TWI658610B - Quantum-dot-based color-converted light emitting device and method for manufacturing the same - Google Patents

Quantum-dot-based color-converted light emitting device and method for manufacturing the same Download PDF

Info

Publication number
TWI658610B
TWI658610B TW106130827A TW106130827A TWI658610B TW I658610 B TWI658610 B TW I658610B TW 106130827 A TW106130827 A TW 106130827A TW 106130827 A TW106130827 A TW 106130827A TW I658610 B TWI658610 B TW I658610B
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting device
photoluminescent
transparent
Prior art date
Application number
TW106130827A
Other languages
Chinese (zh)
Other versions
TW201914060A (en
Inventor
Chieh Chen
傑 陳
Original Assignee
Maven Optronics Co., Ltd.
行家光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maven Optronics Co., Ltd., 行家光電股份有限公司 filed Critical Maven Optronics Co., Ltd.
Priority to TW106130827A priority Critical patent/TWI658610B/en
Priority to US16/112,381 priority patent/US10879434B2/en
Priority to JP2018156872A priority patent/JP6686081B2/en
Priority to EP18192168.5A priority patent/EP3454384B1/en
Priority to KR1020180105689A priority patent/KR102102699B1/en
Publication of TW201914060A publication Critical patent/TW201914060A/en
Application granted granted Critical
Publication of TWI658610B publication Critical patent/TWI658610B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Abstract

本發明提出一發光裝置,包含:覆晶式LED晶片;光致發光結構,設置於LED晶片上;及濕氣阻隔反射結構,覆蓋光致發光結構之側面及LED晶片之立面。光致發光結構包括依序堆疊之第一光致發光層、光透明隔離層、第二光致發光層及光透明濕氣阻隔層。在一較佳實施例中,LED晶片發出藍光,第一光致發光層包含紅色螢光材料,第二光致發光層包含綠色量子點;藉此,第一光致發光層之紅色螢光材料可先將較高能階之藍光部份轉換為較低能階之紅光,降低了照射於綠色量子點之未被轉換的藍光強度,有效避免量子點之光氧化。本發明另提出上述發光裝置之製造方法。 The invention provides a light-emitting device, which includes: a flip-chip LED wafer; a photoluminescence structure disposed on the LED wafer; and a moisture barrier reflection structure covering the side of the photoluminescence structure and the facade of the LED wafer. The photoluminescent structure includes a first photoluminescent layer, a light transparent isolation layer, a second photoluminescent layer, and a light transparent moisture barrier layer sequentially stacked. In a preferred embodiment, the LED chip emits blue light, the first photoluminescent layer includes a red fluorescent material, and the second photoluminescent layer includes a green quantum dot; thereby, the red fluorescent material of the first photoluminescent layer The blue part of the higher energy level can be converted into the red light of lower energy level first, which reduces the unconverted blue light intensity of the green quantum dots and effectively avoids the photooxidation of the quantum dots. The present invention further provides a method for manufacturing the light-emitting device.

Description

應用量子點色彩轉換之發光裝置及其製造方法 Light emitting device applying quantum dot color conversion and manufacturing method thereof

本發明有關一種晶片級封裝發光裝置及其製造方法,特別關於一種應用綠色量子點材料及紅色螢光粉之晶片級封裝發光裝置及其製造方法。 The invention relates to a wafer-level packaged light-emitting device and a manufacturing method thereof, and in particular to a wafer-level packaged light-emitting device using a green quantum dot material and red phosphor and a manufacturing method thereof.

量子點(quantum dot,QD)材料係為一尺寸為奈米等級的半導體晶體材料,其粒徑尺寸通常介於1奈米至50奈米,在受到高能階之光線照射後,由於量子侷限效應(Quantum confinement effect),量子點材料可將部分入射光線轉換成另一較低能階之可見光線,故量子點材料可作為一光致發光材料。透過改變量子點材料之粒徑、形狀或材料組成,可使得量子點材料發出不同波長之可見光線,即改變其發光頻譜(spectrum)。 Quantum dot (QD) material is a semiconductor crystal material with a nanometer size. Its particle size usually ranges from 1 nanometer to 50 nanometers. After being irradiated by high-level light, due to quantum confinement effects (Quantum confinement effect), the quantum dot material can convert part of the incident light into another lower-level visible light, so the quantum dot material can be used as a photoluminescence material. By changing the particle size, shape, or material composition of the quantum dot material, the quantum dot material can be made to emit visible light with different wavelengths, that is, its emission spectrum is changed.

相較於傳統螢光材料,例如釔鋁石榴石(YAG)螢光粉、氮化物(Nitride)或氮氧化物(Oxynitride)螢光粉等,量子點材料的發光頻譜具有明顯較窄的半高寬(Full Width at Half Maximum,FWHM),因此,使用量子點材料搭配LED晶片構成一LED發光裝置以作為顯示器的背光光源時,可改進顯示器之色彩純度。相較於有機發光二極體(OLED)顯示器所能達到70% BT.2020之色域範圍(Color Gamut),應用量子點材料之顯示 器在色彩表現上可具有高達90% BT.2020之色域範圍;此外,相較於屬有機材料之OLED,其使用壽命較短,而量子點材料屬無機材料,使用壽命相對較長。另一方面,應用量子點材料之發光裝置可直接取代現有液晶顯示器之背光光源,僅透過光致發光材料之改變即可明顯增加液晶顯示器之色域範圍。 Compared with traditional fluorescent materials, such as yttrium aluminum garnet (YAG) phosphors, nitrides (Nitride) or nitrogen oxides (Oxynitride) phosphors, the emission spectrum of quantum dot materials has a significantly narrower half-height Wide (Full Width at Half Maximum, FWHM), therefore, when using quantum dot materials with LED chips to form an LED light emitting device as a backlight source of a display, the color purity of the display can be improved. Compared with the organic light emitting diode (OLED) display which can reach 70% of the BT.2020 color gamut (Color Gamut), the application of quantum dot material display In terms of color performance, the device can have a color gamut range of up to 90% BT.2020; in addition, compared with OLEDs that are organic materials, their service life is shorter, while quantum dot materials are inorganic materials, and their service life is relatively long. On the other hand, the light emitting device using quantum dot materials can directly replace the backlight source of the existing liquid crystal display, and the color gamut range of the liquid crystal display can be significantly increased only by changing the photoluminescent material.

量子點材料搭配LED晶片之發光裝置雖然有上述之優勢,但是實務上仍有些問題待改善或克服。舉例而言,量子點材料的熱穩定性(thermal stability)不佳,在高溫環境(例如大於70℃之環境)下,其效能將明顯衰減。因此,LED晶片運作時所產生之熱能可能使量子點材料之效能大幅衰減。 Although the light emitting device with quantum dot material and LED chip has the above advantages, there are still some problems in practice that need to be improved or overcome. For example, the thermal stability of a quantum dot material is not good, and its efficiency will be significantly attenuated in a high temperature environment (for example, an environment greater than 70 ° C). Therefore, the thermal energy generated during the operation of the LED chip may significantly reduce the efficiency of the quantum dot material.

此外,量子點材料接觸到空氣中的水氣或氧氣時,表面易被氧化而形成氧化物,導致量子點材料的發光強度下降,因此,使用量子點材料之發光裝置需具有良好的溼氣阻隔保護,才能使外界之水氣及氧氣不易朝內滲透而接觸量子點材料,以使發光裝置具有較長的使用壽命。 In addition, when the quantum dot material comes into contact with water vapor or oxygen in the air, the surface is easily oxidized to form an oxide, which causes the light emitting intensity of the quantum dot material to decrease. Therefore, the light emitting device using the quantum dot material must have good moisture barrier. Only in order to protect the water vapor and oxygen from the outside from penetrating inward and contact the quantum dot material, so that the light-emitting device has a longer service life.

再者,於週遭存在氧氣或水氣的情況下,量子點材料受到較高能階之光線(如紫外光或藍光)激發時,更易產生光氧化(photo-oxidation)現象,造成其發光強度(intensity)的明顯下降及發光頻譜的「藍移(blue shifting)」。具體而言,高能階光線照射於量子點等半導體材料時,由於光電效應(photovoltaic effect)的作用,半導體材料將產生大量電子與電洞,而被激發出之自由電子使半導體材料表面容易將週遭之氧分子解離(dissociation)而形成氧原子與氧離子,促使半導體材料更易與氧反應而形成氧化物;學者Young E.M.於1988年Appl Phys A 47:259-69之論文及學者 Sato S.等於1997年J Appl Phys 81:1518之論文對此電子活化(electron-active)半導體材料之光氧化現象有諸多實驗驗證與描述。因此,量子點材料在高能階光線的照射下,會明顯加速其氧化反應。 Furthermore, in the presence of oxygen or water vapor around the quantum dot material, when excited by higher energy levels of light (such as ultraviolet or blue light), photo-oxidation is more likely to occur, resulting in intensity of light emission. ) And the "blue shifting" of the emission spectrum. Specifically, when high-level light is irradiated to semiconductor materials such as quantum dots, due to the photovoltaic effect, the semiconductor material will generate a large number of electrons and holes, and the excited free electrons make it easy for the surface of the semiconductor material to surround the surface. Dissociation of oxygen molecules to form oxygen atoms and oxygen ions, promote semiconductor materials to react more easily with oxygen to form oxides; thesis and scholar of Young EM Appl Phys A 47: 259-69, 1988 The paper by Sato S. equals 1997 J Appl Phys 81: 1518 has many experimental verifications and descriptions of the photo-oxidation phenomenon of electron-active semiconductor materials. Therefore, the quantum dot material will significantly accelerate its oxidation reaction under the irradiation of high-level light.

同時,量子點表面產生氧化後,將使得量子點材料之有效粒徑縮減,由於較小粒徑之量子點光致發光材料可產生較高能階之轉換光線(即波長較短),因此量子點材料表面於氧化後將使其發光頻譜朝短波長移動,產生所謂的「藍移(blue shifting)」現象。又,氧化物的產生將增加量子點的結構缺陷(defects),而此結構缺陷於光電效應作用時,會造成電子與電洞循著非放光模式結合(non-radiative electron-hole recombination),此非放光之電子電洞結合將以熱能之方式釋放能量,而不會轉換為較低能階之光子,因此量子點材料之光氧化現象亦會造成其發光強度下降,最終使量子點不再發光,此即量子點之光致退色(photobleaching)現象。因此,將量子點材料應用於LED發光裝置時,需防止量子點材料受到過強之較高能階光線所照射,始能避免光氧化現象所造成之光衰減及發光頻譜之藍移。 At the same time, after the surface of the quantum dot is oxidized, the effective particle size of the quantum dot material will be reduced. Since the quantum dot photoluminescence material with a smaller particle size can generate higher-level converted light (that is, a shorter wavelength), the quantum dot After the surface of the material is oxidized, its luminescence spectrum will be shifted toward a short wavelength, so-called "blue shifting" phenomenon occurs. In addition, the generation of oxides will increase the structural defects of the quantum dots, which will cause electrons and holes to combine in a non-radiative electron-hole recombination when the photoelectric effect is applied. This combination of non-luminous electron holes will release energy in the form of thermal energy, and will not be converted into lower-level photons. Therefore, the photo-oxidation phenomenon of the quantum dot material will also cause its luminous intensity to decrease, eventually making the quantum dots Re-emission, this is the photobleaching phenomenon of quantum dots. Therefore, when quantum dot materials are applied to LED light-emitting devices, it is necessary to prevent the quantum dot materials from being irradiated with excessively high-level light rays, so as to avoid the light attenuation and blue shift of the light emission spectrum caused by the photo-oxidation phenomenon.

此外,應用量子點色彩轉換之發光裝置通常需將量子點材料均勻分散於黏合膠材(binder)之中以獲得良好的發光效率。然而,並非量子點材料皆能相容於所有膠材,通常需要先將量子點材料進行表面改質,例如形成配位基(Ligand),才能將量子點均勻分散於特定膠材中;因此,表面改質、特定膠材之選用及不同膠材之間的製程相容性亦成為實現將量子點材料應用於LED發光裝置之重要技術挑戰。 In addition, light-emitting devices using quantum dot color conversion usually need to uniformly disperse quantum dot materials in a binder to obtain good light-emitting efficiency. However, not all quantum dot materials are compatible with all glues. Generally, the surface of the quantum dots needs to be modified, such as the formation of ligands, in order to uniformly disperse the quantum dots in a specific glue; therefore, Surface modification, selection of specific adhesive materials, and process compatibility between different adhesive materials have also become important technical challenges to realize the application of quantum dot materials to LED light-emitting devices.

綜合上述,如何更好地改善或克服上述之任一問題以將量子點材料應用於LED發光裝置,正是目前LED業界待解決的技術課題。 In summary, how to better improve or overcome any of the above problems to apply quantum dot materials to LED light-emitting devices is exactly the technical problem to be solved in the LED industry at present.

本發明之一目的在於提出一種應用量子點色彩轉換之發光裝置及其製造方法,該發光裝置為晶片級封裝發光裝置,使用覆晶式LED晶片,具有低熱阻之散熱途徑以降低LED晶片接面溫度(Junction Temperature),因此可有效地改善量子點材料的熱衰減現象,降低量子點材料所承受之溫度。 An object of the present invention is to provide a light-emitting device using quantum dot color conversion and a manufacturing method thereof. The light-emitting device is a wafer-level packaged light-emitting device, which uses a flip-chip LED chip and has a low thermal resistance heat dissipation path to reduce the LED chip junction Temperature (Junction Temperature), so it can effectively improve the thermal attenuation of the quantum dot material and reduce the temperature to which the quantum dot material is subjected.

本發明之一目的在於提出一種應用量子點色彩轉換之發光裝置及其製造方法,該發光裝置具有良好之濕氣阻隔氣密性(hermetic seal),以減少或避免外界空氣中之水氣與氧氣接觸到量子點材料,可有效地改善量子點材料的氧化現象。 An object of the present invention is to provide a light emitting device using quantum dot color conversion and a manufacturing method thereof. The light emitting device has good hermetic seal for reducing moisture or oxygen in the outside air. Contact with quantum dot materials can effectively improve the oxidation of quantum dot materials.

本發明之一目的在於提出一種應用量子點色彩轉換之發光裝置及其製造方法,將不易光氧化之螢光材料設置於較易光氧化之量子點材料與LED晶片之間,可有效降低入射於量子點材料之高能階光線的光強度,使其不超過量子點材料所能承受者,以改善量子點材料的光氧化現象。 An object of the present invention is to provide a light-emitting device using quantum dot color conversion and a manufacturing method thereof. A fluorescent material that is not easily photo-oxidized is placed between the quantum dot material that is more easily photo-oxidized and the LED chip, which can effectively reduce the incidence of light. The light intensity of the high-level light rays of the quantum dot material does not exceed the capacity of the quantum dot material, so as to improve the photo-oxidation phenomenon of the quantum dot material.

本發明之一目的在於提出一種應用量子點色彩轉換之發光裝置其製造方法,固定螢光材料所需之黏合膠材與固定量子點材料所需之黏合膠材具有不同特性,其膠材固化製程亦不相容,該發光裝置可有效阻隔用於固定量子點材料的高分子材料與用於固定螢光材料的高分子材料,避免兩者製程或材料特性不相容之問題。 An object of the present invention is to provide a method for manufacturing a light-emitting device using quantum dot color conversion. The adhesive glue required for fixing fluorescent materials and the adhesive glue required for fixing quantum dot materials have different characteristics. The glue curing process It is also incompatible. The light emitting device can effectively block the polymer material used for fixing the quantum dot material and the polymer material used for fixing the fluorescent material, so as to avoid the problem of incompatibility between the two processes or material characteristics.

為達上述目的,所提出的發光裝置可包含:一覆晶式LED晶片,用以提供一第一光線,該第一光線為一藍光、一深藍光、一紫光或一紫外光;一光致發光結構設置於該覆晶式LED晶片之一上表面上,且包 括一第一光致發光層、一光透明隔離層、一第二光致發光層及一光透明濕氣阻隔層,該光透明隔離層設置於該第一光致發光層上,該第二光致發光層設置於該光透明隔離層上,而該光透明濕氣阻隔層設置於該第二光致發光層上,其中,該第一光致發光層包含一第一高分子材料及混合於該第一高分子材料中之一較低激發能階之螢光材料(例如紅色螢光材料),而該第二光致發光層包含一第二高分子材料及混合於該第二高分子材料中之一較高激發能階之量子點材料(例如綠色量子點材料);以及一濕氣阻隔反射結構,覆蓋該光致發光結構之一側面及該覆晶式LED晶片之一立面,且不低於該覆晶式LED晶片之一電極面;其中,該第一光致發光層之該較低激發能階之螢光材料用以將該第一光線(例如藍光)之一部份轉換為一較長波長之可見光線(例如紅光),使得該未被轉換的第一光線(例如藍光)之光強度減小,以達到不大於該較高激發能階之量子點材料(例如綠色量子點材料)所能承受之光強度。本發明揭露的發光裝置之製造方法可包含:將一光致發光結構與一覆晶式LED晶片相貼合;以及形成一濕氣阻隔反射結構,以覆蓋該光致發光結構之一側面及該覆晶式LED晶片之一立面。 To achieve the above object, the proposed light emitting device may include: a flip-chip LED chip for providing a first light, the first light is a blue light, a dark blue light, a purple light or an ultraviolet light; a photo-induced The light emitting structure is disposed on an upper surface of one of the flip-chip LED chips, and It includes a first photoluminescent layer, a light transparent isolation layer, a second photoluminescent layer, and a light transparent moisture barrier layer. The light transparent isolation layer is disposed on the first photoluminescent layer, and the second A photoluminescent layer is disposed on the phototransparent isolation layer, and the phototransparent moisture barrier layer is disposed on the second photoluminescent layer, wherein the first photoluminescent layer includes a first polymer material and a mixture A lower excitation energy level fluorescent material (such as a red fluorescent material) in the first polymer material, and the second photoluminescent layer includes a second polymer material and mixed with the second polymer One of the materials with a higher excitation energy level quantum dot material (such as a green quantum dot material); and a moisture blocking reflection structure covering one side of the photoluminescence structure and one facade of the flip-chip LED chip, And not lower than an electrode surface of the flip-chip LED chip; wherein the lower excitation energy level fluorescent material of the first photoluminescent layer is used for a part of the first light (such as blue light) Into a longer wavelength of visible light (such as red light) A first light (e.g., blue) of light intensity change is reduced, in order to achieve a higher light intensity is not larger than the excitation energy level of the quantum dot material (e.g. green quantum dot material) can withstand it. The manufacturing method of the light-emitting device disclosed in the present invention may include: bonding a photoluminescence structure to a flip-chip LED chip; and forming a moisture blocking reflection structure to cover one side of the photoluminescence structure and the A facade of a flip-chip LED chip.

藉此,本發明所提出的發光裝置至少可提供以下有益技術效果: Therefore, the light-emitting device provided by the present invention can provide at least the following beneficial technical effects:

1、相對於覆晶式LED晶片所在之位置而言,第二光致發光層係設置於第一光致發光層之上方,故覆晶式LED晶片所發出的第一光線的一部份會先被第一光致發光層轉換,減少第一光線照射到第二光致發光層中的較高激發能階之量子點材料(例如綠色量子點材料)的劑量。因此,照射至較高激發能階之量子點材料的第一光線的光強度不大於其所能承受之光強 度,可有效抑制或避免較高激發能階之量子點材料的光氧化現象。 1. Relative to the position of the flip-chip LED chip, the second photoluminescent layer is disposed above the first photoluminescent layer, so a part of the first light emitted by the flip-chip LED chip will be It is first converted by the first photoluminescent layer to reduce the dose of the quantum dot material (such as green quantum dot material) with a higher excitation energy level irradiated by the first light into the second photoluminescent layer. Therefore, the light intensity of the first light irradiated to the quantum dot material with a higher excitation energy level is not greater than the light intensity it can withstand. Degree, can effectively inhibit or avoid photo-oxidation of quantum dot materials with higher excitation energy levels.

2、發光裝置可不需封裝支架,因此在相同封裝體積之下,可具有較大之發光面積,因此可有效降低照射於量子點材料之藍光單位面積強度,以減少量子點材料之光氧化。 2. The light emitting device does not need a packaging bracket, so it can have a large light emitting area under the same packaging volume, so it can effectively reduce the blue light unit area intensity of the quantum dot material to reduce the photooxidation of the quantum dot material.

3、光透明濕氣阻隔層及濕氣阻隔反射結構皆具有較低的水氣滲透率,可使外界的水氣及氧氣不易穿透其中而接觸到第二光致發光層中的量子點材料,可有效避免或減少量子點材料的氧化現象。 3. Both the light transparent moisture barrier layer and the moisture barrier reflective structure have low water vapor permeability, which makes it difficult for the external water vapor and oxygen to penetrate it and contact the quantum dot material in the second photoluminescent layer. , Can effectively avoid or reduce the oxidation of quantum dot materials.

4、光透明隔離層將第二光致發光層與第一光致發光層相分隔,使兩者不相接觸,換言之,用於膠合較高激發能階之量子點材料的第二高分子材料與用於膠合較低激發能階之螢光材料(例如紅色螢光材料)的第一高分子材料不會相接觸,因此不會相互影響對方的材料特性或製程特性(如固化機制)。 4. The optically transparent isolation layer separates the second photoluminescent layer from the first photoluminescent layer so that they are not in contact with each other, in other words, a second polymer material used to glue quantum dot materials with higher excitation energy levels It will not be in contact with the first polymer material used for gluing a fluorescent material with a lower excitation energy level (such as a red fluorescent material), and therefore will not affect each other's material characteristics or process characteristics (such as curing mechanism).

5、相較於採用封裝支架或封裝基板之發光裝置,採用覆晶式LED晶片之晶片級封裝發光裝置具有較低之熱阻,可有效降低LED晶片的接面溫度,且第二光致發光層較遠離覆晶式LED晶片,因此,覆晶式LED晶片所產生之熱能對於量子點材料之影響較小,可減少量子點材料所承受之溫度,例如低於50℃、40℃或30℃,有效改善量子點材料的熱衰減現象。 5. Compared with a light-emitting device using a packaging bracket or a packaging substrate, a wafer-level packaged light-emitting device using a flip-chip LED chip has a lower thermal resistance, which can effectively reduce the junction temperature of the LED chip, and the second photoluminescence The layer is far away from the flip-chip LED chip, so the thermal energy generated by the flip-chip LED chip has less effect on the quantum dot material, which can reduce the temperature to which the quantum dot material is subjected, for example, lower than 50 ° C, 40 ° C, or 30 ° C. , Effectively improve the thermal decay phenomenon of quantum dot materials.

6、當第一光致發光層所採用之較低激發能階之螢光材料為氟化物螢光材料(即KSF或MGF)時,由於KSF與MGF不被綠光所激發,因此可將較高激發能階之量子點材料所發出較高能階之光線(例如綠光)有效往外散射,故可增加發光裝置之整體光萃取效率。 6. When the fluorescent material with a lower excitation energy level used in the first photoluminescent layer is a fluoride fluorescent material (that is, KSF or MGF), since KSF and MGF are not excited by green light, the Higher-energy-level light (such as green light) emitted by quantum dot materials with high excitation energy levels is effectively scattered outward, so the overall light extraction efficiency of the light-emitting device can be increased.

為讓上述目的、技術特徵及優點能更明顯易懂,下文係以較 佳之實施例配合所附圖式進行詳細說明。 In order to make the above objectives, technical features and advantages more obvious and easy to understand, the following is a comparison The preferred embodiment is described in detail with reference to the drawings.

1~3‧‧‧發光裝置 1 ~ 3‧‧‧light-emitting device

10‧‧‧覆晶式LED晶片、LED晶片 10‧‧‧ flip-chip LED chip, LED chip

101‧‧‧上表面 101‧‧‧ top surface

102‧‧‧電極面、下表面 102‧‧‧ electrode surface, lower surface

103‧‧‧立面 103‧‧‧ facade

104‧‧‧電極組 104‧‧‧electrode set

20‧‧‧光致發光結構、PL結構 20‧‧‧Photoluminescence structure, PL structure

201‧‧‧頂面 201‧‧‧Top

202‧‧‧底面 202‧‧‧ underside

203‧‧‧側面 203‧‧‧side

21‧‧‧第一光致發光層、第一PL層 21‧‧‧First photoluminescent layer, first PL layer

211‧‧‧第一高分子材料 211‧‧‧The first polymer material

212‧‧‧較低激發能階之螢光材料、紅色螢光材料 212‧‧‧Fluorescent material with lower excitation energy level, red fluorescent material

22‧‧‧光透明隔離層 22‧‧‧light transparent isolation layer

23‧‧‧第二光致發光層、第二PL層 23‧‧‧second photoluminescent layer, second PL layer

231‧‧‧第二高分子材料 231‧‧‧Second polymer material

232‧‧‧較高激發能階之量子點材料、綠色量子點材料、綠色QD材料 232‧‧‧Higher quantum dot material, green quantum dot material, green QD material

233‧‧‧光散射性微粒 233‧‧‧light scattering particles

234‧‧‧藍色量子點材料 234‧‧‧ blue quantum dot material

24‧‧‧光透明濕氣阻隔層 24‧‧‧light transparent moisture barrier

25‧‧‧光透明導熱層 25‧‧‧ light transparent thermal conductive layer

26‧‧‧光透明分隔層 26‧‧‧ light transparent separation layer

30‧‧‧濕氣阻隔反射結構、反射結構 30‧‧‧ Moisture blocking reflective structure, reflective structure

301‧‧‧頂面 301‧‧‧Top

302‧‧‧底面 302‧‧‧ underside

31‧‧‧第三高分子材料 31‧‧‧The third polymer material

32‧‧‧光散射性微粒 32‧‧‧ light scattering particles

40‧‧‧光導引結構 40‧‧‧light guide structure

401‧‧‧頂面 401‧‧‧Top

402‧‧‧傾斜側面 402‧‧‧inclined side

900‧‧‧離型材料 900‧‧‧ Release Material

B‧‧‧藍光、藍光頻譜 B‧‧‧ Blu-ray, Blu-ray spectrum

G、G1、G2‧‧‧綠光、綠光頻譜 G, G1, G2‧‧‧‧ Green, Green spectrum

R‧‧‧紅光、紅光頻譜 R‧‧‧Red light, red light spectrum

第1A圖及第1B圖為依據本發明之第1較佳實施例之發光裝置的二剖面示意圖;第1C圖為依據本發明之第1較佳實施例之發光裝置的另一態樣的剖面示意圖;第2A圖及第2C圖為依據本發明之第1較佳實施例之發光裝置的另二剖面示意圖,顯示光轉換及傳遞;第2B圖為依據本發明之第1較佳實施例之發光裝置的發光光譜量測結果;第3圖為依據本發明之第2較佳實施例之發光裝置的剖面示意圖;第4A圖為依據本發明之第3較佳實施例之發光裝置的剖面示意圖;第4B圖為依據本發明之第3較佳實施例之發光裝置的另一態樣的剖面示意圖;第5A圖至第5I圖為依據本發明之一較佳實施例之發光裝置的製造方法之步驟示意圖;以及第6A圖至第6D圖為依據本發明之一較佳實施例之發光裝置的製造方法之步驟示意圖。 FIG. 1A and FIG. 1B are two cross-sectional views of a light-emitting device according to a first preferred embodiment of the present invention; FIG. 1C is a cross-section of another aspect of a light-emitting device according to the first preferred embodiment of the present invention. 2A and 2C are schematic diagrams of another cross-section of a light emitting device according to the first preferred embodiment of the present invention, showing light conversion and transmission; and FIG. 2B is a schematic view of the first preferred embodiment according to the present invention. Measurement results of the emission spectrum of the light-emitting device; FIG. 3 is a schematic cross-sectional view of a light-emitting device according to a second preferred embodiment of the present invention; FIG. 4A is a schematic cross-sectional view of a light-emitting device according to a third preferred embodiment of the present invention Figure 4B is a schematic cross-sectional view of another aspect of a light-emitting device according to a third preferred embodiment of the present invention; Figures 5A to 5I are manufacturing methods of a light-emitting device according to a preferred embodiment of the present invention FIG. 6A to FIG. 6D are schematic steps of a method for manufacturing a light emitting device according to a preferred embodiment of the present invention.

請參閱第1A圖及第1B圖,其為依據本發明之第1較佳實施例的發光裝置1之示意圖。,發光裝置1可包含一覆晶式LED晶片10、一光致 發光結構20及一濕氣阻隔反射結構30,各元件之技術內容將依序說明如下。 Please refer to FIG. 1A and FIG. 1B, which are schematic diagrams of a light emitting device 1 according to a first preferred embodiment of the present invention. The light-emitting device 1 may include a flip-chip LED chip 10, a photo-induced The light-emitting structure 20 and a moisture-blocking reflective structure 30 will be described in order as follows.

覆晶式LED晶片(以下簡稱為LED晶片)10用以提供一第一光線(或稱主光線),其可為一藍光、一深藍光、一紫光或一紫外光等較高能階之光線;以一藍光LED晶片為例,LED晶片10所提供的第一光線為藍光。晶片10可包含一上表面101、一下表面102、一立面103及一電極組104,上表面101與下表面102為相對且相反地設置,立面103形成於上表面101與下表面102之間、且連接上表面101與下表面102,換言之,立面103沿著上表面101之邊緣與下表面102之邊緣而形成,故立面103相對於上表面101與下表面102為環形(例如矩型環)。 The flip-chip LED chip (hereinafter referred to as the LED chip) 10 is used to provide a first light (or main light), which can be a blue light, a dark blue light, a purple light, or an ultraviolet light with a higher energy level; Taking a blue light LED chip as an example, the first light provided by the LED chip 10 is blue light. The wafer 10 may include an upper surface 101, a lower surface 102, a vertical surface 103, and an electrode group 104. The upper surface 101 and the lower surface 102 are opposite and opposite to each other. The vertical surface 103 is formed on the upper surface 101 and the lower surface 102. And connects the upper surface 101 and the lower surface 102 in other words, in other words, the facade 103 is formed along the edge of the upper surface 101 and the edge of the lower surface 102, so the facade 103 is annular with respect to the upper surface 101 and the lower surface 102 (for example, Rectangular ring).

電極組104設置於下表面102上,且可具有二個以上之電極。由於電極組104設置於其上,下表面102又稱為電極面102;申言之,此電極面102並非指電極104之下表面。LED晶片10可透過電極組104將電能(圖未示)轉換而發出符合第一光線(藍光)之波長範圍之光線;該光線絕大多數可從上表面101及立面103發出。 The electrode group 104 is disposed on the lower surface 102 and may have more than two electrodes. Since the electrode group 104 is disposed thereon, the lower surface 102 is also referred to as the electrode surface 102; in other words, the electrode surface 102 does not refer to the lower surface of the electrode 104. The LED chip 10 can convert electric energy (not shown) through the electrode group 104 to emit light in a wavelength range corresponding to the first light (blue light); most of the light can be emitted from the upper surface 101 and the vertical surface 103.

另一方面,相較於使用支架或基板之發光裝置,本發明所揭露之發光裝置1為晶片級封裝發光裝置,其一技術特徵是LED晶片10為覆晶式晶片,可直接接合於印刷電路板或其他應用基板上,由於未包含支架,因此具有較低之熱阻,其運作時所產生之熱能可經由電極組104較直接地排散,減少熱能對於其他結構的影響。 On the other hand, compared with a light-emitting device using a bracket or a substrate, the light-emitting device 1 disclosed in the present invention is a wafer-level packaged light-emitting device. One of its technical features is that the LED chip 10 is a flip-chip wafer and can be directly bonded to a printed circuit. The board or other application substrate does not include a bracket, so it has low thermal resistance, and the thermal energy generated during its operation can be more directly dissipated through the electrode group 104, reducing the impact of thermal energy on other structures.

光致發光(Photoluminescent,PL)結構20在受到LED晶片10所發出的第一光線激發後,可吸收部份之第一光線而轉換出較低能階之光線(如紅光及綠光),然後部分未被轉換之第一光線(如藍光)與紅光及 綠光相混合後,構成所需顏色之光線(例如為白光)。 After being excited by the first light emitted from the LED chip 10, the photoluminescent (PL) structure 20 can absorb part of the first light and convert it into lower-level light (such as red light and green light). Then part of the unconverted first light (such as blue light) and red light and The green light is mixed to form a light of a desired color (for example, white light).

外觀上,光致發光結構(以下簡稱為PL結構)20可包括一頂面201、一底面202及一側面203,頂面201與底面202為相對且相反設置,側面203形成於頂面201及底面202之間,且連接頂面201與底面202,換言之,側面203相對於頂面201及底面202為環形(例如矩型環)。 In appearance, the photoluminescence structure (hereinafter referred to as the PL structure) 20 may include a top surface 201, a bottom surface 202, and a side surface 203. The top surface 201 and the bottom surface 202 are opposite and oppositely disposed, and the side surface 203 is formed on the top surface 201 and The bottom surface 202 is connected between the top surface 201 and the bottom surface 202. In other words, the side surface 203 is annular (for example, a rectangular ring) with respect to the top surface 201 and the bottom surface 202.

位置上,PL結構20設置於LED晶片10上,PL結構20的底面202位於LED晶片10之上表面101上,且底面202可直接覆蓋於上表面101上,但未有覆蓋LED晶片之立面103;然而,不排除底面202與上表面101相距之實施態樣,表示PL結構20與LED晶片10之間可設置其他結構或材料(圖未示)。此外,底面202可略大於上表面101,但不以此為限。 In position, the PL structure 20 is disposed on the LED chip 10, and the bottom surface 202 of the PL structure 20 is located on the upper surface 101 of the LED chip 10, and the bottom surface 202 can directly cover the upper surface 101, but does not cover the facade of the LED chip. 103; However, the embodiment of the distance between the bottom surface 202 and the upper surface 101 is not excluded, indicating that other structures or materials may be provided between the PL structure 20 and the LED chip 10 (not shown). In addition, the bottom surface 202 may be slightly larger than the upper surface 101, but is not limited thereto.

結構上,PL結構20包括一第一光致發光層(以下簡稱為第一PL層)21、一光透明隔離層22、一第二光致發光層(以下簡稱為第二PL層)23及一光透明濕氣阻隔層24,沿著LED晶片10之上表面101之法線方向依序堆疊設置,也就是,第一PL層21設置於LED晶片10之上表面101上,光透明隔離層22設置於第一PL層21上,第二PL層23設置於光透明隔離層22上,而光透明濕氣阻隔層24設置於第二PL層23上。 Structurally, the PL structure 20 includes a first photoluminescent layer (hereinafter referred to as the first PL layer) 21, a light transparent isolation layer 22, a second photoluminescent layer (hereinafter referred to as the second PL layer) 23, and A light transparent moisture barrier layer 24 is sequentially stacked along the normal direction of the upper surface 101 of the LED chip 10, that is, the first PL layer 21 is disposed on the upper surface 101 of the LED chip 10, and the light transparent isolation layer 22 is disposed on the first PL layer 21, the second PL layer 23 is disposed on the light transparent isolation layer 22, and the light transparent moisture barrier layer 24 is disposed on the second PL layer 23.

第一PL層21於第一光線激發時可產生一較低能階之光線(例如紅光),其可包含一第一高分子材料211及一較低激發能階之螢光材料(例如紅色螢光材料)212,為使說明簡便,以下將以紅色螢光材料212及其所發出之紅光為例進行技術說明。紅色螢光材料212可均勻地混合及膠合(固定)於第一高分子材料211中。紅色螢光材料212在受到較高能階之第一光線激發後,可將第一光線部分地轉換成紅光;換言之,第一光線通過第一PL層21後,由於一部份被轉換為紅光,部分未轉換之第一光線的光強度會隨之降低;此方面的技術內容爾後將參閱第2A圖來進一步說明。此外,相較於後述量子點材料(例如綠色量子點材料)232,螢光材料(例如紅色螢光材料)212可承受較高之溫度,因此可較接近或接觸LED晶片10。 The first PL layer 21 can generate a lower energy level light (such as red light) when the first light layer is excited, which can include a first polymer material 211 and a lower excitation energy level fluorescent material (such as red color). Fluorescent material) 212. In order to simplify the description, the following will take the red fluorescent material 212 and the red light emitted by it as an example for technical description. The red fluorescent material 212 can be uniformly mixed and glued (fixed) in the first polymer material 211. The red fluorescent material 212 can be partially converted into red light after being excited by the first light with a higher energy level; in other words, after the first light passes through the first PL layer 21, it is partially converted to red Light, the light intensity of some unconverted first rays will decrease accordingly; the technical content of this aspect will be further explained with reference to FIG. 2A later. In addition, compared with a quantum dot material (such as a green quantum dot material) 232 described later, a fluorescent material (such as a red fluorescent material) 212 can withstand higher temperatures, and therefore can be closer to or contact the LED chip 10.

紅色螢光材料212例如可包含但不限定:一氟化物螢光材料或一氮化物螢光材料等可產生紅光者;氟化物螢光材料例如可為KSF螢光材料,其至少可包含下列其中一者:(A)A2[MF6]:Mn4+,其中A選自Li、Na、K、Rb、Cs、NH4及其組合,M選自Ge、Si、Sn、Ti、Zr及其組合;(B)E2[MF6]:Mn4+,其中E選自Mg、Ca、Sr、Ba、Zn及其組合,M選自Ge、Si、Sn、Ti、Zr及其組合;(C)Ba0.65Zr0.35F2.70:Mn4+;或(D)A3[ZrF7]:Mn4+,其中A選自Li、Na、K、Rb、Cs、NH4及其組合。其他氟化物螢光材料例如可為MGF螢光材料,其至少可包含下列其中一者:(x-a)MgO.(a/2)Sc2O3.yMgF2.cCaF2.(1-b)GeO2.(b/2)Mt2O3:zMn4+;其中,2.0x4.0、0<y<1.5、0<z<0.05、0a<0.5、0<b<0.5、0c<1.5、y+c<1.5,且Mt選自Al、Ga及In中之至少1種。 The red fluorescent material 212 may include, but is not limited to, those that can produce red light such as a fluoride fluorescent material or a nitride fluorescent material; the fluoride fluorescent material may be, for example, a KSF fluorescent material, which may include at least the following One of them: (A) A 2 [MF 6 ]: Mn 4+ , where A is selected from Li, Na, K, Rb, Cs, NH 4 and combinations thereof, and M is selected from Ge, Si, Sn, Ti, Zr And combinations thereof; (B) E 2 [MF 6 ]: Mn 4+ , wherein E is selected from Mg, Ca, Sr, Ba, Zn and combinations thereof, and M is selected from Ge, Si, Sn, Ti, Zr and combinations thereof ; (C) Ba 0.65 Zr 0.35 F 2.70 : Mn 4+ ; or (D) A 3 [ZrF 7 ]: Mn 4+ , wherein A is selected from Li, Na, K, Rb, Cs, NH 4 and combinations thereof. Other fluoride fluorescent materials may be, for example, MGF fluorescent materials, which may include at least one of the following: (xa) MgO. (A / 2) Sc 2 O 3 .yMgF 2 .cCaF 2. (1-b) GeO 2. (B / 2) Mt 2 O 3 : zMn 4+ ; Among them, 2.0 x 4.0, 0 <y <1.5, 0 <z <0.05, 0 a <0.5, 0 <b <0.5, 0 c <1.5, y + c <1.5, and Mt is selected from at least one of Al, Ga, and In.

上述種類的氟化物螢光材料所產生的光線具有較窄的半波寬,其可被激發之光源波長小於500奈米,因此不會被第二PL層23所產生之綠光所激發,故可增加發光裝置1之整體光萃取率(Light Extraction Efficiency);此方面的技術內容爾後將參閱第2C圖來進一步說明。 The light generated by the above-mentioned types of fluoride fluorescent materials has a narrow half-wave width, and the wavelength of the light source that can be excited is less than 500 nm, so it will not be excited by the green light generated by the second PL layer 23, so The overall light extraction efficiency (Light Extraction Efficiency) of the light-emitting device 1 can be increased; the technical content of this aspect will be further described with reference to FIG. 2C later.

第一高分子材料211可包括但不限定:一樹脂材料或一矽膠材料。由於第一PL層21較接近熱源LED晶片10,故第一高分子材料211需具有較佳之耐熱性,例如為一熱固化之矽膠材料(Silicone),其可包括一白金 觸媒矽膠(Platinum Silicone)或一錫觸媒矽膠(Tin Silicone),其中白金觸媒矽膠具有較佳的耐熱性,因此發光裝置1較佳地選用白金觸媒矽膠作為第一高分子材料211。白金觸媒矽膠係為矽膠中含有白金觸媒,其可幫助矽膠受熱後快速固化;然而,白金觸媒容易受到若干化學成分鈍化(Deactivated)或毒化(Poisoned),使得矽膠的固化反應受到抑制(Inhibition),進而導致矽膠無法固化、或僅部分固化。可能使白金觸媒鈍化或毒化的化學成分包含:sulfur、sulfides、thio compounds、tin、fatty acid tin salts、phosphorus、phosphines、phosphites、arsenic、arsines、antimony、stibenes、selenium、selenide、tellurium、telluride、amines、armides,ethanolamine、N-methylethanolamine、triethanolamine、chelates、EDTA(ethylenediaminetetraacetic acid)、NTA(nitriloacetic acid)、ethanol、methanol等。因此,當白金觸媒矽膠作為第一高分子材料211,較佳地應考量白金觸媒的鈍化或毒化問題。 The first polymer material 211 may include, but is not limited to, a resin material or a silicone material. Since the first PL layer 21 is closer to the heat source LED chip 10, the first polymer material 211 needs to have better heat resistance. For example, it is a heat-cured Silicone material, which may include a platinum Platinum Silicone or Tin Silicone. Platinum Platinum Silicone has better heat resistance. Therefore, the light emitting device 1 preferably uses Platinum Platinum Silicone as the first polymer material 211. Platinum catalyst silicone is a platinum catalyst contained in silicone, which can help the silicone to cure quickly after being heated; however, platinum catalyst is easily deactivated or poisoned by some chemical components, which makes the curing reaction of the silicone inhibited ( Inhibition), resulting in the silicone being unable to cure, or only partially cured. Chemical components that may deactivate or poison platinum catalysts include: sulfur, sulfurides, thio compounds, tin, fatty acid tin salts, phosphorus, phosphines, phosphites, arsenic, arsines, antimony, stibines, selenium, selenide, tellurium, telluride, amines , Armides, ethanolamine, N-methylethanolamine, triethanolamine, chelates, EDTA (ethylenediaminetetraacetic acid), NTA (nitriloacetic acid), ethanol, methanol, etc. Therefore, when the platinum catalyst silicon is used as the first polymer material 211, the problem of passivation or poisoning of the platinum catalyst should be considered.

第二PL層23於第一光線激發時可產生一較高能階之光線(例如綠光),其可包含一第二高分子材料231及一較高激發能階之量子點材料(例如綠色量子點材料,以下簡稱為綠色QD材料)232,為使說明簡便,以下將以綠色QD材料232及其所發出之綠光為例進行技術說明。綠色QD材料232可均勻地混合及膠合(固定)於第二高分子材料231中。綠色QD材料232在受到較高能階之第一光線照射後,可產生綠光。綠色QD材料232例如可包含但不限定:硒化鎘(CdSe)、磷化銦(InP)、硫化鋅(ZnS)、硒化鋅(ZnSe)或碲化鋅(ZnTe)等可產生綠光者。此外,綠色QD材料232的量子點晶體結構通常包含內核(core)及保護殼層(shell)。 The second PL layer 23 can generate a higher energy level light (such as green light) when excited by the first light, which can include a second polymer material 231 and a higher excitation energy level quantum dot material (such as green quantum). (Point material, hereinafter referred to as green QD material) 232. In order to simplify the description, the following will take the green QD material 232 and the green light emitted by it as an example for technical description. The green QD material 232 can be uniformly mixed and glued (fixed) in the second polymer material 231. The green QD material 232 can generate green light after being irradiated with the first light of a higher energy level. The green QD material 232 may include, but is not limited to, cadmium selenide (CdSe), indium phosphide (InP), zinc sulfide (ZnS), zinc selenide (ZnSe), or zinc telluride (ZnTe). . In addition, the quantum dot crystal structure of the green QD material 232 generally includes a core and a protective shell.

由於前述氟化物螢光材料於第一光線激發時所產生的紅光具有較窄的半高寬,可媲美量子點材料所產生之高純度紅光。因此,於廣色域顯示器背光源之應用中,發光裝置1之一較佳實施例為:LED晶片10為發出藍光之LED晶片、第一PL層21所包含之螢光材料為一能發出較高純度紅光之氟化物螢光材料及第二PL層23包含一能發出較高純度綠光之綠色量子點材料。 Because the red light generated by the aforementioned fluoride fluorescent material when excited by the first light has a narrower FWHM, it can be comparable to the high-purity red light generated by the quantum dot material. Therefore, in the application of the backlight source of the wide color gamut display, a preferred embodiment of the light-emitting device 1 is: the LED chip 10 is an LED chip that emits blue light, and the fluorescent material contained in the first PL layer 21 The high-purity red-fluoride fluoride material and the second PL layer 23 include a green quantum dot material capable of emitting higher-purity green light.

第二高分子材料231可包括但不限定:一樹脂材料或一矽膠材料等具有良好透光率者。由於量子點材料於高溫時易產生氧化,故較不適合使用熱固化膠材,因此第二高分子材料231較佳地為一紫外線固化膠,第二高分子材料231於常溫下受到紫外光之照射即可固化,不需如熱固化膠般於高溫下才可固化。如此,第二高分子材料231固化時,不會經歷高溫而使綠色QD材料232之效能衰減。 The second polymer material 231 may include, but is not limited to, a resin material or a silicon material, which has good light transmittance. Since the quantum dot material is susceptible to oxidation at high temperatures, it is not suitable to use a thermal curing adhesive. Therefore, the second polymer material 231 is preferably an ultraviolet curing adhesive, and the second polymer material 231 is exposed to ultraviolet light at normal temperature. It can be cured without curing at high temperature like heat curing glue. In this way, when the second polymer material 231 is cured, it will not experience high temperature and the efficiency of the green QD material 232 will be reduced.

紫外線固化膠內通常包含使白金觸媒鈍化或毒化的化學成分,造成需熱固化之矽膠無法固化。因此,以紫外線固化膠構成的第二高分子材料231於製程中不能與熱固化膠構成的第一高分子材料211相接觸,否則會導致第一高分子材料211無法固化。 Ultraviolet curing adhesives usually contain chemical components that passivate or poison the platinum catalyst, making the silicone adhesives that need to be thermally cured incapable of curing. Therefore, the second polymer material 231 composed of the ultraviolet curable adhesive cannot be in contact with the first polymer material 211 composed of the thermosetting adhesive during the manufacturing process, otherwise the first polymer material 211 cannot be cured.

在本實施例中,光透明隔離層22可隔離第一PL層21及第二PL層23,第二高分子材料231之中能使白金觸媒鈍化或毒化的化學成分無法擴散至第一高分子材料211,使得第一高分子材料211能完全固化。由此可知,光透明隔離層22可改善第一高分子材料211與第二高分子材料231彼此材料特性或固化製程不相容的問題。具體而言,光透明隔離層22用以隔離第一PL層21及第二PL層23,以避免兩者相接觸,且可使第二PL層23更遠離 LED晶片10,以減少LED晶片10之熱能對於第二PL層23的影響。光透明隔離層22可包括但不限定一透明無機材料(例如石英或玻璃等)或一高分子材料等具有良好透光率者。此外,光透明隔離層22較佳地不包含會使白金觸媒鈍化或毒化的化學成分,故可接觸第一高分子材料211。 In this embodiment, the optically transparent isolation layer 22 can isolate the first PL layer 21 and the second PL layer 23, and the chemical components in the second polymer material 231 that can passivate or poison the platinum catalyst cannot diffuse to the first height. The molecular material 211 enables the first polymer material 211 to be completely cured. It can be known from this that the optically transparent isolation layer 22 can improve the incompatibility of the first polymer material 211 and the second polymer material 231 with each other in terms of material characteristics or curing process. Specifically, the light transparent isolation layer 22 is used to isolate the first PL layer 21 and the second PL layer 23 to avoid contact between the two, and to make the second PL layer 23 farther away. The LED chip 10 reduces the influence of the thermal energy of the LED chip 10 on the second PL layer 23. The light-transparent isolation layer 22 may include, but is not limited to, a transparent inorganic material (such as quartz or glass) or a polymer material with good light transmittance. In addition, the optically transparent isolation layer 22 preferably does not include a chemical component that can passivate or poison the platinum catalyst, so it can contact the first polymer material 211.

此外,發光裝置1之光透明濕氣阻隔層24用以阻礙水氣的通過,以對第二PL層23之量子點材料形成保護,防止其產生氧化。光透明濕氣阻隔層24可包括但不限定一透明無機材料(例如石英或玻璃等)或一高分子材料等具有良好透光率者;若為高分子材料時,選用具有低水氣滲透率者,例如於厚度為1公釐時具有不大於20g/(m2day)之水氣滲透率。光透明隔離層22亦可選用具有低水氣滲透率者,例如於厚度為1公釐時具有不大於20g/(m2day)之水氣滲透率,因此光透明濕氣阻隔層24與光透明隔離層22將內含量子點材料之第二PL層23夾置於其間,使得外界環境中的水氣或氧氣難以接觸到第二PL層23中的綠色QD材料232,減少或避免水氣或氧氣從上方或下方滲透至綠色QD材料232。 In addition, the light-transparent moisture barrier layer 24 of the light-emitting device 1 is used to block the passage of water and gas to protect the quantum dot material of the second PL layer 23 from oxidation. The light-transparent moisture barrier layer 24 may include, but is not limited to, a transparent inorganic material (such as quartz or glass) or a polymer material having a good light transmittance; if it is a polymer material, a low water vapor permeability is selected. For example, it has a water vapor permeability of not more than 20 g / (m 2 day) when the thickness is 1 mm. The light transparent insulation layer 22 can also be selected to have a low water vapor permeability. For example, when the thickness is 1 mm, it has a water vapor permeability of not more than 20g / (m 2 day). Therefore, the light transparent moisture barrier layer 24 and light The transparent isolation layer 22 sandwiches the second PL layer 23 of the internal dot material, making it difficult for water or oxygen in the external environment to contact the green QD material 232 in the second PL layer 23, reducing or avoiding water vapor Or oxygen penetrates into the green QD material 232 from above or below.

濕氣阻隔反射結構(以下簡稱為反射結構)30可反射發光裝置側面發出之光線並導向正面出光。具體而言,反射結構30覆蓋PL結構20之側面203及LED晶片10之立面103,但不覆蓋PL結構20之頂面201,故能夠反射從立面103及側面203所射出的光線,使光線朝向PL結構20之頂面201射出。反射結構30不低於LED晶片10之下表面102,不覆蓋下表面102及電極組104。反射結構30之頂面301可實質齊平於PL結構20之頂面201,由於發光裝置1為晶片級封裝發光裝置,可直接接合於印刷電路板或其他應用基板上,因此具有較低之熱阻以降低發光裝置之操作溫度,故反射結構30之底 面302不可低於電極面102之高度以避免電極組104與基板銲墊接合不良,較佳地,反射結構30之底面302可實質齊平於LED晶片10之電極面102。此外,反射結構30還可覆蓋PL結構20之底面202超出LED晶片10之上表面101的部分。雖然內含量子點材料之第二PL層23被設置於光透明濕氣阻隔層24與光透明隔離層22之間,使得外界環境中的水氣難以接觸到第二PL層23中的綠色QD材料232,但水氣仍可經由第二PL層23之側面滲入。本發光裝置之反射結構30的另一功效為阻礙環境中之水氣滲入,以減少或避免水氣或氧氣從側方接觸到綠色QD材料232之可能;因此,透過濕氣阻隔反射結構30、光透明濕氣阻隔層24及光透明隔離層22三者的包覆,可進一步提供綠色QD材料232濕氣阻隔保護,以減少光氧化之發生。 The moisture blocking reflection structure (hereinafter referred to as a reflection structure) 30 can reflect the light emitted from the side of the light-emitting device and guide the light to the front. Specifically, the reflective structure 30 covers the side surface 203 of the PL structure 20 and the elevation surface 103 of the LED chip 10, but does not cover the top surface 201 of the PL structure 20, so it can reflect the light emitted from the elevation surface 103 and the side surface 203, so that The light is emitted toward the top surface 201 of the PL structure 20. The reflective structure 30 is not lower than the lower surface 102 of the LED chip 10, and does not cover the lower surface 102 and the electrode group 104. The top surface 301 of the reflective structure 30 can be substantially flush with the top surface 201 of the PL structure 20. Since the light-emitting device 1 is a wafer-level packaged light-emitting device, it can be directly bonded to a printed circuit board or other application substrate, so it has lower heat. To reduce the operating temperature of the light-emitting device, so the bottom of the reflective structure 30 The surface 302 cannot be lower than the height of the electrode surface 102 to avoid poor bonding between the electrode group 104 and the substrate pad. Preferably, the bottom surface 302 of the reflective structure 30 can be substantially flush with the electrode surface 102 of the LED chip 10. In addition, the reflective structure 30 may also cover a portion of the bottom surface 202 of the PL structure 20 beyond the upper surface 101 of the LED chip 10. Although the second PL layer 23 of the internal sub-dot material is disposed between the light transparent moisture barrier layer 24 and the light transparent isolation layer 22, it is difficult for water and gas in the external environment to contact the green QD in the second PL layer 23. Material 232, but moisture can still penetrate through the sides of the second PL layer 23. Another effect of the reflective structure 30 of the light-emitting device is to prevent the penetration of water vapor in the environment, to reduce or avoid the possibility of water vapor or oxygen from contacting the green QD material 232 from the side; therefore, the reflective structure 30 is blocked by moisture. The coating of the light transparent moisture barrier layer 24 and the light transparent isolation layer 22 can further provide the green QD material 232 moisture barrier protection to reduce the occurrence of photo-oxidation.

為使反射結構30具有上述之特性,其較佳地可包含一第三高分子材料31及混合於第三高分材料31之一光散射性微粒32;第三高分子材料31可選用具有較低水氣滲透率者(例如厚度為1公釐時不大於20g/m2/day),例如可包括一樹脂材料或一矽膠材料,以使水氣難以通過;光散射性微粒32具體可為二氧化鈦(TiO2)、氮化硼(BN)、二氧化矽(SiO2)或三氧化二鋁(Al2O3)等,且其在反射結構30中的一重量百分比不小於20%,以達到良好之反射效果。 In order for the reflective structure 30 to have the above-mentioned characteristics, it may preferably include a third polymer material 31 and one light-scattering particle 32 mixed with the third high-scoring material 31; Those with low water vapor permeability (for example, no more than 20g / m 2 / day when the thickness is 1 mm) may include a resin material or a silicone material to make it difficult for water vapor to pass through; the light-scattering particles 32 may specifically be Titanium dioxide (TiO 2 ), boron nitride (BN), silicon dioxide (SiO 2 ), or aluminum oxide (Al 2 O 3 ), etc., and a weight percentage of the reflective structure 30 is not less than 20%, and Achieve good reflection effect.

請配合參閱第2A圖,接著將進一步說明如何利用第一PL層21降低第一光線之光強度至綠色QD材料232所能承受的光強度,以避免量子點材料光氧化之發生。具體而言,LED晶片10所發出之第一光線以藍光B為例,其初始之光強度為L0,藍光B通過第一PL層21時,其一部份(即第一部份)會被轉換成紅光R。藍光B之剩餘未被轉換之另一部份(即第二部 份)的光強度為L1,小於初始光強度L0。藍光B之剩餘的第二部份接著再部分地激發綠色QD材料232,然後被轉換成綠光G(也就是,第二部份的一部份再轉換成綠光G)。因此,最終從PL結構20之頂面201(亦即發光裝置1之發光面)發出的光包含藍光B、紅光R及綠光G,可混合而形成一白光。 Please refer to FIG. 2A, and then further explain how to use the first PL layer 21 to reduce the light intensity of the first light to the light intensity that the green QD material 232 can withstand, so as to avoid photo-oxidation of the quantum dot material. Specifically, the first light emitted by the LED chip 10 is blue light B as an example. The initial light intensity is L0. When blue light B passes through the first PL layer 21, a part (ie, the first part) will be Converted into red light R. The remaining part of Blu-ray B that has not been converted (i.e. the second part The light intensity is L1, which is less than the initial light intensity L0. The remaining second portion of the blue light B then partially excites the green QD material 232 and is then converted into green light G (ie, a portion of the second portion is converted into green light G again). Therefore, the light finally emitted from the top surface 201 of the PL structure 20 (ie, the light-emitting surface of the light-emitting device 1) includes blue light B, red light R, and green light G, and can be mixed to form a white light.

因此,本發明所揭露之發光裝置1中的綠色QD材料232將受到藍光B與紅光R之照射,由於紅光R之能階不足以激發綠色QD材料232而產生綠光G,故不會使綠色QD材料232產生自由電子與電洞,而自由電子將活化(electron-activate)量子點材料使其產生光氧化,因此綠色QD材料232受到紅光R照射時不易產生光氧化現象。 Therefore, the green QD material 232 in the light-emitting device 1 disclosed in the present invention will be irradiated by blue light B and red light R. Since the energy level of red light R is not sufficient to excite the green QD material 232 to generate green light G, it will not The green QD material 232 generates free electrons and holes, and the free electrons will electro-activate the quantum dot material to cause photo-oxidation. Therefore, the green QD material 232 is not prone to photo-oxidation when irradiated with red light R.

由於綠色QD材料232於藍光B照射下仍會產生大量之自由電子而導致量子點材料光氧化,而本發明所揭露之發光裝置1可大幅減低照射於綠色QD材料232之藍光B強度。具體而言,LED晶片10所提供的藍光B初始光強度為L0,為便於說明,將其區分為第一部份及第二部份;通過第一PL層21後,第一部份之藍光B轉換為紅光R與未轉換之第二部份藍光B,初始藍光強度L0將降低為第二部份所對應之藍光強度L1,此藍光強度L1不大於綠色QD材料232所能承受之光強度,故在光強度L1之藍光B照射下,綠色QD材料232仍不易產生光氧化現象,進而使綠色QD材料232具有更穩定之發光頻譜及發光效率,並具有更長之使用壽命。 Since the green QD material 232 will still generate a large number of free electrons under the irradiation of blue light B and cause photo-oxidation of the quantum dot material, the light emitting device 1 disclosed in the present invention can significantly reduce the intensity of blue light B irradiated to the green QD material 232. Specifically, the initial light intensity of the blue light B provided by the LED chip 10 is L0. For convenience of explanation, it is divided into the first part and the second part; after passing the first PL layer 21, the blue light of the first part B is converted into red light R and unconverted second blue light B. The initial blue light intensity L0 will be reduced to the blue light intensity L1 corresponding to the second part. This blue light intensity L1 is not greater than the light that the green QD material 232 can withstand. Intensity, under the light intensity L1 of blue light B, the green QD material 232 is still not prone to photo-oxidation, so that the green QD material 232 has a more stable luminous spectrum and luminous efficiency, and has a longer service life.

通過第一PL層21後未被轉換之藍光B(第二部份),其光強度L1的量測可為以下方式:於第二PL層23設置前(或是將第二PL層23移除),驅動LED晶片10使其發出藍光B,然後從第一PL層21之上方測量藍光B之強度值。另外,於一段時間內由具有光強度L1之藍光B照射下,若綠色 QD材料232所轉換出的光線沒有明顯的強度衰減(例如不大於20%或不大於10%之強度衰減)、或是沒有明顯的波長偏移(例如不大於10奈米或不大5奈米之峰值波長偏移),應可推論出藍光B之光強度L1不大於綠色QD材料232所能承受之光強度。 The blue light B (second part) that has not been converted after passing through the first PL layer 21 can be measured in the following manner: before the second PL layer 23 is set (or the second PL layer 23 is moved Except), the LED chip 10 is driven to emit blue light B, and then the intensity value of the blue light B is measured from above the first PL layer 21. In addition, if it is illuminated by blue light B with light intensity L1 for a period of time, if green The light converted by the QD material 232 has no significant intensity attenuation (for example, no greater than 20% or no greater than 10% intensity attenuation) or no significant wavelength shift (for example, no greater than 10 nm or less than 5 nm). Peak wavelength shift), it should be inferred that the light intensity L1 of the blue light B is not greater than the light intensity that the green QD material 232 can withstand.

綠色QD材料232依據其結構及材料不同,其所能承受之第一光線的光強度亦會不同;例如目前習知的綠色QD材料232能承受之藍光光強度係不大於10W/cm2、不大於5W/cm2或不大於2W/cm2。由於科技的發展將持續地改善量子點材料的結構,可預期到量子點材料所能承受的光強度上限應會提升,例如超過10W/cm2Depending on the structure and material of the green QD material 232, the light intensity of the first light that it can withstand will also be different; for example, the blue light intensity that the currently known green QD material 232 can withstand is not greater than 10 W / cm 2 More than 5 W / cm 2 or not more than 2 W / cm 2 . As the development of science and technology will continue to improve the structure of quantum dot materials, it can be expected that the upper limit of the light intensity that the quantum dot materials can withstand, such as more than 10 W / cm 2 .

用於激發量子點材料之入射光的光強度上限通常可由其製造商或供應商提供,亦可經由實驗測試而得知。例如,照射不同光強度之藍光B(或其他高能階的第一光線)至綠色QD材料232上,然後量測綠色QD材料232於一段時間內所轉換出綠光強度及峰值波長之變化量;藉由觀察所轉換出光線的強度是否有明顯地衰減(例如不大於20%或不大於10%之強度衰減)、波長有明顯地偏移(例如不大於10奈米或不大5奈米之峰值波長偏移),則可量測出綠色QD材料232於長時間操作下所能承受的藍光B的光強度。 The upper limit of the light intensity of the incident light used to excite the quantum dot material can usually be provided by its manufacturer or supplier, and can also be known through experimental testing. For example, irradiate blue light B (or other high-energy first light) with different light intensities onto the green QD material 232, and then measure the changes in the green light intensity and peak wavelength converted by the green QD material 232 over a period of time; By observing whether the intensity of the converted light is significantly attenuated (such as an intensity attenuation of not more than 20% or not more than 10%), the wavelength is significantly shifted (such as not more than 10 nm or not more than 5 nm). Peak wavelength shift), the light intensity of the blue light B that the green QD material 232 can withstand under long-term operation can be measured.

第2B圖為發光裝置1之一較佳實施實例之發光光譜量測結果,此實例之LED晶片10可發出一峰值波長為443奈米之藍光B,使用峰值波長為630奈米之KSF紅色螢光材料作為第一PL層21之較低激發能階之螢光材料,並使用峰值波長為540奈米之InP綠色量子點材料作為第二PL層23之較高激發能階之量子點材料。在藍光激發下,較靠近LED晶片10之KSF 螢光材料可先吸收一部分LED晶片10所發出之藍光B,並轉換發出一具有窄半高寬之紅光R,而未被轉換之藍光B與紅光R接著傳遞至第二PL層23,其中未被轉換之藍光B再被第二PL層23之綠色量子點材料部分吸收後並轉換發出一半高寬為39奈米之綠光G,並於第2B圖中呈現為綠光頻譜G。第2B圖中所示之藍光頻譜B為部分未被第二PL層23轉換之藍光B,而紅光R由於能階較低而不足以激發第二PL層23之綠色量子點材料,因此可大部分輸出發光裝置外並呈現為第2B圖中所示之紅光頻譜R。由於第一PL層21已將約1/3之藍光B強度轉換為紅光R,因此可有效降低約1/3藍光B照射於綠色量子點材料之光強度,使其較不易造成光氧化而具有更長之使用壽命。由於此發光裝置1具有高色彩純度(窄半高寬)之紅、綠及藍頻譜,因此非常適合應用於廣色域液晶顯示器之背光光源。 FIG. 2B is a measurement result of light emission spectrum of a preferred embodiment of the light emitting device 1. The LED chip 10 in this example can emit a blue light B with a peak wavelength of 443 nanometers, and use a KSF red fluorescent lamp with a peak wavelength of 630 nanometers. An optical material is used as the lower excitation energy level fluorescent material of the first PL layer 21, and an InP green quantum dot material having a peak wavelength of 540 nm is used as the higher excitation energy level quantum dot material of the second PL layer 23. KSF closer to LED chip 10 under blue light excitation The fluorescent material can first absorb a part of the blue light B emitted from the LED chip 10, and convert and emit a red light R having a narrow half-width, and the unconverted blue light B and red light R are then transmitted to the second PL layer 23, Among them, the unconverted blue light B is absorbed by the green quantum dot material of the second PL layer 23 and converted into a green light G with a half-height of 39 nanometers, which is shown as a green light spectrum G in FIG. 2B. The blue light spectrum B shown in FIG. 2B is part of the blue light B that is not converted by the second PL layer 23, and the red light R is not enough to excite the green quantum dot material of the second PL layer 23 because of its low energy level, so it can Most of the output light-emitting devices are outside the red light spectrum R shown in FIG. 2B. Since the first PL layer 21 has converted about 1/3 of the blue light B intensity into red light R, it can effectively reduce the light intensity of about 1/3 of the blue light B irradiated to the green quantum dot material, making it less likely to cause photooxidation. Has a longer life. Since the light-emitting device 1 has red, green and blue spectrums with high color purity (narrow half-width-to-height), it is very suitable for a backlight light source for a wide color gamut liquid crystal display.

請配合參閱第2C圖,以下將進一步說明第一PL層21如何增加綠光G的光萃取率。綠色QD材料232轉換出的一部份的綠光G1會朝外輸出至PL結構20外,但另一部份的綠光G2會反向朝LED晶片10前進;若第一PL層21的紅色螢光材料212選用特定種類的氟化物螢光材料,則不會被波長大於約500nm之光線所激發,故朝向晶片10散射之綠光G2不會被紅色螢光材料212吸收而轉換。如此,反向朝LED晶片10前進之綠光G2可被紅色螢光材料212有效地朝外散射(scattering),綠光並輸出至發光裝置1外。因此,可有效增加綠光G(G1、G2)之光萃取效率。 Please refer to FIG. 2C. The following will further explain how the first PL layer 21 increases the light extraction rate of the green light G. A part of the green light G1 converted from the green QD material 232 will be output to the outside of the PL structure 20, but the other part of the green light G2 will be reversely advanced toward the LED chip 10; if the red of the first PL layer 21 is red The fluorescent material 212 selects a specific kind of fluoride fluorescent material, and will not be excited by light having a wavelength greater than about 500 nm. Therefore, the green light G2 scattered toward the wafer 10 will not be absorbed and converted by the red fluorescent material 212. In this way, the green light G2 traveling in the opposite direction toward the LED chip 10 can be effectively scattered outward by the red fluorescent material 212, and the green light is output to the outside of the light emitting device 1. Therefore, the light extraction efficiency of the green light G (G1, G2) can be effectively increased.

請配合參閱第1C圖,於另一實施態樣中,第二PL層23可更包含一光散射性微粒233,其混合於該第二高分子材料231。量子點材料為奈米等級之微粒,第一光線易穿透而不激發量子點材料,因此光散射性微 粒233用以使第一光線於第二PL層內產生散射,增加第一光線激發綠色QD材料232之機率。易言之,光散射性微粒233可增加第一光線通過第二PL層23時之總光路徑,以增加第一光線被轉換成綠光的比例。另,光散射性微粒233於第二PL層23中的重量百分比較佳地不大於20%、不大於15%或不大於10%,以提供合適的光穿透率,避免過度阻擋第一光線。 Please refer to FIG. 1C. In another embodiment, the second PL layer 23 may further include a light scattering particle 233 mixed with the second polymer material 231. The quantum dot material is nano-sized particles, and the first light is easy to penetrate without exciting the quantum dot material, so the light scattering property is small. The particles 233 are used to scatter the first light in the second PL layer, and increase the probability that the first light excites the green QD material 232. In other words, the light-scattering particles 233 can increase the total light path of the first light passing through the second PL layer 23 to increase the proportion of the first light being converted into green light. In addition, the weight percentage of the light-scattering particles 233 in the second PL layer 23 is preferably not more than 20%, not more than 15%, or not more than 10% to provide a suitable light transmittance and avoid excessive blocking of the first light. .

於又一實施態樣中,LED晶片10為一深藍光LED晶片、一紫光LED晶片或一紫外光LED晶片,其所發出的第一光線為深藍光、紫光或紫外光。此時,第二PL層23可更包含另一較高激發能階之量子點材料234,例如可為一藍色量子點材料234,其可混合於第二高分子材料231中,亦可混合於不同於第二高分子材料231之另一高分子材料中(圖未示)。深藍光或紫外光可被藍色量子點材料234轉換成藍光,使發光裝置1所產生的光線可包含藍光、紅光及綠光等頻譜。 In yet another embodiment, the LED chip 10 is a dark blue LED chip, a purple LED chip, or an ultraviolet LED chip, and the first light emitted by the LED chip 10 is dark blue, violet, or ultraviolet light. At this time, the second PL layer 23 may further include another quantum dot material 234 having a higher excitation energy level. For example, the second PL layer 23 may be a blue quantum dot material 234, which may be mixed in the second polymer material 231 or may be mixed. In another polymer material different from the second polymer material 231 (not shown). Dark blue light or ultraviolet light can be converted into blue light by the blue quantum dot material 234, so that the light generated by the light emitting device 1 can include blue light, red light, and green light.

以上是發光裝置1的技術內容的說明,接著說明依據本發明其他實施例的技術內容,而各實施例的技術內容應可互相參考,故相同的部分將省略或簡化。此外,各實施例的技術內容應可互相應用、組合搭配。 The above is a description of the technical content of the light-emitting device 1, and then the technical content of other embodiments according to the present invention will be described, and the technical content of each embodiment should be mutually referable, so the same parts will be omitted or simplified. In addition, the technical contents of the embodiments should be applicable to each other and combined.

請參閱第3圖所示,其為依據本發明之第2較佳實施例的發光裝置2之示意圖。發光裝置2之PL結構20更包含一光透明導熱層25;光透明導熱層25可設置於第二PL層23與光透明濕氣阻隔層24之間、及/或設置於第二PL層23與光透明隔離層22之間,換言之,第二PL層23之頂面及/或底面都可設置覆蓋一光透明導熱層25。 Please refer to FIG. 3, which is a schematic diagram of a light emitting device 2 according to a second preferred embodiment of the present invention. The PL structure 20 of the light-emitting device 2 further includes a light transparent thermally conductive layer 25; the light transparent thermally conductive layer 25 may be disposed between the second PL layer 23 and the light transparent moisture barrier layer 24, and / or the second PL layer 23 In other words, the top surface and / or the bottom surface of the second PL layer 23 may be disposed to cover a light transparent thermally conductive layer 25.

光透明導熱層25具有良好的熱傳導率(即低熱阻),並大於光透明濕氣阻隔層24或光透明隔離層22之熱傳導率;此外,光透明導熱層 25亦需具有良好的透光率。因此,光透明導熱層25可包含但不限定:一薄膜金屬、一網格狀金屬、一透明導電氧化物或一石墨烯等;其中,透明導電氧化物可例如為氧化銦錫(Indium Tin Oxide,ITO),其透光率可大於90%,且熱傳導率(於25℃)約為10~12W/mK;石墨烯的熱傳導率更是高達5300W/mK。光透明導熱層25可使第二PL層23於光轉換時所產生之熱能快速地向外傳遞或分散,以減少綠色QD材料232之操作溫度,進而減少熱能對於綠色QD材料232之影響。 The light transparent thermally conductive layer 25 has a good thermal conductivity (ie, low thermal resistance), and is larger than that of the light transparent moisture barrier layer 24 or the light transparent isolation layer 22; in addition, the light transparent thermally conductive layer 25 also needs to have good light transmittance. Therefore, the light transparent thermally conductive layer 25 may include, but is not limited to, a thin film metal, a grid-like metal, a transparent conductive oxide, or graphene, etc., where the transparent conductive oxide may be, for example, indium tin oxide (Indium Tin Oxide). , ITO), its light transmittance can be greater than 90%, and its thermal conductivity (at 25 ° C) is about 10 ~ 12W / mK; the thermal conductivity of graphene is as high as 5300W / mK. The light-transparent heat-conducting layer 25 can quickly transfer or disperse the thermal energy generated by the second PL layer 23 during light conversion, so as to reduce the operating temperature of the green QD material 232, and further reduce the influence of the thermal energy on the green QD material 232.

反射結構30亦可選擇地包含一導熱材料(圖未示),混合於第三高分子材料31中,使得反射結構30之熱傳導率不小於光透明濕氣阻隔層24或光透明隔離層22之熱傳導率。如此,第二PL層23之熱能亦可有效地通過反射結構30向外傳遞,減少高溫對綠色QD材料232之影響。導熱材料可包含石墨烯或陶瓷材料等,其中陶瓷材料可為氮化鋁(熱傳導率約為285W/mK)或氧化鋁。導熱材料亦可包含金屬材料,較佳地可避免其接觸到LED晶片10,例如使包含金屬導熱材料之反射結構30覆蓋於後述的光導引結構40(如第4B圖所示),換言之,反射結構30間接覆蓋LED晶片10之立面103。 The reflective structure 30 may also optionally include a thermally conductive material (not shown), mixed with the third polymer material 31, so that the thermal conductivity of the reflective structure 30 is not less than that of the light transparent moisture barrier layer 24 or the light transparent isolation layer 22 Thermal conductivity. In this way, the thermal energy of the second PL layer 23 can also be effectively transmitted outward through the reflective structure 30, reducing the effect of high temperature on the green QD material 232. The thermally conductive material may include graphene, a ceramic material, or the like. The ceramic material may be aluminum nitride (with a thermal conductivity of about 285 W / mK) or alumina. The thermally conductive material may also include a metal material, preferably it can be prevented from contacting the LED chip 10, for example, the reflective structure 30 containing the metal thermally conductive material covers the light guiding structure 40 (shown in FIG. 4B) described later, in other words, The reflective structure 30 indirectly covers the facade 103 of the LED chip 10.

請參閱第4A圖所示,其為依據本發明之第3較佳實施例的發光裝置3之示意圖。發光裝置3之PL結構20更包含一光透明分隔層26,其設置於LED晶片10之上表面101上;第一PL層21則設置於光透明分隔層26上,未直接覆蓋、接觸LED晶片10。如此,第二PL層23可更遠離於較熱之LED晶片10,以進一步減少高溫之LED晶片10對綠色QD材料232的影響。光透明分隔層26可包括但不限定一透明無機材料(例如石英或玻璃等)或一高分子材料(例如矽膠)等;若為高分子材料時,較佳地可選用具有低水氣滲透率者,以降低水氣及氧氣在發光裝置內部滲透的可能性。 Please refer to FIG. 4A, which is a schematic diagram of a light emitting device 3 according to a third preferred embodiment of the present invention. The PL structure 20 of the light-emitting device 3 further includes a light transparent separation layer 26 disposed on the upper surface 101 of the LED chip 10; the first PL layer 21 is provided on the light transparent separation layer 26 and does not directly cover and contact the LED chip 10. In this way, the second PL layer 23 can be further away from the hot LED chip 10 to further reduce the influence of the high-temperature LED chip 10 on the green QD material 232. The light-transparent separation layer 26 may include, but is not limited to, a transparent inorganic material (such as quartz or glass) or a high-molecular material (such as silicone). If it is a high-molecular material, it may be preferable to have a low water vapor permeability. In order to reduce the possibility of water vapor and oxygen penetrating inside the light-emitting device.

請參閱第4B圖所示,於本發明之第3較佳實施例之另一態樣中,發光裝置3更包含一光導引結構40。光導引結構40可包括一高分子材料(例如矽膠、環氧樹脂、橡膠等良好透光率者),且可覆蓋LED晶片10之立面103,然後被反射結構30覆蓋。更具體而言,光導引結構40可包含一頂面401及一傾斜側面402,頂面401可與LED晶片10之上表面101齊平,而傾斜側面402相對於LED晶片10之立面103為傾斜;傾斜側面402可為凹狀曲面(如圖所示),亦可為平面或凸狀曲面(圖未示)。此外,傾斜側面402還被反射結構30直接覆蓋,故反射結構30具有與傾斜側面402相貼合對應的一內側斜面(或稱內傾斜側面)。當傾斜側面402被反射結構30直接覆蓋時,LED晶片10之立面103被反射結構30間接地覆蓋。 Please refer to FIG. 4B. In another aspect of the third preferred embodiment of the present invention, the light emitting device 3 further includes a light guiding structure 40. The light guiding structure 40 may include a polymer material (such as those with good light transmittance such as silicone, epoxy, rubber, etc.), and may cover the facade 103 of the LED chip 10 and then be covered by the reflective structure 30. More specifically, the light guiding structure 40 may include a top surface 401 and an inclined side surface 402. The top surface 401 may be flush with the upper surface 101 of the LED chip 10, and the inclined side surface 402 is opposite to the vertical surface 103 of the LED chip 10. Is inclined; the inclined side surface 402 may be a concave curved surface (as shown in the figure), or a flat or convex curved surface (not shown in the figure). In addition, the inclined side surface 402 is also directly covered by the reflective structure 30, so the reflective structure 30 has an inner inclined surface (or an inner inclined side surface) corresponding to the inclined side surface 402. When the inclined side surface 402 is directly covered by the reflective structure 30, the vertical surface 103 of the LED chip 10 is indirectly covered by the reflective structure 30.

此外,由於晶片級封裝發光裝置不需封裝支架,因此在相同封裝體積之下,本發明所揭露之發光裝置可具有較大之發光面積,即PL結構20之面積可較大,因此,當LED晶片10所發出之藍光B照射於較大面積之PL結構20時,則可有效降低照射於PL結構20內之量子點材料的單位面積藍光強度,故可進一步減少量子點材料之光氧化現象。光導引結構40配合反射結構30,可將LED晶片10之側向所發出的第一光線有效反射至PL結構20中,以使第一光線較均勻地照射PL結構20,降低單位面積藍光強度,減少量子點材料之光氧化現象以增加其使用壽命;光導引結構40配合反射結構30之技術內容可進一步參考申請人先前所申請的申請號106103239之台灣專利申請案。 In addition, since the wafer-level packaged light-emitting device does not require a packaging bracket, the light-emitting device disclosed by the present invention can have a larger light-emitting area under the same packaging volume, that is, the area of the PL structure 20 can be larger. When the blue light B emitted from the wafer 10 is irradiated to the large-area PL structure 20, the intensity of the blue light per unit area of the quantum dot material irradiated into the PL structure 20 can be effectively reduced, so the photo-oxidation phenomenon of the quantum dot material can be further reduced. The light guide structure 40 cooperates with the reflection structure 30 to effectively reflect the first light emitted from the side of the LED chip 10 into the PL structure 20 so that the first light illuminates the PL structure 20 more uniformly and reduces the blue light intensity per unit area. To reduce the photo-oxidation phenomenon of the quantum dot material to increase its service life; the technical content of the light guide structure 40 in conjunction with the reflective structure 30 can be further referred to the Taiwan Patent Application No. 106103239 previously applied by the applicant.

請參閱第5A圖至第5I圖,接著將說明依據本發明的較佳實 施例的發光裝置的製造方法,該製造方法可製造出相同或類似於上述實施例的發光裝置1~3,故製造方法的技術內容與發光裝置1~3的技術內容可相互參考、應用。 Please refer to FIG. 5A to FIG. 5I, and then the preferred embodiment according to the present invention will be described. The manufacturing method of the light-emitting device of this embodiment can manufacture the same or similar light-emitting devices 1 to 3 of the above-mentioned embodiments, so the technical content of the manufacturing method and the technical content of the light-emitting devices 1 to 3 can refer to each other and be applied.

如第5A圖所示,首先提供或形成出光透明濕氣阻隔層24,然後藉由噴塗(spraying)、旋轉塗佈(spin coating)或印刷(printing)等方式直接於光透明濕氣阻隔層24上形成第二PL層23;也就是,將未固化的第二高分子材料231及綠色QD材料232先混合後,然後透過上述方式形成於光透明濕氣阻隔層24上,待第二高分子材料231固化,即形成第二PL層23,若第二高分子材料231為熱固化矽膠,則需於惰性氣體或真空環境中進行熱固化。此外,第二PL層23亦可單獨地形成後,再貼合至光透明濕氣阻隔層24。 As shown in FIG. 5A, the light-transparent moisture barrier layer 24 is first provided or formed, and then directly applied to the light-transparent moisture barrier layer 24 by spraying, spin coating, or printing. A second PL layer 23 is formed thereon; that is, an uncured second polymer material 231 and a green QD material 232 are mixed first, and then formed on the light-transparent moisture barrier layer 24 through the above-mentioned method. The material 231 is cured, that is, the second PL layer 23 is formed. If the second polymer material 231 is a heat-curable silicone, it needs to be thermally cured in an inert gas or a vacuum environment. In addition, the second PL layer 23 may be formed separately and then adhered to the light-transparent moisture barrier layer 24.

如第5B圖所示,接著,於第二PL層23上直接形成光透明隔離層22,例如可採噴塗、旋轉塗佈或印刷等方式,或是將光透明隔離層22貼合至第二PL層23。如第5C圖所示,爾後,於光透明隔離層22上直接形成第一PL層21,例如可採噴塗、旋轉塗佈或印刷等方式,或採公開號US2010/0119839之美國專利申請案(對應於證書號I508331之臺灣專利)所揭露的技術;或者,於第一PL層21單獨形成後,再貼合至光透明隔離層22。 As shown in FIG. 5B, a light-transparent isolation layer 22 is directly formed on the second PL layer 23, for example, spray coating, spin coating, or printing can be used, or the light-transparent isolation layer 22 can be attached to the second PL 层 23。 PL layer 23. As shown in FIG. 5C, the first PL layer 21 is then directly formed on the light-transparent isolation layer 22, for example, by spray coating, spin coating, or printing, or by US Patent Application Publication No. US2010 / 0119839 ( Corresponds to the technology disclosed in the Taiwan Patent of Certificate No. I508331); or, after the first PL layer 21 is separately formed, it is then bonded to the light-transparent isolation layer 22.

如此,可製作出複數個發光裝置1之PL結構20,彼此仍一體相連。另外,於第5A圖所示的步驟中,可於第二PL層23形成前及/或後,選擇地形成光透明導熱層25,以製作出複數個發光裝置2之PL結構20。如第5D圖所示,可選擇地於第一PL層21上形成光透明分隔層26,以製作出複數個發光裝置3之PL結構20。 In this way, the PL structures 20 of the plurality of light-emitting devices 1 can be fabricated and still be integrally connected to each other. In addition, in the step shown in FIG. 5A, a light transparent thermally conductive layer 25 may be selectively formed before and / or after the formation of the second PL layer 23 to fabricate the PL structures 20 of the plurality of light emitting devices 2. As shown in FIG. 5D, a light transparent separation layer 26 may be optionally formed on the first PL layer 21 to fabricate a PL structure 20 of a plurality of light emitting devices 3.

如第5E圖所示,製作出PL結構20後,接著將複數個LED晶片10倒置,使其上表面101朝下(下表面102朝上)、面對PL結構20之底面202,然後將LED晶片10貼合至PL結構20之內層(即光透明分隔層26或第一PL層21)。LED晶片10貼合完成後,可選擇地形成光導引結構40於第一PL層21或光透明分隔層26上,光導引結構40之具體形成方式可進一步參考申請人所申請的申請號106103239之台灣專利申請案。 As shown in FIG. 5E, after the PL structure 20 is fabricated, the plurality of LED chips 10 are then inverted so that the upper surface 101 faces downward (the lower surface 102 faces upward) and faces the bottom surface 202 of the PL structure 20. The wafer 10 is adhered to the inner layer of the PL structure 20 (that is, the light transparent separation layer 26 or the first PL layer 21). After the LED wafer 10 is bonded, a light guide structure 40 can be optionally formed on the first PL layer 21 or the light transparent separation layer 26. For the specific formation of the light guide structure 40, please refer to the application number applied by the applicant. 106103239 Taiwan patent application.

如第5F圖所示,LED晶片10貼合完成後,切割一體相連的該等PL結構20,使其分離;每一個PL結構20與其中一個LED晶片10相貼合,以構成一發光結構。如第5G圖所示,接著,將該等發光結構排列於一離型材料900上,構成一發光結構陣列;排列時,可選擇使PL結構20之頂面201貼合至離型材料900(如圖所示),或是使LED晶片10之下表面102貼合至離型材料900、而電極組104嵌入離型材料900中(圖未示)。 As shown in FIG. 5F, after the bonding of the LED chip 10 is completed, the PL structures 20 integrally connected are cut to separate them; each PL structure 20 is bonded to one of the LED chips 10 to form a light-emitting structure. As shown in FIG. 5G, the light-emitting structures are then arranged on a release material 900 to form an array of light-emitting structures; during the arrangement, the top surface 201 of the PL structure 20 can be selected to be attached to the release material 900 ( (As shown in the figure), or the lower surface 102 of the LED chip 10 is adhered to the release material 900, and the electrode group 104 is embedded in the release material 900 (not shown).

如第5H圖所示,然後,於離型材料900上與發光結構之間形成反射結構30,以覆蓋PL結構20之側面203及光導引結構40之傾斜側面402(間接地覆蓋LED晶片10之立面103),但未有覆蓋LED晶片10之下表面102;反射結構30的形成可採模造或點膠等方法。反射結構30形成後,可獲得複數個發光裝置3(或其他類型的發光裝置),該些發光裝置3彼此相互連接。如第5I圖所示,最後,採取一切割步驟以將相連接的發光裝置3分離,便得到相互分離的發光裝置3;其中,可於切割前或切割後將離型材料900與發光裝置3分離。 As shown in FIG. 5H, a reflective structure 30 is then formed between the release material 900 and the light emitting structure to cover the side surface 203 of the PL structure 20 and the inclined side surface 402 of the light guide structure 40 (indirectly covering the LED chip 10). Façade 103), but does not cover the lower surface 102 of the LED chip 10; the formation of the reflective structure 30 may be by molding or dispensing. After the reflection structure 30 is formed, a plurality of light emitting devices 3 (or other types of light emitting devices) can be obtained, and these light emitting devices 3 are connected to each other. As shown in FIG. 5I, finally, a cutting step is taken to separate the connected light-emitting devices 3 to obtain the light-emitting devices 3 separated from each other; wherein the release material 900 and the light-emitting device 3 can be separated before or after cutting. Separation.

請復參閱第5C圖或第5D圖,一體相連的PL結構20製作出後,亦可直接進行切割步驟,使其分離成複數個PL結構20;爾後,將PL結 構20與LED晶片10相貼合,再形成反射結構30將兩者包覆,亦可完成發光裝置3(或其他類型的發光裝置)之製作。 Please refer to FIG. 5C or FIG. 5D. After the integrally connected PL structure 20 is produced, the cutting step can also be directly performed to separate it into a plurality of PL structures 20; The structure 20 is bonded to the LED chip 10, and then a reflective structure 30 is formed to cover the two, and the production of the light emitting device 3 (or other types of light emitting devices) can also be completed.

請參閱第6A圖至第6D圖,PL結構20亦可採取以下方式來製作。如第6A圖所示,首先提供或形成出光透明濕氣阻隔層24,然後於光透明濕氣阻隔層24上形成第二PL層23。如第6B圖所示,接著,另外再提供或形成光透明隔離層22,並形成第一PL層21於光透明隔離層22上;光透明隔離層22及第一PL層21皆不是如第5B圖般於第二PL層23上依序形成。 Please refer to FIG. 6A to FIG. 6D. The PL structure 20 can also be fabricated in the following manner. As shown in FIG. 6A, a light transparent moisture barrier layer 24 is first provided or formed, and then a second PL layer 23 is formed on the light transparent moisture barrier layer 24. As shown in FIG. 6B, a light transparent isolation layer 22 is then provided or formed, and a first PL layer 21 is formed on the light transparent isolation layer 22; neither the light transparent isolation layer 22 nor the first PL layer 21 is the same as the first 5B is sequentially formed on the second PL layer 23.

換言之,光透明濕氣阻隔層24及第二PL層23之組合,與光透明隔離層22及與第一PL層21之組合,係分別進行製作,兩者的製程不會相互影響。因此,若第一PL層21的第一高分子材料211為熱固化膠時,其進行熱固化的高溫不會影響到第二PL層23的綠色QD材料232,故綠色QD材料232之效能不會因為經歷第一PL層21的熱固化製程而衰減。 In other words, the combination of the light transparent moisture barrier layer 24 and the second PL layer 23, and the combination of the light transparent isolation layer 22 and the first PL layer 21 are separately manufactured, and the manufacturing processes of the two will not affect each other. Therefore, if the first polymer material 211 of the first PL layer 21 is a thermosetting adhesive, the high temperature at which it is thermally cured will not affect the green QD material 232 of the second PL layer 23, so the efficiency of the green QD material 232 is not good. It will be attenuated by the thermal curing process of the first PL layer 21.

如第6C圖所示,爾後,將LED晶片10貼合至第一PL層21,並且可選擇地,於第一PL層21上形成光透明分隔層26及/或光導引結構40。再如第6D圖所示,將光透明隔離層22與第二PL層23相貼合,以製造出如第5E圖所示的PL結構20。之後可採取如第5F圖至第5I圖的步驟,得到相互分離的發光裝置3或其他發光裝置。 As shown in FIG. 6C, the LED chip 10 is then attached to the first PL layer 21, and optionally, a light transparent separation layer 26 and / or a light guiding structure 40 are formed on the first PL layer 21. As shown in FIG. 6D, the light-transparent isolation layer 22 and the second PL layer 23 are adhered to each other to manufacture the PL structure 20 as shown in FIG. 5E. After that, steps as shown in FIG. 5F to FIG. 5I may be taken to obtain the light emitting device 3 or other light emitting devices separated from each other.

綜合上述,本發明之較佳實施例所提出的發光裝置可有效地改善量子點材料的氧化現象,且可減少或避免外界空氣中之水氣及氧氣接觸到量子點材料;還可有效地避免用於固定量子點材料的高分子材料與用於固定螢光材料的高分子材料,兩者材料特性不相容之問題;亦可有效地改善量子點材料的熱衰減現象,降低量子點材料所承受之溫度,以及增加 發光裝置之光萃取效率。發光裝置的製造方法可製造出各種具有上述功效的發光裝置,且製造過程中可使量子點材料不會承受高溫。 To sum up, the light-emitting device provided by the preferred embodiment of the present invention can effectively improve the oxidation phenomenon of the quantum dot material, and can reduce or prevent water vapor and oxygen in the outside air from contacting the quantum dot material; it can also effectively avoid The polymer materials used to fix quantum dot materials and the polymer materials used to fix fluorescent materials are incompatible with each other; they can also effectively improve the thermal attenuation of quantum dot materials and reduce the quantum dot materials. Withstand temperature and increase Light extraction efficiency of light emitting devices. The manufacturing method of the light-emitting device can manufacture various light-emitting devices having the above-mentioned effects, and the quantum dot material can not be subjected to high temperature during the manufacturing process.

上述之實施例僅用來例舉本發明之實施態樣,以及闡釋本發明之技術特徵,並非用來限制本發明之保護範疇。任何熟悉此技術者可輕易完成之改變或均等性之安排均屬於本發明所主張之範圍,本發明之權利保護範圍應以申請專利範圍為準。 The above embodiments are only used to exemplify the implementation aspects of the present invention, and to explain the technical features of the present invention, and are not intended to limit the protection scope of the present invention. Any change or equivalence arrangement that can be easily accomplished by those skilled in the art belongs to the scope claimed by the present invention, and the scope of protection of the rights of the present invention shall be subject to the scope of patent application.

Claims (24)

一種發光裝置,包含:一覆晶式LED晶片,用以提供一第一光線,該第一光線為一藍光、一深藍光、一紫光或一紫外光;一光致發光結構,設置於該覆晶式LED晶片之一上表面上、且包括一第一光致發光層、一光透明隔離層、一第二光致發光層及一光透明濕氣阻隔層,該光透明隔離層設置於該第一光致發光層上,該第二光致發光層設置於該光透明隔離層上,而該光透明濕氣阻隔層設置於該第二光致發光層上,其中,該第一光致發光層包含一第一高分子材料及混合於該第一高分子材料中之一較低激發能階之螢光材料,而該第二光致發光層包含一第二高分子材料及混合於該第二高分子材料中之一較高激發能階之量子點材料;以及一濕氣阻隔反射結構,覆蓋該光致發光結構之一側面及該覆晶式LED晶片之一立面,且不低於該覆晶式LED晶片之一電極面;其中,該第一光致發光層之該較低激發能階之螢光材料用以將該第一光線之一部份轉換為一較長波長之可見光,使得該未被轉換之另一部份之該第一光線的光強度不大於該較高激發能階之量子點材料所能承受之光強度。A light-emitting device includes: a flip-chip LED chip for providing a first light, the first light being a blue light, a dark blue light, a purple light or an ultraviolet light; a photoluminescent structure disposed on the cover An upper surface of one of the crystalline LED wafers includes a first photoluminescent layer, a light transparent isolation layer, a second photoluminescent layer, and a light transparent moisture barrier layer. The light transparent isolation layer is disposed on the On the first photoluminescence layer, the second photoluminescence layer is disposed on the phototransparent isolation layer, and the phototransparent moisture barrier layer is disposed on the second photoluminescence layer, wherein the first photoluminescence layer The light-emitting layer includes a first polymer material and a fluorescent material with a lower excitation energy level mixed in the first polymer material, and the second photoluminescent layer includes a second polymer material and the second polymer material is mixed with the first polymer material. One of the second polymer materials with a higher excitation energy level quantum dot material; and a moisture blocking reflection structure covering one side of the photoluminescence structure and one facade of the flip-chip LED chip, and not low On an electrode surface of the flip-chip LED chip; wherein, the The lower excitation energy level fluorescent material of a photoluminescent layer is used to convert a part of the first light into a longer wavelength visible light, so that the unconverted part of the first The light intensity of the light is not greater than the light intensity that the higher quantum dot material can withstand. 如請求項1所述的發光裝置,其中,該較低激發能階之螢光材料包含一紅色螢光材料,該較高激發能階之量子點材料包含一綠色量子點材料。The light-emitting device according to claim 1, wherein the fluorescent material with a lower excitation energy level comprises a red fluorescent material, and the quantum dot material with a higher excitation energy level comprises a green quantum dot material. 如請求項2所述的發光裝置,其中,該綠色量子點材料所能承受之該第一光線的光強度不大於10W/cm2The light-emitting device according to claim 2, wherein the light intensity of the first ray that the green quantum dot material can withstand is not more than 10 W / cm 2 . 如請求項2所述的發光裝置,其中,該光致發光結構更包含一光透明導熱層,該光透明導熱層設置於該第二光致發光層與該光透明濕氣阻隔層之間、及/或設置於該第二光致發光層與該光透明隔離層之間;其中,該光透明導熱層之熱傳導率大於該光透明濕氣阻隔層或該光透明隔離層之熱傳導率。The light-emitting device according to claim 2, wherein the photoluminescent structure further includes a light transparent thermally conductive layer disposed between the second photoluminescent layer and the light transparent moisture barrier layer, And / or disposed between the second photoluminescent layer and the light transparent isolation layer; wherein the thermal conductivity of the light transparent thermally conductive layer is greater than the thermal conductivity of the light transparent moisture barrier layer or the light transparent isolation layer. 如請求項4述的發光裝置,其中,該光透明導熱層包含一薄膜金屬、一網格狀金屬、一透明導電氧化物或一石墨烯。The light-emitting device according to claim 4, wherein the light transparent thermally conductive layer comprises a thin film metal, a grid-like metal, a transparent conductive oxide, or a graphene. 如請求項2至5任一項所述的發光裝置,其中,該光致發光結構更包含一光透明分隔層,該第一光致發光層設置於該光透明分隔層上。The light-emitting device according to any one of claims 2 to 5, wherein the photoluminescent structure further includes a light transparent separation layer, and the first photoluminescent layer is disposed on the light transparent separation layer. 如請求項2至5任一項所述的發光裝置,更包含一光導引結構,該光導引結構覆蓋該覆晶式LED晶片之該立面,該光導引結構包含一傾斜側面,該傾斜側面相對於該覆晶式LED晶片之該立面為傾斜、且被該濕氣阻隔反射結構覆蓋。The light-emitting device according to any one of claims 2 to 5, further comprising a light-guiding structure covering the facade of the flip-chip LED chip, and the light-guiding structure includes an inclined side, The inclined side surface is inclined relative to the vertical surface of the flip-chip LED chip, and is covered by the moisture blocking reflection structure. 如請求項2至5任一項所述的發光裝置,其中,該第一高分子材料為一熱固化膠及該第二高分子材料為一紫外線固化膠。The light-emitting device according to any one of claims 2 to 5, wherein the first polymer material is a thermosetting glue and the second polymer material is an ultraviolet curing glue. 如請求項2至5任一項所述的發光裝置,其中,該光透明隔離層及該光透明濕氣阻隔層各包含一透明無機材料。The light emitting device according to any one of claims 2 to 5, wherein each of the light transparent isolation layer and the light transparent moisture barrier layer includes a transparent inorganic material. 如請求項2至5任一項所述的發光裝置,其中,該光透明隔離層及該光透明濕氣阻隔層各包含一高分子材料,其於厚度為1公釐時具有不大於20g/(m2day)之水氣滲透率(WVTR)。The light-emitting device according to any one of claims 2 to 5, wherein each of the light-transparent isolation layer and the light-transparent moisture barrier layer comprises a polymer material, which has a thickness of not more than 20g / (m 2 day) water vapor permeability (WVTR). 如請求項2至5任一項所述的發光裝置,其中,該濕氣阻隔反射結構包含一第三高分子材料及混合於該第三高分材料中之一光散射性微粒。The light-emitting device according to any one of claims 2 to 5, wherein the moisture blocking reflection structure includes a third polymer material and one light-scattering particle mixed with the third high-scoring material. 如請求項11的發光裝置,其中,該第三高分子材料於厚度為1公釐時具有不大於20g/(m2day)之水氣滲透率。The light-emitting device according to claim 11, wherein the third polymer material has a water vapor permeability of not more than 20 g / (m 2 day) when the thickness is 1 mm. 如請求項2至5任一項所述的發光裝置,其中,該濕氣阻隔反射結構之熱傳導率不小於該光透明隔離層或該光透明濕氣阻隔層之熱傳導率。The light-emitting device according to any one of claims 2 to 5, wherein a thermal conductivity of the moisture-barrier reflective structure is not less than a thermal conductivity of the optically transparent isolation layer or the optically transparent moisture-barrier layer. 如請求項2至5任一項所述的發光裝置,其中,該第二光致發光層更包含一光散射性微粒,該光散射性微粒混合於該第二高分子材料中。The light emitting device according to any one of claims 2 to 5, wherein the second photoluminescent layer further comprises a light scattering particle, and the light scattering particle is mixed in the second polymer material. 如請求項2至5任一項所述的發光裝置,其中,該紅色螢光材料包含一氟化物螢光材料或一氮化物螢光材料。The light-emitting device according to any one of claims 2 to 5, wherein the red fluorescent material comprises a fluoride fluorescent material or a nitride fluorescent material. 如請求項15所述的發光裝置,其中,該氟化物螢光材料至少包含下列其中一者:(A)A2[MF6]:Mn4+,其中A選自Li、Na、K、Rb、Cs、NH4及其組合,M選自Ge、Si、Sn、Ti、Zr及其組合;(B)E2[MF6]:Mn4+,其中E選自Mg、Ca、Sr、Ba、Zn及其組合,M選自Ge、Si、Sn、Ti、Zr及其組合;(C)Ba0.65Zr0.35F2.70:Mn4+;或(D)A3[ZrF7]:Mn4+,其中A選自Li、Na、K、Rb、Cs、NH4及其組合。The light-emitting device according to claim 15, wherein the fluoride fluorescent material includes at least one of the following: (A) A 2 [MF 6 ]: Mn 4+ , wherein A is selected from Li, Na, K, and Rb , Cs, NH 4 and combinations thereof, M is selected from Ge, Si, Sn, Ti, Zr and combinations thereof; (B) E 2 [MF 6 ]: Mn 4+ , wherein E is selected from Mg, Ca, Sr, Ba , Zn and combinations thereof, and M is selected from Ge, Si, Sn, Ti, Zr and combinations thereof; (C) Ba 0.65 Zr 0.35 F 2.70 : Mn 4+ ; or (D) A 3 [ZrF 7 ]: Mn 4+ Where A is selected from Li, Na, K, Rb, Cs, NH 4 and combinations thereof. 如請求項15所述的發光裝置,其中,該氟化物螢光材料至少包含下列其中一者:(x-a)MgO.(a/2)Sc2O3.yMgF2.cCaF2.(1-b)GeO2.(b/2)Mt2O3:zMn4+;其中,2.0x4.0、0<y<1.5、0<z<0.05、0a<0.5、0<b<0.5、0c<1.5、y+c<1.5、且Mt選自Al、Ga及In中之至少1種。The light-emitting device according to claim 15, wherein the fluoride fluorescent material includes at least one of the following: (xa) MgO. (A / 2) Sc 2 O 3 .yMgF 2 .cCaF 2. (1-b ) GeO 2. (B / 2) Mt 2 O 3 : zMn 4+ ; Among them, 2.0 x 4.0, 0 <y <1.5, 0 <z <0.05, 0 a <0.5, 0 <b <0.5, 0 c <1.5, y + c <1.5, and Mt is selected from at least one of Al, Ga, and In. 如請求項2至5任一項所述的發光裝置,其中,該第二光致發光層更包含一藍色量子點材料。The light emitting device according to any one of claims 2 to 5, wherein the second photoluminescent layer further comprises a blue quantum dot material. 一種發光裝置的製造方法,包含:將一光致發光結構與一覆晶式LED晶片相貼合;以及形成一濕氣阻隔反射結構,以覆蓋該光致發光結構之一側面及該覆晶式LED晶片之一立面;其中,該光致發光結構包括一第一光致發光層、一光透明隔離層、一第二光致發光層及一光透明濕氣阻隔層,該光透明隔離層設置於該第一光致發光層上,該第二光致發光層設置於該光透明隔離層上,而該光透明濕氣阻隔層設置於該第二光致發光層上,該第一光致發光層覆蓋該覆晶式LED晶片之一上表面,該第一光致發光層包含一第一高分子材料及混合於該第一高分子材料中之一較低激發能階之螢光材料,而該第二光致發光層包含一第二高分子材料及混合於該第二高分子材料中之一較高激發能階之量子點材料,該濕氣阻隔反射結構不低於該覆晶式LED晶片之一電極下表;其中,該覆晶式LED晶片用以提供一第一光線,該第一光線為一藍光、一深藍光、一紫光或一紫外光,而該第一光致發光層之該較低激發能階之螢光材料用以將該第一光線之一部份轉換為一較長波長之可見光,使得該第一光線之未被轉換之另一部份之光強度不大於該較高激發能階之量子點材料所能承受之光強度。A method for manufacturing a light-emitting device includes: bonding a photoluminescent structure to a flip-chip LED chip; and forming a moisture blocking reflection structure to cover one side of the photo-luminescent structure and the flip-chip type A facade of an LED chip; wherein the photoluminescent structure includes a first photoluminescent layer, a light transparent isolation layer, a second photoluminescent layer, and a light transparent moisture barrier layer, the light transparent isolation layer Is disposed on the first photoluminescent layer, the second photoluminescent layer is disposed on the light transparent isolation layer, and the light transparent moisture barrier layer is disposed on the second photoluminescent layer, the first light An electroluminescent layer covers an upper surface of one of the flip-chip LED wafers. The first photoluminescent layer includes a first polymer material and a lower excitation energy level fluorescent material mixed in the first polymer material. And the second photoluminescent layer includes a second polymer material and a quantum dot material of a higher excitation energy level mixed in the second polymer material, the moisture blocking reflection structure is not lower than the flip-chip The following table shows one electrode of the LED chip; Type LED chip is used to provide a first light, the first light is a blue light, a deep blue light, a violet light or an ultraviolet light, and the lower excitation energy level fluorescent material of the first photoluminescent layer is used In order to convert a part of the first light to a longer wavelength of visible light, the light intensity of the unconverted part of the first light is not greater than that of the quantum dot material with a higher excitation energy level. Withstand the intensity of light. 如請求項19所述的發光裝置的製造方法,更包含:形成該光致發光結構,其包含:提供該光透明濕氣阻隔層;形成該第二光致發光層於該光透明濕氣阻隔層上;形成該光透明隔離層於該第二光致發光層上;以及形成該第一光致發光層於該光透明隔離層上。The method for manufacturing a light emitting device according to claim 19, further comprising: forming the photoluminescent structure, comprising: providing the light transparent moisture barrier layer; and forming the second photoluminescent layer on the light transparent moisture barrier Layer; forming the light transparent isolation layer on the second photoluminescent layer; and forming the first photoluminescent layer on the light transparent isolation layer. 如請求項19所述的發光裝置的製造方法,更包含:形成該光致發光結構,其包含:提供該光透明濕氣阻隔層,並形成該第二光致發光層於該光透明濕氣阻隔層上;提供該光透明隔離層,並形成該第一光致發光層於該光透明隔離層上;以及將該光透明隔離層與該第二光致發光層相貼合。The method for manufacturing a light-emitting device according to claim 19, further comprising: forming the photoluminescent structure, including: providing the light transparent moisture barrier layer, and forming the second photoluminescent layer on the light transparent moisture. On the barrier layer; providing the light transparent isolating layer and forming the first photoluminescent layer on the light transparent isolating layer; and adhering the light transparent isolating layer and the second photoluminescent layer. 如請求項19所述的發光裝置的製造方法,其中,該光致發光結構更包含一光透明導熱層,該光透明導熱層形成於該第二光致發光層與該光透明濕氣阻隔層之間、及/或形成於該第二光致發光層與該光透明濕氣阻隔層之間;其中,該光透明導熱層之熱傳導率大於該光透明隔離層或該光透明濕氣阻隔層之熱傳導率。The method for manufacturing a light emitting device according to claim 19, wherein the photoluminescent structure further includes a light transparent thermally conductive layer formed on the second photoluminescent layer and the light transparent moisture barrier layer Between, and / or formed between the second photoluminescent layer and the light transparent moisture barrier layer; wherein the thermal conductivity of the light transparent thermally conductive layer is greater than that of the light transparent isolation layer or the light transparent moisture barrier Thermal conductivity. 如請求項19至22任一項所述的發光裝置的製造方法,其中,該光致發光結構更包含一光透明分隔層,該光透明分隔層形成於該第一光致發光層上;其中,該光透明分隔層覆蓋該覆晶式LED晶片之該上表面。The method for manufacturing a light-emitting device according to any one of claims 19 to 22, wherein the photoluminescent structure further includes a light transparent separation layer formed on the first photoluminescent layer; wherein The light transparent separation layer covers the upper surface of the flip-chip LED chip. 如請求項19至22任一項所述的發光裝置的製造方法,更包含形成一光導引結構,該光導引結構形成於該第一光致發光層上,以覆蓋該覆晶式LED晶片之該立面,其中,該光導引結構包含一傾斜側面,該傾斜側面相對於該覆晶式LED晶片之該立面為傾斜;其中,形成該濕氣阻隔反射結構時,使該濕氣阻隔反射結構覆蓋該光導引結構之該傾斜側面。The method for manufacturing a light emitting device according to any one of claims 19 to 22, further comprising forming a light guiding structure formed on the first photoluminescent layer to cover the flip-chip LED. The vertical surface of the wafer, wherein the light guiding structure includes an inclined side surface, the inclined side surface is inclined relative to the vertical surface of the flip-chip LED chip; and when the moisture blocking reflection structure is formed, the wet The air-blocking reflection structure covers the inclined side of the light guiding structure.
TW106130827A 2017-09-08 2017-09-08 Quantum-dot-based color-converted light emitting device and method for manufacturing the same TWI658610B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW106130827A TWI658610B (en) 2017-09-08 2017-09-08 Quantum-dot-based color-converted light emitting device and method for manufacturing the same
US16/112,381 US10879434B2 (en) 2017-09-08 2018-08-24 Quantum dot-based color-converted light emitting device and method for manufacturing the same
JP2018156872A JP6686081B2 (en) 2017-09-08 2018-08-24 Light emitting device that performs color conversion based on quantum dots, and manufacturing method thereof
EP18192168.5A EP3454384B1 (en) 2017-09-08 2018-09-03 Quantum dot-based color-converted light emitting device
KR1020180105689A KR102102699B1 (en) 2017-09-08 2018-09-05 Quantum dot-based color-converted light-emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106130827A TWI658610B (en) 2017-09-08 2017-09-08 Quantum-dot-based color-converted light emitting device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201914060A TW201914060A (en) 2019-04-01
TWI658610B true TWI658610B (en) 2019-05-01

Family

ID=66177399

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130827A TWI658610B (en) 2017-09-08 2017-09-08 Quantum-dot-based color-converted light emitting device and method for manufacturing the same

Country Status (3)

Country Link
JP (1) JP6686081B2 (en)
KR (1) KR102102699B1 (en)
TW (1) TWI658610B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133718B (en) * 2019-06-25 2024-02-20 成都辰显光电有限公司 Display panel, display device and preparation method of display panel
KR20220088454A (en) * 2019-10-23 2022-06-27 인터매틱스 코포레이션 High-color region photoluminescence wavelength-converted white light-emitting device
KR102287244B1 (en) * 2021-03-04 2021-08-06 에스케이씨하이테크앤마케팅(주) Composite sheet of quantum dots and organic nanophosphor, and display device comprising same
KR102287241B1 (en) * 2021-03-04 2021-08-06 에스케이씨하이테크앤마케팅(주) Composite sheet of quantum dots and organic nanophosphor, and display device comprising same
WO2023085010A1 (en) * 2021-11-12 2023-05-19 ソニーグループ株式会社 Light-emitting device and image display device
CN114709319B (en) * 2022-04-11 2023-07-11 东莞市中麒光电技术有限公司 Color conversion structure manufacturing method, color conversion structure, crystal grain manufacturing method and crystal grain
EP4180498A1 (en) 2022-06-15 2023-05-17 Avantama AG A color conversion film comprising inorganic separation layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206911A (en) * 2015-05-26 2016-12-07 夏普株式会社 Light-emitting device and image display device
CN106560933A (en) * 2015-10-05 2017-04-12 行家光电股份有限公司 Light-emitting device with angle-guiding reflection structure and manufacturing method thereof
TW201718825A (en) * 2015-11-30 2017-06-01 隆達電子股份有限公司 Quantum dot composite material and manufacturing method and application thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196711B2 (en) * 2005-07-26 2013-05-15 京セラ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
US9412905B2 (en) * 2011-04-01 2016-08-09 Najing Technology Corporation Limited White light emitting device
KR20120135999A (en) * 2011-06-08 2012-12-18 삼성전자주식회사 Light emitting device package
KR101265094B1 (en) * 2011-08-09 2013-05-16 한국과학기술연구원 White light emitting diode and method for producing the same
KR20150004818A (en) * 2012-03-30 2015-01-13 코닌클리케 필립스 엔.브이. Light emitting device with wavelength converting side coat
JP2015516691A (en) * 2012-05-14 2015-06-11 コーニンクレッカ フィリップス エヌ ヴェ Light emitting device having nanostructured phosphor
WO2014122626A1 (en) * 2013-02-11 2014-08-14 Koninklijke Philips N.V. Led module with hermetic seal of wavelength conversion material
JP6104682B2 (en) * 2013-04-09 2017-03-29 シチズン電子株式会社 Lighting device
JP6428089B2 (en) * 2014-09-24 2018-11-28 日亜化学工業株式会社 Light emitting device
JP2016102999A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit including the same, and liquid crystal display device
KR102409965B1 (en) * 2015-06-08 2022-06-16 삼성전자주식회사 Light emitting device package, wavelength conversion film and manufacturing method of the same
JP6020684B1 (en) * 2015-08-20 2016-11-02 大日本印刷株式会社 Optical wavelength conversion sheet, backlight device including the same, and image display device
TWI583028B (en) * 2016-02-05 2017-05-11 行家光電股份有限公司 Light emitting device with beam shaping structure and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206911A (en) * 2015-05-26 2016-12-07 夏普株式会社 Light-emitting device and image display device
CN106560933A (en) * 2015-10-05 2017-04-12 行家光电股份有限公司 Light-emitting device with angle-guiding reflection structure and manufacturing method thereof
TW201718825A (en) * 2015-11-30 2017-06-01 隆達電子股份有限公司 Quantum dot composite material and manufacturing method and application thereof

Also Published As

Publication number Publication date
TW201914060A (en) 2019-04-01
JP2019061230A (en) 2019-04-18
KR102102699B1 (en) 2020-04-23
JP6686081B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
TWI658610B (en) Quantum-dot-based color-converted light emitting device and method for manufacturing the same
US10879434B2 (en) Quantum dot-based color-converted light emitting device and method for manufacturing the same
CN109494289B (en) Light emitting device using quantum dot color conversion and method of manufacturing the same
JP6631973B2 (en) Quantum dot composite material and its production method and use
US8071995B2 (en) Light emitting device and a method for manufacturing the same
JP7100383B2 (en) Moisture resistant chip scale package light emitting element
KR101621130B1 (en) Method for generating a luminescence conversion material layer, composition therefor and component comprising such a luminescence conversion material layer
TWM576667U (en) Display device
JP2009206459A (en) Color conversion member and light-emitting apparatus using the same
TW200421683A (en) Selective filtering of wavelength-converted semiconductor light emitting devices
JP2008218511A (en) Semiconductor light emitting device and method formanufacturing the same
Kang et al. Quantum‐Rod On‐Chip LEDs for Display Backlights with Efficacy of 149 lm W− 1: A Step toward 200 lm W− 1
US8974852B2 (en) Method of manufacturing light-emitting device with fluorescent layer
KR20120133062A (en) Quantum Dot Film and Fabrication Method thereof
US8232563B2 (en) Light-emitting device
CN102282687B (en) Led packaging enabling light emitting with uniform colors
TW201543713A (en) Color conversion substrate for light-emitting diode and method of fabricating the same
US20210328114A1 (en) Optoelectronic semiconductor component and method of manufacturing an optoelectronic semiconductor component
KR20210100057A (en) Light emitting device
CN110361912B (en) Wavelength conversion device
KR102403500B1 (en) Method for fabrication of LED package with quantum dot embedded hybrid inorganic phosphor prepared there from
KR102288377B1 (en) Light emitting device
WO2018155167A1 (en) Light emitting device and method for manufacturing same
TW202106644A (en) Wavelength-conversion member and light-emitting device