WO2021205716A1 - Wavelength conversion element and optical device - Google Patents

Wavelength conversion element and optical device Download PDF

Info

Publication number
WO2021205716A1
WO2021205716A1 PCT/JP2021/002932 JP2021002932W WO2021205716A1 WO 2021205716 A1 WO2021205716 A1 WO 2021205716A1 JP 2021002932 W JP2021002932 W JP 2021002932W WO 2021205716 A1 WO2021205716 A1 WO 2021205716A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wavelength conversion
substrate
conversion element
element according
Prior art date
Application number
PCT/JP2021/002932
Other languages
French (fr)
Japanese (ja)
Inventor
智子 植木
豪 鎌田
青森 繁
英臣 由井
透 菅野
裕一 一ノ瀬
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2021205716A1 publication Critical patent/WO2021205716A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • Patent Document 1 describes a base material and a wavelength conversion member provided on the base material and having a phosphor layer.
  • the phosphor layer is composed of phosphor particles and translucent ceramics that bond between adjacent phosphor particles.
  • Patent Document 1 describes inorganic binders such as silica and aluminum phosphate as translucent ceramics.
  • a main object of the present disclosure is to provide a wavelength conversion element in which the wavelength conversion layer is not easily peeled off.
  • the wavelength conversion element includes a substrate and a wavelength conversion layer.
  • the wavelength conversion layer is arranged on the substrate.
  • the wavelength conversion layer includes an inorganic wavelength conversion material that emits light having a wavelength different from that of the incident light.
  • the wavelength conversion layer includes a first layer and a second layer.
  • the first layer is arranged on the substrate.
  • the second layer has a portion that covers the first layer and a portion that comes into contact with the substrate.
  • the second layer contains an inorganic wavelength conversion material.
  • FIG. 5 is a schematic cross-sectional view taken along the line II-II of FIG. It is a schematic cross-sectional view which shows the distribution of heat when the wavelength conversion element is irradiated with excitation light. It is a schematic plan view of the wavelength conversion element which concerns on 2nd Embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along the line IV-IV of FIG. It is a schematic cross-sectional view of the wavelength conversion element which concerns on 3rd Embodiment. It is a schematic plan view of the wavelength conversion element which concerns on 4th Embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along the line II-II of FIG. It is a schematic cross-sectional view which shows the distribution of heat when the wavelength conversion element is irradiated with excitation light.
  • FIG. 5 is a schematic plan view of the wavelength conversion element which concerns on 2nd Embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along the line IV-IV of
  • FIG. 7 is a schematic cross-sectional view taken along the line VII-VII of FIG. It is a schematic plan view of the wavelength conversion element which concerns on 5th Embodiment.
  • 9 is a schematic cross-sectional view taken along the line IX-IX of FIG. It is a schematic cross-sectional view of the wavelength conversion element which concerns on 6th Embodiment. It is a schematic plan view of the wavelength conversion element which concerns on 7th Embodiment.
  • It is a schematic diagram which shows the structure of the optical device which concerns on 8th Embodiment.
  • It is a schematic plan view of the wavelength conversion element in 8th Embodiment.
  • It is a schematic diagram which shows the structure of the optical device which concerns on 9th Embodiment.
  • FIG. 1 is a schematic plan view of the wavelength conversion element 1 according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG.
  • the wavelength conversion element 1 includes a substrate 10 and a wavelength conversion layer 20.
  • the substrate 10 may be composed of a non-translucent substrate or a translucent substrate.
  • the substrate 10 can be composed of, for example, a metal substrate, a single crystal substrate, a ceramic substrate, or the like.
  • the substrate 10 preferably has a high thermal conductivity so that the heat of the wavelength conversion layer 20 can be dissipated with high efficiency.
  • the substrate 10 when the substrate 10 is a non-translucent substrate, it is preferably a metal substrate, and more preferably, for example, an aluminum substrate.
  • the substrate 10 may be composed of, for example, a metal substrate such as an aluminum substrate and a coating layer covering the surface of the metal substrate.
  • the substrate 10 is a translucent substrate, it is preferably a sapphire substrate, for example.
  • the shape and dimensions of the substrate 10 are not particularly limited.
  • the substrate 10 may have, for example, a circular shape, a disk shape, a polygonal shape, an elliptical shape, an oval shape, or the like.
  • the thickness of the substrate 10 is not particularly limited, but can be, for example, about 0.5 mm or more and 2.0 mm or less.
  • a wavelength conversion layer 20 is arranged on the substrate 10.
  • the wavelength conversion layer 20 is a layer that emits light having a wavelength different from that of the excitation light, typically light having a wavelength longer than that of the excitation light, when light of a specific wavelength (excitation light) is incident.
  • the coefficient of linear thermal expansion of the substrate 10 is different from the coefficient of linear thermal expansion of the wavelength conversion layer 20. Normally, the coefficient of linear thermal expansion of the substrate 10 is larger than the coefficient of linear thermal expansion of the wavelength conversion layer 20.
  • the wavelength conversion layer 20 includes a first layer 21 and a second layer 22.
  • the first layer 21 is arranged on the substrate 10. Substantially the entire surface of the first layer 21 on the substrate 10 side is in contact with the substrate 10. The first layer 21 is preferably bonded to the substrate 10.
  • the first layer 21 is an inorganic layer substantially composed of an inorganic material. Specifically, in the present embodiment, the first layer 21 includes a plurality of inorganic scattering materials and an inorganic binder.
  • the inorganic scattering material scatters the light incident on the first layer 21 in multiple directions.
  • the inorganic scattering material may be, for example, titanium oxide particles, silica particles, alumina particles, or the like.
  • Inorganic binder exists in the gaps between multiple inorganic scattering materials. Specifically, the inorganic binder is filled in the gaps between the plurality of inorganic scattering materials.
  • the refractive index of the inorganic binder and the inorganic scattering material are different from each other.
  • the refractive index of the inorganic binder and the refractive index of the inorganic scattering material are preferably different by 0.1 or more, and more preferably 0.2 or more.
  • Specific examples of the inorganic binder preferably used include alumina, silica, silicon nitride, aluminum nitride, zinc oxide, tin oxide and the like.
  • the first layer 21 may further contain an inorganic wavelength conversion material.
  • the first layer 21 may be composed of a plurality of inorganic wavelength conversion materials and an inorganic binder located in a gap between the plurality of inorganic wavelength conversion materials.
  • the second layer 22 covers the first layer 21. Moreover, the second layer 22 is provided so that a part of the second layer 22 comes into contact with the substrate 10. Specifically, the second layer 22 includes a first portion 22a and a second portion 22b.
  • the first portion 22a covers the first layer 21.
  • the first portion 22a may be provided on at least a part of the first layer 21.
  • the first portion 22a is provided on the entire first layer 21. That is, the first portion 22a covers the entire first layer 21.
  • the plan view shape of the first portion 22a is rectangular.
  • the shape of the first portion is not particularly limited.
  • the plan-view shape of the first portion may be, for example, a polygon, a circle, an oval, an ellipse, an annulus, or the like.
  • the second portion 22b is connected to the first portion 22a.
  • the second portion 22b is in contact with the substrate 10.
  • the second portion 22b is preferably bonded to the substrate 10.
  • the second portion 22b is provided on both sides of the first portion 22a in one direction in a plan view.
  • the second portion 22b is both sides of the first portion 22a in a plan view, both in one direction and in the other direction tilted (typically orthogonal) with respect to one direction. It is provided in. That is, in the present embodiment, the second layer 22 is in contact with the substrate 10 on both sides in one direction in a plan view. Specifically, in the present embodiment, the second portion 22b is in contact with the substrate 10 on both sides in one direction and in each of the other directions in a plan view.
  • the second portion 22b is provided over the entire circumference of the outer periphery of the first layer 21 and the first portion 22a so as to surround the first portion 22a in a plan view. ..
  • the present disclosure is not limited to this configuration.
  • the second portion 22b may be provided on a part of the outer periphery of the first layer 21 in a plan view.
  • the second layer 22 contains an inorganic wavelength conversion material.
  • the inorganic wavelength converter When light of a specific wavelength (excitation light) is incident, the inorganic wavelength converter emits light having a wavelength different from that of the excitation light, typically light having a wavelength longer than that of the excitation light.
  • the inorganic wavelength conversion material includes, for example, an inorganic wavelength conversion material such as an inorganic phosphor.
  • the inorganic wavelength conversion material examples include YAG: Ce (Y 3 Al 5 O 12 : Ce 3+ ), CaAlSiN 3 : Eu 2+ , Ca- ⁇ -SiAlON: Eu 2+ , ⁇ -SiAlON: Eu 2+ , Lu. 3 Al 5 O 12 : Ce 3+ (LuAG: Ce), (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 C 12 : Eu, BaMgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like can be mentioned.
  • the plurality of inorganic wavelength conversion materials may contain, for example, one type of inorganic wavelength conversion material, or may contain a plurality of types of inorganic wavelength conversion materials.
  • the shape of the inorganic wavelength conversion material is not particularly limited.
  • the inorganic wavelength conversion material may be, for example, particulate, spherical, elliptical, needle-shaped, polygonal columnar, columnar or the like.
  • the particle size of the plurality of inorganic wavelength conversion materials is not particularly limited.
  • the average particle size of the plurality of inorganic wavelength conversion materials is, for example, preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 5 ⁇ m or more and 30 ⁇ m or less. Inorganic wavelength conversion materials having different average particle sizes may be combined.
  • the second layer 22 includes an organic binder in addition to the plurality of inorganic wavelength conversion materials.
  • the organic binder is filled in the gaps between the plurality of inorganic wavelength conversion materials.
  • Specific examples of the organic binder used in this manner include, for example, silicone, polyamide, polyimide and the like.
  • the organic binder and the wavelength conversion material have different refractive indexes from each other.
  • the refractive index of the organic binder and the refractive index of the wavelength conversion material are preferably different by 0.1 or more, and more preferably 0.2 or more.
  • the first layer 21 contains an inorganic binder
  • the second layer 22 contains an organic binder. Therefore, the adhesion between the second layer 22 and the substrate 10 per unit area is higher than the adhesion between the first layer 21 and the substrate 10 per unit area. Specifically, the adhesion between the second layer 22 and the substrate 10 per unit area is preferably twice or more higher than the adhesion between the first layer 21 and the substrate 10 per unit area, and is preferably 5 times or more. More preferably.
  • the thermal conductivity of the first layer 21 is higher than the thermal conductivity of the second layer 22.
  • the thermal conductivity of the first layer 21 is preferably twice or more higher than that of the second layer 22, and more preferably five times or more.
  • the content of the inorganic binder in the first layer 21 is preferably 10% by volume or more and 70% by volume or less, and more preferably 20% by volume or more and 60% by volume or less.
  • the content of the organic binder in the second layer 22 is preferably 10% by volume or more and 70% by volume or less, and more preferably 20% by volume or more and 60% by volume or less.
  • the second layer 22 containing the inorganic wavelength conversion material is in contact with the substrate 10. Therefore, the heat generated in the second layer 22 when the excitation light is irradiated to the second layer 22 is likely to be conducted to the substrate 10 side. That is, the heat generated in the second layer 22 is likely to be dissipated through the substrate 10. Therefore, the temperature of the second layer 22 is unlikely to rise. Therefore, a difference in the amount of thermal expansion is unlikely to occur between the substrate 10 and the second layer 22. Therefore, it is possible to effectively prevent the wavelength conversion layer 20 including the second layer 22 from peeling off from the substrate 10.
  • the amount of heat generated in the region A1 extending inward from the central portion of the surface of the second layer 22 is the largest, followed by the periphery thereof.
  • the amount of heat generated in the region A2 increases.
  • the region A2 having a large amount of heat generation also includes a contact surface between the first layer 21 and the substrate 10. Therefore, in the portion A4 included in the region A2 of the contact surface between the first layer 21 and the substrate 10, the difference in the amount of thermal expansion between the first layer 21 and the substrate 10 can be large. Therefore, the first layer 21 may be peeled off from the substrate 10.
  • the calorific value is relatively small. Therefore, the difference in the amount of thermal expansion between the second portion 22b and the substrate 10 is small. Therefore, the second portion 22b is difficult to peel off from the substrate 10. Therefore, as in the present embodiment, in the wavelength conversion element 1 including the second layer 22 having the second portion 22b, it is possible to effectively suppress the wavelength conversion layer 20 from peeling from the substrate 10.
  • the problem of peeling from the substrate 10 of the wavelength conversion layer 20 is remarkable when the linear thermal expansion coefficient of the substrate 10 and the linear thermal expansion coefficient of the wavelength conversion layer 20 are different from each other. Therefore, the technique of providing the second layer 22 so as to be in direct contact with the substrate 10 is particularly effective when the linear thermal expansion coefficient of the substrate 10 and the linear thermal expansion coefficient of the wavelength conversion layer 20 are different from each other.
  • the adhesion between the second layer 22 and the substrate 10 per unit area is higher than the adhesion between the first layer 21 and the substrate 10 per unit area. Therefore, the second layer 22 is difficult to peel off from the substrate 10. Therefore, peeling of the wavelength conversion layer 20 including the second layer 22 from the substrate 10 can be suppressed more effectively.
  • the adhesion between the second layer 22 and the substrate 10 per unit area is preferably twice or more, preferably five times or more the adhesion between the first layer 21 and the substrate 10 per unit area. Is more preferable.
  • the thermal conductivity of the first layer 21 is higher than the thermal conductivity of the second layer 22. Therefore, of the second layer 22, the heat generated in the first portion 22a located above the first layer 21 is suitable for the substrate 10 via the first layer 21 having a high thermal conductivity. Conduct. Therefore, the temperature rise of the first portion 22a is also effectively suppressed. Therefore, it is more effectively suppressed that the temperature of the wavelength conversion layer 20 rises. Therefore, the peeling of the wavelength conversion layer 20 from the substrate 10 can be suppressed more effectively.
  • the adhesion between the second layer 22 and the substrate 10 per unit area is higher than the adhesion between the first layer 21 and the substrate 10 per unit area, and the thermal conductivity of the first layer 21 is the second.
  • the first layer 21 contains an inorganic binder.
  • the first layer 21 more preferably contains alumina having a higher thermal conductivity.
  • the first layer 21 preferably contains an inorganic scattering material. It is more preferable that the first layer 21 is an inorganic layer substantially made of an inorganic material.
  • the second layer 22 contains an organic binder.
  • the second layer 22 is in contact with the substrate 10 on both sides in one direction in a plan view. More preferably, it is in contact with the substrate 10 on both sides in each of the directions and the other directions. In a plan view, it is more preferable that the second layer 22 is provided so that the portion of the second layer 22 in contact with the substrate 10 surrounds the portion where the first layer 21 is provided.
  • the substrate 10 has high heat dissipation. Therefore, the substrate 10 is preferably made of, for example, a metal substrate, and more preferably made of an aluminum substrate made of aluminum or an aluminum alloy.
  • the wavelength conversion member is included by providing the second layer 22 so as to cover the entire first layer 21.
  • the second layer 22 having a wavelength conversion function can be enlarged. Therefore, the intensity of the wavelength conversion light emitted from the wavelength conversion element 1 can be increased.
  • FIG. 4 is a schematic plan view of the wavelength conversion element 1a according to the second embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along the line IV-IV of FIG.
  • the wavelength conversion element 1 has a rectangular shape.
  • the wavelength conversion element may be, for example, a disk shape or the like.
  • the wavelength conversion element 1a constituting the disk-shaped fluorescent wheel will be described.
  • the substrate 10 has a disk shape. As shown in FIG. 4, a through hole 10a is formed in the central portion of the substrate 10. As shown in FIG. 5, the shaft 40 is inserted into the through hole 10a. The substrate 10 rotates with the rotation of the shaft 40 inserted into the through hole 10a.
  • the wavelength conversion layer 20 is provided on the outer peripheral portion of the substrate 10.
  • the wavelength conversion layer 20 is formed in a ring shape (annular shape).
  • the wavelength conversion layer 20 has a first layer 21 and a second layer 22.
  • the first layer 21 is provided in a ring shape.
  • the first portion 22a of the second layer 22 has a ring shape substantially similar to that of the first layer 21.
  • the first portion 22a covers substantially the entire first layer 21.
  • the second layer 22 is in contact with the substrate 10 on both sides of the first layer 21 in the radial direction in a plan view. That is, the second layer 22 is in contact with the substrate 10 on the inner side in the radial direction of the first layer 21 and in contact with the substrate 10 on the outer side in the radial direction of the first layer 21 in a plan view.
  • the second portion 22b of the second layer 22 has a portion 22b1 located inside the first layer 21 in the radial direction and a portion 22b2 located outside the first layer 21 in the radial direction.
  • the wavelength conversion element 1a according to the second embodiment also has a portion in which the second layer 22 comes into direct contact with the substrate 10 as in the wavelength conversion element 1 according to the first embodiment. Therefore, substantially the same effect as that described in the first embodiment is also exhibited in the wavelength conversion element 1a according to the second embodiment.
  • FIG. 6 is a schematic cross-sectional view of the wavelength conversion element according to the third embodiment.
  • the second layer 22 is in contact with the substrate 10 on both sides of the first layer 21 in the radial direction.
  • the present disclosure is not limited to this configuration.
  • the second layer may be in contact with the substrate 10 on either the radial inner side or the radial outer side of the first layer.
  • the second layer 22 may be in contact with the substrate 10 on the radial outer side of the first layer 21. Even in this case, substantially the same effect as the above-mentioned effect is achieved.
  • FIG. 7 is a schematic plan view of the wavelength conversion element 1b according to the fourth embodiment.
  • FIG. 8 is a schematic cross-sectional view taken along the line VII-VII of FIG.
  • the plan view shape of the first layer 21 constituting the wavelength conversion layer 20 and the plan view shape of the second layer 22 are substantially congruent.
  • the second layer 22 is arranged eccentrically with respect to the first layer 21.
  • the first layer 21 and the second layer 22 are arranged so that the center of the first layer 21 and the center of the second layer 22 are located at different positions.
  • the first layer 21 and the second layer 22 are arranged so that the center of the first layer 21 and the center of the second layer 22 are different in the left-right direction. Therefore, as shown in FIG. 8, the wavelength conversion element 1b also has a second portion 22b in which the second layer 22 is in direct contact with the substrate 10. Therefore, substantially the same effect as the above-mentioned effect is produced.
  • the plan view shape of the first layer 21 and the plan view shape of the second layer 22 are substantially congruent. Therefore, for example, when each of the first layer 21 and the second layer 22 is formed by using the screen printing method, the first layer 21 and the second layer 22 can be formed by using the same screen plate. .. Therefore, the manufacturing process of the wavelength conversion element 1b can be simplified.
  • FIG. 9 is a schematic plan view of the wavelength conversion element 1c according to the fifth embodiment.
  • FIG. 10 is a schematic cross-sectional view taken along the line IX-IX of FIG.
  • the second layer 22 is provided so as to have a radius smaller than the radius of the first layer 21 in a plan view.
  • the width of the first layer 21 in the radial direction and the width of the second layer 22 in the radial direction are substantially equal. Therefore, as mainly shown in FIG. 10, the second layer 22 is in contact with the substrate 10 inside the first layer 21 in the radial direction. Even in this case, substantially the same effect as the above-mentioned effect is achieved.
  • FIG. 11 is a schematic cross-sectional view of the wavelength conversion element 1d according to the sixth embodiment.
  • the wavelength conversion element 1d according to the sixth embodiment further includes a third layer 23.
  • the third layer 23 is arranged between the first layer 21 and the second layer 22. Even in this case, since the second layer 22 has a portion in contact with the substrate 10, substantially the same effect as the above-mentioned effect is exhibited.
  • the third layer 23 is not particularly limited, but may be, for example, the following layer.
  • the third layer 23 may be, for example, a scattering layer having a lower adhesion than the second layer 22 per unit area and higher than the adhesion per unit area of the first layer 21.
  • the third layer 23 may include, for example, an inorganic scattering material and an organic binder such as a silicone resin. In this case, the peeling between the first layer 21 and the second layer 22 can be suppressed more effectively.
  • the third layer 23 may be a wavelength conversion layer having a higher thermal conductivity than that of the second layer 22.
  • the third layer 23 may include, for example, an inorganic wavelength conversion material and an inorganic binder.
  • the third layer 23 may be an adhesive layer that adheres the second layer 22 and the first layer 21.
  • the adhesive for forming this adhesive layer may be an organic adhesive or an inorganic adhesive. That is, the third layer 23 may be, for example, an organic adhesive layer or an inorganic adhesive layer.
  • the second layer 22 is in contact with the substrate 10 only on one side in one direction with respect to the first layer 21, but the second layer 22 is in one direction of the first layer 21. May be in contact with the substrate 10 on both sides of the.
  • FIG. 12 is a schematic plan view of the wavelength conversion element 1e according to the seventh embodiment.
  • both the first layer 21 and the second layer 22 have a rectangular shape in a plan view.
  • the plan view shape of the first layer 21 and the plan view shape of the second layer 22 are substantially congruent.
  • the first layer 21 and the second layer 22 are arranged so that the center of gravity of the first layer 21 and the center of gravity of the second layer 22 are located at different positions. Also in the present embodiment, since the second layer 22 has a portion in direct contact with the substrate 10, an effect substantially similar to the above-mentioned effect is exhibited.
  • FIG. 13 is a schematic view showing the configuration of the optical device 2 according to the eighth embodiment.
  • FIG. 14 is a schematic plan view of the wavelength conversion element 1f in the eighth embodiment.
  • the wavelength conversion element according to the present disclosure can be used in various optical devices.
  • the optical device 2 which is a projection device including the wavelength conversion element 1f will be described.
  • the optical device 2 shown in FIG. 13 constitutes a projection device.
  • the optical device 2 has a light source 51.
  • the light source 51 can be composed of, for example, an LED (Light Emitting Diode) or a laser element.
  • LED Light Emitting Diode
  • LD Laser Diode
  • a dichroic mirror 52 that selectively reflects the wavelength of blue light B is arranged on the light emitting side of the light source 51.
  • the blue light B emitted from the light source 51 is reflected by the dichroic mirror 52.
  • the reflected blue light B is incident on the wavelength conversion element 1f.
  • FIG. 14 is a schematic plan view of the wavelength conversion element 1f in the eighth embodiment.
  • the wavelength conversion element 1f constitutes a fluorescent wheel.
  • the substrate 10 has a disk shape in which a part is cut out along the circumferential direction.
  • the substrate 10 is made of a metal substrate and reflects light.
  • the substrate 10 is fixed to the shaft 40 connected to the rotating device 53 shown in FIG.
  • the substrate 10 rotates as the shaft 40 is rotationally driven by the rotating device 53.
  • a fan-shaped wavelength conversion layer 20 having a notched inner portion in the radial direction is formed on the substrate 10.
  • the wavelength conversion layer 20 has a first layer 21 and a second layer 22 as in the wavelength conversion element 1a according to the second embodiment.
  • the second layer 22 is in contact with the substrate 10 both radially inside and outside the first layer 21. Therefore, even in this embodiment, peeling of the wavelength conversion layer 20 from the substrate 10 is suppressed.
  • the wavelength conversion layer 20 includes a green wavelength conversion layer 20A and a red wavelength conversion layer 20B arranged along the circumferential direction.
  • the green wavelength conversion layer 20A emits green light G when blue light B from the light source 51 is incident.
  • the red wavelength conversion layer 20B emits red light R when blue light B from the light source 51 is incident.
  • the light from the green wavelength conversion layer 20A and the red wavelength conversion layer 20B is reflected by the substrate 10.
  • the blue light B from the light source 51 is the region where the wavelength conversion element 1 is not provided, the region where the green wavelength conversion layer 20A is provided, and the red wavelength conversion layer 20B. It is repeatedly incident on the provided region in this order.
  • the blue light B incident on the region where the wavelength conversion element 1 is not provided travels straight as it is, and is guided to the dichroic mirror 52 by the optical elements 54a, 54b, and 54c shown in FIG.
  • the blue light B is reflected by the dichroic mirror 52 toward the optical element 55.
  • the green light G When the blue light B is incident on the region where the green wavelength conversion layer 20A is provided, the green light G is emitted from the green wavelength conversion layer 20A.
  • the green light G passes through the dichroic mirror 52 and is incident on the optical element 55.
  • the red light R is emitted from the red wavelength conversion layer 20B.
  • the red light R passes through the dichroic mirror 52 and is incident on the optical element 55.
  • the blue light B, the green light G, and the red light R are each reflected on the projection optical system 56 side by the optical element 55 and projected by the projection optical system 56.
  • FIG. 15 is a schematic view showing the configuration of the optical device 3 according to the ninth embodiment.
  • the optical device 3 which is a light source device shown in FIG. 15 will be described as an example.
  • the optical device 3 is preferably used for, for example, a transmissive laser headlight (vehicle headlight) or the like.
  • the optical device 3 includes a wavelength conversion element 1 and a light source 60.
  • the light source 60 irradiates the wavelength conversion layer 20 of the wavelength conversion element 1 with the excitation light of the wavelength conversion layer 20.
  • the substrate 10 is composed of a translucent substrate such as a sapphire substrate. Therefore, the substrate 10 transmits the light from the light source 60. Therefore, the light from the light source 60 is incident on the wavelength conversion layer 20.
  • the light (for example, fluorescence) emitted from the wavelength conversion layer 20 is reflected by the reflector 61 and emitted as parallel light.
  • the second layer 22 that is in direct contact with the substrate 10 since the second layer 22 that is in direct contact with the substrate 10 is provided, the peeling of the wavelength conversion layer 20 from the substrate 10 can be effectively suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optical Filters (AREA)

Abstract

Provided is a wavelength conversion element in which peeling of a wavelength conversion layer is made less likely. The wavelength conversion element comprises a substrate and a wavelength conversion layer. The wavelength conversion layer is disposed on the substrate. The wavelength conversion layer includes an inorganic wavelength converting material that emits light of a wavelength different from that of incident light. The wavelength conversion layer includes a first layer and a second layer. The first layer is disposed on the substrate. The second layer has a portion which covers the first layer and a portion which is in contact with the substrate. The second layer includes the inorganic wavelength converting material.

Description

波長変換素子及び光学機器Wavelength conversion element and optical equipment
 本開示は、波長変換素子及び光学機器に関する。本出願は、2020年4月9日に日本に出願された特願2020-070280号に優先権を主張し、その内容をここに援用する。 The present disclosure relates to wavelength conversion elements and optical instruments. This application claims priority to Japanese Patent Application No. 2020-070280 filed in Japan on April 9, 2020, the contents of which are incorporated herein by reference.
 特許文献1には、基材と、基材の上に設けられており、蛍光体層を備える波長変換部材が記載されている。蛍光体層は、蛍光体粒子と、隣り合う蛍光体粒子間を結合する透光性セラミックスとからなる。特許文献1には、透光性セラミックスとして、シリカ、リン酸アルミニウム等の無機バインダが記載されている。 Patent Document 1 describes a base material and a wavelength conversion member provided on the base material and having a phosphor layer. The phosphor layer is composed of phosphor particles and translucent ceramics that bond between adjacent phosphor particles. Patent Document 1 describes inorganic binders such as silica and aluminum phosphate as translucent ceramics.
国際公開第2017/126441号International Publication No. 2017/126441
 波長変換素子には、蛍光体層等の波長変換層の剥離を抑制したいという要望がある。 There is a demand for a wavelength conversion element to suppress peeling of a wavelength conversion layer such as a phosphor layer.
 本開示の主な目的は、波長変換層が剥離しにくい波長変換素子を提供することにある。 A main object of the present disclosure is to provide a wavelength conversion element in which the wavelength conversion layer is not easily peeled off.
 一態様に係る波長変換素子は、基板と、波長変換層とを備える。波長変換層は、基板の上に配されている。波長変換層は、入射光とは波長が異なる光を出射する無機波長変換材を含む。波長変換層は、第1層と、第2層とを含む。第1層は、基板の上に配されている。第2層は、第1層を被う部分と、前記基板と接触する部分とを有する。第2層は、無機波長変換材を含む。 The wavelength conversion element according to one aspect includes a substrate and a wavelength conversion layer. The wavelength conversion layer is arranged on the substrate. The wavelength conversion layer includes an inorganic wavelength conversion material that emits light having a wavelength different from that of the incident light. The wavelength conversion layer includes a first layer and a second layer. The first layer is arranged on the substrate. The second layer has a portion that covers the first layer and a portion that comes into contact with the substrate. The second layer contains an inorganic wavelength conversion material.
第1実施形態に係る波長変換素子の模式的平面図である。It is a schematic plan view of the wavelength conversion element which concerns on 1st Embodiment. 図1の線II-IIにおける模式的断面図である。FIG. 5 is a schematic cross-sectional view taken along the line II-II of FIG. 波長変換素子に励起光が照射されたときの熱の分布を表す模式的断面図である。It is a schematic cross-sectional view which shows the distribution of heat when the wavelength conversion element is irradiated with excitation light. 第2実施形態に係る波長変換素子の模式的平面図である。It is a schematic plan view of the wavelength conversion element which concerns on 2nd Embodiment. 図4の線IV-IVにおける模式的断面図である。FIG. 5 is a schematic cross-sectional view taken along the line IV-IV of FIG. 第3実施形態に係る波長変換素子の模式的断面図である。It is a schematic cross-sectional view of the wavelength conversion element which concerns on 3rd Embodiment. 第4実施形態に係る波長変換素子の模式的平面図である。It is a schematic plan view of the wavelength conversion element which concerns on 4th Embodiment. 図7の線VII-VIIにおける模式的断面図である。FIG. 7 is a schematic cross-sectional view taken along the line VII-VII of FIG. 第5実施形態に係る波長変換素子の模式的平面図である。It is a schematic plan view of the wavelength conversion element which concerns on 5th Embodiment. 図9の線IX-IXにおける模式的断面図である。9 is a schematic cross-sectional view taken along the line IX-IX of FIG. 第6実施形態に係る波長変換素子の模式的断面図である。It is a schematic cross-sectional view of the wavelength conversion element which concerns on 6th Embodiment. 第7実施形態に係る波長変換素子の模式的平面図である。It is a schematic plan view of the wavelength conversion element which concerns on 7th Embodiment. 第8実施形態に係る光学機器の構成を表す模式図である。It is a schematic diagram which shows the structure of the optical device which concerns on 8th Embodiment. 第8実施形態おける波長変換素子の模式的平面図である。It is a schematic plan view of the wavelength conversion element in 8th Embodiment. 第9実施形態に係る光学機器の構成を表す模式図である。It is a schematic diagram which shows the structure of the optical device which concerns on 9th Embodiment.
 以下、本開示を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本開示は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferred embodiment of the present disclosure will be described. However, the following embodiments are merely examples. The present disclosure is not limited to the following embodiments.
 (第1実施形態)
 図1は、第1実施形態に係る波長変換素子1の模式的平面図である。図2は、図1の線II-IIにおける模式的断面図である。
(First Embodiment)
FIG. 1 is a schematic plan view of the wavelength conversion element 1 according to the first embodiment. FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG.
 図1及び図2に示すように、波長変換素子1は、基板10と、波長変換層20とを備える。 As shown in FIGS. 1 and 2, the wavelength conversion element 1 includes a substrate 10 and a wavelength conversion layer 20.
 基板10は、非透光性基板により構成されていてもよいし、透光性基板により構成されていてもよい。基板10は、例えば、金属基板や、単結晶基板、セラミック基板等により構成することができる。基板10は、波長変換層20の熱を高い効率で放熱できるように、高い熱伝導率を有することが好ましい。この観点から、基板10は、非透光性基板である場合は、金属基板であることが好ましく、なかでも、例えば、アルミニウム基板であることがより好ましい。また、基板10は、例えば、アルミニウム基板等の金属基板と、金属基板の表面を被うコーティング層とにより構成されていてもよい。 The substrate 10 may be composed of a non-translucent substrate or a translucent substrate. The substrate 10 can be composed of, for example, a metal substrate, a single crystal substrate, a ceramic substrate, or the like. The substrate 10 preferably has a high thermal conductivity so that the heat of the wavelength conversion layer 20 can be dissipated with high efficiency. From this point of view, when the substrate 10 is a non-translucent substrate, it is preferably a metal substrate, and more preferably, for example, an aluminum substrate. Further, the substrate 10 may be composed of, for example, a metal substrate such as an aluminum substrate and a coating layer covering the surface of the metal substrate.
 また、基板10は、透光性基板である場合は、例えば、サファイア基板であることが好ましい。 When the substrate 10 is a translucent substrate, it is preferably a sapphire substrate, for example.
 基板10の形状寸法は、特に限定されない。基板10は、例えば、円形状、円板状、多角形状、楕円形状、長円形状等であってもよい。基板10の厚みは、特に限定されないが、例えば、0.5mm以上2.0mm以下程度とすることができる。 The shape and dimensions of the substrate 10 are not particularly limited. The substrate 10 may have, for example, a circular shape, a disk shape, a polygonal shape, an elliptical shape, an oval shape, or the like. The thickness of the substrate 10 is not particularly limited, but can be, for example, about 0.5 mm or more and 2.0 mm or less.
 基板10の上には、波長変換層20が配されている。波長変換層20は、特定の波長の光(励起光)が入射したときに、励起光とは異なる波長の光、典型的には、励起光よりも波長の長い光を出射する層である。 A wavelength conversion layer 20 is arranged on the substrate 10. The wavelength conversion layer 20 is a layer that emits light having a wavelength different from that of the excitation light, typically light having a wavelength longer than that of the excitation light, when light of a specific wavelength (excitation light) is incident.
 基板10の線熱膨張係数は、波長変換層20の線熱膨張係数と異なる。通常は、基板10の線熱膨張係数は、波長変換層20の線熱膨張係数よりも大きい。 The coefficient of linear thermal expansion of the substrate 10 is different from the coefficient of linear thermal expansion of the wavelength conversion layer 20. Normally, the coefficient of linear thermal expansion of the substrate 10 is larger than the coefficient of linear thermal expansion of the wavelength conversion layer 20.
 波長変換層20は、第1層21と、第2層22とを含む。 The wavelength conversion layer 20 includes a first layer 21 and a second layer 22.
 第1層21は、基板10の上に配されている。第1層21の基板10側の面の実質的に全体が、基板10と接触している。第1層21は、基板10に接合されていることが好ましい。 The first layer 21 is arranged on the substrate 10. Substantially the entire surface of the first layer 21 on the substrate 10 side is in contact with the substrate 10. The first layer 21 is preferably bonded to the substrate 10.
 本実施形態では、第1層21は、実質的に無機材料により構成された無機層である。具体的には、本実施形態では、第1層21は、複数の無機散乱材と、無機バインダとを含む。 In the present embodiment, the first layer 21 is an inorganic layer substantially composed of an inorganic material. Specifically, in the present embodiment, the first layer 21 includes a plurality of inorganic scattering materials and an inorganic binder.
 無機散乱材は、第1層21に入射した光を多方向に散乱させるものである。無機散乱材は、例えば、酸化チタン粒子、シリカ粒子、アルミナ粒子等であってもよい。 The inorganic scattering material scatters the light incident on the first layer 21 in multiple directions. The inorganic scattering material may be, for example, titanium oxide particles, silica particles, alumina particles, or the like.
 無機バインダは、複数の無機散乱材の隙間に存在している。具体的には、無機バインダは、複数の無機散乱材の隙間に充填されている。無機バインダと、無機散乱材とは、屈折率が相互に異なる。無機バインダの屈折率と、無機散乱材の屈折率は、0.1以上異なることが好ましく、0.2以上異なることがさらに好ましい。好ましく用いられる無機バインダの具体例としては、例えば、アルミナ、シリカ、窒化ケイ素、窒化アルミニウム、酸化亜鉛、酸化スズ等が挙げられる。 Inorganic binder exists in the gaps between multiple inorganic scattering materials. Specifically, the inorganic binder is filled in the gaps between the plurality of inorganic scattering materials. The refractive index of the inorganic binder and the inorganic scattering material are different from each other. The refractive index of the inorganic binder and the refractive index of the inorganic scattering material are preferably different by 0.1 or more, and more preferably 0.2 or more. Specific examples of the inorganic binder preferably used include alumina, silica, silicon nitride, aluminum nitride, zinc oxide, tin oxide and the like.
 なお、本実施形態では、第1層21に、複数の無機散乱材と無機バインダとが含まれている例について説明した。但し、本開示はこの構成に限定されない。例えば、第1層21は、無機波長変換材をさらに含んでいてもよい。また、第1層21は、複数の無機波長変換材と、複数の無機波長変換材の隙間に位置している無機バインダとにより構成されていてもよい。 In the present embodiment, an example in which a plurality of inorganic scattering materials and an inorganic binder are contained in the first layer 21 has been described. However, the present disclosure is not limited to this configuration. For example, the first layer 21 may further contain an inorganic wavelength conversion material. Further, the first layer 21 may be composed of a plurality of inorganic wavelength conversion materials and an inorganic binder located in a gap between the plurality of inorganic wavelength conversion materials.
 図2に示すように、第2層22は、第1層21を被っている。かつ、第2層22は、第2層22の一部分が基板10と接触するように設けられている。具体的には、第2層22は、第1部分22aと、第2部分22bとを含む。 As shown in FIG. 2, the second layer 22 covers the first layer 21. Moreover, the second layer 22 is provided so that a part of the second layer 22 comes into contact with the substrate 10. Specifically, the second layer 22 includes a first portion 22a and a second portion 22b.
 第1部分22aは、第1層21を被っている。第1部分22aは、第1層21の少なくとも一部分の上に設けられていればよい。本実施形態では、第1部分22aは、第1層21の全体の上に設けられている。すなわち、第1部分22aは、第1層21の全体を被っている。 The first portion 22a covers the first layer 21. The first portion 22a may be provided on at least a part of the first layer 21. In this embodiment, the first portion 22a is provided on the entire first layer 21. That is, the first portion 22a covers the entire first layer 21.
 なお、図1に示すように、本実施形態では、第1部分22aの平面視形状は矩形である。但し、本開示において、第1部分の形状は特に限定されない。第1部分の平面視形状は、例えば、多角形、円形、長円形、楕円形、円環等であってもよい。 As shown in FIG. 1, in the present embodiment, the plan view shape of the first portion 22a is rectangular. However, in the present disclosure, the shape of the first portion is not particularly limited. The plan-view shape of the first portion may be, for example, a polygon, a circle, an oval, an ellipse, an annulus, or the like.
 第2部分22bは、第1部分22aに接続されている。第2部分22bは、基板10と接触している。第2部分22bは、基板10に接合されていることが好ましい。 The second portion 22b is connected to the first portion 22a. The second portion 22b is in contact with the substrate 10. The second portion 22b is preferably bonded to the substrate 10.
 図1に示すように、本実施形態では、第2部分22bは、平面視において、一の方向において第1部分22aの両側に設けられている。詳細には、第2部分22bは、平面視において、一の方向と、一の方向に対して傾斜する(典型的には、直交する)他の方向との両方において、第1部分22aの両側に設けられている。すなわち、本実施形態では、第2層22は、平面視において、一の方向における両側において、基板10と接触している。詳細には、本実施形態では、第2部分22bは、平面視において、一の方向と、他の方向とのそれぞれにおける両側において、基板10と接触している。 As shown in FIG. 1, in the present embodiment, the second portion 22b is provided on both sides of the first portion 22a in one direction in a plan view. Specifically, the second portion 22b is both sides of the first portion 22a in a plan view, both in one direction and in the other direction tilted (typically orthogonal) with respect to one direction. It is provided in. That is, in the present embodiment, the second layer 22 is in contact with the substrate 10 on both sides in one direction in a plan view. Specifically, in the present embodiment, the second portion 22b is in contact with the substrate 10 on both sides in one direction and in each of the other directions in a plan view.
 本実施形態では、より具体的には、第2部分22bは、平面視において、第1部分22aを包囲するように、第1層21及び第1部分22aの外周の全周にわたって設けられている。但し、本開示は、この構成に限定されない。第2部分22bは、平面視において、第1層21の外周の一部分に設けられていてもよい。 In the present embodiment, more specifically, the second portion 22b is provided over the entire circumference of the outer periphery of the first layer 21 and the first portion 22a so as to surround the first portion 22a in a plan view. .. However, the present disclosure is not limited to this configuration. The second portion 22b may be provided on a part of the outer periphery of the first layer 21 in a plan view.
 第2層22は、無機波長変換材を含む。無機波長変換材は、特定の波長の光(励起光)が入射したときに、励起光とは異なる波長の光、典型的には、励起光よりも波長の長い光を出射する。本実施形態では、無機波長変換材は、例えば、無機蛍光体等の無機波長変換材料を含んでいる。 The second layer 22 contains an inorganic wavelength conversion material. When light of a specific wavelength (excitation light) is incident, the inorganic wavelength converter emits light having a wavelength different from that of the excitation light, typically light having a wavelength longer than that of the excitation light. In the present embodiment, the inorganic wavelength conversion material includes, for example, an inorganic wavelength conversion material such as an inorganic phosphor.
 無機波長変換材料の具体例としては、例えば、YAG:Ce(YAl12:Ce3+)、CaAlSiN:Eu2+、Ca-α-SiAlON:Eu2+、β-SiAlON:Eu2+、LuAl12:Ce3+(LuAG:Ce)、(Sr,Ca,Ba,Mg)10(PO12:Eu、BaMgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+等が挙げられる。 Specific examples of the inorganic wavelength conversion material include YAG: Ce (Y 3 Al 5 O 12 : Ce 3+ ), CaAlSiN 3 : Eu 2+ , Ca-α-SiAlON: Eu 2+ , β-SiAlON: Eu 2+ , Lu. 3 Al 5 O 12 : Ce 3+ (LuAG: Ce), (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 C 12 : Eu, BaMgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like can be mentioned.
 複数の無機波長変換材は、例えば、1種の無機波長変換材料を含有していてもよいし、複数種類の無機波長変換材料を含有していてもよい。 The plurality of inorganic wavelength conversion materials may contain, for example, one type of inorganic wavelength conversion material, or may contain a plurality of types of inorganic wavelength conversion materials.
 無機波長変換材の形状は、特に限定されない。無機波長変換材は、例えば、粒子状、球状、楕球状、針状、多角柱状、円柱状等であってもよい。 The shape of the inorganic wavelength conversion material is not particularly limited. The inorganic wavelength conversion material may be, for example, particulate, spherical, elliptical, needle-shaped, polygonal columnar, columnar or the like.
 複数の無機波長変換材の粒子径は、特に限定されない。複数の無機波長変換材の平均粒子径は、例えば、1μm以上50μm以下であることが好ましく、5μm以上30μm以下であることがより好ましい。なお、数の異なる平均粒子径の無機波長変換材料が組み合わされていてもよい。 The particle size of the plurality of inorganic wavelength conversion materials is not particularly limited. The average particle size of the plurality of inorganic wavelength conversion materials is, for example, preferably 1 μm or more and 50 μm or less, and more preferably 5 μm or more and 30 μm or less. Inorganic wavelength conversion materials having different average particle sizes may be combined.
 本実施形態では、第2層22は、複数の無機波長変換材に加え、有機バインダを含む。有機バインダは、複数の無機波長変換材の隙間に充填されている。このましく用いられる有機バインダの具体例としては、例えば、シリコーン、ポリアミド、ポリイミド等が挙げられる。 In the present embodiment, the second layer 22 includes an organic binder in addition to the plurality of inorganic wavelength conversion materials. The organic binder is filled in the gaps between the plurality of inorganic wavelength conversion materials. Specific examples of the organic binder used in this manner include, for example, silicone, polyamide, polyimide and the like.
 なお、有機バインダと波長変換材とは、屈折率が相互に異なることが好ましい。有機バインダの屈折率と波長変換材の屈折率とは、0.1以上異なることが好ましく、0.2以上異なることがより好ましい。 It is preferable that the organic binder and the wavelength conversion material have different refractive indexes from each other. The refractive index of the organic binder and the refractive index of the wavelength conversion material are preferably different by 0.1 or more, and more preferably 0.2 or more.
 上述のように、本実施形態では、第1層21が無機バインダを含む一方、第2層22が有機バインダを含む。このため、第2層22と基板10との単位面積当たりの密着力が、第1層21と基板10との単位面積当たり密着力よりも高い。具体的には、第2層22と基板10との単位面積当たりの密着力が、第1層21と基板10との単位面積当たり密着力よりも2倍以上高いことが好ましく、5倍以上であることがより好ましい。 As described above, in the present embodiment, the first layer 21 contains an inorganic binder, while the second layer 22 contains an organic binder. Therefore, the adhesion between the second layer 22 and the substrate 10 per unit area is higher than the adhesion between the first layer 21 and the substrate 10 per unit area. Specifically, the adhesion between the second layer 22 and the substrate 10 per unit area is preferably twice or more higher than the adhesion between the first layer 21 and the substrate 10 per unit area, and is preferably 5 times or more. More preferably.
 また、波長変換素子1では、第1層21の熱伝導率が、第2層22の熱伝導率よりも高い。具体的には、第1層21の熱伝導率は、第2層22の熱伝導率よりも2倍以上高いことが好ましく、5倍以上であることがより好ましい。 Further, in the wavelength conversion element 1, the thermal conductivity of the first layer 21 is higher than the thermal conductivity of the second layer 22. Specifically, the thermal conductivity of the first layer 21 is preferably twice or more higher than that of the second layer 22, and more preferably five times or more.
 なお、第1層21における無機バインダの含有量は、10体積%以上70体積%以下であることが好ましく、20体積%以上60体積%以下であることがより好ましい。第2層22における有機バインダの含有量は、10体積%以上70体積%以下であることが好ましく、20体積%以上60体積%以下であることがより好ましい。 The content of the inorganic binder in the first layer 21 is preferably 10% by volume or more and 70% by volume or less, and more preferably 20% by volume or more and 60% by volume or less. The content of the organic binder in the second layer 22 is preferably 10% by volume or more and 70% by volume or less, and more preferably 20% by volume or more and 60% by volume or less.
 以上説明したように、波長変換素子1では、無機波長変換材を含む第2層22が基板10と接触している。このため、励起光が第2層22に照射された際に第2層22で生じた熱は、基板10側に伝導しやすい。すなわち、第2層22において発生した熱が基板10を介して放熱しやすい。よって、第2層22の温度が上昇しにくい。このため、基板10と第2層22との間に熱膨張量差が生じにくい。従って、第2層22を含む波長変換層20が基板10から剥離することを効果的に抑制することができる。 As described above, in the wavelength conversion element 1, the second layer 22 containing the inorganic wavelength conversion material is in contact with the substrate 10. Therefore, the heat generated in the second layer 22 when the excitation light is irradiated to the second layer 22 is likely to be conducted to the substrate 10 side. That is, the heat generated in the second layer 22 is likely to be dissipated through the substrate 10. Therefore, the temperature of the second layer 22 is unlikely to rise. Therefore, a difference in the amount of thermal expansion is unlikely to occur between the substrate 10 and the second layer 22. Therefore, it is possible to effectively prevent the wavelength conversion layer 20 including the second layer 22 from peeling off from the substrate 10.
 また、図3に示すように、波長変換素子1に励起光Lが照射された際に、第2層22の表面の中心部から内部に広がる領域A1においての発熱量が最も大きく、次いでその周辺領域A2においての発熱量が大きくなる。発熱量が大きい領域A2には、第1層21と基板10との接触面も含まれている。このため、第1層21と基板10との接触面のうち、領域A2に含まれる部分A4においては、第1層21と基板10との熱膨張量の差が大きくなり得る。従って、第1層21の基板10からの剥離が生じる虞がある。これに対し、第2層22のうち、第2部分22bと基板10とが接触している領域A3においては、発熱量が比較的小さい。このため、第2部分22bと基板10との熱膨張量の差が小さい。よって、第2部分22bは、基板10から剥離し難い。従って、本実施形態のように、第2部分22bを有する第2層22を含む波長変換素子1では、波長変換層20が基板10から剥離することを効果的に抑制することができる。 Further, as shown in FIG. 3, when the wavelength conversion element 1 is irradiated with the excitation light L, the amount of heat generated in the region A1 extending inward from the central portion of the surface of the second layer 22 is the largest, followed by the periphery thereof. The amount of heat generated in the region A2 increases. The region A2 having a large amount of heat generation also includes a contact surface between the first layer 21 and the substrate 10. Therefore, in the portion A4 included in the region A2 of the contact surface between the first layer 21 and the substrate 10, the difference in the amount of thermal expansion between the first layer 21 and the substrate 10 can be large. Therefore, the first layer 21 may be peeled off from the substrate 10. On the other hand, in the region A3 where the second portion 22b and the substrate 10 are in contact with each other in the second layer 22, the calorific value is relatively small. Therefore, the difference in the amount of thermal expansion between the second portion 22b and the substrate 10 is small. Therefore, the second portion 22b is difficult to peel off from the substrate 10. Therefore, as in the present embodiment, in the wavelength conversion element 1 including the second layer 22 having the second portion 22b, it is possible to effectively suppress the wavelength conversion layer 20 from peeling from the substrate 10.
 この波長変換層20の基板10から剥離するという問題は、基板10の線熱膨張係数と、波長変換層20の線熱膨張係数とが相互に異なる場合に顕著である。よって、第2層22を基板10と直接接触するように設ける技術は、基板10の線熱膨張係数と、波長変換層20の線熱膨張係数とが相互に異なる場合に特に有効である。 The problem of peeling from the substrate 10 of the wavelength conversion layer 20 is remarkable when the linear thermal expansion coefficient of the substrate 10 and the linear thermal expansion coefficient of the wavelength conversion layer 20 are different from each other. Therefore, the technique of providing the second layer 22 so as to be in direct contact with the substrate 10 is particularly effective when the linear thermal expansion coefficient of the substrate 10 and the linear thermal expansion coefficient of the wavelength conversion layer 20 are different from each other.
 波長変換素子1では、第2層22と基板10との単位面積当たりの密着力が、第1層21と基板10との単位面積当たりの密着力よりも高い。このため、第2層22が基板10から剥離しにくい。よって、第2層22を含む波長変換層20の基板10からの剥離をより効果的に抑制することができる。この観点からは、第2層22と基板10との単位面積当たりの密着力は、第1層21と基板10との単位面積当たりの密着力の2倍以上であることが好ましく、5倍以上であることがより好ましい。 In the wavelength conversion element 1, the adhesion between the second layer 22 and the substrate 10 per unit area is higher than the adhesion between the first layer 21 and the substrate 10 per unit area. Therefore, the second layer 22 is difficult to peel off from the substrate 10. Therefore, peeling of the wavelength conversion layer 20 including the second layer 22 from the substrate 10 can be suppressed more effectively. From this point of view, the adhesion between the second layer 22 and the substrate 10 per unit area is preferably twice or more, preferably five times or more the adhesion between the first layer 21 and the substrate 10 per unit area. Is more preferable.
 波長変換素子1では、第1層21の熱伝導率が、第2層22の熱伝導率よりも高い。このため、第2層22のうち、第1層21の上に位置している第1部分22aにおいて発生した熱は、高い熱伝導率を有する第1層21を経由して基板10に好適に伝導する。よって、第1部分22aの温度上昇も効果的に抑制されている。このため、波長変換層20の温度が上昇することがより効果的に抑制されている。従って、波長変換層20の基板10からの剥離をより効果的に抑制することができる。 In the wavelength conversion element 1, the thermal conductivity of the first layer 21 is higher than the thermal conductivity of the second layer 22. Therefore, of the second layer 22, the heat generated in the first portion 22a located above the first layer 21 is suitable for the substrate 10 via the first layer 21 having a high thermal conductivity. Conduct. Therefore, the temperature rise of the first portion 22a is also effectively suppressed. Therefore, it is more effectively suppressed that the temperature of the wavelength conversion layer 20 rises. Therefore, the peeling of the wavelength conversion layer 20 from the substrate 10 can be suppressed more effectively.
 第2層22と基板10との単位面積当たりの密着力を、第1層21と基板10との単位面積当たりの密着力よりも高くし、かつ、第1層21の熱伝導率を第2層22の熱伝導率よりも高くする観点からは、第1層21が無機バインダを含むことが好ましい。第1層21は、無機バインダのなかでも、より熱伝導率が高いアルミナを含むことがより好ましい。また、第1層21は、無機散乱材を含むことが好ましい。第1層21は、実質的に無機材料により構成された無機層であることがより好ましい。 The adhesion between the second layer 22 and the substrate 10 per unit area is higher than the adhesion between the first layer 21 and the substrate 10 per unit area, and the thermal conductivity of the first layer 21 is the second. From the viewpoint of increasing the thermal conductivity of the layer 22, it is preferable that the first layer 21 contains an inorganic binder. Among the inorganic binders, the first layer 21 more preferably contains alumina having a higher thermal conductivity. Further, the first layer 21 preferably contains an inorganic scattering material. It is more preferable that the first layer 21 is an inorganic layer substantially made of an inorganic material.
 同様の観点からは、第2層22が有機バインダを含むことが好ましい。 From the same viewpoint, it is preferable that the second layer 22 contains an organic binder.
 また、波長変換層20の基板10からの剥離を抑制する観点からは、第2層22が、平面視において、一の方向における両側で基板10と接触していることがこのましく、一の方向と他の方向とのそれぞれにおける両側で基板10と接触していることがより好ましい。平面視において、第2層22は、第2層22の基板10と接触している部分が、第1層21が設けられた部分を包囲するように設けられていることがさらに好ましい。 Further, from the viewpoint of suppressing the peeling of the wavelength conversion layer 20 from the substrate 10, it is preferable that the second layer 22 is in contact with the substrate 10 on both sides in one direction in a plan view. More preferably, it is in contact with the substrate 10 on both sides in each of the directions and the other directions. In a plan view, it is more preferable that the second layer 22 is provided so that the portion of the second layer 22 in contact with the substrate 10 surrounds the portion where the first layer 21 is provided.
 波長変換層20の基板10からの剥離を抑制する観点からは、基板10が高い放熱性を有することが好ましい。従って、基板10は、例えば、金属基板により構成されていることが好ましく、なかでも、アルミニウムまたはアルミニウム合金により構成されたアルミニウム基板により構成されていることがより好ましい。 From the viewpoint of suppressing peeling of the wavelength conversion layer 20 from the substrate 10, it is preferable that the substrate 10 has high heat dissipation. Therefore, the substrate 10 is preferably made of, for example, a metal substrate, and more preferably made of an aluminum substrate made of aluminum or an aluminum alloy.
 なお、第2層22が第1層21の全体を被っている必要は必ずしもないが、第2層22を第1層21の全体を被うように設けることにより、波長変換部材を含んでおり、波長変換機能を有する第2層22を大きくすることができる。従って、波長変換素子1から出射される波長変換光の強度を高めることができる。 Although it is not always necessary for the second layer 22 to cover the entire first layer 21, the wavelength conversion member is included by providing the second layer 22 so as to cover the entire first layer 21. The second layer 22 having a wavelength conversion function can be enlarged. Therefore, the intensity of the wavelength conversion light emitted from the wavelength conversion element 1 can be increased.
 以下、本開示を実施した好ましい形態の他の例について説明する。以下の説明において、上記実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, another example of the preferred embodiment of the present disclosure will be described. In the following description, members having substantially the same functions as those of the above-described embodiment will be referred to by a common reference numeral, and the description thereof will be omitted.
 (第2実施形態)
 図4は、第2実施形態に係る波長変換素子1aの模式的平面図である。図5は、図4の線IV-IVにおける模式的断面図である。
(Second Embodiment)
FIG. 4 is a schematic plan view of the wavelength conversion element 1a according to the second embodiment. FIG. 5 is a schematic cross-sectional view taken along the line IV-IV of FIG.
 第1実施形態では、波長変換素子1が矩形状である例について説明した。但し、本開示はこの構成に限定されない。波長変換素子は、例えば、円板状等であってもよい。本実施形態では、円板状の蛍光ホイールを構成している波長変換素子1aについて説明する。 In the first embodiment, an example in which the wavelength conversion element 1 has a rectangular shape has been described. However, the present disclosure is not limited to this configuration. The wavelength conversion element may be, for example, a disk shape or the like. In this embodiment, the wavelength conversion element 1a constituting the disk-shaped fluorescent wheel will be described.
 波長変換素子1aにおいて、基板10は、円板状である。図4に示すように、基板10の中央部には、貫通孔10aが形成されている。図5に示すように、貫通孔10aには、シャフト40が挿入される。基板10は、貫通孔10aに挿入されたシャフト40の回転に伴って回転する。 In the wavelength conversion element 1a, the substrate 10 has a disk shape. As shown in FIG. 4, a through hole 10a is formed in the central portion of the substrate 10. As shown in FIG. 5, the shaft 40 is inserted into the through hole 10a. The substrate 10 rotates with the rotation of the shaft 40 inserted into the through hole 10a.
 波長変換層20は、基板10の外周部の上に設けられている。波長変換層20は、リング状(円環状)に形成されている。 The wavelength conversion layer 20 is provided on the outer peripheral portion of the substrate 10. The wavelength conversion layer 20 is formed in a ring shape (annular shape).
 主として図5に示すように、本実施形態においても、波長変換層20は、第1層21と、第2層22とを有する。図4に示すように、第1層21は、リング状に設けられている。第2層22の第1部分22aは、第1層21と実質的に同様のリング状である。第1部分22aは、第1層21の実質的に全体を被っている。第2層22は、平面視において、半径方向において第1層21の両側で基板10と接触している。すなわち、第2層22は、平面視において、第1層21の半径方向の内側において基板10と接触していると共に、第1層21の半径方向の外側において基板10と接触している。第2層22の第2部分22bは、第1層21よりも半径方向の内側に位置する部分22b1と、第1層21よりも半径方向の外側に位置する部分22b2とを有する。 Mainly as shown in FIG. 5, also in this embodiment, the wavelength conversion layer 20 has a first layer 21 and a second layer 22. As shown in FIG. 4, the first layer 21 is provided in a ring shape. The first portion 22a of the second layer 22 has a ring shape substantially similar to that of the first layer 21. The first portion 22a covers substantially the entire first layer 21. The second layer 22 is in contact with the substrate 10 on both sides of the first layer 21 in the radial direction in a plan view. That is, the second layer 22 is in contact with the substrate 10 on the inner side in the radial direction of the first layer 21 and in contact with the substrate 10 on the outer side in the radial direction of the first layer 21 in a plan view. The second portion 22b of the second layer 22 has a portion 22b1 located inside the first layer 21 in the radial direction and a portion 22b2 located outside the first layer 21 in the radial direction.
 第2実施形態に係る波長変換素子1aにおいても、第1実施形態に係る波長変換素子1と同様に、第2層22が基板10と直接接触する部分を有している。このため、第1実施形態において説明した効果と実質的に同様の効果が、第2実施形態に係る波長変換素子1aにおいても奏される。 The wavelength conversion element 1a according to the second embodiment also has a portion in which the second layer 22 comes into direct contact with the substrate 10 as in the wavelength conversion element 1 according to the first embodiment. Therefore, substantially the same effect as that described in the first embodiment is also exhibited in the wavelength conversion element 1a according to the second embodiment.
 (第3実施形態)
 図6は、第3実施形態に係る波長変換素子の模式的断面図である。
(Third Embodiment)
FIG. 6 is a schematic cross-sectional view of the wavelength conversion element according to the third embodiment.
 第2実施形態では、第2層22が、半径方向において第1層21の両側で基板10と接触している例について説明した。但し、本開示は、この構成に限定されない。例えば、第2層は、第1層の半径方向内側及び半径方向外側の一方において基板10と接触していてもよい。例えば、図6に示すように、第2層22は、第1層21の半径方向外側において基板10と接触していてもよい。この場合であっても、上述した効果と実質的に同様の効果が奏される。 In the second embodiment, an example in which the second layer 22 is in contact with the substrate 10 on both sides of the first layer 21 in the radial direction has been described. However, the present disclosure is not limited to this configuration. For example, the second layer may be in contact with the substrate 10 on either the radial inner side or the radial outer side of the first layer. For example, as shown in FIG. 6, the second layer 22 may be in contact with the substrate 10 on the radial outer side of the first layer 21. Even in this case, substantially the same effect as the above-mentioned effect is achieved.
 (第4実施形態)
 図7は、第4実施形態に係る波長変換素子1bの模式的平面図である。図8は、図7の線VII-VIIにおける模式的断面図である。
(Fourth Embodiment)
FIG. 7 is a schematic plan view of the wavelength conversion element 1b according to the fourth embodiment. FIG. 8 is a schematic cross-sectional view taken along the line VII-VII of FIG.
 第4実施形態に係る波長変換素子1bでは、波長変換層20を構成している第1層21の平面視形状と、第2層22の平面視形状とが実質的に合同である。第2層22は、第1層21に対して偏心して配置されている。換言すれば、第1層21の中心と、第2層22の中心とが異なる位置に位置するように、第1層21及び第2層22のそれぞれが配置されている。具体的には、図7の紙面上において、第1層21の中心と第2層22の中心とが左右方向において異なるように第1層21と第2層22とがそれぞれ配置されている。よって、図8に示すように、波長変換素子1bにおいても、第2層22が基板10と直接接触している第2部分22bを有する。従って、上述の効果と実質的に同様の効果が奏される。 In the wavelength conversion element 1b according to the fourth embodiment, the plan view shape of the first layer 21 constituting the wavelength conversion layer 20 and the plan view shape of the second layer 22 are substantially congruent. The second layer 22 is arranged eccentrically with respect to the first layer 21. In other words, the first layer 21 and the second layer 22 are arranged so that the center of the first layer 21 and the center of the second layer 22 are located at different positions. Specifically, on the paper surface of FIG. 7, the first layer 21 and the second layer 22 are arranged so that the center of the first layer 21 and the center of the second layer 22 are different in the left-right direction. Therefore, as shown in FIG. 8, the wavelength conversion element 1b also has a second portion 22b in which the second layer 22 is in direct contact with the substrate 10. Therefore, substantially the same effect as the above-mentioned effect is produced.
 また、上述の通り、第1層21の平面視形状と、第2層22の平面視形状とが実質的に合同である。このため、例えば、第1層21及び第2層22のそれぞれを、スクリーン印刷法を用いて形成する場合には、同じスクリーン版を用いて第1層21と第2層22とを形成し得る。従って、波長変換素子1bの製造工程を簡略化し得る。 Further, as described above, the plan view shape of the first layer 21 and the plan view shape of the second layer 22 are substantially congruent. Therefore, for example, when each of the first layer 21 and the second layer 22 is formed by using the screen printing method, the first layer 21 and the second layer 22 can be formed by using the same screen plate. .. Therefore, the manufacturing process of the wavelength conversion element 1b can be simplified.
 (第5実施形態)
 図9は、第5実施形態に係る波長変換素子1cの模式的平面図である。図10は、図9の線IX-IXにおける模式的断面図である。
(Fifth Embodiment)
FIG. 9 is a schematic plan view of the wavelength conversion element 1c according to the fifth embodiment. FIG. 10 is a schematic cross-sectional view taken along the line IX-IX of FIG.
 主として図9に示すように、第4実施形態に係る波長変換素子1cでは、平面視において、第1層21の半径よりも小さな半径を有するように第2層22が設けられている。半径方向における第1層21の幅と、半径方向における第2層22の幅とは、実質的に等しい。このため、主として図10に示すように、第2層22は、第1層21の半径方向の内側において基板10と接触している。この場合であっても、上述の効果と実質的に同様の効果が奏される。 Mainly as shown in FIG. 9, in the wavelength conversion element 1c according to the fourth embodiment, the second layer 22 is provided so as to have a radius smaller than the radius of the first layer 21 in a plan view. The width of the first layer 21 in the radial direction and the width of the second layer 22 in the radial direction are substantially equal. Therefore, as mainly shown in FIG. 10, the second layer 22 is in contact with the substrate 10 inside the first layer 21 in the radial direction. Even in this case, substantially the same effect as the above-mentioned effect is achieved.
 (第6実施形態)
 図11は、第6実施形態に係る波長変換素子1dの模式的断面図である。
(Sixth Embodiment)
FIG. 11 is a schematic cross-sectional view of the wavelength conversion element 1d according to the sixth embodiment.
 第1~第5実施形態では、第1層21と第2層22とが直接接触している例について説明した。但し、本開示は、この構成に限定されない。例えば、図11に示すように、第1層21と第2層22とが直接接触していなくてもよい。第6実施形態に係る波長変換素子1dは、第3層23をさらに備える。第3層23は、第1層21と第2層22との間に配されている。この場合であっても、第2層22が基板10と接触している部分を有するため、上述の効果と実質的に同様の効果が奏される。 In the first to fifth embodiments, an example in which the first layer 21 and the second layer 22 are in direct contact with each other has been described. However, the present disclosure is not limited to this configuration. For example, as shown in FIG. 11, the first layer 21 and the second layer 22 may not be in direct contact with each other. The wavelength conversion element 1d according to the sixth embodiment further includes a third layer 23. The third layer 23 is arranged between the first layer 21 and the second layer 22. Even in this case, since the second layer 22 has a portion in contact with the substrate 10, substantially the same effect as the above-mentioned effect is exhibited.
 第3層23は、特に限定されないが、例えば、以下のような層であってもよい。 The third layer 23 is not particularly limited, but may be, for example, the following layer.
 第3層23は、例えば、第2層22の単位面積当たりの密着力よりも低く、第1層21の単位面積当たりの密着力よりも高い散乱層であってもよい。具体的には、第3層23は、例えば無機散乱材と、シリコーン樹脂等の有機バインダとを含んでいてもよい。この場合、第1層21と第2層22との間の剥離をより効果的に抑制し得る。 The third layer 23 may be, for example, a scattering layer having a lower adhesion than the second layer 22 per unit area and higher than the adhesion per unit area of the first layer 21. Specifically, the third layer 23 may include, for example, an inorganic scattering material and an organic binder such as a silicone resin. In this case, the peeling between the first layer 21 and the second layer 22 can be suppressed more effectively.
 第3層23は、第2層22の熱伝導率よりも高い、波長変換層であってもよい。具体的には、第3層23は、例えば、無機波長変換材と無機バインダとを含んでいてもよい。 The third layer 23 may be a wavelength conversion layer having a higher thermal conductivity than that of the second layer 22. Specifically, the third layer 23 may include, for example, an inorganic wavelength conversion material and an inorganic binder.
 第3層23は、第2層22と第1層21とを接着している接着層であってもよい。この接着層を構成するための接着剤は、有機接着剤であってもよいし、無機接着剤であってもよい。すなわち、第3層23は、例えば、有機接着層であってもよいし、無機接着層であってもよい。 The third layer 23 may be an adhesive layer that adheres the second layer 22 and the first layer 21. The adhesive for forming this adhesive layer may be an organic adhesive or an inorganic adhesive. That is, the third layer 23 may be, for example, an organic adhesive layer or an inorganic adhesive layer.
 なお、図11では、第2層22が、第1層21に対して一の方向の一方側においてのみ基板10と接触しているが、第2層22は、第1層21の一の方向の両側において基板10と接触していてもよい。 In FIG. 11, the second layer 22 is in contact with the substrate 10 only on one side in one direction with respect to the first layer 21, but the second layer 22 is in one direction of the first layer 21. May be in contact with the substrate 10 on both sides of the.
 (第7実施形態)
 図12は、第7実施形態に係る波長変換素子1eの模式的平面図である。
(7th Embodiment)
FIG. 12 is a schematic plan view of the wavelength conversion element 1e according to the seventh embodiment.
 第7実施形態に係る波長変換素子1eでは、第1層21と第2層22との両方の平面視形状が矩形状である。第1層21の平面視形状と、第2層22の平面視形状とは、実質的に合同である。第1層21の図心と、第2層22の図心とが異なる位置に位置するように、第1層21と第2層22とがそれぞれ配置されている。本実施形態においても、第2層22が基板10と直接接触している部分を有するため、上述の効果と実質的に同様の効果が奏される。 In the wavelength conversion element 1e according to the seventh embodiment, both the first layer 21 and the second layer 22 have a rectangular shape in a plan view. The plan view shape of the first layer 21 and the plan view shape of the second layer 22 are substantially congruent. The first layer 21 and the second layer 22 are arranged so that the center of gravity of the first layer 21 and the center of gravity of the second layer 22 are located at different positions. Also in the present embodiment, since the second layer 22 has a portion in direct contact with the substrate 10, an effect substantially similar to the above-mentioned effect is exhibited.
 (第8実施形態)
 図13は、第8実施形態に係る光学機器2の構成を表す模式図である。図14は、第8実施形態おける波長変換素子1fの模式的平面図である。
(8th Embodiment)
FIG. 13 is a schematic view showing the configuration of the optical device 2 according to the eighth embodiment. FIG. 14 is a schematic plan view of the wavelength conversion element 1f in the eighth embodiment.
 本開示に係る波長変換素子は、種々の光学機器に用いることができる。本実施形態では、波長変換素子1fを備える投影装置である光学機器2について説明する。 The wavelength conversion element according to the present disclosure can be used in various optical devices. In the present embodiment, the optical device 2 which is a projection device including the wavelength conversion element 1f will be described.
 図13に示す光学機器2は、投影装置を構成している。光学機器2は、光源51を有する。光源51は、例えば、LED(Light Emitting Diode)や、レーザ素子により構成することができる。本実施形態では、光源51は、青色光Bを出射するLD(Laser Diode)により構成されている例について説明する。 The optical device 2 shown in FIG. 13 constitutes a projection device. The optical device 2 has a light source 51. The light source 51 can be composed of, for example, an LED (Light Emitting Diode) or a laser element. In the present embodiment, an example in which the light source 51 is composed of an LD (Laser Diode) that emits blue light B will be described.
 光源51の光出射側には、青色光Bの波長を選択的に反射するダイクロイックミラー52が配されている。光源51から出射した青色光Bは、ダイクロイックミラー52により反射される。反射された青色光Bは、波長変換素子1fに入射する。 A dichroic mirror 52 that selectively reflects the wavelength of blue light B is arranged on the light emitting side of the light source 51. The blue light B emitted from the light source 51 is reflected by the dichroic mirror 52. The reflected blue light B is incident on the wavelength conversion element 1f.
 図14は、第8実施形態おける波長変換素子1fの模式的平面図である。 FIG. 14 is a schematic plan view of the wavelength conversion element 1f in the eighth embodiment.
 波長変換素子1fは、蛍光ホイールを構成している。図12に示すように、波長変換素子1fでは、基板10は、周方向に沿った一部が切欠かれた円板状である。本実施形態では、基板10は、金属基板により構成されており、光を反射する。 The wavelength conversion element 1f constitutes a fluorescent wheel. As shown in FIG. 12, in the wavelength conversion element 1f, the substrate 10 has a disk shape in which a part is cut out along the circumferential direction. In the present embodiment, the substrate 10 is made of a metal substrate and reflects light.
 基板10は、図13に示す回転装置53に接続されたシャフト40に固定されている。回転装置53によりシャフト40が回転駆動されるに伴って基板10が回転する。 The substrate 10 is fixed to the shaft 40 connected to the rotating device 53 shown in FIG. The substrate 10 rotates as the shaft 40 is rotationally driven by the rotating device 53.
 基板10の上には、半径方向の内側部分が切欠かれた扇形の波長変換層20が形成されている。波長変換層20は、第2実施形態に係る波長変換素子1aと同様に、第1層21と、第2層22とを有する。第2層22は、第1層21の半径方向内側と外側との両方において基板10と接触している。このため、本実施形態においても、波長変換層20の基板10からの剥離が抑制されている。 A fan-shaped wavelength conversion layer 20 having a notched inner portion in the radial direction is formed on the substrate 10. The wavelength conversion layer 20 has a first layer 21 and a second layer 22 as in the wavelength conversion element 1a according to the second embodiment. The second layer 22 is in contact with the substrate 10 both radially inside and outside the first layer 21. Therefore, even in this embodiment, peeling of the wavelength conversion layer 20 from the substrate 10 is suppressed.
 波長変換層20は、周方向に沿って配された緑色波長変換層20A及び赤色波長変換層20Bを含む。緑色波長変換層20Aは、光源51からの青色光Bが入射したときに緑色光Gを出射する。赤色波長変換層20Bは、光源51からの青色光Bが入射したときに赤色光Rを出射する。緑色波長変換層20A及び赤色波長変換層20Bからの光は基板10により反射される。 The wavelength conversion layer 20 includes a green wavelength conversion layer 20A and a red wavelength conversion layer 20B arranged along the circumferential direction. The green wavelength conversion layer 20A emits green light G when blue light B from the light source 51 is incident. The red wavelength conversion layer 20B emits red light R when blue light B from the light source 51 is incident. The light from the green wavelength conversion layer 20A and the red wavelength conversion layer 20B is reflected by the substrate 10.
 回転装置53が駆動され、基板10が回転すると、光源51からの青色光Bが、波長変換素子1が設けられていない領域、緑色波長変換層20Aが設けられた領域、赤色波長変換層20Bが設けられた領域にこの順番に繰り返し入射する。 When the rotating device 53 is driven and the substrate 10 is rotated, the blue light B from the light source 51 is the region where the wavelength conversion element 1 is not provided, the region where the green wavelength conversion layer 20A is provided, and the red wavelength conversion layer 20B. It is repeatedly incident on the provided region in this order.
 波長変換素子1が設けられてない領域に入射した青色光Bは、そのまま直進し、図11に示す光学素子54a、54b及び54cによりダイクロイックミラー52に導光される。青色光Bは、ダイクロイックミラー52により光学素子55側に反射される。 The blue light B incident on the region where the wavelength conversion element 1 is not provided travels straight as it is, and is guided to the dichroic mirror 52 by the optical elements 54a, 54b, and 54c shown in FIG. The blue light B is reflected by the dichroic mirror 52 toward the optical element 55.
 緑色波長変換層20Aが設けられた領域に青色光Bが入射すると、緑色光Gが緑色波長変換層20Aから出射する。緑色光Gは、ダイクロイックミラー52を透過して光学素子55に入射する。 When the blue light B is incident on the region where the green wavelength conversion layer 20A is provided, the green light G is emitted from the green wavelength conversion layer 20A. The green light G passes through the dichroic mirror 52 and is incident on the optical element 55.
 赤色波長変換層20Bが設けられた領域に青色光Bが入射すると、赤色光Rが赤色波長変換層20Bから出射する。赤色光Rは、ダイクロイックミラー52を透過して光学素子55に入射する。 When the blue light B is incident on the region where the red wavelength conversion layer 20B is provided, the red light R is emitted from the red wavelength conversion layer 20B. The red light R passes through the dichroic mirror 52 and is incident on the optical element 55.
 そして、青色光B、緑色光G及び赤色光Rは、それぞれ光学素子55により投影光学系56側に反射され、投影光学系56により投影される。 Then, the blue light B, the green light G, and the red light R are each reflected on the projection optical system 56 side by the optical element 55 and projected by the projection optical system 56.
 (第9実施形態)
 図15は、第9実施形態に係る光学機器3の構成を表す模式図である。
(9th Embodiment)
FIG. 15 is a schematic view showing the configuration of the optical device 3 according to the ninth embodiment.
 本実施形態では、波長変換素子を備える光学機器の一例として、図15に示す、光源装置である光学機器3を例に挙げて説明する。なお、光学機器3は、例えば、透過型レーザヘッドライト(車両用前照灯)等に好適に使用される。 In the present embodiment, as an example of an optical device including a wavelength conversion element, the optical device 3 which is a light source device shown in FIG. 15 will be described as an example. The optical device 3 is preferably used for, for example, a transmissive laser headlight (vehicle headlight) or the like.
 光学機器3は、波長変換素子1と、光源60とを備える。光源60は、波長変換素子1の波長変換層20に対して、波長変換層20の励起光を照射する。本実施形態では、基板10は、サファイア基板等の透光性基板により構成されている。このため、基板10は光源60からの光を透過させる。よって、光源60からの光は、波長変換層20に入射する。波長変換層20から出射された光(例えば、蛍光)は、リフレクタ61により反射され、平行光として出射する。 The optical device 3 includes a wavelength conversion element 1 and a light source 60. The light source 60 irradiates the wavelength conversion layer 20 of the wavelength conversion element 1 with the excitation light of the wavelength conversion layer 20. In the present embodiment, the substrate 10 is composed of a translucent substrate such as a sapphire substrate. Therefore, the substrate 10 transmits the light from the light source 60. Therefore, the light from the light source 60 is incident on the wavelength conversion layer 20. The light (for example, fluorescence) emitted from the wavelength conversion layer 20 is reflected by the reflector 61 and emitted as parallel light.
 本実施形態においても、基板10と直接接触している第2層22が設けられているため、波長変換層20の基板10からの剥離を効果的に抑制することができる。 Also in this embodiment, since the second layer 22 that is in direct contact with the substrate 10 is provided, the peeling of the wavelength conversion layer 20 from the substrate 10 can be effectively suppressed.

Claims (17)

  1.  基板と、
     前記基板の上に配されており、入射光とは波長が異なる光を出射する無機波長変換材を含む波長変換層と、
    を備え、
     前記波長変換層は、
     前記基板の上に配された第1層と、
     前記第1層を被う部分と、前記基板と接触する部分とを有し、前記無機波長変換材を含む第2層と、
    を含む、
    波長変換素子。
    With the board
    A wavelength conversion layer arranged on the substrate and containing an inorganic wavelength conversion material that emits light having a wavelength different from that of the incident light,
    With
    The wavelength conversion layer is
    The first layer arranged on the substrate and
    A second layer having a portion covering the first layer and a portion in contact with the substrate and containing the inorganic wavelength conversion material.
    including,
    Wavelength conversion element.
  2.  前記基板の線熱膨張係数と、前記波長変換層の線熱膨張係数とが相互に異なる、
    請求項1に記載の波長変換素子。
    The coefficient of linear thermal expansion of the substrate and the coefficient of linear thermal expansion of the wavelength conversion layer are different from each other.
    The wavelength conversion element according to claim 1.
  3.  前記第2層と前記基板との単位面積当たりの密着力が、前記第1層と前記基板との単位面積当たりの密着力よりも高い、
    請求項1または2に記載の波長変換素子。
    The adhesion between the second layer and the substrate per unit area is higher than the adhesion between the first layer and the substrate per unit area.
    The wavelength conversion element according to claim 1 or 2.
  4.  前記第1層の熱伝導率が前記第2層の熱伝導率よりも高い、
    請求項1~3のいずれか一項に記載の波長変換素子。
    The thermal conductivity of the first layer is higher than the thermal conductivity of the second layer.
    The wavelength conversion element according to any one of claims 1 to 3.
  5.  前記第1層は、無機バインダを含む、
    請求項1~4のいずれか一項に記載の波長変換素子。
    The first layer contains an inorganic binder.
    The wavelength conversion element according to any one of claims 1 to 4.
  6.  前記第1層は、前記無機バインダとしてアルミナを含む、
    請求項5に記載の波長変換素子。
    The first layer contains alumina as the inorganic binder.
    The wavelength conversion element according to claim 5.
  7.  前記第2層は、有機バインダを含む、
    請求項1~6のいずれか一項に記載の波長変換素子。
    The second layer contains an organic binder.
    The wavelength conversion element according to any one of claims 1 to 6.
  8.  前記第2層は、前記第1層の全体を被っている、
    請求項1~7のいずれか一項に記載の波長変換素子。
    The second layer covers the entire first layer.
    The wavelength conversion element according to any one of claims 1 to 7.
  9.  平面視において、前記第2層は、一の方向において前記第1層の両側で前記基板と接触している、
    請求項1~8のいずれか一項に記載の波長変換素子。
    In a plan view, the second layer is in contact with the substrate on both sides of the first layer in one direction.
    The wavelength conversion element according to any one of claims 1 to 8.
  10.  平面視において、前記第2層は、前記第2層の前記基板と接触している部分が、前記第1層が設けられた部分を包囲するように設けられている、
    請求項1~9のいずれか一項に記載の波長変換素子。
    In a plan view, the second layer is provided so that a portion of the second layer in contact with the substrate surrounds the portion provided with the first layer.
    The wavelength conversion element according to any one of claims 1 to 9.
  11.  前記第1層は、無機散乱材を含む、
    請求項1~10のいずれか一項に記載の波長変換素子。
    The first layer contains an inorganic scatterer.
    The wavelength conversion element according to any one of claims 1 to 10.
  12.  前記波長変換層は、前記第1層と前記第2層との間に配された第3層をさらに含む、
    請求項1~11のいずれか一項に記載の波長変換素子。
    The wavelength conversion layer further includes a third layer arranged between the first layer and the second layer.
    The wavelength conversion element according to any one of claims 1 to 11.
  13.  前記基板が、金属基板により構成されている、
    請求項1~12のいずれか一項に記載の波長変換素子。
    The substrate is made of a metal substrate.
    The wavelength conversion element according to any one of claims 1 to 12.
  14.  前記基板が、透光性基板により構成されている、
    請求項1~12のいずれか一項に記載の波長変換素子。
    The substrate is made of a translucent substrate.
    The wavelength conversion element according to any one of claims 1 to 12.
  15.  前記透光性基板が、サファイア基板により構成されている、
    請求項14に記載の波長変換素子。
    The translucent substrate is made of a sapphire substrate.
    The wavelength conversion element according to claim 14.
  16.  請求項1~15のいずれか一項に記載の波長変換素子と、
     前記波長変換素子の前記波長変換層に対して光を照射する光源と、
    を備える、
    光学機器。
    The wavelength conversion element according to any one of claims 1 to 15.
    A light source that irradiates the wavelength conversion layer of the wavelength conversion element with light,
    To prepare
    Optical equipment.
  17.  前記光源は、前記第2層の前記第1層を被う部分の上に光を照射する、
    請求項16に記載の光学機器。
    The light source irradiates light on the portion of the second layer that covers the first layer.
    The optical device according to claim 16.
PCT/JP2021/002932 2020-04-09 2021-01-28 Wavelength conversion element and optical device WO2021205716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-070280 2020-04-09
JP2020070280 2020-04-09

Publications (1)

Publication Number Publication Date
WO2021205716A1 true WO2021205716A1 (en) 2021-10-14

Family

ID=78023127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002932 WO2021205716A1 (en) 2020-04-09 2021-01-28 Wavelength conversion element and optical device

Country Status (1)

Country Link
WO (1) WO2021205716A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035885A (en) * 2005-07-26 2007-02-08 Kyocera Corp Light emitting device and illumination device employing it
JP2009506557A (en) * 2005-08-30 2009-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic devices
JP2011040724A (en) * 2009-07-13 2011-02-24 Mitsubishi Electric Corp Light emitting device
JP2011134761A (en) * 2009-12-22 2011-07-07 Toshiba Corp Light emitting device
JP2011134762A (en) * 2009-12-22 2011-07-07 Toshiba Corp Light emitting device
JP2011171585A (en) * 2010-02-19 2011-09-01 Panasonic Electric Works Co Ltd Light-emitting device
JP2018125464A (en) * 2017-02-02 2018-08-09 豊田合成株式会社 Method of manufacturing light emitting device
WO2019102787A1 (en) * 2017-11-21 2019-05-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
WO2019159441A1 (en) * 2018-02-14 2019-08-22 日本特殊陶業株式会社 Optical wavelength conversion device
JP2019174512A (en) * 2018-03-27 2019-10-10 セイコーエプソン株式会社 Wavelength conversion device, illumination device, and projector
JP2019175570A (en) * 2018-03-27 2019-10-10 セイコーエプソン株式会社 Wavelength conversion element, manufacturing method of wavelength conversion element, luminaire, and projector

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035885A (en) * 2005-07-26 2007-02-08 Kyocera Corp Light emitting device and illumination device employing it
JP2009506557A (en) * 2005-08-30 2009-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic devices
JP2011040724A (en) * 2009-07-13 2011-02-24 Mitsubishi Electric Corp Light emitting device
JP2011134761A (en) * 2009-12-22 2011-07-07 Toshiba Corp Light emitting device
JP2011134762A (en) * 2009-12-22 2011-07-07 Toshiba Corp Light emitting device
JP2011171585A (en) * 2010-02-19 2011-09-01 Panasonic Electric Works Co Ltd Light-emitting device
JP2018125464A (en) * 2017-02-02 2018-08-09 豊田合成株式会社 Method of manufacturing light emitting device
WO2019102787A1 (en) * 2017-11-21 2019-05-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
WO2019159441A1 (en) * 2018-02-14 2019-08-22 日本特殊陶業株式会社 Optical wavelength conversion device
JP2019174512A (en) * 2018-03-27 2019-10-10 セイコーエプソン株式会社 Wavelength conversion device, illumination device, and projector
JP2019175570A (en) * 2018-03-27 2019-10-10 セイコーエプソン株式会社 Wavelength conversion element, manufacturing method of wavelength conversion element, luminaire, and projector

Similar Documents

Publication Publication Date Title
JP6394144B2 (en) Fluorescent wheel for projector and light emitting device for projector
JP6314472B2 (en) Fluorescent wheel for projector, manufacturing method thereof, and light emitting device for projector
JP6246622B2 (en) Light source device and lighting device
JP6883783B2 (en) Phosphor wheel and lighting device
JP6399017B2 (en) Light emitting device
JP2019186300A (en) Semiconductor light-emitting device and manufacturing method therefor
JP6232951B2 (en) Fluorescent wheel for projector, manufacturing method thereof, and light emitting device for projector
JP7235944B2 (en) Light-emitting device and method for manufacturing light-emitting device
JP2010272847A (en) Light emitting device
JP2015192100A (en) Light-emitting element and method of manufacturing light-emitting element
JP2010272847A5 (en)
CN109838703B (en) Wavelength conversion device
WO2016181768A1 (en) Fluorescent substrate, light source device, and projection-type display device
JP6777077B2 (en) Light source device and projection type display device
JP2017151199A (en) Wavelength conversion device, illumination device, and projector
JP2016058624A (en) Light-emitting device
KR20210041539A (en) Specular color correction for phosphor lighting systems
JP6743813B2 (en) Phosphor substrate, light source device and projection display device
JP2015206940A (en) Fluorescent wheel for projector and light-emitting device for projector
WO2021205716A1 (en) Wavelength conversion element and optical device
JP7281014B2 (en) Wavelength conversion element and optical equipment
JP7308475B2 (en) color conversion element
WO2021181779A1 (en) Optical element and light emission system
US20230280583A1 (en) Phosphor wheel, illuminator, and projector
WO2022075293A1 (en) Wavelength conversion element, optical equipment, and method for manufacturing wavelength conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP