JP5190119B2 - 荷電粒子線装置 - Google Patents

荷電粒子線装置 Download PDF

Info

Publication number
JP5190119B2
JP5190119B2 JP2010536656A JP2010536656A JP5190119B2 JP 5190119 B2 JP5190119 B2 JP 5190119B2 JP 2010536656 A JP2010536656 A JP 2010536656A JP 2010536656 A JP2010536656 A JP 2010536656A JP 5190119 B2 JP5190119 B2 JP 5190119B2
Authority
JP
Japan
Prior art keywords
light
wavelength band
charged particle
particle beam
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010536656A
Other languages
English (en)
Other versions
JPWO2010052854A1 (ja
Inventor
夏規 津野
浩士 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010536656A priority Critical patent/JP5190119B2/ja
Publication of JPWO2010052854A1 publication Critical patent/JPWO2010052854A1/ja
Application granted granted Critical
Publication of JP5190119B2 publication Critical patent/JP5190119B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/224Luminescent screens or photographic plates for imaging ; Apparatus specially adapted therefor, e.g. cameras, TV-cameras, photographic equipment, exposure control; Optical subsystems specially adapted therefor, e.g. microscopes for observing image on luminescent screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/248Components associated with the control of the tube
    • H01J2237/2482Optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は荷電粒子線を用いた荷電粒子線装置技術にかかわり、特に荷電粒子線を用いた半導体検査装置において、半導体ウェハ基板のパターン形状異常や、デバイスの電気的欠陥を検出する検査技術に関する。
半導体デバイスの高集積化に伴い、デバイス構造はますます微細化、多層化し、その構造は複雑化している。半導体デバイスの製造工程では、歩留まりを向上させるため、半導体デバイスの不良に直結する導通不良などの電気的な欠陥を高感度に検出する技術が必要である。検出が求められる欠陥は、レジストパターンの露光パターン不良、コンタクトホールの導通不良、プラグの埋め込み不良、積層時のアライメント不良といったように多様化している。このような半導体デバイスの製造工程におけるニーズに対して、電子線を用いた欠陥検査技術がある。この欠陥検査技術は、電子線を半導体ウェハ上に収束、走査した時に、ウェハより放出される二次電子を検出することによって回路パターンの二次電子画像を取得する。正常部と欠陥部の検出には、電子線を照射したときに生じる半導体ウェハの帯電を利用する。正常部と欠陥部では帯電量に違いが生じ、二次電子の検出量が変化するため、正常部と欠陥部でコントラストが得られる。このコントラストを欠陥コントラストという。
欠陥コントラストを向上させ、高感度に検査する方法として、半導体ウェハ上に設置した帯電制御用の電極に電圧を印加し、電子線照射時に生じる二次電子を用いて、帯電の極性や帯電量を制御する方法や、大電流かつ大面積を照射することが可能な電子源を用いて、あらかじめウェハを帯電させ、その後、検査用の電子線を用いて検査を行う方法が知られている。例えばウェハ表面を正に帯電させた場合、開口したコンタクトホールの穴底から出た二次電子は、表面の正帯電によって穴底から引出される。開口した正常部のコンタクトホールは、周辺の絶縁膜よりも明るくなり、パターンコントラストが形成できる。
一方、コンタクトホールの穴底に絶縁膜が残された欠陥部では、ウェハ表面と同様に穴底の絶縁膜も正に帯電するため、穴底から引き出す電界が弱まる。非開口なコンタクトホールは、周辺の絶縁膜と同様の明るさとなり、この正常部と欠陥部の明暗差が欠陥コントラストとなる。
一方、電子線以外の帯電制御技術用いて欠陥コントラストを向上させる方法として、特開2003-151483(特許文献1)が知られている。CMOSなどのトランジスタを含む半導体ウェハにおけるプラグの非導通不良の検査では、半導体ウェハに作りこまれたp型とn型の接合部が問題となる。電子線による帯電制御法では、デバイスの抵抗値によって帯電量が変化するため、接合の種類に応じて帯電制御用の電極に印加する電圧の極性を切替えて、パターンコントラストを得る必要があった。また接合が持つ抵抗値のばらつきがプラグのパターンコントラストのばらつきとなり、欠陥コントラストが劣化するという問題もある。
特許文献1には、接合層に紫外光を照射することによって接合を低抵抗化し、パターンコントラストを向上させる方法が示されている。紫外光は、絶縁膜は透過し、Siに吸収される波長を利用する。照射した紫外光は、ウェハ上に形成された絶縁膜は透過し、Si層まで到達する。Si層に吸収された紫外光は接合部で電子、正孔対を作り出し、接合部を導電化するため、低抵抗化する。接合の抵抗は無視できるため、接合の種類によらず、均一なパターンコントラストを得ることができる。また接合部の低抵抗化によってばらつきも無視できるため、パターンコントラストが安定し、高感度な欠陥検査が可能である。
特開2003-151483号公報
複数の層で構成されたウェハにおいて、高い欠陥コントラストを得るには、欠陥が含まれる層で高いパターンコントラストを得ることが重要である。しかし、従来の電子線を用いた半導体検査方法は以下のような課題を有していた。
図8Aに示すように電子線102を用いた帯電制御法では、ウェハ表面でしか帯電を作り出すことができない。図8Aでは、三層構造にコンタクトホールが形成された試料の断面図を示し、電子線102により電子線が試料の層表面に照射され、各層から放出された二次電子により層表面が帯電している状態を示す図である。このように電子線102を用いた帯電制御方法では、ホールパターンの穴底からウェハ表面までほぼ均一な電界強度(図8Aの(b)のグラフの傾きに比例する強度)が形成される。同図(b)では、最下層が接地され、最上層が電子線により10Vに帯電されている状態の深さ方向の試料の深さ方向と電位との関係図である。ホールからの信号量はホールの縦方向に生じる電界強度分布に依存し、穴底から表面まで均一な電界強度分布を持つ場合、各層からの二次電子が均一に得られるため、各層間のパターンコントラストは弱く、中間に含まれる特定の層のパターンコントラストのみを抽出することが困難であった。つまり、コンタクトホールを試料上面から観察した二次電子画像である同図(c)に示すように中間層104と最下層105とのパターンコントラストが弱く、明確に識別することが困難であった。そのため、106に示すアライメント欠陥、他のホール内に見えている中間層104と最下層105との境界である2本の平行線が106のホール内には1本しか見えていないことからアライメントずれ等に起因する欠陥が生じているもののパターンコントラストが弱いため欠陥判定が困難であった。なお、同図(a)は、同図(c)のA−A´の実線部分の断面図である。
特定の層のパターンコントラストを得る場合、特定の層から表面までの帯電分布を制御し、特定の層から表面層間の電界強度を強くすることが重要である。例えばコンタクトホールが形成されたウェハにおいてゲートのサイドウォールのような中間層のアライメント不良を検査する場合、サイドウォール層からホール上面までの帯電分布を制御することが重要である。紫外光照射による導電化を利用してパターンコントラストを向上させる場合、サイドウォール層のみを導電化させ、帯電を抑制することができるが、導電化だけでは十分なパターンコントラストを得ることができない。特に露出領域の少ないサイドウォールのミスアライメントを検出するには、高いパターンコントラストを得ることが重要である。例えば、紫外光照射による導電化を利用する技術では、図8Cの(a)に示すようにホール上層を透過し、かつ、中間層に吸収される光62を照射することで、中間層であるサイドウォール層のみを導電化させ、帯電を抑制することができる。
これにより、同図の(b)に示すようにサイドウォール層の低抵抗化により電界強度をほぼ0にすることができる。これにより、パターンコントラストを向上させたいサイドウォール層からホール上面までの電界強度を従来(図8Aの(b))よりも大きくすることができると同時に、サイドウォール層とホール表面までの電界強度を従来(図8Aの(b))よりも低くすることができる。この結果、サイドウォール層から放出される二次電子が検出器側に引き出され易くなると共に、ホール表面から放出される二次電子が検出器側に引き出され難くなり、パターンコントラストが従来よりも大きくなると考えられる。しかし、この紫外光による中間層導電化では従来手法よりもパターンコントラストの改善が望めるものの、以前として十分なパターンコントラストは得られないため、欠陥判定が非常に困難であるという課題がある。
本発明の目的は、上記課題を解決し、様々な構造を持つ試料の帯電を高速、安定に制御し、特定の欠陥を高感度に検出する荷電粒子線装置を提供することにある。
本願発明の代表的な装置は、以下のとおりである。荷電粒子銃と、試料を載置するための試料ホルダと、試料ホルダに載置された該試料に荷電粒子銃から照射される荷電粒子線を照射する荷電粒子光学系と、該荷電粒子線が該試料に照射されることにより発生する二次電子を検出する検出器と、検出器により検出される該二次電子の信号を画像処理する画像処理部と、試料ホルダに載置された該試料の同一領域に互いに波長帯の異なる第1の波長帯の光と第2の波長帯の光とを同時に照射可能な光照射系とを備える荷電粒子線装置である。
また、別の代表的な装置は、荷電粒子銃と、試料を載置するための試料ホルダと、試料ホルダに載置された該試料に荷電粒子銃から照射される荷電粒子線を照射する荷電粒子光学系と、該荷電粒子線が該試料に照射されることにより発生する二次電子を検出する検出器と、検出器により検出される該二次電子の信号を画像処理する画像処理部と、試料ホルダに載置された該試料に光を照射する光照射系とを備え、光照射系は、互いに波長帯の異なる第1波長帯の光と第2波長帯の光との光路を統合するビームスプリッタを備える荷電粒子線装置である。
また、別の代表的な装置は、少なくとも第1層、第2層、第3層が上方から順に積層された構造を有する試料を検査する荷電粒子線装置において、荷電粒子銃と、該試料を載置するための試料ホルダと、該第1層に吸収される第1の波長帯の光と、該第1層および該第2層を透過し、かつ、該第3層に吸収される第2の波長帯の光とを同時に照射する光照射系と、第1の波長帯の光の照射により正に帯電した該第1層と、第2の波長帯の光の照射により該第3層に光電子が発生し該光電子により負に帯電した該第2層とに荷電粒子銃から照射される荷電粒子線を照射する荷電粒子光学系と、該荷電粒子線が該第1層および該第2層に照射されることにより発生する二次電子を検出する検出器と、検出器により検出される該二次電子の信号を画像処理する画像処理部とを有することを特徴とする荷電粒子線装置である。
本願発明によれば、複数の波長を同時に照射することができ、パターンコントラストを向上させることができる。このパターンコントラストの向上により、高精度、高感度な荷電粒子線を用いた観察、計測、検査が可能な装置を提供することができる。
本発明の半導体検査装置の一例を示す構成図。 本発明の光照射光学系の一例を示す構成図。 本発明の光照射光学系の別の一例を示す構成図。 照射する波長帯の一例示す説明図。 本発明における検査フローの一例を示す構成図。 本発明における光照射条件設定フローの一例を示す構成図。 検査対象の層構造の一例示す説明図。 従来技術の説明図。 本発明における効果の一例を示す説明図 検討した技術における効果の一例を示す説明図 吸収率カーブにより照射波長を決定する方法を示す説明図。 検査対象の層構造を効果の一例を示す説明図。 データベースを用いて照射条件を決定するフローを示す構成図。 光照射条件を設定するGUIを示す構成図。 検査対象の層構造を効果の一例を示す説明図。
以下、本発明の実施例を、図面を用いて説明する。本明細書では、荷電粒子線装置全般に適応することが可能であるが、説明の便宜上、荷電粒子の一部である電子を用いた電子線装置について説明する。荷電粒子線装置として理解する場合には、電子を荷電粒子に置き換えて本明細書の記載を参酌すれば良い。なお、電子以外の荷電粒子として例えばイオンが考えられ、イオンを用いたイオン装置においても適用することができる。また、本明細書にて、波長とは、光の出力強度分布において強度分布のピークの波長を言い、波長帯とは光の出力強度分布を規格化したピーク出力に対し1/e以上の出力となる波長の範囲を言う。
(実施例1)
本実施例では、電子線(荷電粒子線)装置で、試料として被検査ウェハにホールパターンが形成されている場合の、中間層のアライメント不良を検出する一例について述べる。本実施例における電子線装置の構成例を図1に示す。電子線装置1は電子光学系2、ステージ機構系3、ウェハ搬送系4、真空排気系5、制御系6、画像処理系7、操作部8、光照射系9、光照射条件測定系10により構成されている。電子光学系2は、電子銃11、コンデンサレンズ12、対物レンズ13、検出器14、偏向器15、ウェハ上の電極16により構成されている。光照射条件測定系10は吸収率計17、表面電位計18により構成されている。ステージ機構系3はXYステージ19、ウェハホルダ(試料ホルダ)20、ウェハ21により構成されている。制御系6はビーム制御部22、検出系制御部23、偏向制御部24、電子レンズ制御部25、リターディング電圧制御部26、電極制御部27、光照射条件測定制御部28、光照射制御部29により構成されている。画像処理系7は画像処理部30、画像記憶部31により構成されている。
本実施例では、電子光学系を覆う筐体内の真空内に導入された光32を、検査対象試料であるウェハ21に照射すると同時に、電子線を照射し、検出された二次電子画像から欠陥検査を行う。光照射系9の構成例を図2に示す。光源34は133nm以上1064nm以下の波長を含む光源を用いた。光源は水銀ランプ、エキシマランプ、波長可変レーザ等を用いることができる。光源より放出された光は、ビームスプリッタ35を用いて光の光路が2本に分岐されることで2本の光に分割される。分割された光は夫々の光路に配置された波長選択フィルタ36、37を用いて、波長帯を変更し、制御することができる。
なお、フィルタにはエタロンフィルタを用いた。エタロンフィルタはフィルタに入射する光の角度によって波長を選択することができる一般的なフィルタである。これらのフィルタは、入射する光に対する角度を個々独立に制御することができ、上記光照射制御部29からの制御により分割された光ごとに波長帯を設定することができる。また波長選択フィルタ36、37はフィルタの幅の異なるエタロンフィルタを使用し、選択波長のレンジを変えることによって、波長選択幅を変化する構成にしている。本実施例ではエタロンフィルタを用いたが、波長選択フィルタの組み合わせや、分光素子を用いることも可能で、本実施例に限定されるものではない。また、光のエネルギ制御素子38、39を夫々の光路に配置し、これらの制御素子として、連続型のND(Neutral Density)フィルタを用いた。連続型のNDフィルタは照射する光の位置によって透過率が変化するフィルタであり、フィルタ位置を移動させることによってエネルギを制御することができる。連続型だけではなく、レボルバ式のNDフィルタを用いることもできる。本実施例ではNDフィルタを用いたが、アッテネータやウェッジプレートを用いることも可能で本実施例に限定されるものではない。
さらに図2で図示するように、夫々の光の光路に光を遮蔽するシャッタ40、41を配置している。夫々の光路を通過する光の照射時間や照射の有無はシャッタ40、41の開閉で制御することができる。照射時間を制御する装置として光チョッパを用いることもできる。これらの波長選択フィルタ、エネルギ調整素子、シャッタは光照射制御部29より各々独立に制御することができる。個々に条件設定された光はビームスプリッタ42によりひとつの光路に統合され、ビーム形状制御素子43を用いて照射する光のビーム形状を一括して制御することができる。本実施例ではビーム形状制御素子43にマイクロレンズアレイを用いた。ビーム形状は電子線走査領域にかかわらず任意に設定することができる。他のビーム形状制御素子として、ミラーレンズによるダウンコリメート光学系などがあり、本実施例では特にマイクロレンズアレイやダウンコリメート光学系に限定されるものではない。このように、単一の光源より放出された光が、ビームスプリッタ35により光路の分岐がなされ、それぞれ分岐した光の波長帯、エネルギ、照射の有無が制御された後に、ビームスプリッタ42により光路が統合され、光32として真空内の検査試料(ウェハ)に照射するこができる構成となっている。
次に、図2とは別の光照射系9の構成例を図3に示す。図2の単一の光源とは異なり出力波長域が違う2種類の光源130、131(たとえばハロゲンランプと水銀ランプなど)を用意し、光路を分岐するビームスプリッタ35を介さずに、個別にエネルギ制御素子132、133とシャッタ134、135を含む構成とした。夫々のエネルギ制御素子およびシャッタの構成や役割は図2で説明したためここでの説明は省略する。なお、光源にレーザ光を利用する場合には、高次の波長変換を利用した方式や、パラメトリック発振を利用する方式がある。なお、1種類の光源を夫々130、131として設け、図2のように波長選択フィルタ36、37を設ける構成にしても良い。
次に真空中に統合された光が導入され、試料に到達するまでについて説明する。光32は石英やMgF2などの紫外域まで透過率の高い真空窓を利用し真空中に導入する。真空内に導入された光は、電子光学系2の軸上に設置された反射板33により、ほぼ電子光学系と同軸にウェハに向かって落射することができる。反射板33はアルミニウムコートや、誘電多層膜による反射率の高いコーティングを施すことにより構成されている。本実施例では光を垂直落射する光学系を採用したが、対物レンズ下面からウェハに斜めに照射する構成や、ミラーによる照射角度制御やガルバノミラーによる走査を行うことも可能である。ウェハに形成された各層の吸収率を測定する吸収率計17は、照射された光がウェハで反射したときの光の振幅と偏光角度が測定できる構成とした。分光エリプソメトリの原理により振幅と偏光角度の測定結果から、吸収係数を算出することができる。波長ごとの光の振幅を測定する手段として分光器を利用し、偏光角度は偏光子を用いて計測することができる。表面電位系18には非接触の表面電位計を用いた。
なお、吸収率計17は本装置の必須の構成ではない、例えば、既に吸収係数が装置外部で測定されていて既知の場合や、経験的にプロセス条件により吸収係数が求まっている場合が考えられる。この場合には、あえて検査装置内の真空内で吸収係数を求める必要がなく、吸収率計17は装置構成から除くことができる。また、光照射系として、図2や図3のように光路を統合するビームスプリッタ42を設ける例を示した。
しかし、この光照射系では望ましい構造を実施例として示したに過ぎず、様々な構成の変更を行うことができる。例えば、ビームスプリッタ42を設けないことも可能である。夫々別々の光源を用い、別々の方向からウェハに向かって落射する構成とすることも出来る。つまり、ウェハの表面の所定の同一領域に互いに波長帯の異なる光を同時に照射可能な光照射系であれば良く、真空内に照射される前に光路が統合されていなくても良い。但し、光路を統合した場合には、しない場合に比べて、光の照射領域やビーム形状制御素子を独立に制御する必要がないため、光の照射制御が容易かつ高精度に行えるという利点がある。
次に、図1の装置を用いた欠陥検出方法について検査フローにしたがって説明する。
図5に検査フローを示す。操作部8から、あらかじめ作成、登録したウェハの基本情報、検査情報を入力する。ウェハの基本情報はレイアウトパターン等があり、検査情報は検査領域、検査条件、光照射条件がある。検査条件は照射する電子ビーム電流、入射エネルギ、走査速度、走査領域がある。光照射条件は波長、照射エネルギ、照射パルス、照射領域、検査対象となる材料の光の吸収率等がある(ステップ110)。ウェハの基本情報、検査情報の入力(検査条件設定)の後、ウェハ21は搬送系4により、予備試料室(図示せず)に導入され、真空排気された後に、検査室に導入される(ステップ111)。ウェハロード後、ステップ111で入力した検査情報である光照射条件に基づき光照射制御部29により光の照射条件が設定される(ステップ112)。
光の照射条件の設定後、ステップ112で入力した検査条件に基づき電子線照射条件が設定される。この設定時には、電子ビーム校正用のパターンを用いて電子ビームの焦点、非点等の校正も行われる(ステップ113)。電子ビームの校正後、ウェハの位置を検出し、ウェハ位置や回転量のアライメントが行われる(ステップ114)。アライメント後、光照射系9内のシャッタ40、41を開け、光を照射しながら検出系14で取得する二次電子画像の明るさとコントラストの調整、いわゆるキャリブレーションが行われる(ステップ115)。キャリブレーション終了後、検査領域に基づき検査を開始し(ステップ116)、光照射系9内のシャッタ40、41を開け、光を照射しながらステージ移動により、光が照射されている領域から放出される二次電子画像を検査画像として取得する(ステップ117)。画像処理系7により、異なる領域の2つの同一パターンレイアウト部から夫々二次電子画像を取得し、両二次電子画像の一方を正常部に相当する参照画像、他方を検査画像として画像比較検査を行い、夫々の画像の差画像を取得する(ステップ118)。
なお、両画像が二次電子画像である必要はなく、CADデータを参照画像として差画像を取得してもかまわない。この差画像の異常明度から、欠陥位置が抽出され(ステップ119)、検査結果が出力される(ステップ120)。つまり、この差画像の差信号が一定値以上の場合には、この差信号の位置に欠陥があるものとして判定され、一方、差信号が一定値に満たない場合には、欠陥がないものとして判定される。このように差画像の差信号の値、つまり異常明度から欠陥の有無が判定され、検査結果として出力される。検査終了後、搬送系4によりウェハ21をアンロードし、終了する(ステップ121)。
次に、今回の発明のポイントとなる光の照射条件の設定(ステップ112)の詳細フローについて、図6を用いて説明する。まずウェハに光32を照射し、吸収率計17により吸収率(吸収係数)を測定する(ステップ122)。光照射条件で設定した吸収率以下になるように、波長選択フィルタ36、37のフィルタ角度を光照射制御部29からの信号により変更し、照射する夫々の光の波長帯調整し(ステップ123)、照射波長の設定を行う(ステップ124)。照射エネルギの校正は、照射領域を表面電位計18により表面電位を測定し(ステップ125)、光照射条件で設定した表面電位を満たすように、光のエネルギ制御素子38、39を光照射制御部29で回転させて、照射エネルギを調整し、設定する(ステップ126、127)。また、この一連のフローで、光の照射領域の調整も行われる。そして、その後、電子線照射条件の設定が行われる(ステップ113)。なお、上述したように、検査対象となる材料の光の吸収率が既知の場合には、吸収率の測定を省略することもできる。以上のフローにより、光照射制御部29を介して、光照射系9の各部材を制御し、検査ウェハに適した光の波長帯、照射エネルギ、照射領域が設定される。また、互いに異なる波長帯の光の照射の有無、照射時間についても、光照射制御部29のシャッタの制御により設定することもできる。
次に、本実施例の電子線装置を用いて、中間層のアライメント不良を検出する際の光照射条件の設定方法と検査方法、パターンコントラストが向上する原理について説明する。図7に、試料であるウェハの層構造について示した。表面層44は中間層45、最下層46の三層構造で構成されており、例えば、表面層44はSiO2、中間層45はSi3N4、最下層46はSiである。この図面は、SiO2表面層44上にコンタクトホールのパターンが形成されたレジストパターンをマスクとしてSiO2を選択的にエッチングし、さらにSi3N4中間層45が選択的にエッチングされた後のコンタクトホール形成時のウェハの断面図である。特にDRAMのメモリセルのトランジスタへの拡散層にコンタクトを取る場合に用いられる周知の層構造である。この場合、選択的なエッチングによりSi3N4中間層45がSiO2表面層44のホール径よりも小さく形成されるため、SiO2表面層44のホール径よりもSi3N4中間層45のホール径が小さくなるよう図示されている。
図8Aに電子線102を照射し試料表面を帯電させたときのホール軸上の電位分布(図8A(b)参照)と、得られる二次電子画像(図8A(c)参照)を示した。電子線による帯電形成では試料表面に電荷が蓄積されるため、中間層104から表面層103までの電位勾配は弱く、電界強度が小さい。よって二次電子画像でホール内の中間層を示す領域49のコントラストが弱く、パターン認識が困難である。一方、図8Bに本発明の荷電粒子線装置による複数の波長帯の光照射を行った場合の試料断面の模式図とホール軸上の電位分布(図8B(b)参照)と得られる二次電子画像(図8B(c)参照)を示した。
図8B(a)に模式的に示されるように、表面層103に吸収される波長を持つ第一の波長帯の光50と、表面層103、中間層104を透過し、最下層105に吸収される第一の波長帯とは互いに異なる波長帯の第二の光51を試料に照射する。第一の波長帯の光が表面層103に吸収されることで表面層103に正帯電を形成し、第二の波長帯の光が最下層105に吸収されることで最下層105から光電子を放出し、その光電子が中間層104に注入されることで中間層104を負帯電させる。これらの正帯電並びに負帯電は、それぞれ照射される第一の波長帯の光50のエネルギにより光電子が表面層103から真空中に放出される現象と、第二の波長帯の光51のエネルギにより光電子が最下層105から中間層104に放出・注入される現象により形成される。このような現象が生じ、表面層103が正帯電、中間層104が負帯電となった場合の試料深さ方向と帯電電位との関係を図8B(b)に示す。この図では、表面層103の表面が10Vに正帯電した場合の関係図である。図に示すように、中間層104は負帯電により層内の電位が特定の場所で最下層105に比べ負の電位となる(例えば−2V)。そのため、中間層104から表面層103までの電位勾配は従来の電位勾配が大きくなり、電界強度が従来よりも大きくすることができる。
また、これと同時に最下層105から中間層104までの電位勾配を負の勾配にすることができ、電界の向きを逆方向にすることができる。このような電位分布を形成されることにより、検査用の電子線の中間層104への照射により放出される二次電子は大きな電界強度により検出器側に勢いよく引き出されると同時に、検査用の電子線の最下層105への照射により放出される二次電子は負の電界により最下層105へ引き戻され検出器側に引き出され難くなる。よって、図8B(c)の二次電子画像でホール内の中間層を示す領域104とホール内の最下層を示す領域105のコントラストが強くなり、アライメント不良である欠陥部106が従来技術での二次電子画像に比べ容易に認識することができる。これにより、中間層における欠陥を高感度に検出することができるようになる。
また、従来の電子線の照射による試料の表面の帯電では、検査用の電子線の照射により表面の帯電量が変化し、コントラストが安定し難いという別の課題もあるが、本発明に係る装置では、検査用の電子線の照射する間においても、検査対象となる領域に第一の波長帯の光と第二の波長帯の光とを同時に照射することができるため、正帯電量と負帯電量の電荷量を安定させることが可能となる。そのため、従来の電子線による帯電形成よりも画像のコントラストが安定するという利点がある。
また、本発明に係る装置の光照射系には、シャッタ40、41第一の波長帯の光と第二の波長帯の光の照射有無をシャッタ40、41で切り替えることによって、第一の波長帯の光で表面層103を正帯電させて表面層103の検査を行い、第一と第二の波長帯の光を同時に照射することによって中間層104の検査を行うことが可能で、例えばデバイスの設計データから照射の有無を切り替えて、異なる層の欠陥検査を本装置で行うことも可能である。
次に光の照射条件設定方法について述べる。例えば、表面層103はSiO2、中間層104はSi3N4、最下層105はSiである。本実施例の構成を用いて吸収率計17により吸収率を計測した。Siの吸収率カーブ55、Si3N4の吸収率カーブ56、CVD法によるSiO2の吸収率カーブ57、熱酸化によるSiO2の吸収率カーブ58の測定結果を図9に示す。縦軸は、任意スケースの規格化された吸収率を示し、横軸は波長を示す。吸収率が高い程、特定の波長を有する光が吸収され易いことを示している。
なお、横軸は、左側に行くに従って波長が大きくなる軸である。この測定結果から材料によって、光の吸収率が波長に依存することを示していると共に、同一の材料であっても成膜方法によって、光の吸収率が波長に依存することを示していることがわかる。表面層103がCVD法で作成されている場合、第一の波長帯の光は170以上180nm以下の波長帯60を選択し、表面層103が熱酸化で作成されている場合、第一の波長帯の光は133以上170nm以下の波長帯61を選択する。最下層105に吸収される波長帯の第二の光は200以上220nm以下の波長帯59を選択する。選択する波長帯は、波長と吸収率との関係により決定される。
つまり、第一の波長帯の光としては、表面層103に吸収され易い、吸収率の高い波長帯を選択し、第二の波長帯の光としては、表面層103と中間層104に対して吸収され難い(透過し易い)、吸収率の低い波長帯であり、かつ、最下層105に吸収され易い、吸収率の高い波長帯を選択する。なお、吸収率の計測とその結果について説明したが、上述した通り、本装置で吸収率を測定しなくともよく、各層の吸収率と波長との関係又は本検査に適した波長帯の組み合わせが既知の場合には、既知の情報を用いて、第一の波長帯と第二の波長帯を決定することができる。
次に、ここで、ステップ126の各波長帯の照射エネルギ設定について説明する。第一の波長帯の光のみ照射し、帯電電位計18を用いて表面電位を計測しながら、目標の帯電電位になるように照射エネルギを調整する。その後第二の波長帯の光を照射し、検出したい層のパターンコントラストが一定値よりも大きい若しくは最大になるように第二の光の照射エネルギを調整する。このように第一の波長帯の光の照射エネルギの調整後に第二の波長帯の光の照射エネルギの調整というように二段階で調整することで、表面電位を目標値に設定できると共に、最適なパターンコントラストとなるような光の照射エネルギを調整することができる。
以上、検査対象の試料を表面層44がSiO2、中間層45がSi3N4、最下層46がSiとして説明したが、層構造は任意の組み合わせの層構造を有する試料についても適応することができるため、光照射系9は、任意の層構造に対応できるようにするため、第一の波長帯と第二の波長帯の波長帯の組み合わせを変更することが可能な構造になっている。また、層の成膜方法や膜厚などによっても光の吸収率が変化するため、第一の波長帯と第二の波長帯の波長帯の組み合わせを変更することが可能な構造になっている。また、パターンコントラストは夫々の光の照射エネルギにも依存するため夫々独立して照射エネルギを設定できる構造になっている。但し、波長帯の組み合わせについては、特定の層構造や特定の成膜方法のみの構造を有する試料の検査を実行する場合には、波長帯の組み合わせを変更できる構造にしなくとも予め層構造に適した波長帯の組み合わせに固定しておくことも出来る。
具体的には、表面層44がSiO2、中間層45がSi3N4、最下層46がSiと決まっている場合には、第一の波長帯として133以上180nm以下の波長帯の範囲から所定の波長帯と、第二の波長帯として200以上220nm以下の波長帯の範囲から所定の波長帯の光の組み合わせとしておけば良い。また、本明細書で光の波長の範囲は、半導体で用いられる材料を考慮し、ピーク波長が100nm以上1064nm以下の波長を想定しており、本装置において上記範囲の波長帯の光を出力できれば、様々な材料の層で積層膜を形成した場合にでも、本発明の効果を得ることができる。
ここで、本明細書での第一の波長帯と第二の波長帯について、図4を用いて説明する。第一の波長帯100と第二の波長帯の光101とは、図4に示すようなピーク波長を中心として、長短の波長を複数含む光である。ここでは、波長の幅が数10nmから数100nmのブロードな波長帯や、レーザ光のように数nmから数10nmの狭い波長の幅をもつ波長帯の光を用いることができる。本明細書で波長帯の数値に明言するときには、規格化したピーク出力に対し1/e以上の出力の範囲の波長帯を示す。また、本明細書で互いに波長帯が異なる光という場合には、それぞれの光のピーク出力に対し1/e以上の出力で互いに重ならない波長帯の光のことを示す。
つまり、図4に示すように、1/e未満の出力で重なる波長が存在してもよい。1/e未満の出力であれば、ほとんど層の帯電に寄与しないためである。一方、1/e以上の出力で互いに重なる場合には、実質的に単一の波長帯の光とみなされ、正帯電となる表面層と負帯電となる中間層とで導電化現象が起き、電位がほぼ同一の電位になる場合がある。この場合には、所望のパターンコントラストが得られないため、1/e以上の出力で互いに重ならない波長帯の光の照射エネルギ、波長帯を選択する必要がある。
以上の荷電粒子線装置より、多層構造を持つウェハにおいて、特定の層のパターンコントラストから、欠陥コントラストを飛躍的に向上させることができるようになった。その結果、半導体製造工程の歩留まり管理や早期不良検出に貢献できるようになった。
(実施例2)
本実施例では、実施例1で説明した装置を用いて、実施例1とは異なる検査対象の試料の検査について説明する。検査対象となるウェハの層構造について図10示した。表面層72、中間層73、最下層74の三層構造で構成されており、表面層72はレジスト膜、中間層73は反射防止膜(BARC)、最下層74はSiである。中間層73が開口していない点において、実施例1で説明した試料とは異なる。実施例1ではアライメント欠陥の検査について説明したが、本実施例2では開口不良の検査に適応した例である。正常部75はBARC層を残して露出され開口している状態であり、欠陥部76はレジストの膜が残存しており開口不良の状態を示している。通常の電子線による帯電ではレジスト層もBARC層も絶縁層であるため同様に帯電する。そのため、正常部、欠陥部ともに穴底が帯電することになる。開口不良の検査の場合には、穴底の帯電の有無によって正常部と欠陥部の明度差を得るため、電子線を用いた帯電制御法のみではほとんど明度差がない二次電子画像であり欠陥コントラストを得ることが困難であった。
そこでこの開口不良に対して、実施例1で説明した装置の第一の波長帯の光77と第二の波長帯の光78を用いて欠陥コントラストを向上させることができる。第一の波長帯の光77は、表面層72に吸収され易い波長帯の光を選択し、第二の波長帯の光78は、表面層72、中間層73に吸収され難く(透過しやすく)、かつ、最下層74に吸収され易い波長帯の光を選択する。このような波長帯の光を選択することで、表面層72を正帯電させることができ、中間層73を負帯電させることができる。従来技術では、正常部と欠陥部とが正帯電となるため欠陥コントラストを得ることが困難であった。一方、本装置を用いた技術では、正常部を負帯電させ、欠陥部を正帯電させることができるため正常部のホール内の電界強度が従来よりも大きくなる。そのため、正常部からの二次電子が検出器側に引き出され易くなり、欠陥部とのコントラストが向上し、高精度で開口不良の欠陥を検出することができる。
(実施例3)
本実施例では、実施例1で説明した装置を用いて、実施例1及び2とは異なる検査対象の試料の検査について説明する。ウェハの層構造について図13に示した。表面層86、中間層87、最下層88の三層構造で構成されており、表面層86はSiO2、中間層87は拡散(接合)層、最下層88はSiである。中間(接合)層87が拡散層である点及びコンタクトホールにプラグが埋め込まれている点において、実施例1及び2で説明した試料とは異なる。実施例1ではアライメント欠陥の検査、実施例2では開口不良の検査について説明したが、実施例3ではプラグパターンが形成されているウェハのプラグショート不良の検出に適応した例である。正常部は図13左側の表面層86に埋め込まれたプラグ部分でありプラグと中間層87とが電気的に接続されている。一方、欠陥部は図右側の表面層86に埋め込まれたプラグ部分であり開口不良のコンタクトホールにプラグが埋め込まれた状態になっているためプラグと中間層87とが電気的に接続されていない。
一般的なプラグ検査では正常なプラグは導電膜と電気的に接続されているので、導電膜を介して接地した状態であり、電荷がプラグに蓄積されず帯電しない。一方、ショートや非開口、プラグ中にボイドが存在した場合、プラグが接地しない状態であり、電荷がプラグに蓄積され帯電される。そのため、プラグの帯電、非帯電といった帯電量の差により、検査用の電子線を照射した際に、プラグ表面から放出される二次電子の検出量が異なり、正常部と欠陥部の明暗差を得ることができる。
しかし、図13に示すようにプラグが拡散層である中間層87に接続されている場合には、最下層88と中間層87との間でp-n接合により電気的に接続されない状態となる。そのため、正常部であってもプラグに電荷が蓄積され、電子線を用いた帯電制御法のみではほとんど明度差がない二次電子画像であり欠陥コントラストを得ることが困難であった。そこでこのプラグショート不良に対して、実施例1で説明した装置の第一の波長帯の光89と第二の波長帯の光84を用いて欠陥コントラストを向上させることができる。第一の波長帯の光は、表面層86に吸収され易い波長帯の光を選択し、第二の波長帯の光90は、表面層86に吸収され難く(透過し易く)、かつ、中間層87に吸収され易い波長帯の光を選択する。このような波長帯の光を選択することで、表面層から光電子を放出させ、表面を正に帯電させることができ、さらに第二の波長帯の光84を用いて接合部である中間層87を導電化させることができる。このとき導電化と同時に中間層87から正常部となるプラグに電子が流入し、正常部のプラグの帯電緩和がなされる。
一方、欠陥部のプラグの帯電については、不良により電子が流入し難いため帯電緩和がなされ難い。そのため、帯電量の差により、検査用の電子線を照射した際に、プラグ表面から放出される二次電子の検出量が異なり、正常部と欠陥部の明暗差を得ることができ、正常部と欠陥部とのコントラストが向上し、高精度でプラグショート不良等の欠陥を検出することができる。
次に、第一の波長帯の光89と第二の波長帯の光90のエネルギ調整について、説明する。本実施例3では、先に第二の波長帯の光90のエネルギを調整し、適切な接合層の導電化エネルギを調整する。接合層の導電化はリターディング電圧制御部26に搭載された電流計により接合層の導電化によって流れる電流を計測することにより適切なエネルギかの判断がなされる。次に、調整した第二の波長帯の光90を照射しながら第一の波長帯の光89を照射し、パターンコントラストが一定値よりも大きい若しくは最大になるよう第一の波長帯の光89のエネルギの調整が行われる。
以上の方式より、プラグ構造を持つウェハにおいて、作用が異なる複数の光を照射することによって欠陥コントラストを向上させることができるようになった。その結果、半導体製造工程の歩留まり管理や早期不良検出に貢献できるようになった。
(実施例4)
本実施例では、実施例1で説明した装置の照射する光の波長帯の選択手段について、説明する。この実施例では特に吸収率計17を用いる代わりに、層材料毎の吸収率の情報を予めデータベース化した場合における照射光の波長帯の選択フローについて説明する。データベースを用いることで、二次電子画像の取得の際に逐一所定の材料における光の吸収率を測定することなく光照射系9の制御をデータベースに蓄積された情報に基づき高いコントラストの二次電子画像の取得を行うことができる。この選択フローを図11に示す。また、操作部8に搭載されているワークステーションに登録されているGUI(Graphical User Interface)を図12に示す。
図12に示す欠陥種類の設定ウィンドウ79で、検査する欠陥の種類を入力することができるようになっている。例えば開口不良やアライメント不良などである。また、検査する試料の層構造が入力することができるようになっている。例えば三層構造、四層構造などである。また、検査対象となる層を入力することができるようになっている。例えば表面層、中間層などである。このように、検査する欠陥の種類と層の指定ができるようになっている。そして、その欠陥の種類や工程に応じて、層構造や誘起現象が登録されており、層構造の設定ウィンドウ80に自動的に呼び出される(ステップ140)。なお、「光電子」は対応する層で光が吸収されることを示し、「透過」は対応する層で光が透過することを示す。そして、予め装置と接続され、材料毎の吸収率が登録されているデータベースから吸収率データを呼び出し(ステップ141)、波長選択フィルタ36、37のフィルタ角度を光照射制御部29からの信号により変更する(ステップ142)。エネルギ調整はデータベースに登録されている量子効率と各波長帯の照射面積から照射量を算出し、光照射制御部29から光のエネルギ制御素子38、39を回転させ、エネルギを決定する(ステップ143)。さらに二次電子画像84を取得し、所望のパターンコントラストが得られていることを画像解析により確認する。
検査したい層のパターンコントラストが得られない場合、図12に示す条件設定ツールを用いて調整する。吸収率データ表示ウィンドウ81には各吸収率のデータ(例えば、図9の波長−吸収率のデータ)が表示され、表示ウィンドウ上で照射する波長帯が調整できる。特にレシピ作成時は、膜の製法やメーカ間の材料の違いによる吸収率の変化量を補正することが重要で、吸収率データから容易に照射波長帯を決定できることがレシピ作成時間の短縮につながる。検査したい層のパターンコントラストが不足している場合、エネルギの調整を行う。エネルギの調整は実施例1で説明したように帯電量とパターンコントラストから判断する。設定した帯電電位に対して0.5V以下の誤差範囲内に入る電位になるように第一の波長帯の光のエネルギを設定する。第二の波長帯の光のエネルギはパターンコントラストを測定しながらエネルギを調整し、パターンコントラストが最大になる極大値を判断し設定する。
なお、必ずしも最大である必要はなく、パターンコントラストの一定値以上を判断し設定してもよい。また、実施例3で説明したように検査試料の層構造や対象となる検査欠陥によっては、第二の波長帯の光のエネルギを先に調整してもよい。
設定時の結果は帯電量データ表示ウィンドウ82、パターンコントラストデータ表示ウィンドウ83に表示される。帯電量データ表示ウィンドウのより、層の帯電量が把握できるようになっている。また、パターンコントラストデータ表示ウィンドウにより、コントラストの光のエネルギの依存性が分かるようになっており、調整された光のエネルギにおけるコントラストが適切なコントラストとなっているか、さらにコントラストを向上させる光のエネルギが存在するかを把握できるようになっている。また、帯電量のデータ表示やパターンコントラストのデータ表示によって、照射エネルギ量の増加や、異常な特性カーブから光源や光学系の劣化を確認することができ、帯電量データとパターンコントラストデータのどちらに異常があるかによって、劣化している光路を特定することができる。照射する光の条件は条件結果表示ウィンドウ85に表示され、検査フローの中に組み込まれる。
また、GUIとして、二次電子画像84がリアルタイムで表示されるようになっている。そのため、照射する光の条件結果における二次電子画像84のコントラストの状態を把握することができる。また、条件結果表示ウィンドウ85では、操作者が任意の数値を入力することができるようにもなっており、入力された数位により、光照射系9の制御を行うこともできる。また、入力された条件における二次電子画像84もリアルタイムで表示されることにより、コントラストの調整を行うことができる。
ここで具体例について説明する。ここでは実施例2の開口不良の検査を例に挙げて説明する。欠陥種類の設定ウィンドウ79で三層構造のウェハの開口不良を検査するモードを選択し、層構造の設定ウィンドウ80でレジスト、BARC、Siの三層構造を選択した。層ごとに光で誘起させる現象は欠陥の種類と層の指定で自動的に決定されるよう構成されているが、層構造の設定ウィンドウ80内で操作者側が変更することも可能である。第一の波長帯の光(第一の光)はレジストから光電子を放出する波長(レジストに吸収される波長)を選択し、表面層を正帯電させる。高いパターンコントラストを得るには実施例2で述べたように同時にBARC層の帯電を抑える必要がある。BARC層の帯電を抑えるため、第二の波長帯の光(第二の光)として、Si層に第二の波長帯の光を吸収させることでSi層から光電子を放出しBARC層を負帯電させる方法と、BARC層に第二の波長帯の光を吸収されることで導電化させる方法が考えられる。
そこで、両方法のいずれかの方法が適当なのかを吸収率データ表示ウィンドウ81に表示される吸収率データにより判断する。吸収率データ表示ウィンドウ81はデータベースから登録されている材質、製法ごとの吸収率データを呼び出して表示させることができる。材質、製法ごとに吸収率計17、表面電位計18で測定した結果や、材料メーカから開示されているデータをデータベースに登録している。吸収率データからBARCを導電化させる波長はレジストでの吸収率が高いため、レジストに吸収され難く、かつ、BARCに吸収され易い適切な波長が存在しないことが分かり、二次電子画像のコントラストの向上が見込めないことが判断できる。
一方、レジストとBARCを透過し、Siに吸収されSiから光電子を放出させる光の波長はレジストとBARCでの吸収率が低く効果的にBARCの帯電を抑制することができることが吸収率データ表示ウィンドウ81に表示された吸収率データから判断できる。そのため、第二の波長帯の光としてレジストとBARCを透過し、Siに吸収されSiから光電子を放出させる波長を選択した。第一の光と第二の光の波長帯は、吸収率のデータベースから自動的に抽出され、第一の光は160以上180nm以下の波長帯の光で、第二の光は240以上300nm以下の波長帯の光となった。
以上の方式より、多層構造を持つウェハにおいて、データベースから最も欠陥コントラストを向上させる照射条件を判断することができ、欠陥コントラストを向上させることができるようになった。その結果、半導体製造工程の歩留まり管理や早期不良検出に貢献できるようになった。
以上より、実施例1〜4について説明した。本発明では照射する光の波長帯を複数選択することにより、各層ごとに、正帯電、負帯電、導電化の現象を誘起することができる。選択する波長帯はSiO2やSiで吸収させる100nm以上400nm以下の紫外領域や、SiO2を透過させる400nm以上700nm以下の可視光、さらにSiを透過させる700nm以上1100nm以下の近赤外から選択する必要がある。誘起する現象を組み合わせて最適な電界分布を作り出すことができるため、欠陥を抽出したい層や検出したい欠陥の種類に応じてパターンコントラストを制御することが可能である。
また、ウェハの層を構成している材質や、製法に応じて吸収率が変化するため、光の照射条件の選択が困難であるという課題があった。そこで、各層の吸収率を測定する手段と、光照射によって形成する帯電量を測定する手段を設けた。各層ごとの波長別に測定した吸収率の結果に応じて、照射する波長帯を選択することができる。また、光照射部の帯電量の測定結果に応じて照射エネルギを制御することができるため、パターンコントラストの安定性、再現性を高めることが可能となる。
1…電子線装置、2…電子光学系、3…ステージ機構系、4…ウェハ搬送系、5…真空排気系、6…制御系、7…画像処理系、8…操作部、9…光照射系、10…光照射条件測定系、11…電子銃、12…コンデンサレンズ、13…対物レンズ、14…検出器、15…偏向器、16…ウェハ上の電極、17…吸収率計、18…表面電位計、19…XYステージ、20…ウェハホルダ、21…ウェハ、22…ビーム制御部、23…検出系制御部、24…偏向制御部、25…電子レンズ制御部、26…リターディング電圧制御部、27…電極制御部、28…光照射条件測定制御部、29…光照射制御部、30…画像処理部、31…画像記憶部、32…光、33…反射板、34…光源、35…ビームスプリッタ、36…波長制御素子、37…波長制御素子、38…エネルギ制御素子、39…エネルギ制御素子、40…シャッタ、41…シャッタ、42…ビームスプリッタ、43…ビーム形状制御素子、44…表面層、45…中間層、46…最下層、49…中間層を示す領域、50…第一の波長帯の光、51…第二の波長帯の光、53…中間層を示す領域、55…Siの吸収率カーブ、56…Si3N4の吸収率カーブ、57…CVD法によるSiO2の吸収率カーブ、58…熱酸化によるSiO2の吸収率カーブ、59…200以上220nm以下の波長帯、60…170以上180nm以下の波長帯、61…150以上170nm以下の波長帯、62…中間層に吸収される光、72…表面層、73…中間層、74…最下層、75…正常部、76…欠陥部、77…第一の波長帯の光、78…第二の波長帯の光、79…欠陥種類の設定ウィンドウ、80…層構造の設定ウィンドウ、81…吸収率データ表示ウィンドウ、82…帯電量データ表示ウィンドウ、83…パターンコントラストデータ表示ウィンドウ、84…二次電子画像、85…条件結果表示ウィンドウ、86…表面層、87…中間層、88…最下層、89…第一の波長帯の光、90…第二の波長帯の光、100…第一の波長帯、101…第二の波長帯、102…電子線、103…表面層、104…中間層、105…最下層、106…欠陥部、130…光源、131…光源、132…エネルギ制御素子、133…エネルギ制御素子、134…シャッタ、135…シャッタ。

Claims (20)

  1. 荷電粒子銃と、
    互いに異なる材料からなる第1層および第2層が積層された構造を有する試料を載置するための試料ホルダと、
    前記試料ホルダに載置された該試料に前記荷電粒子銃から照射される荷電粒子線を照射する荷電粒子光学系と、
    該荷電粒子線が該試料に照射されることにより発生する二次電子を検出する検出器と、
    前記検出器により検出される該二次電子の信号を画像処理する画像処理部と、
    前記試料ホルダに載置された該試料の同一領域に互いに波長帯の異なる第1の波長帯の光と第2の波長帯の光とを同時に照射可能な光照射系とを備え
    前記第1の波長帯の光は、前記第2の波長帯の光と比較して、前記第1層に吸収され易い光であり、前記第2の波長帯の光は、前記第1の波長帯の光と比較して、前記第1層に吸収され難い光であり、前記第2層に吸収され易い光であることを特徴とする荷電粒子線装置。
  2. 請求項1記載の荷電粒子線装置において、
    前記光照射系は、前記第1の波長帯の光と前記第2の波長帯の光の光路を統合するビームスプリッタを備えることを特徴とする荷電粒子線装置。
  3. 請求項1記載の荷電粒子線装置において、
    前記第1の波長帯と前記第2の波長帯との波長帯の組み合わせは、変更可能であることを特徴とする荷電粒子線装置。
  4. 請求項1記載の荷電粒子線装置において、
    前記第1の波長帯の光と前記第2の波長帯の光は、それぞれの光のピーク出力に対し1/e以上の出力で互いに重ならない波長帯の光であることを特徴とする荷電粒子線装置。
  5. 請求項4記載の荷電粒子線装置において、
    前記第1の波長帯の光と前記第2の波長帯の光は、それぞれ133nm以上180nm以下、200nm以上266nm以下の波長帯の光であることを特徴とする荷電粒子線装置。
  6. 請求項1記載の荷電粒子線装置において、
    前記光照射系は、光源と、前記光源から放出された光の光路を分岐する第1のビームスプリッタと、前記第1のビームスプリッタにより分岐された夫々の光の光路に設けられた波長帯の変更を行うフィルタと、前記夫々の光の光路を統合する第2のビームスプリッタとを備え、前記第1の波長帯の光と前記第2の波長帯の光は、前記第2のビームスプリッタから照射される光であることを特徴とする荷電粒子線装置。
  7. 請求項6記載の荷電粒子線装置において、
    前記第1のビームスプリッタと前記第2のビームスプリッタとの間の前記第1の波長帯の光と前記第2の波長帯の光の光路の夫々に、光の出力エネルギを調節するフィルタと、
    光を遮蔽するシャッタとを備えることを特徴とする荷電粒子線装置。
  8. 請求項1記載の荷電粒子線装置において、
    さらに、前記光照射系から照射される光により該試料の所定の層における光の吸収率を測定する吸収率計を備えることを特徴とする荷電粒子線装置。
  9. 請求項1記載の荷電粒子線装置において、
    さらに、該試料を構成する層情報を入力する表示装置と、前記第1の波長帯と前記第2の波長帯との組み合わせを制御する光照射制御部を有し、前記表示装置により入力された層情報に基づき、前記光照射制御部は、前記第1の波長帯と前記第2の波長帯とが所望の組み合わせとなるよう前記光照射系を制御することを特徴とする荷電粒子線装置。
  10. 請求項9記載の荷電粒子線装置において、
    さらに、所定の層材料と光の波長に対する吸収率との情報を蓄積されたデータベースを有し、前記光照射系の制御は、前記データベースに蓄積された該情報に基づき行われることを特徴とする荷電粒子線装置。
  11. 請求項1記載の荷電粒子線装置において、
    前記第1の波長帯の光と前記第2の波長帯の光の一方は、該試料に含まれる所定の層対して負帯電させる光であることを特徴とする荷電粒子線装置。
  12. 荷電粒子銃と、
    試料を載置するための試料ホルダと、
    前記試料ホルダに載置された該試料に前記荷電粒子銃から照射される荷電粒子線を照射する荷電粒子光学系と、
    該荷電粒子線が該試料に照射されることにより発生する二次電子を検出する検出器と、
    前記検出器により検出される該二次電子の信号を画像処理する画像処理部と、
    前記試料ホルダに載置された該試料に光を照射する光照射系とを備え、
    前記光照射系は、互いに波長帯の異なる第1波長帯の光と第2波長帯の光との光路を統合するビームスプリッタを備えることを特徴とする荷電粒子線装置。
  13. 請求項12記載の荷電粒子線装置において、
    前記光照射系は、光源と、前記光源から放出された光の光路を分岐する前記ビームスプリッタとは異なる第2のビームスプリッタと、前記第2のビームスプリッタにより分岐された夫々の光の光路に設けられた波長帯の変更を行うフィルタと、を備え、前記光照射系は、前記第1の波長帯の光と前記第2の波長帯の光とを統合して該試料に光を照射することを特徴とする荷電粒子線装置。
  14. 請求項12記載の荷電粒子線装置において、前記ビームスプリッタと前記第2のビームスプリッタとの間の前記第1の波長帯の光と前記第2の波長帯の光の光路の夫々に、光の出力エネルギを調節するフィルタと、光を遮蔽するシャッタとを備えることを特徴とする荷電粒子線装置。
  15. 請求項12記載の荷電粒子線装置において、
    前記第1の波長帯の光と前記第2の波長帯の光は、それぞれの光のピーク出力に対し1/e以上の出力で互いに重ならない波長帯の光であることを特徴とする荷電粒子線装置。
  16. 請求項12記載の荷電粒子線装置において、
    前記第1の波長帯の光と前記第2の波長帯の光の一方は、該試料に含まれる所定の層対して負帯電させる光であることを特徴とする荷電粒子線装置。
  17. 少なくとも第1層、第2層、第3層が上方から順に積層された構造を有する試料を検査する荷電粒子線装置において、
    荷電粒子銃と、
    該試料を載置するための試料ホルダと、
    該第1層に吸収される第1の波長帯の光と、該第1層および該第2層を透過し、かつ、該第3層に吸収される第2の波長帯の光とを同時に照射する光照射系と、
    前記第1の波長帯の光の照射により正に帯電した該第1層と、前記第2の波長帯の光の照射により該第3層に光電子が発生し該光電子により負に帯電した該第2層とに前記荷電粒子銃から照射される荷電粒子線を照射する荷電粒子光学系と、
    該荷電粒子線が該第1層および該第2層に照射されることにより発生する二次電子を検
    出する検出器と、
    前記検出器により検出される該二次電子の信号を画像処理する画像処理部とを有することを特徴とする荷電粒子線装置。
  18. 請求項17記載の荷電粒子線装置において、
    さらに、該第1層〜第3層を構成する材料を夫々入力する表示装置と、前記第1の波長帯と前記第2の波長帯との組み合わせを制御する光照射制御部を有し、前記表示装置により入力された該材料の情報に基づき、前記光照射制御部は、前記第1の波長帯と前記第2の波長帯とが所望の組み合わせとなるよう前記光照射系を制御することを特徴とする荷電粒子線装置。
  19. 請求項17記載の荷電粒子線装置において、
    前記画像処理部により画像処理された画像により欠陥検査を行うことを特徴とする荷電粒子線装置。
  20. 請求項17記載の荷電粒子線装置において、
    前記第1の波長帯の光と前記第2の波長帯の光は、それぞれの光のピーク出力に対し1/e以上の出力で互いに重ならない波長帯の光であることを特徴とする荷電粒子線装置。
JP2010536656A 2008-11-05 2009-10-28 荷電粒子線装置 Active JP5190119B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010536656A JP5190119B2 (ja) 2008-11-05 2009-10-28 荷電粒子線装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008284554 2008-11-05
JP2008284554 2008-11-05
JP2010536656A JP5190119B2 (ja) 2008-11-05 2009-10-28 荷電粒子線装置
PCT/JP2009/005694 WO2010052854A1 (ja) 2008-11-05 2009-10-28 荷電粒子線装置

Publications (2)

Publication Number Publication Date
JPWO2010052854A1 JPWO2010052854A1 (ja) 2012-04-05
JP5190119B2 true JP5190119B2 (ja) 2013-04-24

Family

ID=42152667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010536656A Active JP5190119B2 (ja) 2008-11-05 2009-10-28 荷電粒子線装置

Country Status (3)

Country Link
US (1) US8586920B2 (ja)
JP (1) JP5190119B2 (ja)
WO (1) WO2010052854A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11869745B2 (en) 2019-03-27 2024-01-09 Hitachi High-Tech Corporation Charged particle beam device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506560B2 (ja) * 2010-06-18 2014-05-28 キヤノン株式会社 描画装置及びデバイス製造方法
JP5963453B2 (ja) * 2011-03-15 2016-08-03 株式会社荏原製作所 検査装置
US8421007B2 (en) * 2011-05-18 2013-04-16 Tohoku University X-ray detection system
JP5836221B2 (ja) * 2012-08-03 2015-12-24 株式会社日立ハイテクノロジーズ 荷電粒子線装置
KR20160081423A (ko) * 2014-12-31 2016-07-08 삼성전자주식회사 결함 검출 방법 및 결함 검출 시스템
US9673023B2 (en) * 2015-05-12 2017-06-06 Applied Materials Israel Ltd. System for discharging an area that is scanned by an electron beam
KR102357634B1 (ko) * 2015-05-28 2022-01-28 케이엘에이 코포레이션 생산 라인 모니터링 시스템 및 방법
JP6770428B2 (ja) * 2016-12-28 2020-10-14 株式会社Screenホールディングス 除電装置および除電方法
DE102017201706A1 (de) * 2017-02-02 2018-08-02 Carl Zeiss Microscopy Gmbh Abbildungseinrichtung zur Abbildung eines Objekts und zur Abbildung einer Baueinheit in einem Teilchenstrahlgerät
US10168614B1 (en) * 2017-06-14 2019-01-01 Applied Materials Israel Ltd. On-axis illumination and alignment for charge control during charged particle beam inspection
US10777383B2 (en) * 2017-07-10 2020-09-15 Fei Company Method for alignment of a light beam to a charged particle beam
US11183362B2 (en) * 2017-11-27 2021-11-23 Hitachi High-Tech Corporation Charged particle beam apparatus and sample observation method using the same
JP7189103B2 (ja) * 2019-08-30 2022-12-13 株式会社日立ハイテク 荷電粒子線装置
US20220375715A1 (en) * 2019-10-24 2022-11-24 Asml Netherlands B.V. Charged particle inspection system and method using multi-wavelength charge controllers
TWI767779B (zh) * 2021-07-02 2022-06-11 台灣電鏡儀器股份有限公司 檢測和中和電荷裝置與其檢測和中和電荷的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798840A (en) * 1980-12-12 1982-06-19 Fujitsu Ltd Devide for measuring concentration of semiconductor impurity
JP2000340160A (ja) * 1999-05-27 2000-12-08 Nikon Corp 写像型電子顕微鏡
JP2003151483A (ja) * 2001-11-19 2003-05-23 Hitachi Ltd 荷電粒子線を用いた回路パターン用基板検査装置および基板検査方法
JP2007071804A (ja) * 2005-09-09 2007-03-22 Hitachi High-Technologies Corp 欠陥検査方法及びこれを用いた装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612321B2 (en) * 2004-10-12 2009-11-03 Dcg Systems, Inc. Optical coupling apparatus for a dual column charged particle beam tool for imaging and forming silicide in a localized manner
JP4979246B2 (ja) * 2006-03-03 2012-07-18 株式会社日立ハイテクノロジーズ 欠陥観察方法および装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798840A (en) * 1980-12-12 1982-06-19 Fujitsu Ltd Devide for measuring concentration of semiconductor impurity
JP2000340160A (ja) * 1999-05-27 2000-12-08 Nikon Corp 写像型電子顕微鏡
JP2003151483A (ja) * 2001-11-19 2003-05-23 Hitachi Ltd 荷電粒子線を用いた回路パターン用基板検査装置および基板検査方法
JP2007071804A (ja) * 2005-09-09 2007-03-22 Hitachi High-Technologies Corp 欠陥検査方法及びこれを用いた装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11869745B2 (en) 2019-03-27 2024-01-09 Hitachi High-Tech Corporation Charged particle beam device

Also Published As

Publication number Publication date
US8586920B2 (en) 2013-11-19
WO2010052854A1 (ja) 2010-05-14
US20110204228A1 (en) 2011-08-25
JPWO2010052854A1 (ja) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5190119B2 (ja) 荷電粒子線装置
US6853204B2 (en) Wafer inspection method of charging wafer with a charged particle beam then measuring electric properties thereof, and inspection device based thereon
US6700122B2 (en) Wafer inspection system and wafer inspection process using charged particle beam
KR101013346B1 (ko) 컨택 홀 제조의 모니터링
JP2003151483A (ja) 荷電粒子線を用いた回路パターン用基板検査装置および基板検査方法
JP5174750B2 (ja) 荷電粒子線装置及び荷電粒子線画像を安定に取得する方法
JP2007500954A (ja) 高電流電子ビーム検査
TW201909303A (zh) 用於高效處理窗口探索之混合檢測系統
IL267920B1 (en) Testing and metrology using broadband infrared radiation
JP4606443B2 (ja) 荷電粒子線を用いた回路パターン用基板検査方法および基板検査装置
US7473911B2 (en) Specimen current mapper
JP4728361B2 (ja) 荷電粒子線を用いた基板検査装置および基板検査方法
JP7385054B2 (ja) 半導体検査装置および半導体試料の検査方法
JP2007128738A (ja) 帯電制御装置及び帯電制御装置を備えた荷電粒子線応用装置
JP4320308B2 (ja) 欠陥検査方法
JP4147233B2 (ja) 電子線装置
JP2008034475A (ja) 半導体装置の製造方法
JP2011014798A (ja) 半導体検査装置および半導体検査方法
KR100807218B1 (ko) 웨이퍼 검사 장치 및 방법
JP4130901B2 (ja) 半導体検査用標準ウエハ、半導体の検査方法および半導体検査装置
TW202331771A (zh) 檢查裝置及膜質檢查方法
JP4719569B2 (ja) パターン検査方法および検査装置
JP2002270655A (ja) 半導体装置の製造方法
CN112798614A (zh) 一种半导体机台及检测方法
KR101126218B1 (ko) 반도체 표면 검사장치 및 이를 이용한 반도체의 절연층에 형성된 핀홀 검사방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5190119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350