 15a and the second phosphor 15b are mixed and contained in the wavelength conversion member 14, the first phosphor 15b having a high absorptance can obtain sufficient fluorescence, but the first phosphor 15a and the second phosphor 15b are mixed. Since the excitation light to be absorbed by the phosphor 15a is absorbed by the second phosphor 15b and decreases, the fluorescence by the first phosphor 15a is remarkably reduced.

従って、第1の蛍光体15aの発する蛍光を所要のものとするためには、波長変換部材14に含有される第1の蛍光体15aの配合比を多くする等の必要があり、第1の蛍光体15aの配合比を増やせば、例えば第1の蛍光体15aが発する蛍光の量は増加するものの、増加された第1の蛍光体15a自体が光伝搬の障害となり、波長変換部材14内の光の吸収損失も増加する。よって、発光素子13の発する励起光を波長変換部材14内の蛍光体15で波長変換して発光装置の外部に蛍光を放出する効率、換言すれば波長変換部材14の波長変換効率(波長変換部材14に照射された励起光の光エネルギーに対する波長変換部材14から発せられる蛍光の光エネルギーの比を示す)が悪くなるという新たな問題が生じる。その結果、波長変換部材14の波長変換効率に依存する、発光装置の発光効率(発光素子に入力されるエネルギーの仕事率に対する発光装置から発せられる全光束量の比を示す)がよくならないという問題点を有していた。   Therefore, in order to make the fluorescence emitted by the first phosphor 15a necessary, it is necessary to increase the blending ratio of the first phosphor 15a contained in the wavelength conversion member 14, and so on. If the blending ratio of the phosphors 15a is increased, for example, the amount of fluorescence emitted from the first phosphor 15a increases, but the increased first phosphor 15a itself becomes an obstacle to light propagation, and the wavelength conversion member 14 has an increased amount of fluorescence. Light absorption loss also increases. Accordingly, the wavelength of the excitation light emitted from the light emitting element 13 is converted by the phosphor 15 in the wavelength conversion member 14 to emit fluorescence to the outside of the light emitting device, in other words, the wavelength conversion efficiency of the wavelength conversion member 14 (wavelength conversion member A new problem arises that the ratio of the light energy of the fluorescence emitted from the wavelength conversion member 14 to the light energy of the excitation light irradiated on the light 14 becomes worse. As a result, the light emission efficiency of the light emitting device (indicating the ratio of the total luminous flux emitted from the light emitting device to the power of energy input to the light emitting element), which depends on the wavelength conversion efficiency of the wavelength conversion member 14, is not improved. Had a point.

また、波長変換部材14に第1および第2の蛍光体15a,15bを混合した場合、波長変換部材14内の第1および第2の蛍光体15a,15bの分散状態により、第1および第2の蛍光体15a,15bを照射する励起光の量にバラツキが発生する。すなわち、波長変換部材14のある部分では、発光素子13から発せられる励起光が、第1および第2の蛍光体15a,15bに同等の割合で吸収されたり、他の部分では、第1の蛍光体15aで大部分が吸収されたり、第2の蛍光体15bで大部分が吸収されたりする。その結果、第1の蛍光体15aおよび第2の蛍光体15bから放出されるそれぞれの蛍光の割合にバラツキが発生し、発光装置の発光面や照射面における色のムラやバラツキが発生するという問題点を有していた。   When the first and second phosphors 15a and 15b are mixed with the wavelength conversion member 14, the first and second phosphors are dispersed depending on the dispersion state of the first and second phosphors 15a and 15b in the wavelength conversion member 14. The amount of excitation light that irradiates the phosphors 15a and 15b varies. That is, the excitation light emitted from the light emitting element 13 is absorbed by the first and second phosphors 15a and 15b at an equal ratio in a portion where the wavelength conversion member 14 is present, or the first fluorescence is emitted in other portions. Most of the light is absorbed by the body 15a, and most of the light is absorbed by the second phosphor 15b. As a result, there is a variation in the ratio of the respective fluorescence emitted from the first phosphor 15a and the second phosphor 15b, and there is a problem that color unevenness and variation occur on the light emitting surface and the irradiation surface of the light emitting device. Had a point.

さらに、蛍光体15の量が十分でない場合、発光素子13からの光の一部は、第1および第2の蛍光体15a,15bを励起せずにそれぞれの蛍光体15a,15bで反射されて、または直接発光装置の外部に放出される。従って、例えば発光素子13から発せられる光が紫外領域から近紫外領域に波長スペクトルを有する場合、この短波長で高エネルギーの光が発光装置の外部へ放出されて、発光装置の外部の光劣化を生じやすい物質に対して悪影響を及ぼしたりする場合があるという問題点を有していた。   Further, when the amount of the phosphor 15 is not sufficient, part of the light from the light emitting element 13 is reflected by the respective phosphors 15a and 15b without exciting the first and second phosphors 15a and 15b. Or directly to the outside of the light emitting device. Therefore, for example, when the light emitted from the light-emitting element 13 has a wavelength spectrum from the ultraviolet region to the near-ultraviolet region, light having high energy at this short wavelength is emitted to the outside of the light emitting device, and light deterioration outside the light emitting device is caused. There is a problem in that it may adversely affect substances that are likely to occur.

従って、本発明は上記従来の問題点に鑑みて案出されたものであり、その目的は、発光装置に設けられる波長変換部材の波長変換効率を向上させることによって発光装置の発光効率を向上させ、発光装置の出力光の色バラツキや色むらを抑制し、発光装置の外部に放出される発光素子から発せられる光を低減させることのできる発光装置およびそれを用いた照明装置を提供することにある。   Accordingly, the present invention has been devised in view of the above-described conventional problems, and its object is to improve the light emission efficiency of the light emitting device by improving the wavelength conversion efficiency of the wavelength conversion member provided in the light emitting device. An object of the present invention is to provide a light emitting device capable of suppressing color variation and color unevenness of output light of a light emitting device and reducing light emitted from a light emitting element emitted to the outside of the light emitting device, and an illumination device using the same. is there.

本発明の発光装置は、基体と、該基体の上面に搭載され、第1の光を発する発光素子と、該発光素子を覆うように設けられ、前記第1の光によって励起されて第2の光を発生する第1の蛍光体を透明部材に含有した第1の波長変換部と、第1の波長変換部を覆うように設けられ、前記第1の光によって励起されて第3の光を発生するとともに前記第1の蛍光体より前記第1の光の吸収率が高い第2の蛍光体を含有した第2の波長変換部とから成ることを特徴とする。
The light emitting device of the present invention is mounted a base member, the upper surface of the base body, a light emitting element for emitting a first light, provided so as to cover the light emitting element, the second being excited by the first light of the first wavelength converter containing a first phosphor transparent member for generating light, provided so as to cover the first wavelength converter, the third is excited by the first light And a second wavelength conversion unit containing a second phosphor that generates light and has a higher absorption rate of the first light than the first phosphor.

また、本発明の発光装置において好ましくは、前記第1の波長変換部を覆うとともに前記第2の波長変換部に覆われるように、前記第1の波長変換部と前記第2の波長変換部との間に設けられた透光性部材をさらに備えることを特徴とする。
In the light emitting device of the present invention, preferably, the first wavelength conversion unit and the second wavelength conversion unit are configured to cover the first wavelength conversion unit and to be covered by the second wavelength conversion unit. It further has a translucent member provided between the two.

本発明の照明装置は、上記本発明の発光装置を光源として用いたことを特徴とする。   The illuminating device of the present invention is characterized by using the light emitting device of the present invention as a light source.

本発明の発光装置は、発光素子を覆うように設けられ、第1の蛍光体を含有した第1の波長変換部と、第1の波長変換部を覆うように設けられ、第1の蛍光体より発光素子が発する光の吸収率が高い第2の蛍光体を含有した第2の波長変換部とから成ることにより、第2の蛍光体より発光素子からの光の吸収率の低い第1の蛍光体を含有する第1の波長変換部が、光の吸収率の高い第2の蛍光体を含有する第2の波長変換部より先に発光素子が発する光に照射されることになり、発光素子から直接第1の蛍光体に吸収される励起光の量が安定して多くなることから、第1の蛍光体の量子効率に応じて第1の蛍光体が発する蛍光の量も安定して増加させることができる。   The light-emitting device of the present invention is provided so as to cover the light-emitting element, and is provided so as to cover the first wavelength converter containing the first phosphor and the first wavelength converter, and the first phosphor A first wavelength converter having a second phosphor containing a second phosphor having a higher absorption rate of light emitted from the light-emitting element, so that the first absorptivity of light from the light-emitting element is lower than that of the second phosphor. The first wavelength conversion unit containing the phosphor is irradiated with light emitted from the light emitting element prior to the second wavelength conversion unit containing the second phosphor having a high light absorption rate. Since the amount of excitation light directly absorbed by the first phosphor from the device is stably increased, the amount of fluorescence emitted by the first phosphor is also stabilized according to the quantum efficiency of the first phosphor. Can be increased.

さらに、第1の蛍光体で吸収されなかった発光素子からの光、または、第1の蛍光体で拡散された発光素子からの光によって照射される第2の蛍光体の量が、第2の波長変換部の面方向において増加することから、第2の蛍光体の量子効率に応じて第2の蛍光体が発する蛍光の量も向上させることができる。すなわち、発光素子から発せられる励起光が第1の蛍光体によって反射されて拡散され、拡散された発光素子からの励起光が第2の蛍光体を万遍なく照射するので、発光素子からの励起光が第2の波長変換部の一部に集中することがなく、その結果、励起光によって励起される第2の蛍光体の量が増加するため、第2の波長変換部の波長変換効率が向上し、発光装置の発光効率が向上する。   Further, the amount of the second phosphor irradiated by the light from the light emitting element that is not absorbed by the first phosphor or the light from the light emitting element diffused by the first phosphor is the second amount. Since it increases in the surface direction of the wavelength conversion part, the amount of fluorescence emitted by the second phosphor can also be improved according to the quantum efficiency of the second phosphor. That is, since the excitation light emitted from the light emitting element is reflected and diffused by the first phosphor, and the excitation light from the diffused light emitting element irradiates the second phosphor uniformly, the excitation from the light emitting element Since the light does not concentrate on a part of the second wavelength conversion unit, and as a result, the amount of the second phosphor excited by the excitation light increases, the wavelength conversion efficiency of the second wavelength conversion unit is increased. The light emission efficiency of the light emitting device is improved.

さらに、第1および第2の蛍光体を照射する発光素子からの励起光の量がそれぞれ一定のものとなることにより、第1および第2の蛍光体から発せられる蛍光の量が安定する。さらにまた、第1および第2の蛍光体から発せられる蛍光は、第1および第2の波長変換部の面内にわたってそれぞれ拡散されて上方に放出されることにより、拡散された第1および第2の蛍光体からの蛍光が発光装置の発光面で混合されて放出される。その結果、発光装置は、発光面や照射面における色ムラや色バラツキが少ないものとなる。   Furthermore, since the amount of excitation light from the light emitting element that irradiates the first and second phosphors is constant, the amount of fluorescence emitted from the first and second phosphors is stabilized. Furthermore, the fluorescence emitted from the first and second phosphors is diffused over the planes of the first and second wavelength converters and emitted upward, so that the diffused first and second phosphors are emitted. Fluorescence from the phosphors is mixed and emitted from the light emitting surface of the light emitting device. As a result, the light emitting device has less color unevenness and color variation on the light emitting surface and the irradiated surface.

さらに、第1の蛍光体と第2の蛍光体とが独立されて配置されるとともに、励起光に対する吸収率が高い第2の蛍光体が発光装置の上部側に配置されることにより、波長変換効率が向上するので、発光装置の外部に発光素子からの高エネルギーの光が放出されることが少なくなり、発光装置の外部の光劣化を生じやすい物質に対して与える悪影響を低減させることができる。   Further, the first phosphor and the second phosphor are arranged independently, and the second phosphor having a high absorption rate for the excitation light is arranged on the upper side of the light emitting device, thereby converting the wavelength. Since the efficiency is improved, high-energy light from the light-emitting element is less emitted to the outside of the light-emitting device, and adverse effects on substances that easily cause light deterioration outside the light-emitting device can be reduced. .

また、本発明の照明装置によれば、上記本発明の発光装置を光源として用いることから、波長変換効率に優れ、強度ムラの少ない発光装置を所定の配置に配列するとともに、これらの発光装置の周囲に所要の形状に光学設計した反射具や光学レンズ、光拡散板等を設置することにより、所要の配光分布の光を放射する照明装置とすることができる。   Further, according to the illumination device of the present invention, since the light emitting device of the present invention is used as a light source, the light emitting devices having excellent wavelength conversion efficiency and less intensity unevenness are arranged in a predetermined arrangement, and the light emitting devices of these light emitting devices are arranged. By installing a reflector, an optical lens, a light diffusing plate, or the like that is optically designed in a required shape in the surroundings, an illumination device that emits light having a required light distribution can be obtained.

本発明の発光装置について以下に詳細に説明する。図1乃至図9はそれぞれ本発明の発光装置の実施の形態の各種の例を示す正面から見た断面図である。これらの図において、1は上面に発光素子3が搭載された基体、3は発光素子、4は第1の波長変換部4aおよび第2の波長変換部4bから成る波長変換部材であり、4aは透明部材に発光素子3が発する光によって励起されて蛍光を発生する第1の蛍光体5aを含有した第1の波長変換部、4bは第1の波長変換部4aを覆うように設けられ、第1の蛍光体5aより発光素子3が発する光の吸収率が高い第2の蛍光体5bを含有した第2の波長変換部であり、主としてこれらで発光装置が構成される。また、1bは基体1の搭載部1aまたはその周囲の一端から発光装置の外側へかけて形成された線路導体、6は線路導体1bの一端と発光素子3の電極とを接続する導電性部材であり、必要に応じて適宜発光装置に用いられる。   The light emitting device of the present invention will be described in detail below. 1 to 9 are cross-sectional views seen from the front showing various examples of embodiments of the light emitting device of the present invention. In these drawings, reference numeral 1 denotes a substrate on which the light-emitting element 3 is mounted, 3 denotes a light-emitting element, 4 denotes a wavelength conversion member including a first wavelength conversion unit 4a and a second wavelength conversion unit 4b, and 4a denotes A first wavelength conversion unit 4b containing a first phosphor 5a that is excited by light emitted from the light emitting element 3 on the transparent member and generates fluorescence is provided so as to cover the first wavelength conversion unit 4a. This is a second wavelength conversion section containing a second phosphor 5b having a higher absorption rate of light emitted from the light emitting element 3 than the first phosphor 5a, and these constitute a light emitting device mainly. Reference numeral 1b denotes a line conductor formed from the mounting portion 1a of the base 1 or one of its surroundings to the outside of the light emitting device, and 6 denotes a conductive member that connects one end of the line conductor 1b and the electrode of the light emitting element 3. Yes, it is used for light emitting devices as needed.

基体1は、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、またはエポキシ樹脂や液晶ポリマー(LCP)等の絶縁体から成り、その上面の搭載部1aに発光素子3が載置されて、発光素子3を支持する支持部材として機能する。   The substrate 1 is made of an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, ceramics such as glass ceramics, or an insulator such as epoxy resin or liquid crystal polymer (LCP), and is mounted on the upper surface thereof. The light emitting element 3 is placed on the part 1 a and functions as a support member that supports the light emitting element 3.

また、基体1がセラミックス等から成る場合、基体1となる複数のグリーンシートに、タングステン(W)やモリブデン(Mo)−マンガン(Mn)等の金属を主成分とする金属ペースト層を形成し、基体1を焼成すると同時に金属ペースト層も焼成することにより、配線導体1bを有する基体1が形成される。すなわち、基体1がセラミックスから成る場合、発光装置の内外を電気的に導通接続するために、W,Mo,Mn,銅(Cu)等を主成分とするメタライズ層および金属メッキ層から成る配線導体1bが形成されている。   When the substrate 1 is made of ceramics or the like, a metal paste layer mainly composed of a metal such as tungsten (W) or molybdenum (Mo) -manganese (Mn) is formed on a plurality of green sheets to be the substrate 1, By firing the substrate 1 and the metal paste layer at the same time, the substrate 1 having the wiring conductor 1b is formed. That is, when the substrate 1 is made of ceramics, in order to electrically connect the inside and outside of the light emitting device, a wiring conductor made of a metallized layer and a metal plating layer mainly composed of W, Mo, Mn, copper (Cu) or the like. 1b is formed.

また、基体1が樹脂から成る絶縁体の場合、配線導体1bは、Cu、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金またはFe−Ni合金等から成るリード端子を基体1に埋設し、リード端子の一端を載置部に導出し、他端を基体1の側面や下面に導出して露出させることによって形成されている。   When the substrate 1 is an insulator made of resin, the wiring conductor 1b is embedded in the substrate 1 with lead terminals made of Cu, iron (Fe) -nickel (Ni) -cobalt (Co) alloy, Fe-Ni alloy, or the like. Then, one end of the lead terminal is led out to the mounting portion, and the other end is led out to the side surface or the lower surface of the base 1 and exposed.

そして、発光素子3を基体1上面の配線導体1bの一端に電気的に導電性部材6を介して接続し、基体1の側面や下面などに導出された配線導体1bの他端と発光装置駆動回路基板とを電気的に接続することにより、発光装置駆動回路基板と発光素子3とを電気的に接続することができる。   Then, the light emitting element 3 is electrically connected to one end of the wiring conductor 1b on the upper surface of the base 1 via the conductive member 6, and the other end of the wiring conductor 1b led out to the side surface or the lower surface of the base 1 and the light emitting device drive. By electrically connecting the circuit board, the light emitting device driving circuit board and the light emitting element 3 can be electrically connected.

なお、配線導体1bは、基体1の露出する表面に厚さ0.5〜9μmのニッケル(Ni)層や厚さ0.5〜5μmの金(Au)層等の耐食性に優れる金属層を被着させておくのがよく、これにより配線導体1bが酸化腐食するのを有効に防止できるとともに、半田等の導電性部材6による発光素子3との接合を強固にすることができる。   In addition, the wiring conductor 1b has a metal layer excellent in corrosion resistance, such as a nickel (Ni) layer having a thickness of 0.5 to 9 μm and a gold (Au) layer having a thickness of 0.5 to 5 μm, attached to the exposed surface of the substrate 1. As a result, it is possible to effectively prevent the wiring conductor 1b from being oxidatively corroded, and to firmly join the light emitting element 3 with the conductive member 6 such as solder.

また、配線導体1bは、基体1内に埋設または形成されるものに限定する必要はなく、例えば、発光素子3の上面からボンディングワイヤ等により発光装置の上面外部へ導出することによって発光素子3を発光装置駆動回路基板に接続してもよい。   Further, the wiring conductor 1b is not necessarily limited to the one embedded or formed in the base body 1. For example, the light emitting element 3 is led out from the upper surface of the light emitting device 3 to the outside of the upper surface of the light emitting device by a bonding wire or the like. You may connect to a light-emitting device drive circuit board.

また、基体1は、その上面に、発光素子3から基体1下面への光透過を抑制するとともに、基体1の上方に光を効率よく反射させることを目的として、配線導体1bに対して電気的に短絡しないように、アルミニウム(Al),銀(Ag),Au,白金(Pt),Cu等の金属層が蒸着法やメッキ法等により形成されているのがよい。   In addition, the base 1 is electrically connected to the wiring conductor 1b on its upper surface in order to suppress light transmission from the light emitting element 3 to the lower surface of the base 1 and to reflect light efficiently above the base 1. It is preferable that a metal layer such as aluminum (Al), silver (Ag), Au, platinum (Pt), or Cu is formed by a vapor deposition method, a plating method, or the like.

また、基体1には、図2,図4,図6,図8,図9に示すように、内周面に発光素子3からの光や蛍光体5からの蛍光を反射する光反射面2aを有する枠体2が、基体1の上面に搭載部1aを取り囲むようにして、Ag−Cu,鉛(Pb)−錫(Sn),Au−Sn,Au−ケイ素(Si),Sn−Ag−Cu等の金属ロウ材や半田等の接合材、シリコーン系やエポキシ系、アクリル系等の樹脂接合材(図示せず)で取着されていてもよい。枠体2は、発光素子3を外部環境から保護すると共に、波長変換部材4を支持する支持部材として機能する。   Further, as shown in FIGS. 2, 4, 6, 8, and 9, the substrate 1 has a light reflecting surface 2 a that reflects light from the light emitting element 3 and fluorescence from the phosphor 5 on the inner peripheral surface. A frame body 2 having a surface surrounding the mounting portion 1a on the upper surface of the base body 1 so that Ag-Cu, lead (Pb) -tin (Sn), Au-Sn, Au-silicon (Si), Sn-Ag- It may be attached with a metal brazing material such as Cu, a bonding material such as solder, or a resin bonding material (not shown) such as silicone, epoxy, or acrylic. The frame body 2 functions as a support member that supports the wavelength conversion member 4 while protecting the light emitting element 3 from the external environment.

なお、この枠体2と基体1とを接合する接合材は、基体1、枠体2の材質や熱膨張係数等を考慮して適宜選定すればよく、特に限定されるものではない。また、基体1と枠体2との接合に高信頼性が要求される場合、金属ロウ材や半田を用いるとよい。   The bonding material for bonding the frame 2 and the base body 1 may be appropriately selected in consideration of the material of the base body 1 and the frame body 2, the thermal expansion coefficient, and the like, and is not particularly limited. Further, when high reliability is required for joining the base body 1 and the frame body 2, a metal brazing material or solder may be used.

また、枠体2は、基体1と一体に形成されてもよく、例えば、基体1および枠体2がセラミックスからなる場合、基体1となるセラミックグリーンシートと枠体2となるセラミックグリーンシートとを積層し、同時に焼成することにより形成することができる。   The frame body 2 may be formed integrally with the base body 1. For example, when the base body 1 and the frame body 2 are made of ceramics, a ceramic green sheet to be the base body 1 and a ceramic green sheet to be the frame body 2 are combined. It can be formed by stacking and firing at the same time.

また、基体1と枠体2がエポキシ樹脂やLCP等の熱硬化型樹脂や熱可塑性樹脂等の樹脂から成る絶縁体から成る場合、基体1と枠体2が一体的に形成された成形型によって樹脂から成る絶縁体と金属リードとを一体的にモールド成形することによっても形成することができる。   In the case where the base 1 and the frame 2 are made of an insulator made of a thermosetting resin such as an epoxy resin or LCP, or a resin such as a thermoplastic resin, the base 1 and the frame 2 are formed by a mold in which the base 1 and the frame 2 are integrally formed. It can also be formed by integrally molding an insulator made of resin and a metal lead.

また、枠体2は、内周面が発光素子3の光を効率良く反射する光反射面2aとされ、発光素子3は光反射面2aに取り囲まれている構成により、発光素子3から発せられた光および波長変換部材4から発せられた蛍光は、発光装置の上方に効率良く反射されるとともに、基体1および枠体2による光の吸収や透過が効果的に抑制されるため、発光装置の放射光強度や輝度を著しく向上させることができる。   Further, the frame 2 has a light reflecting surface 2a whose inner peripheral surface efficiently reflects the light of the light emitting element 3, and the light emitting element 3 is emitted from the light emitting element 3 by the configuration surrounded by the light reflecting surface 2a. The light and the fluorescence emitted from the wavelength conversion member 4 are efficiently reflected above the light emitting device, and the absorption and transmission of light by the base 1 and the frame 2 are effectively suppressed. Radiant light intensity and brightness can be significantly improved.

光反射面2aは、Al,Ag,Au,Pt,チタン(Ti),クロム(Cr),Cu等の金属や白色等のセラミックス、白色等のエポキシ樹脂やLCP等で構成された枠体2を、切削加工や金型成形、電界研磨や科学研磨等で鏡面加工することにより形成される。あるいは、枠体2の内周面に、Al,Ag,Au等の金属鏡面を金属メッキや蒸着等により形成したり、エポキシ樹脂やシリコーン樹脂,アクリル樹脂等の未硬化の透明樹脂に、酸化アルミニウムや酸化チタン,酸化ジルコニウム等のセラミックス粒子を含有したペースト状の反射材料を塗布し硬化させたりすることにより光反射面2aを形成してもよい。なお、光反射面2aがAgやCu等の酸化により変色し易い金属からなる場合、その表面に、紫外光領域から可視光領域にわたり透過率の優れる低融点ガラス,ゾル−ゲルガラスなどの無機物や、シリコーン樹脂,エポキシ樹脂,アクリル樹脂などの有機物を被着するのが良い。その結果、光反射面2aの耐腐食性、耐薬品性、耐候性が向上する。   The light reflecting surface 2a includes a frame 2 made of metal such as Al, Ag, Au, Pt, titanium (Ti), chromium (Cr), Cu, white ceramics, white epoxy resin, LCP, or the like. It is formed by mirror finishing by cutting, mold forming, electric field polishing, scientific polishing or the like. Alternatively, a metal mirror surface such as Al, Ag, Au or the like is formed on the inner peripheral surface of the frame 2 by metal plating or vapor deposition, or aluminum oxide is applied to an uncured transparent resin such as an epoxy resin, a silicone resin, or an acrylic resin. Alternatively, the light reflecting surface 2a may be formed by applying and curing a paste-like reflective material containing ceramic particles such as titanium oxide and zirconium oxide. In addition, when the light reflecting surface 2a is made of a metal that is easily discolored by oxidation such as Ag or Cu, an inorganic substance such as a low-melting glass or sol-gel glass having excellent transmittance from the ultraviolet light region to the visible light region, It is better to deposit organic substances such as silicone resin, epoxy resin and acrylic resin. As a result, the corrosion resistance, chemical resistance, and weather resistance of the light reflecting surface 2a are improved.

また、光反射面2aは、図2に示すように、上側に向かうに伴って外側に広がるように傾斜しているのがよい。これによって光反射面2aは、発光素子3から発光された光や蛍光体5から発光された蛍光を効率よく発光装置の上方に反射することができる。   Moreover, as shown in FIG. 2, the light reflecting surface 2a is preferably inclined so as to spread outward as it goes upward. As a result, the light reflecting surface 2a can efficiently reflect the light emitted from the light emitting element 3 and the fluorescence emitted from the phosphor 5 upward of the light emitting device.

なお、光反射面2aは、その表面の算術平均粗さRaを4μm以下とする場合、発光素子3からの光を低損失にかつ良好に発光装置の上方に反射することができる。これにより、例えば、発光素子3からの光を直接外部に取り出すとともに、蛍光体5から発せられる蛍光と混合して可視光を放出する発光装置においては、発光効率が向上する。   In addition, when the light reflection surface 2a has an arithmetic average roughness Ra of 4 μm or less, the light reflection surface 2a can reflect the light from the light emitting element 3 well above the light emitting device with low loss. Thereby, for example, in the light emitting device that emits visible light directly by mixing the light from the light emitting element 3 to the outside and mixing it with the fluorescent light emitted from the phosphor 5, the light emission efficiency is improved.

また、光反射面2aは、その表面の算術平均粗さRaを4μmより大きくする場合、発光素子3からの光を光反射面2aで発光装置の上方に拡散反射させることができることから、例えば、発光素子3からの励起光を波長変換部材4によって殆ど波長変換する発光装置においては、発光素子3からの励起光を波長変換部材4に充填された蛍光体5全体に効率よく照射することができ、その結果、蛍光体5からその量子効率に応じた蛍光を発生させることができ、発光装置の光出力が向上するとともに発光効率が向上する。   Further, when the arithmetic average roughness Ra of the surface of the light reflecting surface 2a is larger than 4 μm, the light from the light emitting element 3 can be diffusely reflected above the light emitting device by the light reflecting surface 2a. In the light emitting device that almost converts the wavelength of the excitation light from the light emitting element 3 by the wavelength converting member 4, the entire phosphor 5 filled in the wavelength converting member 4 can be efficiently irradiated with the excitation light from the light emitting element 3. As a result, fluorescence corresponding to the quantum efficiency can be generated from the phosphor 5, and the light output of the light emitting device is improved and the light emission efficiency is improved.

なお、光反射面2aは、算術平均粗さRaが0.004μm未満の場合、このような面を安定かつ効率よく形成することが困難となるとともに、製品コストが高くなりやすい。従って、光反射面2aの算術平均粗さは0.004μm以上とするのがより好ましい。また、算術平均粗さRaが0.5μm以上の場合、このような面では発光素子3からの励起光を光反射面2aで拡散させて蛍光体5全体を照射することが困難となり、蛍光体5からはその量子効率に応じた蛍光が発せられず、発光装置の光出力が低下するとともに、発光装置の発光効率が低下する。従って、光反射面2aの算術平均粗さは0.004〜500μmとしてもよい。   When the arithmetic mean roughness Ra is less than 0.004 μm, the light reflecting surface 2a is difficult to form such a surface stably and efficiently, and the product cost tends to increase. Therefore, the arithmetic average roughness of the light reflecting surface 2a is more preferably 0.004 μm or more. In addition, when the arithmetic average roughness Ra is 0.5 μm or more, it is difficult to irradiate the entire phosphor 5 by diffusing the excitation light from the light emitting element 3 on the light reflecting surface 2a on such a surface. From this, fluorescence corresponding to the quantum efficiency is not emitted, and the light output of the light emitting device decreases, and the light emission efficiency of the light emitting device decreases. Therefore, the arithmetic average roughness of the light reflecting surface 2a may be 0.004 to 500 μm.

なお、光反射面2aのRaを上記の範囲にするには、従来周知の電解研磨加工、化学研磨加工もしくは切削研磨加工等により形成すればよい。また、金型の面精度を利用した転写加工により形成する方法を用いてもよい。   In order to set the Ra of the light reflecting surface 2a within the above range, it may be formed by a conventionally known electrolytic polishing process, chemical polishing process or cutting polishing process. Further, a method of forming by transfer processing using the surface accuracy of the mold may be used.

なお、光反射面2aは、その断面形状が図2,図4,図6,図8,図9に示すように平坦(直線状)であってもよく、また、円弧状、例えば放物面や双曲面等の曲線状であってもよい。円弧状とする場合、発光素子3の光を集散させて、指向性または拡散性を持たせた光を上方に均一に放射することができる。   The light reflecting surface 2a may be flat (straight) as shown in FIGS. 2, 4, 6, 8, and 9, and may have an arc shape, for example, a parabolic surface. Or a curved surface such as a hyperboloid. In the case of the circular arc shape, the light of the light emitting element 3 can be condensed and the light having directivity or diffusibility can be uniformly emitted upward.

発光素子3は、放射するエネルギーのピーク波長が紫外線域から赤外線域までのいずれのものでもよいが、白色光や種々の色の光を発光装置から視感性よく放出させるという観点から200乃至500nmの紫外光から近紫外光および青色光で発光する素子であるのがよい。例えば、サファイア基板上にガリウム(Ga)−窒素(N),Al−Ga−N,インジウム(In)−GaN等から構成されるバッファ層,N型層,発光層,P型層を順次積層した窒化ガリウム系化合物半導体やシリコンカーバイド(SiC)系化合物半導体、酸化亜鉛系化合物半導体やセレン化亜鉛系化合物半導体またはダイヤモンド系化合物半導体や窒化ホウ素系化合物半導体等が用いられる。   The light emitting element 3 may have any peak wavelength of energy to be emitted from the ultraviolet region to the infrared region. However, from the viewpoint of emitting white light or light of various colors from the light emitting device with good visibility, the light emitting element 3 has a peak wavelength of 200 to 500 nm. It is preferable that the device emits light from ultraviolet light to near ultraviolet light and blue light. For example, a buffer layer composed of gallium (Ga) -nitrogen (N), Al-Ga-N, indium (In) -GaN, etc., an N-type layer, a light-emitting layer, and a P-type layer are sequentially stacked on a sapphire substrate. A gallium nitride compound semiconductor, a silicon carbide (SiC) compound semiconductor, a zinc oxide compound semiconductor, a zinc selenide compound semiconductor, a diamond compound semiconductor, a boron nitride compound semiconductor, or the like is used.

また、発光素子3は、その電極がAu−Sn,Sn−Ag,Sn−Ag−CuまたはSn−Pb等のロウ材や半田を用いた金属バンプ、またはAuやAg等の金属を用いた金属バンプ、エポキシ樹脂等の樹脂にAg等の金属粉末を含有して成る導電性樹脂から成る導電性部材6を介してフリップチップ実装によって配線導体1bに電気的に接続される。例えば、配線導体1b上にペースト状のAu−SnやPb−Sn等の半田材やAgペースト等からなる導電性部材6をディスペンサー等を用いて載置し、発光素子3の電極と導電性部材6の上面が接触するように発光素子3を搭載し、その後、全体を150℃〜350℃程度で加熱することによって、発光素子3の電極と配線導体1bとを導電性部材6によって電気的に接続した発光装置を作製する方法や、配線導体1b上にペースト状のAu−SnやPb−Sn等の半田材から成る導電性部材6をディスペンサー等を用いて載置するとともに全体を150℃〜350℃程度で加熱し、その後、発光素子3の電極と導電性部材6の上面が接触するように発光素子3を搭載し、発光素子3の電極と配線導体1bとを導電性部材6によって電気的に接続した発光装置を作製する方法等がある。また、配線導体1bおよび発光素子3の電極を、例えば、ボンディングワイヤ等の導電性部材6で電気的に接続する方法を用いてもよく、フリップチップ実装にしか用いることができないものではない。   The light emitting element 3 has a metal bump using a solder material such as Au-Sn, Sn-Ag, Sn-Ag-Cu, or Sn-Pb, or a metal bump, or a metal using a metal such as Au or Ag. It is electrically connected to the wiring conductor 1b by flip chip mounting through a conductive member 6 made of a conductive resin made of a resin such as a bump and an epoxy resin containing a metal powder such as Ag. For example, the conductive member 6 made of a paste material such as Au-Sn or Pb-Sn or Ag paste is placed on the wiring conductor 1b by using a dispenser or the like, and the electrode and the conductive member of the light emitting element 3 are placed. The light emitting element 3 is mounted so that the upper surface of 6 is in contact, and then the whole is heated at about 150 ° C. to 350 ° C., whereby the electrode of the light emitting element 3 and the wiring conductor 1 b are electrically connected by the conductive member 6. A method of manufacturing a connected light emitting device, or a conductive member 6 made of a solder material such as paste Au—Sn or Pb—Sn is placed on the wiring conductor 1b using a dispenser or the like, and the whole is 150 ° C. to After heating at about 350 ° C., the light emitting element 3 is mounted so that the electrode of the light emitting element 3 and the upper surface of the conductive member 6 are in contact with each other, and the electrode of the light emitting element 3 and the wiring conductor 1 b are electrically connected by the conductive member 6. Connected light emitting devices And a method of making. Further, for example, a method of electrically connecting the wiring conductor 1b and the electrodes of the light emitting element 3 with a conductive member 6 such as a bonding wire may be used, and this method can only be used for flip chip mounting.

そして、発光素子3は、搭載部1aに載置されるとともに配線導体1bに導電性部材6を介して電気的に接続された後に、発光素子3の光によって励起され蛍光を発する蛍光体5を含有した透明部材から成る波長変換部材4によって被覆される。   The light emitting element 3 is placed on the mounting portion 1a and electrically connected to the wiring conductor 1b via the conductive member 6, and then the phosphor 5 is excited by the light of the light emitting element 3 and emits fluorescence. It coat | covers with the wavelength conversion member 4 which consists of a contained transparent member.

本発明の発光装置の第1の波長変換部材4aは、発光素子3との屈折率差が小さく、紫外光領域から可視光領域の光に対して透過率の高いシリコーン樹脂,エポキシ樹脂,ユリア樹脂,アクリル樹脂,フッ素系樹脂等の透明樹脂や、低融点ガラス,ゾル−ゲルガラス等の透明ガラスから成る透明部材に、発光素子3の光を励起光として蛍光を発する第1の蛍光体5aを含有して成る。   The first wavelength conversion member 4a of the light emitting device of the present invention has a small difference in refractive index from the light emitting element 3, and has a high transmittance with respect to light from the ultraviolet light region to the visible light region. In addition, a transparent member made of transparent resin such as acrylic resin or fluorine resin, or transparent glass such as low melting point glass or sol-gel glass, contains the first phosphor 5a that emits fluorescence using light from the light emitting element 3 as excitation light. It consists of

本発明の発光装置の第2の波長変換部材4bは、第1の波長変換部材4aとの屈折率差が小さく、紫外光領域から可視光領域の光に対して透過率の高いシリコーン樹脂,エポキシ樹脂,ユリア樹脂,アクリル樹脂,フッ素系樹脂等の透明樹脂や、低融点ガラス,ゾル−ゲルガラス等の透明ガラスから成る透明部材に、発光素子3の光を励起光として蛍光を発する第2の蛍光体5bを含有して成る。   The second wavelength conversion member 4b of the light emitting device of the present invention has a small refractive index difference from the first wavelength conversion member 4a and has a high transmittance with respect to light from the ultraviolet light region to the visible light region. Second fluorescence that emits fluorescence using light from the light-emitting element 3 as excitation light on a transparent member made of transparent resin such as resin, urea resin, acrylic resin, and fluorine resin, or transparent glass such as low-melting glass or sol-gel glass It contains the body 5b.

なお、透明部材は、基体1や枠体2の材質や熱膨張係数、光屈折率等を考慮して適宜選定すればよく、特に限定されるものではない。また、発光素子3と第1の蛍光体5aを含有する透明部材との屈折率差を小さくすることにより、発光素子3と透明部材との屈折率差によって光の反射損失が発生することを有効に抑制することができるとともに、発光素子3の内部から効率よく外部に光を取り出すことができる。なお、波長変換部材4は、第1の蛍光体5aおよび第2の蛍光体5bがそれぞれ含有された透明部材が未硬化状態の第1の波長変換部4aおよび第2の波長変換部4bを、ディスペンサー等の注入器で枠体2の内側に発光素子3を被覆するように順に注入し、熱硬化させるなどの方法によって形成される(図2参照)。   The transparent member may be appropriately selected in consideration of the material of the substrate 1 and the frame 2, the thermal expansion coefficient, the light refractive index, and the like, and is not particularly limited. In addition, it is effective to reduce the refractive index difference between the light emitting element 3 and the transparent member containing the first phosphor 5a, thereby causing a light reflection loss due to the refractive index difference between the light emitting element 3 and the transparent member. In addition, the light can be efficiently extracted from the inside of the light emitting element 3 to the outside. The wavelength conversion member 4 includes the first wavelength conversion unit 4a and the second wavelength conversion unit 4b in which the transparent member containing the first phosphor 5a and the second phosphor 5b is uncured. It is formed by a method such as injecting in order so as to cover the light emitting element 3 inside the frame 2 with an injector such as a dispenser, and thermosetting (see FIG. 2).

または、波長変換部材4は、第1の蛍光体5aが含有された透明部材が未硬化状態の第1の波長変換部4aを、ディスペンサー等の注入器で発光素子3を被覆するように配置して、もしくは発光素子3を被覆するように配置して熱硬化させた後、未硬化の透明部材に第2の蛍光体5bを含有させて板状に形成し、これを硬化させることによって作製したフィルム状の第2の波長変換部材4bを、透明部材を介して第1の波長変換部4aの上方に載置して接着固定させるなどの方法によって形成される(図6参照)。   Or the wavelength conversion member 4 arrange | positions the 1st wavelength conversion part 4a with which the transparent member containing the 1st fluorescent substance 5a is an unhardened state so that the light emitting element 3 may be coat | covered with injectors, such as a dispenser. Alternatively, the light-emitting element 3 is disposed so as to be covered and thermally cured, and then the second phosphor 5b is contained in an uncured transparent member to form a plate and cured. The film-like second wavelength conversion member 4b is formed by a method such as placing it on the first wavelength conversion portion 4a via a transparent member, and fixing the adhesion (see FIG. 6).

また、波長変換部材4は、発光素子3から発せられる光の吸収率が低い第1の蛍光体5aを含有した第1の波長変換部4aと、第1の蛍光体5aよりも光の吸収率が高い第2の蛍光体5bを含有した第2の波長変換部4bとから成り、第1の波長変換部4aは発光素子3に近い側に配置されるとともに、第2の波長変換部4bは第1の波長変換部4aの上側に配置される。すなわち、発光素子3の発する光の吸収率が小さい第1の蛍光体5aが、発光素子3に近接するように配置されることにより、第1の蛍光体5aおよび第2の蛍光体5bは、それぞれの量子効率に応じた蛍光を安定して発生させることができ、発光装置の光出力が安定して向上するとともに、出力光の色のムラやバラツキを抑制することができる。   Further, the wavelength conversion member 4 includes a first wavelength conversion unit 4a containing a first phosphor 5a having a low absorption rate of light emitted from the light emitting element 3, and a light absorption rate higher than that of the first phosphor 5a. The second wavelength conversion section 4b containing the second phosphor 5b having a high wavelength, and the first wavelength conversion section 4a is disposed on the side close to the light emitting element 3, and the second wavelength conversion section 4b It arrange | positions above the 1st wavelength conversion part 4a. That is, by arranging the first phosphor 5a having a low absorption rate of light emitted from the light emitting element 3 so as to be close to the light emitting element 3, the first phosphor 5a and the second phosphor 5b are Fluorescence corresponding to each quantum efficiency can be stably generated, the light output of the light emitting device can be stably improved, and the unevenness and variation of the color of the output light can be suppressed.

第1の蛍光体5aと第2の蛍光体5bとを混合して配置する場合、第2の蛍光体5bの発光素子3からの光の吸収量が大きくなり、第1の蛍光体5aの発光素子3からの光の吸収量が減少する。従って、第1の蛍光体5aから発生する量子効率に応じた蛍光が低下し、発光装置の光出力が低下することによって波長変換部材4の波長変換効率や発光装置の発光効率が低下してしまう。さらに、発光装置は、波長変換部材4における第1および第2の蛍光体5a,5bの分散状態により、部分的に第1および第2の蛍光体5a,5bがそれぞれ吸収する励起光の量に大きなバラツキが発生する。従って、発光装置は、第1および第2の蛍光体5a,5bから所望の量の蛍光を安定して放出させるこができないことにより、発光装置から放出される光の色にムラやバラツキが発生することになってしまう。   When the first phosphor 5a and the second phosphor 5b are mixed and arranged, the amount of light absorbed from the light emitting element 3 of the second phosphor 5b becomes large, and the light emission of the first phosphor 5a. The amount of light absorbed from the element 3 is reduced. Accordingly, the fluorescence corresponding to the quantum efficiency generated from the first phosphor 5a is reduced, and the light output of the light emitting device is reduced, whereby the wavelength conversion efficiency of the wavelength conversion member 4 and the light emission efficiency of the light emitting device are reduced. . Further, in the light emitting device, the first and second phosphors 5a and 5b are partially absorbed by the first and second phosphors 5a and 5b depending on the dispersion state of the first and second phosphors 5a and 5b in the wavelength conversion member 4. Large variations occur. Accordingly, the light emitting device cannot stably emit a desired amount of fluorescence from the first and second phosphors 5a and 5b, thereby causing unevenness and variations in the color of light emitted from the light emitting device. Will end up.

これに対して本発明の構成によれば、発光素子3の近辺に吸収率の小さい第1の蛍光体5aを個別に配置することにより、吸収率の異なる第2の蛍光体5bによる励起光の吸収を抑制できることから、第1の蛍光体5aはその量子効率に応じた蛍光を発生させることができる。その結果、第1の蛍光体5aから所望の出力の蛍光を放出することができ、発光装置の発光効率の低下を抑制することができる。さらに、波長変換部材4内の第1および第2の蛍光体5a,5bの分散状態によって発生する、発光装置から放出される光の色ムラや色バラツキを抑制することができる。   On the other hand, according to the configuration of the present invention, the first phosphors 5a having a low absorptance are individually arranged in the vicinity of the light emitting element 3, so that the excitation light emitted by the second phosphors 5b having different absorptances can be obtained. Since absorption can be suppressed, the 1st fluorescent substance 5a can generate the fluorescence according to the quantum efficiency. As a result, a desired output of fluorescence can be emitted from the first phosphor 5a, and a decrease in the light emission efficiency of the light emitting device can be suppressed. Furthermore, it is possible to suppress color unevenness and color variation of light emitted from the light emitting device, which is caused by the dispersion state of the first and second phosphors 5a and 5b in the wavelength conversion member 4.

また、第2の蛍光体5bは、発光素子3から直接届いた光または第1の蛍光体5aによって反射されるとともに拡散された発光素子3からの光により、第2の波長変換部4bの全体にわたって効率よく励起される。すなわち、発光素子3からの光が第1の波長変換部4a内の第1の蛍光体5aによって拡散されるとともに、この拡散された発光素子3の光が第2の波長変換部材4bの中央部から外周部にわたって照射されることにより、励起される第2の蛍光体5bの量が増加するとともに、第2の蛍光体5bの量子効率に応じて発せられる蛍光の量が増加する。その結果、本発明の発光装置は、波長変換部材4の波長変換効率や発光装置外部への光出力または発光効率が改善されたものとなるとともに、発光装置の発光面や照射面における色ムラや色バラツキを抑制することができる。   In addition, the second phosphor 5b is configured so that the entire second wavelength conversion unit 4b is received by the light directly from the light emitting element 3 or the light from the light emitting element 3 that is reflected and diffused by the first phosphor 5a. It is excited efficiently. That is, the light from the light emitting element 3 is diffused by the first phosphor 5a in the first wavelength conversion unit 4a, and the diffused light of the light emitting element 3 is in the central part of the second wavelength conversion member 4b. As a result, the amount of the second phosphor 5b to be excited increases and the amount of fluorescence emitted according to the quantum efficiency of the second phosphor 5b increases. As a result, the light-emitting device of the present invention has improved wavelength conversion efficiency of the wavelength conversion member 4, light output to the outside of the light-emitting device, or light-emitting efficiency, and color unevenness on the light-emitting surface and irradiation surface of the light-emitting device. Color variation can be suppressed.

なお、第1の波長変換部4aにおける第1の蛍光体5aの体積密度は、第2の波長変換部4bにおける第2の蛍光体5bの体積密度より大きくすることが好ましい。これによって、発光素子3からの光は第1の蛍光体5aを直接励起するとともに、発光素子3からの一部の光は第1の蛍光体5aによって低損失に反射されて拡散されながら、第1の波長変換部4a内を伝搬して第1の蛍光体5aをムラなく励起させることができる。さらに、第1の波長変換部4aの上面まで伝搬して、第2の波長変換部4bに入射した発光素子3からの一部の光は、第1の蛍光体5aが高密度に充填された第1の波長変換部4aによって様々な方向に拡散されており、第2の波長変換部4bにおいて吸収率が高い第2の蛍光体5bに万遍なく照射されることによって第2の蛍光体5bに波長変換され、発光装置の外部に放出される。従って、第1の蛍光体5aおよび第2の蛍光体5bそれぞれが励起される確率が向上し、これらの蛍光体5から発せられる蛍光の量が増加する。   In addition, it is preferable that the volume density of the 1st fluorescent substance 5a in the 1st wavelength conversion part 4a is made larger than the volume density of the 2nd fluorescent substance 5b in the 2nd wavelength conversion part 4b. As a result, the light from the light emitting element 3 directly excites the first phosphor 5a, and a part of the light from the light emitting element 3 is reflected and diffused by the first phosphor 5a with low loss. The first phosphor 5a can be excited without any unevenness by propagating through the one wavelength converter 4a. Furthermore, a part of the light from the light emitting element 3 that has propagated to the upper surface of the first wavelength conversion unit 4a and entered the second wavelength conversion unit 4b is filled with the first phosphor 5a at a high density. The second phosphor 5b is diffused in various directions by the first wavelength conversion unit 4a and uniformly irradiated to the second phosphor 5b having a high absorption rate in the second wavelength conversion unit 4b. Is converted into a wavelength and emitted outside the light emitting device. Therefore, the probability that each of the first phosphor 5a and the second phosphor 5b is excited is improved, and the amount of fluorescence emitted from these phosphors 5 is increased.

また、例えば、発光素子3からの光が紫外光から近紫外光の高エネルギー光を発生する場合、発光素子3の光が効率よく第1の蛍光体5aおよび第2の蛍光体5bに吸収されて波長変換されることにより、発光装置の外部に放出される高エネルギー光が少なくなり、発光装置の外部に配置される部品の光劣化が少なくなる。   For example, when the light from the light emitting element 3 generates high energy light from ultraviolet light to near ultraviolet light, the light from the light emitting element 3 is efficiently absorbed by the first phosphor 5a and the second phosphor 5b. Thus, the wavelength conversion reduces the amount of high-energy light emitted to the outside of the light-emitting device, and reduces the light deterioration of components arranged outside the light-emitting device.

さらに、第2の蛍光体5bは、第1の波長変換部4aを透過した発光素子3からの光の吸収率がよく、第2の蛍光体5bが含まれる第2の波長変換部4bが光を効率よく吸収することができるため、発光装置の外部に放出される発光素子3からの光(蛍光に変換されていない直接光)を十分に減少させることができる。これによって、発光素子3の波長スペクトルが紫外領域から近紫外領域にある場合に、発光装置の周囲に光劣化を生じやすい物質が配置されてもその物質に対する悪影響を少なくすることができる。   Further, the second phosphor 5b has a good absorption rate of light from the light emitting element 3 that has passed through the first wavelength conversion unit 4a, and the second wavelength conversion unit 4b including the second phosphor 5b emits light. Therefore, the light from the light emitting element 3 emitted to the outside of the light emitting device (direct light not converted into fluorescence) can be sufficiently reduced. As a result, when the wavelength spectrum of the light emitting element 3 is in the ultraviolet region to the near ultraviolet region, even if a substance that easily causes light degradation is arranged around the light emitting device, adverse effects on the substance can be reduced.

また、第1の波長変換部4aおよび第2の波長変換部4bのそれぞれに含まれる第1の蛍光体5aおよび第2の蛍光体5bの体積密度を変化させる代わりに、第1の波長変換部4aに含まれる第1の蛍光体5aの体積密度および第2の波長変換部4bに含まれる第2の蛍光体5bの体積密度を同程度とし、第1の波長変換部4aの厚みを第2の波長変換部4bの厚みよりも厚くしてもよい。   Further, instead of changing the volume density of the first phosphor 5a and the second phosphor 5b included in each of the first wavelength converter 4a and the second wavelength converter 4b, the first wavelength converter The volume density of the first phosphor 5a included in 4a and the volume density of the second phosphor 5b included in the second wavelength converter 4b are set to be approximately the same, and the thickness of the first wavelength converter 4a is set to the second You may make it thicker than the thickness of the wavelength conversion part 4b.

また、第1および第2の蛍光体5a,5bの体積密度と第1および第2の波長変換部4a,4bの厚みとを組み合わせて変化させてもよい。例えば、第1の波長変換部4aの厚みを第2の波長変換部4bの厚みよりも少し厚くし、代わりに、第1の波長変換部4aの第1の蛍光体5aの体積密度を第2の波長変換部4bの第2の蛍光体5bの体積密度よりも少し大きくすることによって、第1および第2の波長変換部材4a,4bに含有される第1および第2の蛍光体5a,5bの量がそれぞれ一定となるように調節してもよい。   Further, the volume density of the first and second phosphors 5a and 5b and the thickness of the first and second wavelength converters 4a and 4b may be changed in combination. For example, the thickness of the first wavelength conversion unit 4a is made slightly thicker than the thickness of the second wavelength conversion unit 4b. Instead, the volume density of the first phosphor 5a of the first wavelength conversion unit 4a is changed to the second. The first and second phosphors 5a and 5b contained in the first and second wavelength conversion members 4a and 4b are made slightly larger than the volume density of the second phosphor 5b of the wavelength conversion unit 4b. The amount of each may be adjusted to be constant.

なお、第2の波長変換部4bを発光素子3に近い側に配置し、この第2の波長変換部4bの上側に第1の波長変換部4aを配置する場合、吸収率が高い第2の蛍光体5bによって吸収される発光素子3の光は増加するが、第2の波長変換部4bの上方へ伝搬して第1の波長変換部4aに入射する光は減少してしまうので、第2の波長変換部4bの上側に配置した第1の波長変換部4aに含有された第1の蛍光体5aを効率よく励起させることができなくなる。すなわち、第1の蛍光体5aが含まれる第1の波長変換部4aの波長変換効率が著しく低下するために発光装置の発光効率が劣化する。   In addition, when the 2nd wavelength conversion part 4b is arrange | positioned at the side close | similar to the light emitting element 3, and the 1st wavelength conversion part 4a is arrange | positioned above this 2nd wavelength conversion part 4b, a 2nd high absorption factor The light of the light emitting element 3 absorbed by the phosphor 5b increases, but the light that propagates above the second wavelength conversion unit 4b and enters the first wavelength conversion unit 4a decreases. The first phosphor 5a contained in the first wavelength conversion unit 4a arranged on the upper side of the wavelength conversion unit 4b cannot be excited efficiently. That is, since the wavelength conversion efficiency of the first wavelength conversion unit 4a including the first phosphor 5a is significantly reduced, the light emission efficiency of the light emitting device is deteriorated.

また、第1の波長変換部4a内の第1の蛍光体5aの体積密度が、第2の波長変換部4b内の第2の蛍光体5bの体積密度より小さい場合、発光素子3の光に対して第1の波長変換部4aに含まれる第1の蛍光体5aによって効率よく反射拡散させることができず、第1の波長変換部4aの上方に配置された第2の波長変換部4bの全体にわたって発光素子3の光を万遍なく照射させ、第2の蛍光体5bから発せられる蛍光の量を増加させて、発光装置の光出力を増加させ、発光効率を向上させるということが困難になる。   Moreover, when the volume density of the 1st fluorescent substance 5a in the 1st wavelength conversion part 4a is smaller than the volume density of the 2nd fluorescent substance 5b in the 2nd wavelength conversion part 4b, the light of the light emitting element 3 is used. On the other hand, the first phosphor 5a included in the first wavelength converter 4a cannot efficiently reflect and diffuse, and the second wavelength converter 4b disposed above the first wavelength converter 4a. It is difficult to irradiate the light of the light emitting element 3 over the entire area, increase the amount of fluorescence emitted from the second phosphor 5b, increase the light output of the light emitting device, and improve the light emission efficiency. Become.

また、第1,第2の蛍光体5a,5bを含有する透明部材は同じ材料であるか、または第1の波長変換部4aの透明部材の屈折率が第2の波長変換部4bの透明部材の屈折率と同等、もしくは、第2の波長変換部4bの透明部材の屈折率より小さいのがよい。透明部材が同じ材料である場合は、第1の波長変換部4aと第2の波長変換部4bとの界面において発光素子3からの光や、第1の蛍光体5aからの光を低損失に透過させることができ、発光装置の光出力が低下しない。さらに、第1の波長変換部4aと第2の波長変換部4bとの熱膨張係数差によって発生する応力がなくなることにより、第1の波長変換部4aと第2の波長変換部4bとの剥離を抑制することができ、発光装置の長期信頼性を向上させることができる。   Moreover, the transparent member containing the 1st, 2nd fluorescent substance 5a, 5b is the same material, or the refractive index of the transparent member of the 1st wavelength conversion part 4a is a transparent member of the 2nd wavelength conversion part 4b It is preferable that the refractive index is equal to or smaller than the refractive index of the transparent member of the second wavelength conversion unit 4b. When the transparent member is the same material, the light from the light emitting element 3 and the light from the first phosphor 5a are reduced in loss at the interface between the first wavelength conversion unit 4a and the second wavelength conversion unit 4b. The light output can be transmitted and the light output of the light emitting device does not decrease. Further, since the stress generated by the difference in thermal expansion coefficient between the first wavelength conversion unit 4a and the second wavelength conversion unit 4b is eliminated, the first wavelength conversion unit 4a and the second wavelength conversion unit 4b are separated. Can be suppressed, and the long-term reliability of the light-emitting device can be improved.

また、第1の波長変換部4aの屈折率が第2の波長変換部4bの屈折率より小さい場合、第1の波長変換部4aと第2の波長変換部4bとの接着界面において、発光素子3や第1の蛍光体5aからの光は、スネルの法則に従って全反射されることなく第2の波長変換部4bに進入することができ、さらに第2の波長変換部4bに含有した第2の蛍光体5bから下方向(第1の波長変換部4a側)に発せられた蛍光の一部は、第1の波長変換部4aとの接着界面でスネルの法則に従って上方に全反射されて発光装置の外部に放出されやすくなる。その結果、第1の蛍光体5aからの蛍光は効率よく外部に放出されるとともに、第2の蛍光体5bから発せられる蛍光も効率よく外部に放出される。従って、発光装置の光出力を向上させることができる点で、第1の波長変換部4aの屈折率が第2の波長変換部4bの屈折率より小さいのがよい。   Moreover, when the refractive index of the 1st wavelength conversion part 4a is smaller than the refractive index of the 2nd wavelength conversion part 4b, in the adhesion interface of the 1st wavelength conversion part 4a and the 2nd wavelength conversion part 4b, a light emitting element 3 and the light from the first phosphor 5a can enter the second wavelength conversion unit 4b without being totally reflected in accordance with Snell's law, and the second wavelength conversion unit 4b contains the second light contained in the second wavelength conversion unit 4b. Part of the fluorescence emitted from the phosphor 5b in the downward direction (on the first wavelength conversion unit 4a side) is totally reflected upward at the adhesive interface with the first wavelength conversion unit 4a according to Snell's law, and emits light. Easily released to the outside of the device. As a result, the fluorescence from the first phosphor 5a is efficiently emitted to the outside, and the fluorescence emitted from the second phosphor 5b is also efficiently emitted to the outside. Therefore, it is preferable that the refractive index of the first wavelength conversion unit 4a is smaller than the refractive index of the second wavelength conversion unit 4b in that the light output of the light emitting device can be improved.

また、好ましくは、第1の波長変換部4aおよび第2の波長変換部4bは、透光性のシリコーン樹脂に第1の蛍光体5aおよび第2の蛍光体5bを含有するのがよい。シリコーン樹脂は、発光素子3から発せられる光が紫外光や近紫外光の場合、これらの光に対して透過率が高く劣化も小さく、従って、長期間にわたって発光装置の外部に高出力に光を放出することができる。   Preferably, the first wavelength conversion unit 4a and the second wavelength conversion unit 4b contain the first phosphor 5a and the second phosphor 5b in a translucent silicone resin. When the light emitted from the light-emitting element 3 is ultraviolet light or near-ultraviolet light, the silicone resin has high transmittance and small deterioration with respect to these light, and therefore, the light is emitted to the outside of the light emitting device for a long time with high output. Can be released.

また、図3,図4,図7,図8に示すように、波長変換部材4は、発光素子3を被覆するように充填された、紫外光領域から可視光領域の光に対して透過率の高いシリコーン樹脂,エポキシ樹脂,ユリア樹脂等の透明樹脂や、低融点ガラス,ゾル−ゲルガラス等の透明ガラスから成る蛍光体5を含まない第1の透光性部材7の上側に配置することが好ましい。これによって、発光素子3の光は、発光素子3の周辺に第1の蛍光体5aが配置されていないことから、第1の蛍光体5aによって発光素子3の周囲に光が閉じ込められることによる発光素子3の光吸収を抑制することができ、発光装置の光出力を向上させることができる。つまり、発光素子3の周辺に第1の蛍光体5aが配置されていないので、発光素子3が発した光が発光素子3の近傍の第1の蛍光体5aに反射され、発光素子3に戻ってしまって吸収されてしまい、外部に出力されにくくなるのを抑制することができる。   In addition, as shown in FIGS. 3, 4, 7, and 8, the wavelength conversion member 4 has a transmittance with respect to light from the ultraviolet light region to the visible light region that is filled so as to cover the light emitting element 3. A transparent resin such as a high-silicone resin, an epoxy resin, or a urea resin, or a phosphor 5 made of a transparent glass such as a low-melting-point glass or a sol-gel glass may be disposed on the upper side of the first translucent member 7. preferable. Thereby, since the first phosphor 5a is not disposed around the light-emitting element 3, the light emitted from the light-emitting element 3 is emitted by being confined around the light-emitting element 3 by the first phosphor 5a. Light absorption of the element 3 can be suppressed, and the light output of the light emitting device can be improved. That is, since the first phosphor 5 a is not disposed around the light emitting element 3, the light emitted from the light emitting element 3 is reflected by the first phosphor 5 a in the vicinity of the light emitting element 3 and returns to the light emitting element 3. Therefore, it is possible to suppress the absorption and the difficulty of being output to the outside.

また、第1の透光性部材7は、第1の波長変換部4aの透明部材と同じ材料であるか、または第1の波長変換部4aの透明部材の屈折率と同等、もしくは、第1の波長変換部4aの透明部材の屈折率より小さいのがよい。第1の透光性部材7が第1の波長変換部4aと同じ材料である場合、第1の透光性部材7と第1の波長変換部4aとの界面において発光素子3からの光を低損失に透過させることができ、発光装置の光出力が低下しない。さらに、第1の透光性部材7と第1の波長変換部4aとの熱膨張係数差によって発生する応力がなくなることにより、第1の透光性部材7と第1の波長変換部4aとの剥離を抑制することができ、発光装置の長期信頼性を向上させることができる。   The first light-transmissive member 7 is made of the same material as the transparent member of the first wavelength conversion unit 4a, or is equal to the refractive index of the transparent member of the first wavelength conversion unit 4a, or the first It is preferable that the refractive index of the transparent member of the wavelength converter 4a is smaller than that of the transparent member. When the first translucent member 7 is made of the same material as that of the first wavelength conversion unit 4a, the light from the light emitting element 3 is emitted at the interface between the first translucent member 7 and the first wavelength conversion unit 4a. The light can be transmitted with low loss, and the light output of the light emitting device does not decrease. Furthermore, since the stress generated by the difference in thermal expansion coefficient between the first translucent member 7 and the first wavelength conversion unit 4a is eliminated, the first translucent member 7 and the first wavelength conversion unit 4a Can be prevented, and the long-term reliability of the light-emitting device can be improved.

また、第1の透光性部材7の屈折率が第1の波長変換部4aの屈折率より小さい場合、第1の透光性部材7と第1の波長変換部4aとの接着界面において、発光素子3からの光は、スネルの法則に従って全反射されることなく第1の波長変換部4aに進入することができ、さらに第1,第2の波長変換部4a,4aに含有した第1,第2の蛍光体5a,5bから下方向(発光素子3側)に発せられた蛍光の一部は、第1の透光性部材7と第1の波長変換部4aとの接着界面でスネルの法則に従って上方に全反射されて発光装置の外部に放出されやすくなる。その結果、第1,第2の蛍光体5a,5bからの蛍光は効率よく発光装置の外部に放出され、発光装置の光出力を向上させることができる。従って、発光装置の光出力を向上させることができる点で、第1の透光性部材7の屈折率が第1の波長変換部4aの屈折率より小さいのがよい。   Moreover, when the refractive index of the 1st translucent member 7 is smaller than the refractive index of the 1st wavelength conversion part 4a, in the adhesive interface of the 1st translucent member 7 and the 1st wavelength conversion part 4a, The light from the light emitting element 3 can enter the first wavelength conversion unit 4a without being totally reflected according to Snell's law, and the first wavelength contained in the first and second wavelength conversion units 4a and 4a. , A part of the fluorescence emitted downward (from the light emitting element 3 side) from the second phosphors 5a and 5b is snelled at the bonding interface between the first light-transmissive member 7 and the first wavelength conversion unit 4a. According to the above law, the light is totally reflected upward and is easily emitted to the outside of the light emitting device. As a result, the fluorescence from the first and second phosphors 5a and 5b is efficiently emitted to the outside of the light emitting device, and the light output of the light emitting device can be improved. Therefore, it is preferable that the refractive index of the first translucent member 7 is smaller than the refractive index of the first wavelength conversion unit 4a in that the light output of the light emitting device can be improved.

また、図1,図2,図5,図6,図9に示すように第1の蛍光体5aを透明部材に含有させて発光素子3と接するように発光素子3を被覆する第1の波長変換部材4a、もしくは、図3,図4,図7,図8に示すように発光素子3と接するように発光素子3を直接被覆する第1の透光性部材7においては、発光素子3内からの光の取り出し量を向上させるため、発光素子3との屈折率差を小さくする必要がある。通常、発光素子3の発光層の屈折率は2以上であり、発光素子3の基板としてサファイア基板を用いる際には、サファイアの屈折率は1.7程度となる。従って、第1の蛍光体5aを含有する透明部材および第1の透光性部材7の屈折率を向上させるために、紫外光領域から可視光領域の光に対して透過率の高いシリコーン樹脂,エポキシ樹脂,ユリア樹脂等の透明樹脂や、低融点ガラス,ゾル−ゲルガラス等の透明ガラスに、酸化亜鉛,酸化チタン,酸化アルミニウム,酸化イットリウム,チタン酸バリウム,チタン酸ストロンチウム,酸化ジルコニウム等の酸化物を含有させて屈折率を向上させるとよい。   Further, as shown in FIGS. 1, 2, 5, 6, and 9, the first phosphor 5 a is contained in the transparent member and the first wavelength that covers the light emitting element 3 so as to be in contact with the light emitting element 3. The conversion member 4a or the first translucent member 7 that directly covers the light emitting element 3 so as to be in contact with the light emitting element 3 as shown in FIG. 3, FIG. 4, FIG. In order to improve the amount of light extracted from the light-emitting element 3, it is necessary to reduce the difference in refractive index from the light-emitting element 3. Usually, the refractive index of the light emitting layer of the light emitting element 3 is 2 or more. When a sapphire substrate is used as the substrate of the light emitting element 3, the refractive index of sapphire is about 1.7. Therefore, in order to improve the refractive index of the transparent member containing the first phosphor 5a and the first translucent member 7, a silicone resin having a high transmittance with respect to light in the ultraviolet region to the visible region, Oxides such as zinc oxide, titanium oxide, aluminum oxide, yttrium oxide, barium titanate, strontium titanate, zirconium oxide on transparent resins such as epoxy resin and urea resin, and transparent glass such as low melting point glass and sol-gel glass It is preferable to improve the refractive index by containing.

なお、図3,図4に示す波長変換部材4は、未硬化状態の第1の透光性部材7を、ディスペンサー等の注入器で発光素子3を被覆するように配置して熱硬化させた後、第1の蛍光体5aが含有された透明部材が未硬化状態の第1の波長変換部4aを、ディスペンサー等の注入器で第1の透光性部材7を被覆するように配置して熱硬化させ、その後、未硬化の第2の波長変換部4bを、ディスペンサー等の注入器で第1の波長変換部4aを被覆することによって形成される。   In addition, the wavelength conversion member 4 shown in FIG. 3 and FIG. 4 was heat-cured by disposing the uncured first light-transmissive member 7 so as to cover the light-emitting element 3 with an injector such as a dispenser. Thereafter, the first wavelength conversion unit 4a in which the transparent member containing the first phosphor 5a is uncured is disposed so as to cover the first light-transmissive member 7 with an injector such as a dispenser. The second wavelength conversion unit 4b that is cured by heat is then formed by covering the first wavelength conversion unit 4a with an injector such as a dispenser.

または、図7,図8に示すように、未硬化状態の第1の透光性部材7を、ディスペンサー等の注入器で発光素子3を被覆するように配置して熱硬化させた後、未硬化の透明部材に第1の蛍光体5aを含有させて板状に形成し、これを硬化させることによって作製したフィルム状の第1の波長変換部材4aを、透明部材を介して第1の透光性部材7の上方に載置して接着固定させた後、未硬化の透明部材に第2の蛍光体5bを含有させて板状に形成し、これを硬化させることによって作製したフィルム状の第2の波長変換部材4bを、透明部材8を介して第1の波長変換部4aの上方に載置して接着固定させるなどの方法によって形成される。   Alternatively, as shown in FIGS. 7 and 8, the uncured first light-transmissive member 7 is disposed so as to cover the light-emitting element 3 with an injector such as a dispenser and then thermally cured. A film-shaped first wavelength conversion member 4a produced by containing a first phosphor 5a in a cured transparent member and forming it into a plate shape and curing it is formed through the transparent member. After the optical member 7 is placed and bonded and fixed, the second phosphor 5b is contained in an uncured transparent member to form a plate, and this is cured to form a film. The second wavelength conversion member 4b is formed by a method such as placing the second wavelength conversion member 4b on the upper side of the first wavelength conversion unit 4a via the transparent member 8 and fixing the same.

また、図5乃至図8に示すように、第1の波長変換部4aと第2の波長変換部4との間に第2の透光性部材8を設けてもよい。これにより、例えば、第1の蛍光体5aが作動環境における水分によって化学反応が生じ、第1の蛍光体5aの量子効率が低下する場合、第2の透光性部材8によって第1の波長変換部4aへの水分の侵入を抑制することができる。従って、第1の蛍光体5aの量子効率の劣化が抑制され、発光装置を長期間にわたって高出力で作動させることができる。なお、第2の透光性部材8としては、シリコーン樹脂,エポキシ樹脂,ユリア樹脂等の透明樹脂や、低融点ガラス,ゾル−ゲルガラス等の透明ガラス等の近紫外光から可視光にわたって透過率が高く耐水性に優れる透明材料を用いることにより、第1の蛍光体5aの量子効率の劣化を抑制することができる。特に、第1の蛍光体5aが硫化物系蛍光体から成る場合、特に量子効率の劣化を有効に抑制することができる。なお、硫化物系蛍光体としては、SrCaS:Eu、ZnS:Cu,Al、SrGa2S4:Eu等から成る蛍光体が挙げられる。 Further, as shown in FIGS. 5 to 8, the second light transmitting member 8 may be provided between the first wavelength converting portion 4a and the second wavelength converting portion 4 b. Thereby, for example, when the first phosphor 5a undergoes a chemical reaction due to moisture in the operating environment and the quantum efficiency of the first phosphor 5a is reduced, the first wavelength conversion is performed by the second translucent member 8. Intrusion of moisture into the portion 4a can be suppressed. Therefore, deterioration of the quantum efficiency of the first phosphor 5a is suppressed, and the light emitting device can be operated at a high output for a long period. The second translucent member 8 has a transmittance ranging from near ultraviolet light to visible light such as transparent resin such as silicone resin, epoxy resin and urea resin, and transparent glass such as low melting point glass and sol-gel glass. By using a transparent material that is high and excellent in water resistance, deterioration of the quantum efficiency of the first phosphor 5a can be suppressed. In particular, when the first phosphor 5a is made of a sulfide-based phosphor, deterioration of quantum efficiency can be particularly effectively suppressed. Examples of sulfide-based phosphors include phosphors made of SrCaS: Eu, ZnS: Cu, Al, SrGa2S4: Eu, and the like.

また、第2の透光性部材8は、第1,第2の波長変換部4a,4bの透明部材と同じ材料であるか、または第1,第2の波長変換部4a,4bの透明部材の屈折率と同等、もしくは、第1の波長変換部4aの透明部材の屈折率より高く、第2の波長変換部4bの透明部材の屈折率より小さいのがよい。第2の透光性部材8が、第1,第2の波長変換部4a,4bと同じ材料である場合、第2の透光性部材8と第1,第2の波長変換部4a,4bとの界面において発光素子3および第1の蛍光体5aからの光を低損失に透過させることができ、発光装置の光出力が低下しない。さらに、第2の透光性部材8と第1,第2の波長変換部4a,4bとの熱膨張係数差によって発生する応力がなくなることにより、第2の透光性部材8と第1,第2の波長変換部4a,4bとの剥離を抑制することができ、発光装置の長期信頼性を向上させることができる。   The second translucent member 8 is made of the same material as the transparent members of the first and second wavelength conversion units 4a and 4b, or the transparent members of the first and second wavelength conversion units 4a and 4b. It is preferable that the refractive index is equal to or higher than the refractive index of the transparent member of the first wavelength conversion unit 4a and smaller than the refractive index of the transparent member of the second wavelength conversion unit 4b. When the 2nd translucent member 8 is the same material as the 1st, 2nd wavelength conversion parts 4a and 4b, the 2nd translucent member 8 and the 1st, 2nd wavelength conversion parts 4a and 4b The light from the light emitting element 3 and the first phosphor 5a can be transmitted with low loss at the interface between the light emitting device and the light output of the light emitting device does not decrease. Further, since the stress generated by the difference in thermal expansion coefficient between the second translucent member 8 and the first and second wavelength conversion units 4a and 4b is eliminated, the second translucent member 8 and the first and second translucent members 8 Separation from the second wavelength conversion units 4a and 4b can be suppressed, and the long-term reliability of the light emitting device can be improved.

また、第2の透光性部材8の屈折率が、第1の波長変換部4aの透明部材の屈折率より高く、第2の波長変換部4bの透明部材の屈折率より小さい場合、第1の波長変換部4aと第2の透光性部材8との接着界面および第2の透光性部材8と第2の波長変換部4bとの接着界面において、発光素子3および第1の波長変換部4aからの光は、スネルの法則に従って全反射されることなく第2の透光性部材8および第2の波長変換部4bに進入することができ、さらに第2の波長変換部4bに含有した第2の蛍光体5bから下方向(第1の波長変換部4a側)に発せられた蛍光の一部は、第2の波長変換部4bと第2の透光性部材8および第1の波長変換部4aとの接着界面でスネルの法則に従って上方に全反射されて発光装置の外部に放出されやすくなる。その結果、第1,第2の蛍光体5a,5bからの蛍光は効率よく発光装置の外部に放出され、発光装置の光出力を向上させることができる。従って、発光装置の光出力を向上させることができる点で、第2の透光性部材8の屈折率が、第1の波長変換部4aの透明部材の屈折率より高く、第2の波長変換部4bの透明部材の屈折率より小さいのがよい。   Further, when the refractive index of the second light-transmissive member 8 is higher than the refractive index of the transparent member of the first wavelength conversion unit 4a and smaller than the refractive index of the transparent member of the second wavelength conversion unit 4b, the first The light emitting element 3 and the first wavelength conversion at the adhesive interface between the second wavelength conversion part 4a and the second light transmissive member 8 and at the adhesion interface between the second light transmissive member 8 and the second wavelength conversion part 4b. The light from the part 4a can enter the second light-transmissive member 8 and the second wavelength conversion part 4b without being totally reflected according to Snell's law, and further contained in the second wavelength conversion part 4b A part of the fluorescence emitted downward from the second phosphor 5b (on the first wavelength conversion unit 4a side) is the second wavelength conversion unit 4b, the second translucent member 8, and the first In accordance with Snell's law, it is totally reflected upward at the adhesive interface with the wavelength converting portion 4a and emitted to the outside of the light emitting device. It becomes easier. As a result, the fluorescence from the first and second phosphors 5a and 5b is efficiently emitted to the outside of the light emitting device, and the light output of the light emitting device can be improved. Therefore, the refractive index of the second translucent member 8 is higher than the refractive index of the transparent member of the first wavelength conversion unit 4a in that the light output of the light emitting device can be improved, and the second wavelength conversion. It is preferable that the refractive index is smaller than the refractive index of the transparent member of the portion 4b.

なお、図5,図6に示す波長変換部材4は、第1の蛍光体5aが含有された透明部材が未硬化状態の第1の波長変換部4aを、ディスペンサー等の注入器で発光素子3を被覆するように配置して熱硬化させた後、未硬化状態の第2の透光性部材8を、ディスペンサー等の注入器で第1の波長変換部材4aを被覆するように配置して熱硬化させ、さらに、未硬化の第2の波長変換部4bを、ディスペンサー等の注入器で第2の透光性部材8を被覆するように順に配置して熱硬化させたり、未硬化の透明部材に第2の蛍光体5bを含有させて板状に形成し、これを硬化させることによって作製したフィルム状の第2の波長変換部材4bを、第2の透光性部材8を介して接着固定させたりするなどの方法によって形成される。   5 and 6, the wavelength conversion member 4 includes the first wavelength conversion unit 4a in which the transparent member containing the first phosphor 5a is uncured, and the light emitting element 3 using an injector such as a dispenser. The second light-transmissive member 8 in an uncured state is disposed so as to cover the first wavelength conversion member 4a with an injector such as a dispenser. Curing is further performed, and the uncured second wavelength conversion unit 4b is disposed in order so as to cover the second translucent member 8 with an injector such as a dispenser and thermally cured, or an uncured transparent member. The second wavelength conversion member 4b in the form of a plate is formed by containing the second phosphor 5b and cured, and the second wavelength conversion member 4b is bonded and fixed via the second translucent member 8. It is formed by the method of letting it go.

なお、図7,図8に示す波長変換部材4は、未硬化状態の第1の透光性部材7を、ディスペンサー等の注入器で発光素子3を被覆するように配置して、もしくは発光素子3を被覆するように配置して熱硬化させた後、第1の蛍光体5aが含有された透明部材が未硬化状態の第1の波長変換部4aを、ディスペンサー等の注入器で第1の透光性部材7を被覆するように配置して熱硬化させた後、または未硬化の透明部材に第1の蛍光体5aを含有させて板状に形成し、これを硬化させることによって作製したフィルム状の第1の波長変換部材4aを、透明部材を介して第1の透光性部材7の上方に載置して接着固定させた後、未硬化状態の第2の透光性部材8を、ディスペンサー等の注入器で第1の波長変換部材4aを被覆するように配置して、もしくは第1の波長変換部材4aを被覆するように配置して熱硬化させた後、未硬化の第2の波長変換部4bを、ディスペンサー等の注入器で第2の透光性部材8を被覆するように順に配置して熱硬化させたり、未硬化の透明部材に第2の蛍光体5bを含有させて板状に形成し、これを硬化させることによって作製したフィルム状の第2の波長変換部材4bを、透明部材を介して第2の透光性部材8の上方に載置させて接着固定させたりするなどの方法によって形成される。   The wavelength conversion member 4 shown in FIG. 7 and FIG. 8 is configured by disposing the uncured first translucent member 7 so as to cover the light emitting element 3 with an injector such as a dispenser, or the light emitting element. The first wavelength conversion unit 4a in which the transparent member containing the first phosphor 5a is uncured is placed on the first wavelength conversion unit 4a with a syringe such as a dispenser. After being arranged so as to cover the translucent member 7 and thermally cured, the first phosphor 5a was contained in an uncured transparent member to form a plate, and this was prepared by curing. The film-shaped first wavelength conversion member 4a is placed on the first translucent member 7 through the transparent member and bonded and fixed, and then the uncured second translucent member 8 is placed. Is arranged so as to cover the first wavelength conversion member 4a with an injector such as a dispenser. Or after arrange | positioning so that the 1st wavelength conversion member 4a may be coat | covered and thermosetting, the 2nd translucent member 8 is coat | covered with injection | pourings, such as a dispenser, the 2nd wavelength conversion part 4b which is not hardened | cured. The film-like second wavelength conversion produced by arranging in order so as to be thermally cured, or forming a plate shape by containing the second phosphor 5b in an uncured transparent member, and curing the plate. The member 4b is formed by a method such as placing the member 4b on the second translucent member 8 via a transparent member and fixing the member 4b.

また、図9に示すように、枠体2の上面に第2の波長変換部4bを覆うように、ガラス、サファイア、石英、またはエポキシ樹脂,シリコーン樹脂,アクリル樹脂等の樹脂(プラスチック)などの透明材料から成る蓋体9を載置固定しても良い。この場合、枠体3の内側に設置された、発光素子3、配線導体1b、導電性部材6、波長変換部材4を保護するとともに、発光装置1内部を気密に封止し、発光素子3を長期に安定した動作をさせることができる。また、蓋体9をレンズ状に形成して光学レンズの機能を付加することによって、光を集光または分散させて所望の放射角度、強度分布で光を発光装置の外部に取りだすことができる。   Further, as shown in FIG. 9, glass, sapphire, quartz, or a resin (plastic) such as epoxy resin, silicone resin, acrylic resin, or the like so as to cover the second wavelength conversion portion 4 b on the upper surface of the frame 2. A lid 9 made of a transparent material may be placed and fixed. In this case, while protecting the light emitting element 3, the wiring conductor 1b, the electroconductive member 6, and the wavelength conversion member 4 installed inside the frame 3, the inside of the light emitting device 1 is hermetically sealed, and the light emitting element 3 is attached. A stable operation can be performed for a long time. Further, by forming the lid 9 in a lens shape and adding the function of an optical lens, it is possible to collect or disperse the light and extract the light outside the light emitting device with a desired radiation angle and intensity distribution.

なお、蛍光体の吸収率や量子効率は、一般的に分光蛍光光度計等の測定装置によって測定することができる(例えば、日本分光製、FP-6500)。この様な、分光蛍光光度計は、光源からの光が分光器によって特定波長の励起光Lに単離され、この単離された励起光Lを透明部材に蛍光体を含有して板状に形成された評価サンプルに入射させる。そして、励起光Lによって発生する蛍光体が発した蛍光Lおよび蛍光体を励起させずに出力される励起光Lを、励起光Lの波長を変化させながら検出する。 The absorption rate and quantum efficiency of the phosphor can be generally measured by a measuring device such as a spectrofluorometer (for example, FP-6500 manufactured by JASCO Corporation). Such, the fluorescence spectrophotometer, the light from the light source is isolated to the excitation light L 1 having a specific wavelength by the spectroscope, and contains a phosphor excitation light L 1 to the isolated transparent member plate It is made to inject into the evaluation sample formed in the shape. Then, the fluorescence L 2 emitted from the phosphor generated by the excitation light L 1 and the excitation light L 3 output without exciting the phosphor are detected while changing the wavelength of the excitation light L 1 .

そして、励起光Lの光子数n1が蛍光体5によって吸収された光子数n4は、励起光Lの光エネルギー[W]を1光子の有するエネルギーで除して得られる光子数n1から、励起光Lの光エネルギー[W]を1光子の有するエネルギーで除して得られる光子数n3を減ずることによって算出でき、この光子数n4を光子数n1で除することによって蛍光体5の吸収率を求めることができる。また、蛍光体5が発した蛍光Lの光エネルギー[W]を1光子の有するエネルギーで除して得られる光子数n2を蛍光体5に吸収された光子数n4によって除することにより、蛍光体5の量子効率を求めることができる。 The photon number n4 photon number n1 is absorbed by the phosphor 5 of the excitation light L 1 from the photon number n1 which is obtained by dividing the light energy [W] of the excitation light L 1 at energy of 1 photon, light energy [W] of the excitation light L 3 can be calculated by subtracting the number of photons n3 obtained by dividing the energy of the one-photon absorption of the phosphor 5 by dividing the photon number n4 photon number n1 The rate can be determined. Further, by dividing by the number of photons n4 absorbed photons number n2 which is obtained by dividing the phosphor 5 is emitted fluorescence L 2 light energy [W] by energy of the one-photon phosphor 5, a fluorescent The quantum efficiency of the body 5 can be obtained.

次に、本発明の照明装置は、1個の本発明の発光装置を所定の配置となるように設置して光源として用いることにより、または複数個の本発明の発光装置を、例えば、格子状や千鳥状,放射状,複数の発光装置から成る円状や多角形状の発光装置群を同心状に複数群形成したもの等所定の配置となるように配列させた光源として用いることにより、本発明の照明装置とすることができる。これにより、光取り出し効率を向上させ、放射光強度、軸上光度および輝度が高い本発明の照明装置を提供することができる。   Next, the illuminating device of the present invention can be obtained by installing one light emitting device of the present invention in a predetermined arrangement and using it as a light source, or by using a plurality of light emitting devices of the present invention in, for example, a lattice shape Or a staggered, radial, or circular or polygonal light emitting device group composed of a plurality of light emitting devices, used as a light source arranged in a predetermined arrangement such as a concentric group of light emitting device groups. It can be set as a lighting device. Thereby, the light extraction efficiency can be improved, and the illumination device of the present invention having high radiated light intensity, axial luminous intensity and luminance can be provided.

本発明の照明装置は、半導体から成る発光素子3の発光を利用した場合に、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能であり、発熱の小さな小型の照明装置とすることができる。そして、効率的に低電力で動作させることができる結果、発光素子3の発熱量が少なく、発光素子3から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが少ない照明装置とすることができる。   The illuminating device of the present invention, when utilizing the light emission of the light emitting element 3 made of a semiconductor, can have lower power consumption and longer life than the illuminating device using a conventional discharge, and is small in size and generating little heat. It can be set as a lighting device. As a result of being able to operate efficiently with low power, the amount of heat generated by the light emitting element 3 is small, fluctuations in the center wavelength of the light generated from the light emitting element 3 can be suppressed, and stable radiated light over a long period of time. While being able to irradiate light with an intensity and a radiated light angle (light distribution), it is possible to provide an illuminating device with less color unevenness and uneven illuminance distribution on the irradiated surface.

また、本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に任意の形状に光学設計した反射具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を照射できる照明装置とすることができる。   In addition to installing the light emitting device of the present invention as a light source in a predetermined arrangement, by installing a reflector, an optical lens, a light diffusing plate, etc. optically designed in an arbitrary shape around these light emitting devices, It can be set as the illuminating device which can irradiate the light of light distribution.

例えば、図10,図11に示す平面図,断面図のように複数個の本発明の発光装置101が発光装置駆動回路基板102に複数列に配置され、発光装置101の周囲に所要の形状に光学設計された反射部材103が設置されて成る照明装置の場合、一列に配置された複数個の発光装置101の間に隣り合う列の発光装置101が配置された配置、いわゆる千鳥状配置とすることが好ましい。すなわち、発光装置101が格子状に配置される際には、光源となる発光装置101が直線上に配列されることによりグレアが強くなり、このような照明装置が人の視覚に入ってくることにより、不快感を起こしやすくなるのに対し、千鳥状配置とすることにより、グレアが抑制され人間の目に対する不快感を低減することができる。さらに、発光装置101が縦横にグリッド状に配置される場合に比べ、隣り合う発光装置101間の距離が長くなることにより、隣接する発光装置101間の熱的な干渉が有効に抑制され、発光装置101が実装された発光装置駆動回路基板102内における熱のこもりが抑制され、発光装置101の外部に効率よく熱が放散される。その結果、人の目に対しても不快感を与えずに長期間にわたり光学特性の安定した長寿命の照明装置を作製することができる。   For example, as shown in FIG. 10 and FIG. 11, a plurality of light emitting devices 101 of the present invention are arranged in a plurality of rows on the light emitting device driving circuit board 102, and a required shape is formed around the light emitting device 101. In the case of an illuminating device in which an optically designed reflecting member 103 is installed, an arrangement in which light emitting devices 101 in adjacent rows are arranged between a plurality of light emitting devices 101 arranged in a row, so-called staggered arrangement. It is preferable. That is, when the light emitting devices 101 are arranged in a grid, glare is strengthened by arranging the light emitting devices 101 as light sources on a straight line, and such a lighting device enters human vision. Thus, discomfort is likely to occur, but by adopting a staggered arrangement, glare is suppressed and discomfort to the human eye can be reduced. Furthermore, compared to the case where the light emitting devices 101 are arranged in a grid in the vertical and horizontal directions, the distance between the adjacent light emitting devices 101 is increased, so that thermal interference between the adjacent light emitting devices 101 is effectively suppressed, and light emission. Heat accumulation in the light emitting device driving circuit board 102 on which the device 101 is mounted is suppressed, and heat is efficiently dissipated outside the light emitting device 101. As a result, it is possible to manufacture a long-life lighting device with stable optical characteristics over a long period of time without causing discomfort to human eyes.

また、照明装置が、図12,図13に示す平面図,断面図のような発光装置駆動回路基板102上に複数の発光装置101から成る円状や多角形状の発光装置101群を、同心状に複数群配置した照明装置の場合、1つの円状や多角形状の発光装置101群における発光装置101の配置数を照明装置の中央側より外周側ほど多くすることが好ましい。これにより、発光装置101同士の間隔を適度に保ちながら発光装置101をより多く配置することができ、照明装置の照度をより向上させることができる。また、照明装置の中央部の発光装置101の密度を低くして発光装置駆動回路基板102の中央部における熱のこもりを抑制することができる。よって、発光装置駆動回路基板102内における温度分布が一様となり、照明装置を設置した外部回路基板やヒートシンクに効率よく熱が伝達され、発光装置101の温度上昇を抑制することができる。その結果、発光装置101は長期間にわたり安定して動作することができるとともに長寿命の照明装置を作製することができる。   Further, the lighting device is a concentric arrangement of a circular or polygonal light emitting device 101 group composed of a plurality of light emitting devices 101 on the light emitting device drive circuit board 102 as shown in the plan view and the sectional view shown in FIGS. In the case of a plurality of illuminating devices arranged in a group, it is preferable that the number of light emitting devices 101 arranged in one circular or polygonal light emitting device 101 group be increased from the central side of the illuminating device toward the outer peripheral side. Thereby, it is possible to arrange more light emitting devices 101 while maintaining an appropriate interval between the light emitting devices 101, and it is possible to further improve the illuminance of the lighting device. In addition, the density of the light emitting device 101 in the central portion of the lighting device can be reduced to suppress heat accumulation in the central portion of the light emitting device driving circuit board 102. Therefore, the temperature distribution in the light emitting device driving circuit board 102 becomes uniform, heat is efficiently transmitted to the external circuit board or heat sink on which the lighting device is installed, and the temperature rise of the light emitting device 101 can be suppressed. As a result, the light-emitting device 101 can operate stably over a long period of time, and a long-life lighting device can be manufactured.

このような照明装置としては、例えば、室内や室外で用いられる、一般照明用器具、シャンデリア用照明器具、住宅用照明器具、オフィス用照明器具、店装,展示用照明器具、街路灯用照明器具、誘導灯器具および信号装置、舞台およびスタジオ用の照明器具、広告灯、照明用ポール、水中照明用ライト、ストロボ用ライト、スポットライト、電柱等に埋め込む防犯用照明、非常用照明器具、懐中電灯、電光掲示板等や、調光器、自動点滅器、ディスプレイ等のバックライト、動画装置、装飾品、照光式スイッチ、光センサ、医療用ライト、車載ライト等が挙げられる。   Examples of such lighting devices include general lighting fixtures, chandelier lighting fixtures, residential lighting fixtures, office lighting fixtures, store lighting, display lighting fixtures, and street lamp lighting fixtures that are used indoors and outdoors. , Guide light fixtures and signaling devices, stage and studio lighting fixtures, advertising lights, lighting poles, underwater lighting lights, strobe lights, spotlights, security lights embedded in power poles, emergency lighting fixtures, flashlights , Electronic bulletin boards and the like, backlights such as dimmers, automatic flashers, displays, moving image devices, ornaments, illuminated switches, optical sensors, medical lights, in-vehicle lights, and the like.

なお、本発明は以上の実施の形態の例および実施例に限定されず、本発明の要旨を逸脱しない範囲内であれば種々の変更を行なうことは何等支障ない。例えば、上記実施の形態例においては、2種の蛍光を得るために第1および第2の蛍光体5a,5bをそれぞれ含有する第1および第2の波長変換部4a,4bを例に挙げて説明したが、さらに、それより多くの波長変換部、例えば第3の蛍光を得るために上術同様に第3の蛍光体を含有する第3の波長変換部を第2の波長変換部4bを覆うように設けてもよい。   It should be noted that the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention. For example, in the above embodiment, the first and second wavelength conversion units 4a and 4b containing the first and second phosphors 5a and 5b, respectively, in order to obtain two types of fluorescence are taken as an example. As described above, in order to obtain more wavelength conversion units, for example, the third fluorescence, the third wavelength conversion unit containing the third phosphor as in the above operation is replaced with the second wavelength conversion unit 4b. You may provide so that it may cover.

また、第2の波長変換部4bが最上面の波長変換部4bとなる場合、その上面を凸面や凹面として発光装置から放射される光を集散させる機能と併用させたり、拡散面となる微細な凹凸面を設けて放射される光を拡散させる拡散板の機能と併用させたりしてもよい。   In addition, when the second wavelength conversion unit 4b is the uppermost wavelength conversion unit 4b, the upper surface is a convex surface or a concave surface, which is used in combination with a function of converging light emitted from the light emitting device, or a fine diffusion surface. An uneven surface may be provided and used together with the function of a diffusion plate that diffuses emitted light.

本発明の発光装置の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the light-emitting device of this invention. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の照明装置の実施の形態の一例を示す平面図である。It is a top view which shows an example of embodiment of the illuminating device of this invention. 図10の照明装置の断面図である。FIG. 11 is a cross-sectional view of the lighting device of FIG. 本発明の照明装置の実施の形態の他の例を示す平面図である。It is a top view which shows the other example of embodiment of the illuminating device of this invention. 図12の照明装置の断面図である。FIG. 13 is a cross-sectional view of the illumination device of FIG. 従来の発光装置の断面図である。It is sectional drawing of the conventional light-emitting device.

符号の説明Explanation of symbols

1:基体
1a:搭載部
1b:配線導体
2:枠体
2a:光反射面
3:発光素子
4:波長変換部材
4a:第1の波長変換部
4b:第2の波長変換部
5:蛍光体
5a:第1の蛍光体
5b:第2の蛍光体
6:導電性部材
7:第1の透光性部材
8:第2の透光性部材
DESCRIPTION OF SYMBOLS 1: Base 1a: Mounting part 1b: Wiring conductor 2: Frame 2a: Light reflection surface 3: Light emitting element 4: Wavelength conversion member 4a: First wavelength conversion part 4b: Second wavelength conversion part 5: Phosphor 5a : 1st fluorescent substance 5b: 2nd fluorescent substance 6: Conductive member 7: 1st translucent member 8: 2nd translucent member

Claims (3)

基体と、
該基体の上面に搭載され、第1の光を発する発光素子と、
該発光素子を覆うように設けられ、前記第1の光によって励起されて第2の光を発生する第1の蛍光体を透明部材に含有した第1の波長変換部と、
該第1の波長変換部を覆うように設けられ、前記第1の光によって励起されて第3の光を発生するとともに前記第1の蛍光体より前記第1の光の吸収率が高い第2の蛍光体を含有した第2の波長変換部と
前記第1の波長変換部を覆うとともに前記第2の波長変換部に覆われるように、前記第1の波長変換部と前記第2の波長変換部との間に設けられた透光性部材とから成ることを特徴とする発光装置。
A substrate;
A light emitting element mounted on the upper surface of the substrate and emitting a first light;
A first wavelength conversion unit that is provided so as to cover the light emitting element and contains a first phosphor that is excited by the first light and generates second light in a transparent member;
A second wavelength detector that is provided to cover the first wavelength conversion unit, is excited by the first light to generate third light, and has a higher absorptance of the first light than the first phosphor; A second wavelength conversion unit containing the phosphor of :
A translucent member provided between the first wavelength conversion unit and the second wavelength conversion unit so as to cover the first wavelength conversion unit and to be covered by the second wavelength conversion unit; A light-emitting device comprising:
前記第1の波長変換部に含有される前記第1の蛍光体の体積密度が前記第2の波長変換部に含有される前記第2の蛍光体の体積密度と同じであって、前記第1の波長変換部の厚みが前記第2の波長変換部の厚みよりも厚いことを特徴とする請求項1記載の発光装置。   The volume density of the first phosphor contained in the first wavelength converter is the same as the volume density of the second phosphor contained in the second wavelength converter, and the first phosphor The light-emitting device according to claim 1, wherein a thickness of the wavelength conversion section is thicker than a thickness of the second wavelength conversion section. 請求項1に記載の発光装置を光源として用いた照明装置。


The illuminating device which used the light-emitting device of Claim 1 as a light source.


JP2005216416A 2005-07-26 2005-07-26 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME Active JP5196711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216416A JP5196711B2 (en) 2005-07-26 2005-07-26 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216416A JP5196711B2 (en) 2005-07-26 2005-07-26 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2007035885A JP2007035885A (en) 2007-02-08
JP5196711B2 true JP5196711B2 (en) 2013-05-15

Family

ID=37794779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216416A Active JP5196711B2 (en) 2005-07-26 2005-07-26 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP5196711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12016534B2 (en) * 2019-02-08 2024-06-25 Rebound Therapeutics Corporation Lighted cannula system

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8441179B2 (en) * 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
KR100930171B1 (en) 2006-12-05 2009-12-07 삼성전기주식회사 White light emitting device and white light source module using same
JP4753904B2 (en) 2007-03-15 2011-08-24 シャープ株式会社 Light emitting device
JP4976895B2 (en) * 2007-03-26 2012-07-18 パナソニック株式会社 Light emitting device
JP2008251644A (en) 2007-03-29 2008-10-16 Sharp Corp Semiconductor light-emitting device
KR101476420B1 (en) * 2007-05-04 2014-12-26 서울반도체 주식회사 light emitting device
DE102007057710B4 (en) * 2007-09-28 2024-03-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Radiation-emitting component with conversion element
CN101836039B (en) * 2007-11-05 2012-08-22 建兴电子科技股份有限公司 A lighting device which colour and colour temperature is changed
WO2009069671A1 (en) 2007-11-29 2009-06-04 Nichia Corporation Light-emitting device and its manufacturing method
JP2009206459A (en) * 2008-02-29 2009-09-10 Sharp Corp Color conversion member and light-emitting apparatus using the same
JP5665160B2 (en) * 2008-03-26 2015-02-04 パナソニックIpマネジメント株式会社 Light emitting device and lighting apparatus
JP2009302339A (en) 2008-06-13 2009-12-24 Sanken Electric Co Ltd Semiconductor light emitting device
KR101506264B1 (en) 2008-06-13 2015-03-30 삼성전자주식회사 Light emitting element, light emitting device, and fabricating method of the light emitting element
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP2010287680A (en) * 2009-06-10 2010-12-24 Mitsubishi Chemicals Corp Light-emitting device
CN102473824B (en) 2009-06-26 2015-08-05 株式会社朝日橡胶 White reflecting material and manufacture method thereof
WO2011013188A1 (en) * 2009-07-27 2011-02-03 株式会社 東芝 Light-emitting device
US8283843B2 (en) 2010-02-04 2012-10-09 Nitto Denko Corporation Light emissive ceramic laminate and method of making same
US8771577B2 (en) 2010-02-16 2014-07-08 Koninklijke Philips N.V. Light emitting device with molded wavelength converting layer
JP2012009443A (en) * 2010-03-03 2012-01-12 Sharp Corp Wavelength conversion member, light emitting device, image display device and method of manufacturing wavelength conversion member
JP4949525B2 (en) 2010-03-03 2012-06-13 シャープ株式会社 Wavelength conversion member, light emitting device, image display device, and method of manufacturing wavelength conversion member
DE102010047454A1 (en) * 2010-10-04 2012-04-05 Osram Opto Semiconductors Gmbh Process for producing a silicone film, silicone film and optoelectronic semiconductor component with a silicone film
US9140429B2 (en) 2010-10-14 2015-09-22 Cree, Inc. Optical element edge treatment for lighting device
WO2012147650A1 (en) * 2011-04-27 2012-11-01 シャープ株式会社 Led module, backlight unit, and liquid crystal display device
JP5863291B2 (en) * 2011-06-28 2016-02-16 株式会社小糸製作所 Flat light emitting module
US8907319B2 (en) * 2011-12-12 2014-12-09 Lg Innotek Co., Ltd. Light emitting device package
CN104272479A (en) * 2012-05-14 2015-01-07 皇家飞利浦有限公司 Light emitting device with remote nanostructured phosphor
US8889439B2 (en) * 2012-08-24 2014-11-18 Tsmc Solid State Lighting Ltd. Method and apparatus for packaging phosphor-coated LEDs
JP2014056896A (en) * 2012-09-11 2014-03-27 Ns Materials Kk Light-emitting device utilizing semiconductor and manufacturing method of the same
CN107958899A (en) * 2013-03-07 2018-04-24 晶元光电股份有限公司 Method and apparatus for encapsulating the LED coated with fluorophor
US9587790B2 (en) 2013-03-15 2017-03-07 Cree, Inc. Remote lumiphor solid state lighting devices with enhanced light extraction
US20160109073A1 (en) * 2013-05-28 2016-04-21 Sharp Kabushiki Kaisha Light-emitting device
JP2015015418A (en) * 2013-07-08 2015-01-22 シャープ株式会社 Semiconductor light emitting device
US10014451B2 (en) 2014-02-18 2018-07-03 Sumitomo Chemical Company, Limited Method for producing semiconductor light-emitting device
JP6484972B2 (en) * 2014-06-20 2019-03-20 大日本印刷株式会社 Mounting board on which light emitting parts are mounted, and wiring board on which light emitting parts are mounted
JP2017117671A (en) * 2015-12-24 2017-06-29 京セラ株式会社 Discharger package and discharger
JP6242437B2 (en) * 2016-06-10 2017-12-06 シャープ株式会社 Light emitting device
DE102017117488A1 (en) 2017-08-02 2019-02-07 Osram Opto Semiconductors Gmbh Optoelectronic component
TWI658610B (en) * 2017-09-08 2019-05-01 Maven Optronics Co., Ltd. Quantum-dot-based color-converted light emitting device and method for manufacturing the same
CN109964324B (en) 2017-09-28 2021-11-12 亮锐控股有限公司 Infrared emitting device
KR102593592B1 (en) * 2018-05-04 2023-10-25 엘지이노텍 주식회사 Lighting apparatus
JP7361618B2 (en) * 2020-01-29 2023-10-16 京セラ株式会社 lighting equipment
WO2021205716A1 (en) * 2020-04-09 2021-10-14 シャープ株式会社 Wavelength conversion element and optical device
CN111969093A (en) * 2020-09-02 2020-11-20 安晟技术(广东)有限公司 Packaging method of LED chip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4109756B2 (en) * 1998-07-07 2008-07-02 スタンレー電気株式会社 Light emitting diode
JP3645422B2 (en) * 1998-07-14 2005-05-11 東芝電子エンジニアリング株式会社 Light emitting device
JP2002176201A (en) * 2000-12-05 2002-06-21 Okaya Electric Ind Co Ltd Semiconductor light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12016534B2 (en) * 2019-02-08 2024-06-25 Rebound Therapeutics Corporation Lighted cannula system

Also Published As

Publication number Publication date
JP2007035885A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP5196711B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4698412B2 (en) Light emitting device and lighting device
TWI267211B (en) Light-emitting apparatus and illuminating apparatus
TWI261937B (en) Light-emitting apparatus and illuminating apparatus
TWI433344B (en) Light emitting apparatus and illuminating apparatus
TWI251356B (en) Light-emitting apparatus and illuminating apparatus
JP4873963B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2007266356A (en) Light-emitting device and illuminator using the same
JP5810301B2 (en) Lighting device
JP4671745B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2006237264A (en) Light emitting device and lighting apparatus
JP4143043B2 (en) Light emitting device and lighting device
WO2007114306A1 (en) Light emitting device
JP2006049814A (en) Light emitting device and illumination system
JP2006013426A (en) Light emitting device and lighting apparatus
JP4948841B2 (en) Light emitting device and lighting device
JP2006093399A (en) Light-emitting device, its manufacturing method and luminaire
JP4707433B2 (en) Light emitting device and lighting device
JP2006066657A (en) Light emitting device and lighting device
JP2005277331A (en) Light emitting device and lighting device
JP4845370B2 (en) Light emitting device and lighting device
JP4417757B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2005310911A (en) Package for housing light emitting element, light emitting device, and lighting apparatus
JP5085851B2 (en) Light emitting device and lighting device
JP4637623B2 (en) Light emitting device and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150