WO2018155167A1 - Light emitting device and method for manufacturing same - Google Patents

Light emitting device and method for manufacturing same Download PDF

Info

Publication number
WO2018155167A1
WO2018155167A1 PCT/JP2018/003992 JP2018003992W WO2018155167A1 WO 2018155167 A1 WO2018155167 A1 WO 2018155167A1 JP 2018003992 W JP2018003992 W JP 2018003992W WO 2018155167 A1 WO2018155167 A1 WO 2018155167A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
light
emitting device
transparent heat
resin
Prior art date
Application number
PCT/JP2018/003992
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 西宮
浅野 秀樹
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2018155167A1 publication Critical patent/WO2018155167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a light emitting device using an excitation light source such as LED (Light Emitting Diode) or LD (Laser Diode), and a method for manufacturing the same.
  • an excitation light source such as LED (Light Emitting Diode) or LD (Laser Diode)
  • next-generation light sources In recent years, attention has been focused on light-emitting devices using LEDs and LDs as next-generation light sources to replace fluorescent lamps and incandescent lamps.
  • a light-emitting device that combines an LED that emits blue light and a wavelength conversion member that absorbs part of the light from the LED and converts it into yellow light is disclosed.
  • This light emitting device emits white light that is a combined light of blue light emitted from the LED and transmitted through the wavelength conversion unit and yellow light emitted from the wavelength conversion unit.
  • Patent Document 1 discloses a wavelength conversion unit in which a resin in which a phosphor is dispersed is arranged in a package as an example of a wavelength conversion unit.
  • the present inventors have found that when a wavelength conversion part made of a resin containing a phosphor is used, there is a problem that when used for a long time, the resin deteriorates and becomes black due to heat and the emission intensity decreases.
  • An object of the present invention is to provide a light-emitting device capable of suppressing deterioration and blackening of a resin containing a phosphor due to heat, and a method for manufacturing the same.
  • the light emitting device of the present invention includes a package, a light source that emits excitation light, a first resin layer that seals the light source, and a phosphor that converts the wavelength of the excitation light. It is characterized by comprising a second resin layer provided on one resin layer and a transparent heat dissipating member provided between the first resin layer and the second resin layer.
  • the transparent heat radiating member is preferably made of glass or ceramic.
  • a transparent heat dissipating member is provided so as to cover an excitation light irradiation region between the first resin layer and the second resin layer.
  • the area of the transparent heat radiating member is preferably at least twice the area of the excitation light irradiation region.
  • the difference in refractive index between the transparent heat radiating member and the respective resins constituting the first resin layer and the second resin layer is preferably 0.4 or less.
  • the refractive index indicates a value at a wavelength of 587 nm.
  • another transparent heat radiating member may be provided also on the light emitting side of the second resin layer.
  • a first manufacturing method of the present invention is a method for manufacturing the light emitting device of the present invention, wherein a step of arranging a light source at the bottom of the package, a step of sealing the light source with a first resin layer, A step of disposing a transparent heat dissipating member on the resin layer of 1, a step of introducing a pre-curing resin for forming the second resin layer on the transparent heat dissipating member, and curing the resin before curing And a step of forming a second resin layer.
  • a second manufacturing method of the present invention is a method of manufacturing the light emitting device of the present invention, wherein a step of arranging a light source at the bottom of the package, a step of sealing the light source with a first resin layer, And a step of disposing a second resin layer in a cured state in which a transparent heat radiating member is attached on the lower side of the resin layer.
  • the light emitting device of the present invention it is possible to suppress the resin containing the phosphor from being deteriorated by heat and being blackened.
  • FIG. 1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining the area of the transparent heat radiating member in the embodiment shown in FIG.
  • FIG. 3 is a schematic cross-sectional view showing a light emitting device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a light emitting device according to a third embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of the second resin layer in the embodiment of the second production method of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing another example of the second resin layer in the embodiment of the second production method of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment of the present invention.
  • the light emitting device 21 of the present embodiment includes a package 10, a light source 3 disposed on the bottom 10 a of the package 10, a first resin layer 1 provided in the package 10, and a package 10.
  • the second resin layer 2 provided above the first resin layer 1 and the transparent heat dissipating member 5 provided between the first resin layer 1 and the second resin layer 2 in the package 10 are provided. Yes.
  • the light source 3 is sealed with a resin 1 a constituting the first resin layer 1.
  • the second resin layer 2 includes a phosphor 4.
  • the phosphor 4 is included in the form of particles, and is dispersed in the resin 2 a constituting the second resin layer 2.
  • the opening 10 b of the package 10 is sealed with a lid material 11.
  • Excitation light L1 is emitted from the light source 3 provided in the first resin layer 1.
  • the excitation light L1 passes through the transparent heat radiating member 5 and is emitted to the second resin layer 2.
  • the phosphor 4 provided in the second resin layer 2 converts the wavelength of the excitation light L1 and emits fluorescence.
  • the combined light L2 of the fluorescence emitted from the phosphor 4 and the excitation light L1 transmitted through the second resin layer 2 is emitted from the light emitting device 21 through the lid member 11.
  • the excitation light L1 excites the phosphor 4 to emit fluorescence, and a part thereof is converted into thermal energy. For this reason, the resin 2a constituting the second resin layer 2 is heated by irradiation with the excitation light L1.
  • the present inventors have found that there is a problem that the resin 2a deteriorates due to this heat, the second resin layer 2 becomes black, and the light emission intensity decreases. Moreover, the light emission characteristics of the phosphor 4 included in the second resin layer 2 are also reduced by this heat.
  • a transparent heat radiating member 5 is provided between the first resin layer 1 and the second resin layer 2. For this reason, the heat generated in the second resin layer 2 can be diffused, and local heating in the second resin layer 2 can be suppressed.
  • the thermal energy generated in the central portion of the excitation light L1 tends to increase. Therefore, by providing the transparent heat radiating member 5 between the first resin layer 1 and the second resin layer 2, the heat generated in the central portion of the excitation light L1 can be diffused to the peripheral portion. Therefore, in this embodiment, it can suppress that the 2nd resin layer 2 deteriorates by heat and blackens, and can suppress that emitted light intensity falls. It is preferable that at least a part of the peripheral edge of the transparent heat radiating member 5 is in contact with the package 10. In this way, the generated heat can be efficiently released to the outside.
  • FIG. 2 is a schematic cross-sectional view for further explaining the transparent heat dissipating member 5 in the present embodiment.
  • the area S1 of the transparent heat radiating member 5 in this embodiment is larger than the area S2 of the irradiation region of the excitation light L1.
  • the transparent heat radiating member 5 can cover the irradiation region of the excitation light L ⁇ b> 1 between the first resin layer 1 and the second resin layer 2.
  • the area S1 of the transparent heat radiating member 5 is preferably 1.1 times or more, more preferably 1.3 times or more, and 1.5 times or more as large as the area S2 of the irradiation region of the excitation light L1.
  • the transparent heat radiating member 5 can also diffuse the heat in the first resin layer 1 generated by the irradiation of the excitation light L1.
  • the material of the transparent heat dissipating member 5 transmits the excitation light L1 (further emitted from the phosphor 4), and the resin 1a constituting the first resin layer 1 and the resin 2a constituting the second resin layer 2.
  • Any material having higher thermal conductivity can be used without any particular limitation.
  • the thermal conductivity of the transparent heat radiating member 5 is preferably 1 W / mK or more, more preferably 3 W / mK or more, further preferably 5 W / mK or more, and particularly preferably 10 W / mK or more. preferable.
  • Such materials include glass and ceramic.
  • the glass examples include SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr, or Ba) glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na, or K). ) -Based glass or SiO 2 —B 2 O 3 —RO—R ′ 2 O-based glass.
  • SiO 2 —B 2 O 3 —RO based glass for example, “OA-10G” (thermal conductivity 1 W / mK) manufactured by Nippon Electric Glass Co., Ltd. is suitable.
  • the ceramic a high thermal conductive ceramic can be used.
  • high thermal conductive ceramics include aluminum oxide ceramics, aluminum nitride ceramics, silicon carbide ceramics, boron nitride ceramics, magnesium oxide ceramics, titanium oxide ceramics, niobium oxide ceramics, zinc oxide ceramics, and oxides. Examples thereof include yttrium-based ceramics.
  • the thickness of the transparent heat dissipating member 5 can be appropriately determined in consideration of the transparency of the excitation light L1, the thermal conductivity, and the like.
  • the thickness of the transparent heat radiating member 5 is, for example, preferably in the range of 0.001 mm to 1 mm, more preferably in the range of 0.01 mm to 0.5 mm, and in the range of 0.05 mm to 0.2 mm. More preferably.
  • the light source 3 for example, an LED light source or an LD light source that emits blue light as excitation light L1 is used.
  • the excitation light L1 is blue light, for example, yellow light is emitted as fluorescence from the phosphor 4, and white light is emitted as the excitation light L1 and the combined light L2 of fluorescence.
  • the excitation light L1 is blue light
  • the phosphor 4 that emits green light and the light that emits red light are mixed and used, so that the excitation light L1 and the fluorescence combined light L2 are white. Light is emitted.
  • a curable resin such as a translucent ultraviolet curable resin or a thermosetting resin is used.
  • an epoxy resin, an acrylic resin, a silicone resin, or the like can be used.
  • the resin 2a constituting the second resin layer 2 the same resin as the resin 1a can be used.
  • the difference in refractive index between the transparent heat radiating member 5 and the respective resins 1a and 2a constituting the first resin layer 1 and the second resin layer 2 is preferably 0.4 or less, and 0.3 or less. More preferably, it is more preferably 0.2 or less.
  • quantum dots can be used.
  • quantum dots include II-VI group compounds and III-V group compounds.
  • the II-VI group compound include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe and the like.
  • the III-V group compound include InP, GaN, GaAs, GaP, AlN, AlP, AlSb, InN, InAs, and InSb. At least one selected from these compounds, or a composite of two or more of these can be used as quantum dots.
  • the composite include those having a core-shell structure, such as those having a core-shell structure in which the surface of CdSe particles is coated with ZnS.
  • the phosphor 4 is not limited to quantum dots.
  • the package 10 can be made of, for example, ceramic or glass.
  • the ceramic include aluminum oxide, aluminum nitride, zirconia, and mullite.
  • the ceramic may be a glass ceramic such as LTCC (Low Temperature Co-fired Ceramics).
  • LTCC Low Temperature Co-fired Ceramics
  • Specific examples of LTCC include a sintered body of an inorganic powder such as titanium oxide or niobium oxide and a glass powder.
  • the glass include SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr, or Ba) glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na, or K). ) Based glass, SiO 2 —B 2 O 3 —RO—R ′ 2 O based glass, SnO—P 2 O 5 based glass, TeO 2 based glass or Bi 2 O 3 based glass.
  • the lid member 11 can be made of a transparent material such as glass, for example.
  • a transparent material such as glass, for example.
  • the same material as the glass constituting the package 10 can be used.
  • the transparent heat radiating member 5 is provided between the first resin layer 1 and the second resin layer 2, the heat generated in the second resin layer 2 by the irradiation of the excitation light L1. Can be diffused by the transparent heat dissipating member 5, and the second resin layer 2 can be prevented from being deteriorated by heat and blackened.
  • the transparent heat radiating member 5 is provided so as to be in contact with the first resin layer 1 and the second resin layer 2, but the present invention is not limited to this, and the transparent heat radiating member 5 and the first resin layer 1 are not limited thereto.
  • a gap may be formed between the resin layer 1 and / or between the transparent heat radiating member 5 and the second resin layer 2.
  • FIG. 3 is a schematic cross-sectional view showing a light emitting device 22 according to the second embodiment of the present invention.
  • the transparent heat radiating member 5 is not provided in the area
  • the first resin layer 1 and the second resin layer 2 are provided in contact with each other in the region of the outer peripheral edge.
  • Other configurations are the same as those of the first embodiment.
  • the transparent heat radiating member 5 is provided between the first resin layer 1 and the second resin layer 2, the heat generated in the second resin layer 2 due to the irradiation of the excitation light L1. Can be diffused by the transparent heat dissipating member 5, and the second resin layer 2 can be prevented from being deteriorated by heat and blackened.
  • the peripheral portion of the transparent heat radiating member 5 is not in contact with the package 10, but the heat conducted to the peripheral portion of the transparent heat radiating member 5 is conducted through the first resin layer 1 or the second resin layer 2. Then, it is discharged to the package 10 and further to the outside. That is, even when the peripheral edge of the transparent heat radiating member 5 is not in contact with the package 10, the effect of improving heat dissipation can be obtained in that the generated heat is conducted to the vicinity of the package 10.
  • FIG. 4 is a schematic cross-sectional view showing a light emitting device 23 according to the third embodiment of the present invention.
  • another transparent heat radiating member 6 is also provided on the light emitting side of the second resin layer 2.
  • the transparent heat radiating member 6 can be configured in the same manner as the transparent heat radiating member 5.
  • Other configurations are the same as those of the first embodiment.
  • the heat generated in the second resin layer 2 by the irradiation of the excitation light L1 is radiated transparently. It can diffuse effectively with the members 5 and 6, and it can further suppress that the 2nd resin layer 2 deteriorates by heat and blackens.
  • the lid member 11 is provided, but the transparent heat radiating member 6 may function as the lid member and the lid member 11 may not be provided. In this case, the package 10 is sealed by the transparent heat radiating member 6.
  • the package 10 is prepared, and the light source 3 is disposed on the bottom 10 a of the package 10. Next, the uncured resin 1a is introduced into the package 10, and the light source 3 is covered with the resin 1a. Next, the resin 1a is cured to form the first resin layer 1.
  • the transparent heat dissipating member 5 is disposed on the first resin layer 1 in the package 10. At this time, it is preferable to arrange the transparent heat radiating member 5 so that at least a part of the peripheral edge thereof is in contact with the inner wall of the package 10. Next, an uncured resin 2 a for forming the second resin layer 2 is introduced on the transparent heat radiating member 5 in the package 10. The phosphor 4 is dispersed and contained in the resin 2a before curing. Next, the resin 2a is cured to form the second resin layer 2. Next, the opening 10 b of the package 10 is sealed with the lid 11.
  • the light emitting device 21 of the first embodiment can be manufactured according to the first manufacturing method of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of the second resin layer in the embodiment of the second production method of the present invention.
  • the second resin layer 2 is formed by introducing the uncured resin 2a into the package 10 and curing the resin 2a in the package 10 as described above.
  • the cured second resin layer 2 with the transparent heat radiating member 5 attached below as shown in FIG. 5 is disposed on the first resin layer 1 in the package 10. Thus, a light emitting device is manufactured.
  • the cured second resin layer 2 to which the transparent heat radiating member 5 is attached below can be manufactured as follows. A mold is prepared, the transparent heat radiating member 5 is disposed at the bottom of the mold, the uncured resin 2a is injected thereon, and then the resin 2a is cured to form the second resin layer 2. Thus, the 2nd resin layer 2 of the hardening state to which the transparent heat radiating member 5 was attached below is obtained.
  • FIG. 6 is a schematic cross-sectional view showing another example of the second resin layer in the embodiment of the second production method of the present invention.
  • the transparent heat radiating member 5 is attached below, and another transparent heat radiating member 6 is attached above.
  • the second resin layer 2 in the cured state shown in FIG. 6 is a transparent heat radiating member formed thereon after injecting the resin 2a into the mold in the manufacturing method of the second resin layer 2 in the cured state shown in FIG. 6 can be disposed, and then the resin 2a can be cured.

Abstract

Provided are: a light emitting device wherein blackening of a phosphor-containing resin can be suppressed, said blackening being caused by deterioration of the resin due to heat; and a method for manufacturing the light emitting device. This light emitting device is characterized by being provided with: a package 10; a light source 3, which is disposed on a bottom section 10a of the package 10, and which emits excitation light L1; a first resin layer 1 that seals the light source 3; a second resin layer 2, which contains a phosphor material 4 that converts the wavelength of the excitation light L1, and which is provided on the first resin layer 1; and a transparent heat dissipating member 5 that is provided between the first resin layer 1 and the second resin layer 2.

Description

発光デバイス及びその製造方法Light emitting device and manufacturing method thereof
 本発明は、LED(Light Emitting Diode)やLD(Laser Diode)等の励起光源を用いた発光デバイス及びその製造方法に関するものである。 The present invention relates to a light emitting device using an excitation light source such as LED (Light Emitting Diode) or LD (Laser Diode), and a method for manufacturing the same.
 近年、蛍光ランプや白熱灯に代わる次世代の光源として、LEDやLDを用いた発光デバイス等に対する注目が高まってきている。そのような次世代光源の一例として、青色光を出射するLEDと、LEDからの光の一部を吸収して黄色光に変換する波長変換部材とを組み合わせた発光デバイスが開示されている。この発光デバイスは、LEDから出射され、波長変換部を透過した青色光と、波長変換部から出射された黄色光との合成光である白色光を発する。特許文献1には、波長変換部の一例として、パッケージ内に、蛍光体を分散させた樹脂が配置された波長変換部が開示されている。 In recent years, attention has been focused on light-emitting devices using LEDs and LDs as next-generation light sources to replace fluorescent lamps and incandescent lamps. As an example of such a next-generation light source, a light-emitting device that combines an LED that emits blue light and a wavelength conversion member that absorbs part of the light from the LED and converts it into yellow light is disclosed. This light emitting device emits white light that is a combined light of blue light emitted from the LED and transmitted through the wavelength conversion unit and yellow light emitted from the wavelength conversion unit. Patent Document 1 discloses a wavelength conversion unit in which a resin in which a phosphor is dispersed is arranged in a package as an example of a wavelength conversion unit.
特開2015-220330号公報Japanese Patent Laying-Open No. 2015-220330
 本発明者らは、蛍光体を含む樹脂からなる波長変換部を用いた場合、長時間使用すると熱により樹脂が劣化し黒色化して、発光強度が低下するという課題があることを見出した。 The present inventors have found that when a wavelength conversion part made of a resin containing a phosphor is used, there is a problem that when used for a long time, the resin deteriorates and becomes black due to heat and the emission intensity decreases.
 本発明の目的は、蛍光体を含む樹脂が熱により劣化し黒色化するのを抑制することができる発光デバイス及びその製造方法を提供することにある。 An object of the present invention is to provide a light-emitting device capable of suppressing deterioration and blackening of a resin containing a phosphor due to heat, and a method for manufacturing the same.
 本発明の発光デバイスは、パッケージと、パッケージの底部に配置される、励起光を出射する光源と、光源を封止する第1の樹脂層と、励起光を波長変換する蛍光体を含み、第1の樹脂層の上に設けられる第2の樹脂層と、第1の樹脂層と第2の樹脂層の間に設けられる透明放熱部材とを備えることを特徴としている。 The light emitting device of the present invention includes a package, a light source that emits excitation light, a first resin layer that seals the light source, and a phosphor that converts the wavelength of the excitation light. It is characterized by comprising a second resin layer provided on one resin layer and a transparent heat dissipating member provided between the first resin layer and the second resin layer.
 透明放熱部材は、ガラスまたはセラミックからなることが好ましい。 The transparent heat radiating member is preferably made of glass or ceramic.
 本発明においては、第1の樹脂層と第2の樹脂層の間における励起光の照射領域を覆うように、透明放熱部材が設けられていることが好ましい。この場合、透明放熱部材の面積は、励起光の照射領域の面積の2倍以上であることが好ましい。 In the present invention, it is preferable that a transparent heat dissipating member is provided so as to cover an excitation light irradiation region between the first resin layer and the second resin layer. In this case, the area of the transparent heat radiating member is preferably at least twice the area of the excitation light irradiation region.
 本発明においては、透明放熱部材と、第1の樹脂層及び第2の樹脂層を構成するそれぞれの樹脂との屈折率の差が、0.4以下であることが好ましい。ここで、屈折率は波長587nmにおける値を指す。 In the present invention, the difference in refractive index between the transparent heat radiating member and the respective resins constituting the first resin layer and the second resin layer is preferably 0.4 or less. Here, the refractive index indicates a value at a wavelength of 587 nm.
 本発明においては、第2の樹脂層の光出射側にも、別の透明放熱部材が設けられていてもよい。 In the present invention, another transparent heat radiating member may be provided also on the light emitting side of the second resin layer.
 本発明の第1の製造方法は、上記本発明の発光デバイスを製造する方法であって、パッケージの底部に光源を配置する工程と、光源を第1の樹脂層により封止する工程と、第1の樹脂層の上に、透明放熱部材を配置する工程と、透明放熱部材の上に、第2の樹脂層を形成するための硬化前の樹脂を導入する工程と、硬化前の樹脂を硬化させて、第2の樹脂層を形成する工程とを備えることを特徴としている。 A first manufacturing method of the present invention is a method for manufacturing the light emitting device of the present invention, wherein a step of arranging a light source at the bottom of the package, a step of sealing the light source with a first resin layer, A step of disposing a transparent heat dissipating member on the resin layer of 1, a step of introducing a pre-curing resin for forming the second resin layer on the transparent heat dissipating member, and curing the resin before curing And a step of forming a second resin layer.
 本発明の第2の製造方法は、上記本発明の発光デバイスを製造する方法であって、パッケージの底部に光源を配置する工程と、光源を第1の樹脂層により封止する工程と、第1の樹脂層の上に、透明放熱部材が下方に取り付けられた硬化状態の第2の樹脂層を配置する工程とを備えることを特徴としている。 A second manufacturing method of the present invention is a method of manufacturing the light emitting device of the present invention, wherein a step of arranging a light source at the bottom of the package, a step of sealing the light source with a first resin layer, And a step of disposing a second resin layer in a cured state in which a transparent heat radiating member is attached on the lower side of the resin layer.
 本発明に係る発光デバイスによれば、蛍光体を含む樹脂が熱により劣化し黒色化するのを抑制することができる。 According to the light emitting device of the present invention, it is possible to suppress the resin containing the phosphor from being deteriorated by heat and being blackened.
図1は、本発明の第1の実施形態の発光デバイスを示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment of the present invention. 図2は、図1に示す実施形態における透明放熱部材の面積を説明するための模式的断面図である。FIG. 2 is a schematic cross-sectional view for explaining the area of the transparent heat radiating member in the embodiment shown in FIG. 図3は、本発明の第2の実施形態の発光デバイスを示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a light emitting device according to a second embodiment of the present invention. 図4は、本発明の第3の実施形態の発光デバイスを示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing a light emitting device according to a third embodiment of the present invention. 図5は、本発明の第2の製造方法の実施形態における第2の樹脂層の一例を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an example of the second resin layer in the embodiment of the second production method of the present invention. 図6は、本発明の第2の製造方法の実施形態における第2の樹脂層の他の例を示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing another example of the second resin layer in the embodiment of the second production method of the present invention.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.
 (第1の実施形態)
 図1は、本発明の第1の実施形態の発光デバイスを示す模式的断面図である。図1に示すように、本実施形態の発光デバイス21は、パッケージ10と、パッケージ10の底部10aに配置される光源3と、パッケージ10内に設けられる第1の樹脂層1と、パッケージ10内において第1の樹脂層1の上方に設けられる第2の樹脂層2と、パッケージ10内において第1の樹脂層1と第2の樹脂層2の間に設けられる透明放熱部材5とを備えている。光源3は、第1の樹脂層1を構成する樹脂1aによって封止されている。第2の樹脂層2は、蛍光体4を含んでいる。蛍光体4は、粒子の形態で含まれており、第2の樹脂層2を構成する樹脂2a中に分散している。パッケージ10の開口部10bは、蓋材11により封止されている。
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment of the present invention. As shown in FIG. 1, the light emitting device 21 of the present embodiment includes a package 10, a light source 3 disposed on the bottom 10 a of the package 10, a first resin layer 1 provided in the package 10, and a package 10. The second resin layer 2 provided above the first resin layer 1 and the transparent heat dissipating member 5 provided between the first resin layer 1 and the second resin layer 2 in the package 10 are provided. Yes. The light source 3 is sealed with a resin 1 a constituting the first resin layer 1. The second resin layer 2 includes a phosphor 4. The phosphor 4 is included in the form of particles, and is dispersed in the resin 2 a constituting the second resin layer 2. The opening 10 b of the package 10 is sealed with a lid material 11.
 第1の樹脂層1内に設けられた光源3からは、励起光L1が出射される。励起光L1は、透明放熱部材5を通り、第2の樹脂層2に出射される。第2の樹脂層2内に設けられた蛍光体4は、励起光L1を波長変換し、蛍光を出射する。蛍光体4から出射された蛍光と、第2の樹脂層2を透過した励起光L1との合成光L2が、蓋材11を通り発光デバイス21から出射される。 Excitation light L1 is emitted from the light source 3 provided in the first resin layer 1. The excitation light L1 passes through the transparent heat radiating member 5 and is emitted to the second resin layer 2. The phosphor 4 provided in the second resin layer 2 converts the wavelength of the excitation light L1 and emits fluorescence. The combined light L2 of the fluorescence emitted from the phosphor 4 and the excitation light L1 transmitted through the second resin layer 2 is emitted from the light emitting device 21 through the lid member 11.
 励起光L1は、蛍光体4を励起して蛍光を出射させるとともに、その一部は熱エネルギーに変換される。このため、第2の樹脂層2を構成する樹脂2aは、励起光L1の照射により加熱される。本発明者らは、この熱により樹脂2aが劣化し第2の樹脂層2が黒色化して発光強度が低下するという問題があることを見出した。また、この熱により、第2の樹脂層2に含まれる蛍光体4の発光特性も低下する。 The excitation light L1 excites the phosphor 4 to emit fluorescence, and a part thereof is converted into thermal energy. For this reason, the resin 2a constituting the second resin layer 2 is heated by irradiation with the excitation light L1. The present inventors have found that there is a problem that the resin 2a deteriorates due to this heat, the second resin layer 2 becomes black, and the light emission intensity decreases. Moreover, the light emission characteristics of the phosphor 4 included in the second resin layer 2 are also reduced by this heat.
 本実施形態では、第1の樹脂層1と第2の樹脂層2の間に透明放熱部材5が設けられる。このため、第2の樹脂層2内で生じた熱を拡散することができ、第2の樹脂層2内で局所的に加熱されるのを抑制することができる。特に、励起光L1のエネルギー分布は通常中心部において高くなっているので、励起光L1の中心部において発生する熱エネルギーも大きくなる傾向がある。そのため、第1の樹脂層1と第2の樹脂層2の間に透明放熱部材5を設けることにより、励起光L1の中心部において生じた熱を周辺部に拡散することができる。従って、本実施形態では、第2の樹脂層2が熱により劣化し黒色化するのを抑制することができ、発光強度が低下するのを抑制することができる。透明放熱部材5は、少なくとも周縁部の一部がパッケージ10に接していることが好ましい。このようにすれば、発生した熱を外部に効率的に放出することができる。 In the present embodiment, a transparent heat radiating member 5 is provided between the first resin layer 1 and the second resin layer 2. For this reason, the heat generated in the second resin layer 2 can be diffused, and local heating in the second resin layer 2 can be suppressed. In particular, since the energy distribution of the excitation light L1 is usually high in the central portion, the thermal energy generated in the central portion of the excitation light L1 tends to increase. Therefore, by providing the transparent heat radiating member 5 between the first resin layer 1 and the second resin layer 2, the heat generated in the central portion of the excitation light L1 can be diffused to the peripheral portion. Therefore, in this embodiment, it can suppress that the 2nd resin layer 2 deteriorates by heat and blackens, and can suppress that emitted light intensity falls. It is preferable that at least a part of the peripheral edge of the transparent heat radiating member 5 is in contact with the package 10. In this way, the generated heat can be efficiently released to the outside.
 図2は、本実施形態における透明放熱部材5をさらに説明するための模式的断面図である。図2に示すように、本実施形態における透明放熱部材5の面積S1は、励起光L1の照射領域の面積S2より大きくなっている。このため、透明放熱部材5は、第1の樹脂層1と第2の樹脂層2の間における励起光L1の照射領域を覆うことができる。透明放熱部材5の面積S1は、励起光L1の照射領域の面積S2の1.1倍以上であることが好ましく、1.3倍以上であることがより好ましく、1.5倍以上であることがさらに好ましく、2倍以上であることがなお好ましく、3倍以上であることが特に好ましく、4倍以上であることが最も好ましい。これにより、第2の樹脂層2内で生じた熱をより効果的に拡散することができる。なお、透明放熱部材5は、励起光L1の照射で生じた第1の樹脂層1内の熱も拡散することができる。 FIG. 2 is a schematic cross-sectional view for further explaining the transparent heat dissipating member 5 in the present embodiment. As shown in FIG. 2, the area S1 of the transparent heat radiating member 5 in this embodiment is larger than the area S2 of the irradiation region of the excitation light L1. For this reason, the transparent heat radiating member 5 can cover the irradiation region of the excitation light L <b> 1 between the first resin layer 1 and the second resin layer 2. The area S1 of the transparent heat radiating member 5 is preferably 1.1 times or more, more preferably 1.3 times or more, and 1.5 times or more as large as the area S2 of the irradiation region of the excitation light L1. Is more preferably 2 times or more, particularly preferably 3 times or more, and most preferably 4 times or more. Thereby, the heat generated in the second resin layer 2 can be diffused more effectively. The transparent heat radiating member 5 can also diffuse the heat in the first resin layer 1 generated by the irradiation of the excitation light L1.
 透明放熱部材5の材質は、励起光L1(さらには蛍光体4から出射する蛍光)を透過し、かつ第1の樹脂層1を構成する樹脂1a及び第2の樹脂層2を構成する樹脂2aより高い熱伝導率を有するものであれば、特に限定されることなく用いることができる。透明放熱部材5の熱伝導率は1W/mK以上であることが好ましく、3W/mK以上であることがより好ましく、5W/mK以上であることがさらに好ましく、10W/mK以上であることが特に好ましい。このような材料として、ガラス及びセラミックが挙げられる。ガラスとしては、例えば、SiO-B-RO(RはMg、Ca、SrまたはBa)系ガラス、SiO-B-R’O(R’はLi、NaまたはK)系ガラスまたはSiO-B-RO-R’O系ガラス等が挙げられる。SiO-B-RO系ガラスとしては、例えば日本電気硝子株式会社製の「OA-10G」(熱伝導率1W/mK)が好適である。セラミックとしては、高熱伝導性セラミックを用いることができる。高熱伝導性セラミックとしては、例えば、酸化アルミニウム系セラミック、窒化アルミニウム系セラミック、炭化ケイ素系セラミック、窒化ホウ素系セラミック、酸化マグネシウム系セラミック、酸化チタン系セラミック、酸化ニオビウム系セラミック、酸化亜鉛系セラミック、酸化イットリウム系セラミック等が挙げられる。 The material of the transparent heat dissipating member 5 transmits the excitation light L1 (further emitted from the phosphor 4), and the resin 1a constituting the first resin layer 1 and the resin 2a constituting the second resin layer 2. Any material having higher thermal conductivity can be used without any particular limitation. The thermal conductivity of the transparent heat radiating member 5 is preferably 1 W / mK or more, more preferably 3 W / mK or more, further preferably 5 W / mK or more, and particularly preferably 10 W / mK or more. preferable. Such materials include glass and ceramic. Examples of the glass include SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr, or Ba) glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na, or K). ) -Based glass or SiO 2 —B 2 O 3 —RO—R ′ 2 O-based glass. As the SiO 2 —B 2 O 3 —RO based glass, for example, “OA-10G” (thermal conductivity 1 W / mK) manufactured by Nippon Electric Glass Co., Ltd. is suitable. As the ceramic, a high thermal conductive ceramic can be used. Examples of high thermal conductive ceramics include aluminum oxide ceramics, aluminum nitride ceramics, silicon carbide ceramics, boron nitride ceramics, magnesium oxide ceramics, titanium oxide ceramics, niobium oxide ceramics, zinc oxide ceramics, and oxides. Examples thereof include yttrium-based ceramics.
 透明放熱部材5の厚みは、励起光L1の透過性及び熱伝導性等を考慮して適宜決定することができる。透明放熱部材5の厚みは、例えば、0.001mm~1mmの範囲であることが好ましく、0.01mm~0.5mmの範囲であることがより好ましく、0.05mm~0.2mmの範囲であることがさらに好ましい。 The thickness of the transparent heat dissipating member 5 can be appropriately determined in consideration of the transparency of the excitation light L1, the thermal conductivity, and the like. The thickness of the transparent heat radiating member 5 is, for example, preferably in the range of 0.001 mm to 1 mm, more preferably in the range of 0.01 mm to 0.5 mm, and in the range of 0.05 mm to 0.2 mm. More preferably.
 光源3としては、例えば、青色光を励起光L1として出射するLED光源やLD光源等が用いられる。励起光L1が青色光である場合、例えば、黄色光が蛍光体4から蛍光として出射され、励起光L1と蛍光の合成光L2として白色光が出射される。あるいは、励起光L1が青色光である場合に、蛍光体4として緑色光を出射するものと赤色光を出射するものを混合して使用することにより、励起光L1と蛍光の合成光L2として白色光が出射される。 As the light source 3, for example, an LED light source or an LD light source that emits blue light as excitation light L1 is used. When the excitation light L1 is blue light, for example, yellow light is emitted as fluorescence from the phosphor 4, and white light is emitted as the excitation light L1 and the combined light L2 of fluorescence. Alternatively, when the excitation light L1 is blue light, the phosphor 4 that emits green light and the light that emits red light are mixed and used, so that the excitation light L1 and the fluorescence combined light L2 are white. Light is emitted.
 第1の樹脂層1を構成する樹脂1aとしては、例えば、透光性を有する紫外線硬化性樹脂や熱硬化性樹脂等の硬化性樹脂が用いられる。具体的には、例えば、エポキシ系樹脂、アクリル系樹脂、シリコーン系樹脂等を用いることができる。第2の樹脂層2を構成する樹脂2aも、樹脂1aと同様のものを用いることができる。 As the resin 1a constituting the first resin layer 1, for example, a curable resin such as a translucent ultraviolet curable resin or a thermosetting resin is used. Specifically, for example, an epoxy resin, an acrylic resin, a silicone resin, or the like can be used. As the resin 2a constituting the second resin layer 2, the same resin as the resin 1a can be used.
 透明放熱部材5と、第1の樹脂層1及び第2の樹脂層2を構成するそれぞれの樹脂1a及び2aとの屈折率の差は、0.4以下であることが好ましく、0.3以下であることがより好ましく、0.2以下であることがさらに好ましい。屈折率の差を小さくすることにより、透明放熱部材5と第1の樹脂層1との界面及び/または透明放熱部材5と第2の樹脂層2との界面における励起光L1の反射を低減することができ、発光効率及び光の取り出し効率を高めることができる。 The difference in refractive index between the transparent heat radiating member 5 and the respective resins 1a and 2a constituting the first resin layer 1 and the second resin layer 2 is preferably 0.4 or less, and 0.3 or less. More preferably, it is more preferably 0.2 or less. By reducing the difference in refractive index, the reflection of the excitation light L1 at the interface between the transparent heat dissipation member 5 and the first resin layer 1 and / or the interface between the transparent heat dissipation member 5 and the second resin layer 2 is reduced. The light emission efficiency and the light extraction efficiency can be increased.
 第2の樹脂層2に含まれる蛍光体4としては、例えば、量子ドットを用いることができる。量子ドットとしては、II-VI族化合物、及びIII-V族化合物等が挙げられる。II-VI族化合物としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe等が挙げられる。III-V族化合物としては、InP、GaN、GaAs、GaP、AlN、AlP、AlSb、InN、InAsまたはInSb等が挙げられる。これらの化合物から選択される少なくとも1種、またはこれらのうちの2種以上の複合体を量子ドットとして用いることができる。複合体としては、コアシェル構造のものが挙げられ、例えばCdSe粒子表面がZnSによりコーティングされたコアシェル構造のものが挙げられる。 As the phosphor 4 included in the second resin layer 2, for example, quantum dots can be used. Examples of quantum dots include II-VI group compounds and III-V group compounds. Examples of the II-VI group compound include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe and the like. Examples of the III-V group compound include InP, GaN, GaAs, GaP, AlN, AlP, AlSb, InN, InAs, and InSb. At least one selected from these compounds, or a composite of two or more of these can be used as quantum dots. Examples of the composite include those having a core-shell structure, such as those having a core-shell structure in which the surface of CdSe particles is coated with ZnS.
 蛍光体4は、量子ドットに限定されるものではなく、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体またはガーネット系化合物蛍光体等の無機蛍光体粒子等を用いてもよい。 The phosphor 4 is not limited to quantum dots. For example, an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a chloride phosphor, an acid chloride phosphor, a sulfide phosphor, an acid Inorganic phosphor particles such as a sulfide phosphor, a halide phosphor, a chalcogenide phosphor, an aluminate phosphor, a halophosphate phosphor, or a garnet compound phosphor may be used.
 パッケージ10は、例えば、セラミックやガラス等から構成することができる。セラミックとしては、酸化アルミニウム、窒化アルミニウム、ジルコニア、ムライト等が挙げられる。また、セラミックは、LTCC(Low Temperature Co-fired Ceramics)等のガラスセラミックであってもよい。LTCCの具体例としては、酸化チタンや酸化ニオブ等の無機粉末とガラス粉末との焼結体等が挙げられる。ガラスとしては、例えば、SiO-B-RO(RはMg、Ca、SrまたはBa)系ガラス、SiO-B-R’O(R’はLi、NaまたはK)系ガラス、SiO-B-RO-R’O系ガラス、SnO-P系ガラス、TeO系ガラスまたはBi系ガラス等が挙げられる。 The package 10 can be made of, for example, ceramic or glass. Examples of the ceramic include aluminum oxide, aluminum nitride, zirconia, and mullite. Further, the ceramic may be a glass ceramic such as LTCC (Low Temperature Co-fired Ceramics). Specific examples of LTCC include a sintered body of an inorganic powder such as titanium oxide or niobium oxide and a glass powder. Examples of the glass include SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr, or Ba) glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na, or K). ) Based glass, SiO 2 —B 2 O 3 —RO—R ′ 2 O based glass, SnO—P 2 O 5 based glass, TeO 2 based glass or Bi 2 O 3 based glass.
 蓋材11は、例えば、ガラス等の透明材料から構成することができる。ガラスとしては、パッケージ10を構成する上記ガラスと同様の材料を用いることができる。 The lid member 11 can be made of a transparent material such as glass, for example. As the glass, the same material as the glass constituting the package 10 can be used.
 本実施形態においては、第1の樹脂層1と第2の樹脂層2との間に透明放熱部材5が設けられているので、励起光L1の照射により第2の樹脂層2に生じた熱を透明放熱部材5で拡散することができ、第2の樹脂層2が熱により劣化し黒色化するのを抑制することができる。 In the present embodiment, since the transparent heat radiating member 5 is provided between the first resin layer 1 and the second resin layer 2, the heat generated in the second resin layer 2 by the irradiation of the excitation light L1. Can be diffused by the transparent heat dissipating member 5, and the second resin layer 2 can be prevented from being deteriorated by heat and blackened.
 本実施形態では、透明放熱部材5が第1の樹脂層1及び第2の樹脂層2と接するように設けられているが、これに限定されるものではなく、透明放熱部材5と第1の樹脂層1との間、及び/または、透明放熱部材5と第2の樹脂層2との間に隙間が形成されていてもよい。 In the present embodiment, the transparent heat radiating member 5 is provided so as to be in contact with the first resin layer 1 and the second resin layer 2, but the present invention is not limited to this, and the transparent heat radiating member 5 and the first resin layer 1 are not limited thereto. A gap may be formed between the resin layer 1 and / or between the transparent heat radiating member 5 and the second resin layer 2.
 (第2の実施形態)
 図3は、本発明の第2の実施形態の発光デバイス22を示す模式的断面図である。図3に示すように、本実施形態においては、第1の樹脂層1と第2の樹脂層2の間の外側周縁の領域に、透明放熱部材5が設けられていない。そのため、この外側周縁の領域において、第1の樹脂層1と第2の樹脂層2は互いに接するように設けられている。その他の構成は、第1の実施形態と同様である。
(Second Embodiment)
FIG. 3 is a schematic cross-sectional view showing a light emitting device 22 according to the second embodiment of the present invention. As shown in FIG. 3, in this embodiment, the transparent heat radiating member 5 is not provided in the area | region of the outer periphery between the 1st resin layer 1 and the 2nd resin layer 2. As shown in FIG. Therefore, the first resin layer 1 and the second resin layer 2 are provided in contact with each other in the region of the outer peripheral edge. Other configurations are the same as those of the first embodiment.
 本実施形態においても、第1の樹脂層1と第2の樹脂層2との間に透明放熱部材5が設けられているので、励起光L1の照射により第2の樹脂層2に生じた熱を透明放熱部材5で拡散することができ、第2の樹脂層2が熱により劣化し黒色化するのを抑制することができる。なお、本実施形態では透明放熱部材5の周縁部がパッケージ10に接していないが、透明放熱部材5の周縁部まで伝導した熱は、第1の樹脂層1または第2の樹脂層2を伝導してパッケージ10、さらには外部に放出される。つまり、透明放熱部材5の周縁部がパッケージ10に接していない場合でも、発生した熱をパッケージ10の近傍まで伝導するという点で、放熱性を高める効果を得ることができる。 Also in this embodiment, since the transparent heat radiating member 5 is provided between the first resin layer 1 and the second resin layer 2, the heat generated in the second resin layer 2 due to the irradiation of the excitation light L1. Can be diffused by the transparent heat dissipating member 5, and the second resin layer 2 can be prevented from being deteriorated by heat and blackened. In this embodiment, the peripheral portion of the transparent heat radiating member 5 is not in contact with the package 10, but the heat conducted to the peripheral portion of the transparent heat radiating member 5 is conducted through the first resin layer 1 or the second resin layer 2. Then, it is discharged to the package 10 and further to the outside. That is, even when the peripheral edge of the transparent heat radiating member 5 is not in contact with the package 10, the effect of improving heat dissipation can be obtained in that the generated heat is conducted to the vicinity of the package 10.
 (第3の実施形態)
 図4は、本発明の第3の実施形態の発光デバイス23を示す模式的断面図である。図4に示すように、本実施形態においては、第2の樹脂層2の光出射側にも、別の透明放熱部材6が設けられている。透明放熱部材6は、透明放熱部材5と同様にして構成することができる。その他の構成は、第1の実施形態と同様である。
(Third embodiment)
FIG. 4 is a schematic cross-sectional view showing a light emitting device 23 according to the third embodiment of the present invention. As shown in FIG. 4, in the present embodiment, another transparent heat radiating member 6 is also provided on the light emitting side of the second resin layer 2. The transparent heat radiating member 6 can be configured in the same manner as the transparent heat radiating member 5. Other configurations are the same as those of the first embodiment.
 本実施形態では、第2の樹脂層2の光出射側にも、別の透明放熱部材6が設けられているので、励起光L1の照射により第2の樹脂層2に生じた熱を透明放熱部材5及び6で効果的に拡散することができ、第2の樹脂層2が熱により劣化し黒色化するのをさらに抑制することができる。 In the present embodiment, since another transparent heat radiating member 6 is also provided on the light emitting side of the second resin layer 2, the heat generated in the second resin layer 2 by the irradiation of the excitation light L1 is radiated transparently. It can diffuse effectively with the members 5 and 6, and it can further suppress that the 2nd resin layer 2 deteriorates by heat and blackens.
 本実施形態では、蓋材11を設けているが、透明放熱部材6を蓋材として機能させ、蓋材11を設けない構成としてもよい。この場合、透明放熱部材6によりパッケージ10が封止される。 In the present embodiment, the lid member 11 is provided, but the transparent heat radiating member 6 may function as the lid member and the lid member 11 may not be provided. In this case, the package 10 is sealed by the transparent heat radiating member 6.
 (第1の製造方法の実施形態)
 図1を参照して、第1の製造方法の実施形態を説明する。パッケージ10を用意し、パッケージ10の底部10aの上に光源3を配置する。次に、硬化前の樹脂1aをパッケージ10内に導入し、光源3を樹脂1aで覆う。次に、樹脂1aを硬化させて第1の樹脂層1を形成する。
(Embodiment of First Manufacturing Method)
An embodiment of the first manufacturing method will be described with reference to FIG. The package 10 is prepared, and the light source 3 is disposed on the bottom 10 a of the package 10. Next, the uncured resin 1a is introduced into the package 10, and the light source 3 is covered with the resin 1a. Next, the resin 1a is cured to form the first resin layer 1.
 パッケージ10内の第1の樹脂層1の上に、透明放熱部材5を配置する。このとき、透明放熱部材5の周縁部の少なくとも一部がパッケージ10の内壁に接するように配置することが好ましい。次に、パッケージ10内の透明放熱部材5の上に、第2の樹脂層2を形成するための硬化前の樹脂2aを導入する。硬化前の樹脂2aには、蛍光体4が分散して含まれている。次に、樹脂2aを硬化させて第2の樹脂層2を形成する。次に、蓋材11によりパッケージ10の開口部10bを封止する。 The transparent heat dissipating member 5 is disposed on the first resin layer 1 in the package 10. At this time, it is preferable to arrange the transparent heat radiating member 5 so that at least a part of the peripheral edge thereof is in contact with the inner wall of the package 10. Next, an uncured resin 2 a for forming the second resin layer 2 is introduced on the transparent heat radiating member 5 in the package 10. The phosphor 4 is dispersed and contained in the resin 2a before curing. Next, the resin 2a is cured to form the second resin layer 2. Next, the opening 10 b of the package 10 is sealed with the lid 11.
 以上のようにして、本発明の第1の製造方法に従い、第1の実施形態の発光デバイス21を製造することができる。 As described above, the light emitting device 21 of the first embodiment can be manufactured according to the first manufacturing method of the present invention.
 (第2の製造方法の実施形態)
 図5は、本発明の第2の製造方法の実施形態における第2の樹脂層の一例を示す模式的断面図である。第1の製造方法では、上述のように、パッケージ10内に硬化前の樹脂2aを導入し、パッケージ10内で樹脂2aを硬化することにより第2の樹脂層2を形成している。第2の製造方法では、図5に示すような透明放熱部材5が下方に取り付けられた硬化状態の第2の樹脂層2を、パッケージ10内の第1の樹脂層1の上に配置することにより、発光デバイスを製造する。
(Embodiment of Second Manufacturing Method)
FIG. 5 is a schematic cross-sectional view showing an example of the second resin layer in the embodiment of the second production method of the present invention. In the first manufacturing method, the second resin layer 2 is formed by introducing the uncured resin 2a into the package 10 and curing the resin 2a in the package 10 as described above. In the second manufacturing method, the cured second resin layer 2 with the transparent heat radiating member 5 attached below as shown in FIG. 5 is disposed on the first resin layer 1 in the package 10. Thus, a light emitting device is manufactured.
 透明放熱部材5が下方に取り付けられた硬化状態の第2の樹脂層2は、以下のようにして製造することができる。型枠を準備し、型枠の底部に透明放熱部材5を配置し、その上に硬化前の樹脂2aを注入し、その後樹脂2aを硬化させて第2の樹脂層2を形成する。このようにして、透明放熱部材5が下方に取り付けられた硬化状態の第2の樹脂層2を得る。 The cured second resin layer 2 to which the transparent heat radiating member 5 is attached below can be manufactured as follows. A mold is prepared, the transparent heat radiating member 5 is disposed at the bottom of the mold, the uncured resin 2a is injected thereon, and then the resin 2a is cured to form the second resin layer 2. Thus, the 2nd resin layer 2 of the hardening state to which the transparent heat radiating member 5 was attached below is obtained.
 図6は、本発明の第2の製造方法の実施形態における第2の樹脂層の他の例を示す模式的断面図である。図6に示す第2の樹脂層2においては、下方に透明放熱部材5が取り付けられ、上方に別の透明放熱部材6が取り付けられている。図6に示す硬化状態の第2の樹脂層2を、パッケージ10内の第1の樹脂層1の上に配置することにより、図4に示す発光デバイス23を製造することができる。 FIG. 6 is a schematic cross-sectional view showing another example of the second resin layer in the embodiment of the second production method of the present invention. In the 2nd resin layer 2 shown in FIG. 6, the transparent heat radiating member 5 is attached below, and another transparent heat radiating member 6 is attached above. By disposing the cured second resin layer 2 shown in FIG. 6 on the first resin layer 1 in the package 10, the light emitting device 23 shown in FIG. 4 can be manufactured.
 図6に示す硬化状態の第2の樹脂層2は、図5に示す硬化状態の第2の樹脂層2の上記製造方法において、型枠に樹脂2aを注入した後、その上に透明放熱部材6を配置し、その後樹脂2aを硬化させることにより製造することができる。 The second resin layer 2 in the cured state shown in FIG. 6 is a transparent heat radiating member formed thereon after injecting the resin 2a into the mold in the manufacturing method of the second resin layer 2 in the cured state shown in FIG. 6 can be disposed, and then the resin 2a can be cured.
1…第1の樹脂層
1a…樹脂
2…第2の樹脂層
2a…樹脂
3…光源
4…蛍光体
5…透明放熱部材
6…透明放熱部材
10…パッケージ
10a…底部
10b…開口部
11…蓋材
21…発光デバイス
22…発光デバイス
23…発光デバイス
L1…励起光
L2…合成光
S1…透明放熱部材の面積
S2…励起光の照射領域の面積
DESCRIPTION OF SYMBOLS 1 ... 1st resin layer 1a ... Resin 2 ... 2nd resin layer 2a ... Resin 3 ... Light source 4 ... Phosphor 5 ... Transparent heat radiation member 6 ... Transparent heat radiation member 10 ... Package 10a ... Bottom part 10b ... Opening part 11 ... Cover Material 21 ... Light emitting device 22 ... Light emitting device 23 ... Light emitting device L1 ... Excitation light L2 ... Synthetic light S1 ... Area of transparent heat radiation member S2 ... Area of excitation light irradiation region

Claims (8)

  1.  パッケージと、
     前記パッケージの底部に配置される、励起光を出射する光源と、
     前記光源を封止する第1の樹脂層と、
     前記励起光を波長変換する蛍光体を含み、前記第1の樹脂層の上に設けられる第2の樹脂層と、
     前記第1の樹脂層と前記第2の樹脂層の間に設けられる透明放熱部材と、
    を備える、発光デバイス。
    Package and
    A light source that emits excitation light, disposed at the bottom of the package;
    A first resin layer for sealing the light source;
    A phosphor that converts the wavelength of the excitation light; a second resin layer provided on the first resin layer;
    A transparent heat dissipating member provided between the first resin layer and the second resin layer;
    A light emitting device comprising:
  2.  前記透明放熱部材がガラスまたはセラミックからなる、請求項1に記載の発光デバイス。 The light emitting device according to claim 1, wherein the transparent heat dissipating member is made of glass or ceramic.
  3.  前記第1の樹脂層と前記第2の樹脂層の間における前記励起光の照射領域を覆うように、前記透明放熱部材が設けられている、請求項1または2に記載の発光デバイス。 The light emitting device according to claim 1 or 2, wherein the transparent heat dissipating member is provided so as to cover an irradiation region of the excitation light between the first resin layer and the second resin layer.
  4.  前記透明放熱部材の面積が、前記照射領域の面積の2倍以上である、請求項3に記載の発光デバイス。 The light emitting device according to claim 3, wherein an area of the transparent heat radiating member is at least twice as large as an area of the irradiation region.
  5.  前記透明放熱部材と、前記第1の樹脂層及び前記第2の樹脂層を構成するそれぞれの樹脂との屈折率の差が、0.4以下である、請求項1~4のいずれか一項に記載の発光デバイス。 The refractive index difference between the transparent heat radiating member and each of the resins constituting the first resin layer and the second resin layer is 0.4 or less. The light emitting device according to 1.
  6.  前記第2の樹脂層の光出射側にも、別の透明放熱部材が設けられている、請求項1~5のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 5, wherein another transparent heat dissipating member is also provided on the light emitting side of the second resin layer.
  7.  請求項1~6のいずれか一項に記載の発光デバイスを製造する方法であって、
     前記パッケージの前記底部に前記光源を配置する工程と、
     前記光源を前記第1の樹脂層により封止する工程と、
     前記第1の樹脂層の上に、前記透明放熱部材を配置する工程と、
     前記透明放熱部材の上に、前記第2の樹脂層を形成するための硬化前の樹脂を導入する工程と、
     前記硬化前の樹脂を硬化させて、前記第2の樹脂層を形成する工程と、
    を備える、発光デバイスの製造方法。
    A method for producing a light-emitting device according to any one of claims 1 to 6,
    Placing the light source on the bottom of the package;
    Sealing the light source with the first resin layer;
    Disposing the transparent heat radiating member on the first resin layer;
    Introducing a resin before curing for forming the second resin layer on the transparent heat dissipation member,
    Curing the uncured resin to form the second resin layer;
    A method for manufacturing a light-emitting device.
  8.  請求項1~6のいずれか一項に記載の発光デバイスを製造する方法であって、
     前記パッケージの前記底部に前記光源を配置する工程と、
     前記光源を前記第1の樹脂層により封止する工程と、
     前記第1の樹脂層の上に、前記透明放熱部材が下方に取り付けられた硬化状態の前記第2の樹脂層を配置する工程と、
    を備える、発光デバイスの製造方法。
    A method for producing a light-emitting device according to any one of claims 1 to 6,
    Placing the light source on the bottom of the package;
    Sealing the light source with the first resin layer;
    Placing the second resin layer in a cured state with the transparent heat dissipating member attached below on the first resin layer;
    A method for manufacturing a light-emitting device.
PCT/JP2018/003992 2017-02-23 2018-02-06 Light emitting device and method for manufacturing same WO2018155167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017031918A JP2018137381A (en) 2017-02-23 2017-02-23 Light emitting device and method of manufacturing the same
JP2017-031918 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155167A1 true WO2018155167A1 (en) 2018-08-30

Family

ID=63253254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003992 WO2018155167A1 (en) 2017-02-23 2018-02-06 Light emitting device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2018137381A (en)
WO (1) WO2018155167A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123052A1 (en) * 2009-04-22 2010-10-28 シーシーエス株式会社 Light-emitting device
JP2011035198A (en) * 2009-08-03 2011-02-17 Ccs Inc Method of manufacturing led light-emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123052A1 (en) * 2009-04-22 2010-10-28 シーシーエス株式会社 Light-emitting device
JP2011035198A (en) * 2009-08-03 2011-02-17 Ccs Inc Method of manufacturing led light-emitting device

Also Published As

Publication number Publication date
JP2018137381A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
US10879434B2 (en) Quantum dot-based color-converted light emitting device and method for manufacturing the same
KR101193990B1 (en) A light emitting device having a transparent thermally conductive layer
US7718991B2 (en) Lighting device and method of making
KR102102699B1 (en) Quantum dot-based color-converted light-emitting device and method for manufacturing the same
US9541243B2 (en) Light conversion assembly, a lamp and a luminaire
WO2012132232A1 (en) Semiconductor light-emitting device
KR20110003586A (en) Light-emitting device
TW201506324A (en) Photoluminescence wavelength conversion components
JP2007201301A (en) Light emitting device using white led
JP6225272B2 (en) Optoelectronic parts
EP3120394B1 (en) Heavily phosphor loaded led package
WO2017217023A1 (en) Wavelength conversion member, method for producing same, and light-emitting device
JP2008010749A (en) Light-emitting apparatus and manufacturing method thereof
JP4786886B2 (en) Semiconductor light emitting device
TWI746534B (en) Wavelength conversion member, manufacturing method thereof, and light emitting device
KR102103881B1 (en) White light emitting device using uv led chip
WO2018155167A1 (en) Light emitting device and method for manufacturing same
JP2018018871A (en) Wavelength conversion member and light-emitting device
EP4314632A1 (en) Optical and thermal improvement of a two-sided multi-channel filament
JP6848582B2 (en) Wavelength conversion member and light emitting device
JP2018151610A (en) Wavelength conversion member and light emitting device
WO2018163691A1 (en) Wavelength conversion member and light emitting device
JP2005229136A (en) Light-emitting device and method of manufacturing the same
JP6561777B2 (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
WO2017154355A1 (en) Method for manufacturing a wavelength conversion member and a wavelength conversion member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756560

Country of ref document: EP

Kind code of ref document: A1