JP5178188B2 - 燃料電池発電システム、燃料電池発電システムの運転方法 - Google Patents

燃料電池発電システム、燃料電池発電システムの運転方法 Download PDF

Info

Publication number
JP5178188B2
JP5178188B2 JP2007500641A JP2007500641A JP5178188B2 JP 5178188 B2 JP5178188 B2 JP 5178188B2 JP 2007500641 A JP2007500641 A JP 2007500641A JP 2007500641 A JP2007500641 A JP 2007500641A JP 5178188 B2 JP5178188 B2 JP 5178188B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
valve
path
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007500641A
Other languages
English (en)
Other versions
JPWO2006080512A1 (ja
Inventor
彰成 中村
正高 尾関
英夫 小原
良和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007500641A priority Critical patent/JP5178188B2/ja
Publication of JPWO2006080512A1 publication Critical patent/JPWO2006080512A1/ja
Application granted granted Critical
Publication of JP5178188B2 publication Critical patent/JP5178188B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1628Controlling the pressure
    • C01B2203/1633Measuring the pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1685Control based on demand of downstream process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池を用いて発電を行う、燃料電池発電システムおよび燃料電池発電システムの運転方法に関するものである。
従来の燃料電池発電システムには、図19に示す構成のものがある(例えば、特許文献1の第3−4頁、第1図など参照)。
図19に示すように従来の燃料電池発電システムには、原料ガスを供給する原料供給源100と、原料ガスの硫黄成分を除去する脱硫部101と、硫黄成分を除去された天然ガスと水蒸気の混合ガスから水蒸気改質反応により水素リッチガスを生成する改質部102と、水素リッチガス中の一酸化炭素を低減する一酸化炭素低減部103が設置されている。又、燃料電池105が設置されており、燃料極に送られた一酸化炭素が低減された水素リッチガスと空気極へ送られた圧縮空気が電気化学的に反応して電気・水・熱となる。燃料電池105を出た排出燃料ガスは、改質部102を加熱するための燃焼バーナ106へと供給され改質部102の加熱に利用される。上記脱硫部101、改質部102、及び一酸化炭素低減部103によって燃料処理装置104が構成されている。
又、燃料処理装置104と原料供給源100の間には、原料ガス供給路107が設置されており原料ガス供給路107上には原料ガス遮断弁108が設置されている。又、燃料処理装置104と燃料電池105の間には、燃料ガス供給路109が設置されており、燃料ガス遮断弁110が設置されている。又、燃料電池105と燃焼バーナ106の間には、燃料ガス排出路111が設置されており、燃料電池出口遮断弁112が設置されている。
更に、燃料ガス遮断弁110と燃料処理装置104の間の燃料ガス供給路109と、燃料電池出口遮断弁112と燃焼バーナ106の間の燃料ガス排出路111とを結ぶ燃料電池バイパス路113が設置されており、燃料電池バイパス路113上にバイパス路遮断弁114が設置されている。
このように、燃料処理装置104の上流及び下流に複数の遮断弁が設置されている。
上記燃料電池発電システムの停止時には、原料ガス遮断弁108が閉じられ、原料ガスの供給が停止された後、各遮断弁110、112、114が閉じられていた。
ところが従来の燃料電池発電システムでは、上述したようにシステム運転終了時にこれらの電磁弁を閉止するため、燃料処理装置104を含む流路に閉鎖経路が生じていた。一方、システム運転中は燃料処理装置104内部の温度は600℃以上の高温であるが、システム運転終了後には時間経過とともに温度低下を起こす。また、燃料処理装置104で生成された燃料ガスに含まれる水蒸気も温度低下とともに凝縮する。そのため閉鎖経路では、圧力低下が生じる。
以上のことから、起動/停止を行う燃料電池発電システムでは、運転停止後に流路の閉鎖経路が圧力低下により負圧になるという課題があった。この負圧になるという課題は、電磁弁の固着によるシステム不具合や、外部からの空気流入による燃料処理装置104内部の触媒の性能劣化を引き起こす要因となっていた。
そこで、この様な課題を解決するために、次の様な燃料電池発電システムが既に提案されている(例えば、特許文献2の実施形態1,段落番号[0021]、図2、及び図3など参照。特許文献3の段落番号[0017]、及び図1など参照)。
即ち、特許文献2の燃料電池発電システムでは、システムの運転を停止モードにした時の負圧防止を目的として、燃料改質装置の上流、燃料改質部とCO変成部との間、又は、燃料改質部と燃料電池との間の何れかに、脱酸素された空気を供給するための脱酸素器を備えた構成が開示している。
また、特許文献3の改質装置では、改質装置の稼働を停止して各反応部の温度が下がり、各反応部内のガスが収縮しても、原燃料ガスを改質反応部に供給することにより、各反応部内の圧力を常圧に維持する構成が開示されている。
特開平6−68894号公報 特開平11−191426号公報 特開2000−95504号公報
しかし、特許文献2に記載の方法は、燃料改質装置内に脱酸素された空気すなわち窒素を大量に含む不燃性ガスが供給されるため、次回の起動時に、燃料改質装置内に大量に含まれる残留燃料ガスを燃焼処理する際に、燃焼状態が不安定になるという問題がある。また、脱酸素装置などの装置が必要であり、構成上複雑かつコスト上昇を招くという問題がある。
また、特許文献2に記載のように不燃性ガスに代えて発電に利用される原料ガス等を用いることも考えられるが、改質部において炭素の析出が起こる可能性がある。そのため、特許文献3に記載のように、炭素析出温度以下に下がるまで原料及び水を供給して、エネルギー的に無駄な工程が必要であるという問題がある。また、このエネルギー的な無駄を省くためには、燃料改質装置を密閉系にして自然放冷する方法も考えられるが、その場合、通常運転時の改質部温度(600℃前後)から炭素析出する可能性の低くなる温度(約300℃前後)に低下するまでの負圧化のレベルに耐えられず機器が破損する危険性があった。
上記従来の課題を考慮して、本発明の目的は、システム運転停止処理時において改質部が炭素析出するような温度域であっても、原料ガスを用いて燃料処理装置を含む密閉空間における負圧化を回避することを実現できる燃料電池発電システムおよび、燃料電池発電システムの運転方法を提供することである。
上述した目的を達成するために、第1の本発明は、燃料ガスと酸化剤ガスを用いて発電を行う燃料電池と、
少なくとも炭素及び水素から構成される有機化合物を含む原料ガスを反応させて水素リッチな燃料ガスを生成する改質部と、
前記燃料ガス中の一酸化炭素を低減させ、前記燃料電池に供給する一酸化炭素低減部と、
前記原料ガスを前記改質部に供給する第1の原料ガス供給路と、
前記第1の原料ガス供給路に設けられた第1の弁と、
前記一酸化炭素低減部の下流側に設けられた第2の弁と、
前記一酸化炭素低減部の途中又はその下流側かつ前記第2の弁の上流側の流路内に原料ガスを供給するための第2の原料ガス供給路と、
前記第2の原料ガス供給路に設けられた原料ガス供給制御部と、
制御部とを備え、
前記制御部は、発電終了後に、前記原料ガス供給制御部により、前記第1の弁及び前記第2の弁で閉じられた流路内に前記原料ガスの供給が行われるよう制御することを特徴とする、燃料電池発電システムである。
また、第2の本発明は、前記第1の弁及び前記第2の弁で閉じられた流路上に設置された圧力検知部を更に備え、
前記制御部は、発電終了後に、前記圧力検知部により検知された圧力値が第1の所定閾値以下になると、前記原料ガス供給制御部により、前記第1の弁及び前記第2の弁で閉じられた流路内に前記原料ガスの供給を行うよう制御することを特徴とする、1の本発明の燃料電池発電システムである。
また、第3の本発明は、前記制御部は、前記原料ガス供給制御部により前記原料ガスの供給を行った後、前記圧力検知部による圧力値が第1の所定閾値より大きい第2の所定閾値以上になると前記原料ガス供給制御部により前記原料ガスの供給を停止するよう制御することを特徴とする、2の本発明の燃料電池発電システムである。
また、第4の本発明は、前記原料ガス供給制御部が、第3の弁であり、前記第3の弁を開閉することで前記原料の供給または停止がなされることを特徴とする、1の本発明の燃料電池発電システムである。
また、第5の本発明は、前記第1の弁及び前記第2の弁で閉じられた流路上に設置された圧力検知部を更に備え、
前記制御部は、発電終了後に、前記第1の弁を閉じると共に、前記圧力検知部による圧力値が第3の所定閾値以下になると前記第2の弁を閉じることを特徴とする、1の本発明の燃料電池発電システムである。
また、第6の本発明は、前記圧力検知部は前記第1の弁と前記改質部の間に設置されていることを特徴とする、2、3、又は5の本発明の燃料電池発電システムである。
また、第7の本発明は、前記第1の弁及び前記第2の弁で閉じられた流路上に設置された温度検知部を更に備え、
前記制御部は、発電終了後に、前記温度検知部により検知された値が、第4の所定閾値以下になると前記原料ガス供給制御部により、前記第1の弁及び前記第2の弁で閉じられた流路内に前記原料ガスの供給が行われるよう制御することを特徴とする、1の本発明の燃料電池発電システムである。
また、第8の本発明は、前記一酸化炭素低減部は、
前記燃料ガス中の一酸化炭素と水蒸気から二酸化炭素と水素を生成するシフト反応部と、
前記シフト反応部から送出される燃料ガス中の一酸化炭素を選択反応により低減する選択酸化反応部とを有していることを特徴とする、1の本発明の燃料電池発電システムである。
また、第9の本発明は、前記一酸化炭素低減部の途中とは、前記シフト反応部と前記選択酸化反応部の間であることを特徴とする、8の本発明の燃料電池発電システムである。
また、第10の本発明は、前記燃料電池から排出される燃料ガスが流れる燃料ガス排出路を更に備え、
前記第2の弁は、燃料ガス排出路に設けられていることを特徴とする、1、5又は7の本発明の燃料電池発電システムである。
また、第11の本発明は、前記燃料電池から排出される燃料ガスが流れる燃料ガス排出路と、
前記燃料ガス排出路と接続され前記改質部を加熱するための加熱部と、
前記一酸化炭素低減部と前記燃料電池の間に設置された前記燃料ガスを供給するための燃料ガス供給路と、
前記燃料ガス供給路と前記燃料ガス排出路とを結び、前記燃料電池をバイパスする燃料電池バイパス路とを更に備え、
前記第2の弁は、
前記燃料ガス供給路と前記燃料電池バイパス路の合流部に設置された、前記燃料ガスを前記燃料電池側又は前記燃料電池バイパス路側に切り替える燃料流路切替弁と、
前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記燃料電池との間の、前記燃料ガス排出路上に設置された燃料電池出口弁と、
前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記加熱部との間の、前記燃料ガス排出路上に設置された燃料ガス排出路弁とを有し、
前記第2の弁を閉じるとは、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替え、前記燃料電池出口弁及び前記燃料ガス排出路弁を閉じることであることを特徴とする、第1、2、5又は7の本発明の燃料電池発電システムである。
また、第12の本発明は、前記燃料電池から排出される燃料ガスが流れる燃料ガス排出路と、
前記燃料ガス排出路と接続され、前記改質部を加熱するための加熱部と、
前記一酸化炭素低減部と前記燃料電池の間に設置された前記燃料ガスを供給するための燃料ガス供給路と、
前記燃料ガス供給路と前記燃料ガス排出路とを結び、前記燃料電池をバイパスする燃料電池バイパス路とを更に備え、
前記第2の弁は、
前記燃料ガス供給路と前記燃料電池バイパス路の合流部に設置された、前記燃料ガスを前記燃料電池側又は前記燃料電池バイパス路側に切り替える燃料流路切替弁と、
前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記燃料電池との間の、前記燃料ガス排出路上に設置された燃料電池出口弁と、
前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記加熱部との間の、前記燃料ガス排出路上に設置された燃料ガス排出路弁とを有し、
前記第1の弁よりも下流の前記第1の原料ガス供給路に設けられた圧力検知部を更に備え、
前記第2の弁を閉じるとは、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替え、前記燃料電池出口弁及び前記燃料ガス排出路弁を閉じることであり、
前記制御部は、発電終了後に、前記第1の弁及び前記燃料電池出口弁を閉じると共に、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替えた後、前記圧力検知部による圧力値が第3の閾値以下になると前記燃料ガス排出路弁を閉じることを特徴とする、第1の本発明の燃料電池発電システムである。
また、第13の本発明は、前記燃料電池から排出される燃料ガスが流れる燃料ガス排出路と、
前記燃料ガス排出路と接続され、前記改質部を加熱するための加熱部と、
前記一酸化炭素低減部と前記燃料電池の間に設置された前記燃料ガスを供給するための燃料ガス供給路と
前記燃料ガス供給路と前記燃料ガス排出路とを結び、前記燃料電池をバイパスする燃料電池バイパス路とを更に備え、
前記第2の弁は、
前記燃料ガス供給路と前記燃料電池バイパス路の合流部に設置された、前記燃料ガスを前記燃料電池側又は前記燃料電池バイパス路側に切り替える燃料流路切替弁と、
前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記燃料電池との間の、前記燃料ガス排出路上に設置された燃料電池出口弁と、
前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記加熱部との間の、前記燃料ガス排出路上に設置された燃料ガス排出路弁とを有し、
前記加熱部の燃焼を検知するための燃焼検知部を更に備え、
前記第2の弁を閉じるとは、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替え、前記燃料電池出口弁及び前記燃料ガス排出路弁を閉じることであり、
前記制御部は、発電終了後に、前記第1の弁及び前記燃料電池出口弁を閉じると共に、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替えた後、前記燃焼検知部により前記加熱部の燃焼の停止を検知すると前記燃料ガス排出路弁を閉じることを特徴とする、第1又は7の本発明の燃料電池発電システムである。
また、第14の本発明は、燃料ガスと酸化剤ガスを用いて発電を行う燃料電池と、
少なくとも炭素及び水素から構成される有機化合物を含む原料ガスを反応させて水素リッチな燃料ガスを生成する改質部と、
前記燃料ガス中の一酸化炭素を低減させ、前記燃料電池に供給する一酸化炭素低減部と、
前記原料ガスを前記改質部に供給するための第1の原料ガス供給路と、
前記第1の原料ガス供給路に設けられた第1の弁と、
前記一酸化炭素低減部の下流側に設けられた第2の弁と、
前記一酸化炭素低減部の途中又はその下流側かつ前記第2の弁の上流側の流路内に原料ガスを供給するための第2の原料ガス供給路と、
前記第2の原料ガス供給路に設けられた原料ガス供給制御部と、
を備える燃料電池発電システムの運転方法であって、
発電終了後に、前記原料ガス供給制御部により、前記第1の弁及び前記第2の弁で閉じられた流路内に前記原料ガスの供給が行われるよう制御することを特徴とする、燃料電池発電システムの運転方法である。
本発明によれば、システム運転停止処理時において改質部が炭素析出するような温度域であっても、原料ガスを用いて燃料処理装置を含む密閉空間における負圧化を回避することを実現できる燃料電池発電システムおよび、燃料電池発電システムの運転方法を提供することができる。
以下に本発明の実施の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1に係る燃料電池発電システムを示す構成図である。図1に示すように、本実施の形態1における燃料電池発電システムは、燃料ガスと酸化剤ガスを用いて発電を行う燃料電池11と、原料ガスを水蒸気改質し水素リッチな燃料ガスを生成する燃料処理装置12と、燃料処理装置12に原料ガスを供給する原料供給源13とを備えている。又、原料ガスを原料供給源13から燃料処理装置12に供給する原料ガス供給路14と、燃料ガスを燃料処理装置12から燃料電池11に供給する燃料ガス供給路16が設置されている。又、原料ガス供給路14上には燃料処理装置12への原料ガスの供給/遮断を行う原料ガス遮断弁15が設置されており、燃料ガス供給路16上には燃料電池11への燃料ガスの供給/遮断と停止時の燃料電池11からのガス逆流を防止する燃料ガス遮断弁17が設置されている。
更に、原料ガス及び燃料ガスの流通方向を基準として、原料供給源13から供給される原料ガスを、原料ガス遮断弁15より上流の原料ガス供給路14から分岐し燃料ガス遮断弁17より上流の燃料ガス供給路16に合流する燃料処理装置バイパス路18が設置されており、この燃料処理装置バイパス路18上には燃料処理装置バイパス路18への原料ガスの供給/遮断を行うバイパス路弁19が設置されている。又、これら原料ガス遮断弁15、燃料ガス遮断弁17、及びバイパス路弁19を制御するための制御部5が設置されている。
上記燃料処理装置12は、原料供給源13から供給される原料ガスの硫黄成分を除去する脱硫部1と、硫黄成分が除去された原料ガスを水蒸気改質し水素リッチな燃料ガスを生成する改質部2とを有している。更に、燃料処理装置12は、燃料ガスに含まれている一酸化炭素と水蒸気から水素と二酸化炭素を生成するシフト反応を行うシフト反応部3と、シフト反応部3で除去されなかった一酸化炭素を酸素と反応させて二酸化炭素を生成する選択酸化反応を行う選択酸化反応部4を備えている。これらシフト反応部3及び選択酸化反応部4によって燃料ガス中に含まれる一酸化炭素の低減が行われる。
尚、本発明の第1の原料ガス供給路の一例は、原料ガス供給路14に相当し、本発明の第1の弁の一例は、本実施の形態1の原料ガス遮断弁15に相当する。又、本発明の第2の弁の一例は、本実施の形態1の燃料ガス遮断弁17に相当し、本発明の第2の原料ガス供給路の一例は、本実施の形態1の燃料処理装置バイパス路18に相当する。又、本発明の原料ガス供給制御部、及び、本発明の第3の弁の一例は、本実施の形態1のバイパス路弁19に相当し、本発明の制御部の一例は、本実施の形態1の制御部5に相当する。
又、本実施の形態1では燃料処理装置12内に脱硫部1が設置されているが、原料供給源13と原料ガス遮断弁15の間に設置されていてもよい。
又、本発明の第1の弁及び第2の弁で閉じられた流路の一例は、本実施の形態1では、原料ガス遮断弁15および燃料ガス遮断弁17により遮断される、燃料処理装置12並びに原料ガス供給路14及び燃料ガス供給路16の一部に相当する。以下、燃料処理装置12を含む密閉空間ともいう。
又、原料ガスとしては、メタンや天然ガス、都市ガス等が考えられる。さらに、原料供給源13としては、メタンや天然ガス等の炭化水素系ガスが充填されたボンベや、都市ガス等の配管が考えられる。
以下に、上記構成の本実施の形態1における燃料電池発電システムの動作について説明する。
まず、本実施の形態1における燃料電池発電システムの発電時の動作について説明する。
原料ガス遮断弁15と燃料ガス遮断弁17が開かれ、バイパス路弁19が閉じられることにより、原料供給源13の原料ガスは原料ガス供給路14を通じて燃料処理装置12に供給される。燃料処理装置12に供給された原料ガスは、脱硫部1にて原料ガス中の硫黄成分が除去され、改質部2にて600℃以上の高温下において水蒸気とともに改質反応され、水素リッチな燃料ガスが生成される。そして、燃料処理装置12のシフト反応部3及び選択酸化反応部4にて燃料ガスに含まれる一酸化炭素が燃料電池11の触媒にダメージを与えない濃度まで除去される。
燃料処理装置12により一酸化炭素濃度が十分低減された水素リッチな燃料ガスは、燃料ガス供給路16を通じて燃料電池11へ供給され、供給される空気とともに発電が行われる。なお、燃料電池11からは発電に用いられなかった水素と水蒸気と二酸化炭素と一酸化炭素の混合ガスが燃料電池11の排出側から排出される。
次に、本実施の形態1における燃料電池発電システムの発電終了後の動作について説明する。なお、本実施の形態1の燃料電池発電システムの発電終了後の動作について説明するとともに、本発明の燃料電池発電システムの運転方法の一実施の形態についても説明する。又、以下の実施の形態についても同様である。
燃料電池11に供給している空気の供給が停止され、同時に原料ガス遮断弁15が閉じられ、燃料処理装置12への原料ガスの供給が停止される。また、燃料ガス遮断弁17が閉じられ、燃料電池11への燃料ガスの供給が停止される。
次に、バイパス路弁19が開かれ、燃料処理装置バイパス路18を通じて原料ガスが燃料ガス遮断弁17より上流の燃料ガス供給路16に供給される。原料ガスの供給が終了すると、バイパス路弁19が閉じられ、燃料処理装置バイパス路18が封止される。なお、上述の燃料処理装置バイパス路18を介した原料ガスの供給停止について、バイパス路弁19を用いたが、第1の原料供給源と別の第2の原料供給源から原料ガスの供給停止を行う場合は、原料の供給停止を制御可能な第2の原料供給源を用いれば、バイパス路弁19を用いなくても本実施の形態の燃料電池発電システムの運転方法が実現できる。
上記本実施の形態1における燃料電池発電システムの構成および運転方法によれば、以下の作用効果が得られる。
停止時には、燃料処理装置12、並びに原料ガス供給路14及び燃料ガス供給路16の一部は、原料ガス遮断弁15および燃料ガス遮断弁17により遮断されているため、密閉状態である。そのため時間の経過とともに燃料処理装置12等の内部温度が低下し、圧力低下が起こる。さらに、内部に封入されている燃料ガス中の水蒸気が凝縮することにより、更なる圧力低下が起こる。
しかし、本実施の形態1では、燃料処理装置バイパス路18を通じて原料ガスを燃料ガス遮断弁17より上流の燃料ガス供給路16に供給するため、燃料処理装置12を含む密閉空間の圧力を回復することが実現できる。
また、改質部2の改質触媒は400℃以上の温度で、水蒸気が不足したメタン等の炭化水素雰囲気にすると触媒上に炭素析出し、触媒性能の劣化が起こる。しかし、本実施の形態1では、燃料処理装置12の下流から原料ガスを供給するので、改質部2の下流側に位置するシフト反応部3及び選択酸化反応部4に原料ガスが圧力低下に応じて供給される。そのため、上流に位置する改質部2には、例え原料ガスが流入したとしても拡散によって流入する程度の極小量であり、又改質部2内には少量の水蒸気が残っているため、触媒性能には影響を与えず、性能の確保を実現することができる。
又、燃料処理装置バイパス路18の下流端(原料ガス流出側)が、本発明の一酸化炭素低減部の途中の一例であるシフト反応部3と選択酸化反応部4の間に接続されていても良い。
又、本発明の一酸化炭素低減部の一例は、本実施の形態1のシフト反応部3及び選択酸化反応部4に相当するが、シフト反応部のみであってもよく、その際に燃料処理装置バイパス路18の下流端(原料ガス流出側)はシフト反応部3の下流側に接続されるのが好ましい。要するに、燃料処理装置バイパス路18を介して供給される原料ガスが、仮に、改質部2内に流入したとしても、触媒性能に影響を与えない量しか流入しないように、改質部2の下流側に所定の容量があればよい。
この様に、燃料処理装置バイパス路18を介して供給される原料ガスが、仮に、改質部2内に流入したとしても、例えば、改質器2の下流側に、触媒性能に影響を与えない量しか原料ガスが流入しない様にできる十分な容量を有する箇所から原料ガスを供給するという工夫により、改質部2内で炭素析出が生ずる可能性が低く、触媒性能の低下を抑制することが出来る。
従って、本実施の形態のように改質部の下流側の一酸化炭素低減部の途中、又はその下流側の流路から原料ガスを供給することで、システム運転停止処理時において改質部が炭素析出するような温度域であっても、原料ガスを用いて燃料処理装置を含む密閉空間における負圧化を回避出来るという効果を発揮する。
尚、この効果は、以下に述べる実施の形態の構成においても同様に発揮される。
また、本実施の形態1では、「バイパス路弁19が開かれることによる燃料ガス供給路16への原料ガス供給」を1回実施する場合について説明したが、この動作は「燃料処理装置12を含む密閉空間の圧力を回復」するためのものであり、複数回行なっても構わない。
(実施の形態2)
図2は、本発明の実施の形態2に係る燃料電池発電システムを示す構成図である。ただし、図1と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。本実施の形態2における燃料電池発電システムは、図1に示す実施の形態1の燃料電池発電システムと基本的構成は同じであるが、原料ガス遮断弁15と燃料処理装置12との間の原料ガス供給路14の圧力を検知する圧力計20と、実施の形態1の制御部5に代えて、圧力計20の信号を受けてバイパス路弁19の開閉を制御する制御部21とを備えている点が異なる。尚、本実施の形態2における圧力計20および制御部21は、本発明における圧力検知部および制御部の一例に相当する。
本実施の形態2における燃料電池発電システムの発電時の動作については実施の形態1と同様のため省略し、本実施の形態2における燃料電池発電システムの発電終了後の動作についてのみ図3を参照しながら説明する。尚、図3は本実施の形態2における燃料電池発電システムの発電終了時の動作を示すフロー図である。
燃料電池11に供給している空気の供給が停止され(S1)、同時に原料ガス遮断弁15が閉じられ(S2)、燃料処理装置12への原料ガスの供給が停止される。また、燃料ガス遮断弁17が閉じられ(S3)、燃料電池11への燃料ガスの供給が停止される。
次に、圧力計20によって、燃料処理装置12を含む密閉空間の燃料処理装置12より上流側の圧力Pが検知される(S4)。検知された圧力Pは制御部21で本発明の第1の所定閾値の一例である第1の圧力閾値P1と比較される(S5)。ここで第1の圧力閾値P1は、密閉空間の内圧がP1以下になったときに密閉空間の圧力を回復させるための設定値である。そのためP1の上限値は、システムに供給される原料ガス圧力より低い値に設定する。またP1の下限値は、システムの性能上および構造上耐え得る低圧側圧力より高い値に設定する。たとえば、原料ガスが都市ガスの場合、供給圧は1.0〜2.5kPa(ゲージ圧)であるため、P1は2.5kPaより低い値に設定する。
また、原料ガス遮断弁15または燃料ガス遮断弁17に電磁弁を用いた密閉空間が負圧になると、電磁弁の弁固着発生が頻発し、次回起動が出来なくなることがある。これを抑制するため、P1は0kPa(ゲージ圧)以上の値に設定することが好ましい。また、負圧になった閉止空間に都市ガスを供給した場合、一気にガスが流入し、ユーティリティ(システム外部の配管、ガスコック等)側が一瞬負圧になるため、安全装置(ガスマイコンメータ内の遮断装置、ガスコックのヒューズ等)が働き、ガス供給がストップする。その結果、圧力回復動作を行なっても、これ以降の圧力回復が出来なくなるとともに、安全装置から下流のガス配管のさらなる負圧化を引き起こし、システムが次回起動は出来なくなる場合がある。これを抑制するためにもP1が0kPa以上の値に設定することが好ましい。
さらには、システムが万一故障した場合、原料ガス供給路に空気が逆流することも起こりえる。このことからも、密閉空間に都市ガスを供給するときは、極力負圧にしないことが望ましい。
P≦P1の時は、バイパス路弁19が開かれ(S6)、燃料処理装置バイパス路18を通じて、原料ガスが燃料ガス遮断弁17より上流の燃料ガス供給路16に供給される。この燃料ガス供給路16への原料ガス供給により、燃料処理装置12を含む密閉空間の圧力は回復される。
続いて、圧力Pが検知されており、検知された圧力Pと本発明の第2の所定閾値の一例である第2の圧力閾値P2が、制御部21で比較され(S7)、P≧P2の時は、バイパス路弁19が閉じられ(S8)、燃料処理装置バイパス路18が封止される。ここで第2の圧力閾値P2は、密閉空間の内圧がP2以上になったときに圧力回復を終了させるための設定値である。そのためP2は、システムに供給される原料ガスの供給圧の範囲で設定する。たとえば、原料ガスが都市ガスの場合、供給圧は1.0〜2.5kPa(ゲージ圧)であるが、P2は都市ガスの供給圧より低い値に設定する。
上記本実施の形態2における燃料電池発電システムの構成および運転方法を採用すると、以下の作用効果が得られる。
停止時には、燃料処理装置12並びに原料ガス供給路14及び燃料ガス供給路16の一部は、原料ガス遮断弁15および燃料ガス遮断弁17により遮断されているため、密閉状態である。そのため時間の経過とともに燃料処理装置12等の内部温度が低下し、圧力低下が起こる。さらに、内部に封入されている燃料ガス中の水蒸気が凝縮することにより、更なる圧力低下が起こる。
しかし、本実施の形態2では、上記の密閉空間の圧力を圧力計20で検知し、その圧力が第1の圧力閾値P1以下になると、燃料処理装置バイパス路18を通じて、燃料ガス遮断弁17より上流の燃料ガス供給路16に、原料ガスが供給される。この原料ガス供給により圧力計20で検知する圧力が第2の圧力閾値P2以上になると、バイパス路弁19が閉じられ、流路封止が行なわれるため、燃料処理装置12を含む密閉空間の圧力を回復することが実現できる。
また、改質部2の改質触媒は400℃以上の温度で、水蒸気が不足したメタン等の炭化水素雰囲気にすると触媒上に炭素析出し、触媒性能の劣化が起こる。しかし、本実施の形態では、燃料処理装置12の下流から原料ガスを供給するので、改質部2の下流側に位置するシフト反応部3及び選択酸化反応部4に原料ガスが圧力低下に応じて供給される。そのため、上流に位置する改質部2には、例え原料ガスが流入したとしても拡散によって流入する程度の極小量であり、又、少量の水蒸気は改質部2内に残っているため、触媒性能には影響を与えず、性能の確保を実現することができる。
なお、本実施の形態2では、「バイパス路弁19が開かれることによる燃料ガス供給路16への原料ガス供給」を1回する場合について説明したが、この動作は「燃料処理装置12を含む密閉空間の圧力を回復」するためのものであり、制御部21での圧力計20からの圧力信号により複数回行なっても構わない。
また、上記第1の圧力閾値P1と第2の圧力閾値P2を、P2≧P1となるように設定すると、原料ガス供給を十分に行なうことができるため好ましい。また、上記第1の圧力閾値P1を、P1>0となるように設定すると、密閉空間の負圧を確実に回避できるため好ましい。
さらには、原料ガスとして一般の家庭用都市ガスを用いる時は、そのガス圧がゲージ圧で1.0kPa〜2.5kPaであるため、1.0≧P2と設定するのが好ましい。
これは、P2を、例えば、1.5kPa(ゲージ圧)と設定すると、供給圧が1.2kPa(ゲージ圧)の低圧地域に設置したシステムでは、1.2kPa(ゲージ圧)までしか圧力回復できないため、圧力回復動作が終了せず、ユーティリティ側と閉止空間とが連通した状態が続くためである。そこでP2を1.0kPa以下(ゲージ圧)に設定することで、低圧地域から高圧地域の全地域で、圧力回復動作を確実に終了することが可能となり、結果、ユーティリティと閉止空間とが原料ガス遮断弁15で区切られることで流路封止を確実に実現できるである。
また、本実施の形態2では、「圧力計20は原料ガス遮断弁15と燃料処理装置12との間の原料ガス供給路14に備える」としたが、圧力計20は原料ガス遮断弁15と燃料ガス遮断弁17とにより密閉となる少なくとも燃料処理装置12を含む空間の圧力を検知できさえすればいいので、燃料処理装置12と燃料ガス遮断弁17との間の燃料ガス供給路16に備えても良いし、バイパス路弁19より下流の燃料処理装置バイパス路18に備えても良いし、燃料処理装置12内に備えても良い。
(実施の形態3)
図4は、本発明の実施の形態3に係る燃料電池発電システムを示す構成図である。ただし、図2と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。本実施の形態3における燃料電池発電システムは、図2に示す実施の形態2の燃料電池発電システムと基本的構成は同じであるが、実施の形態2の制御部21に代えて、圧力計20の信号を受けて燃料ガス遮断弁17の開閉を制御する機能をさらに有する制御部22を備えている点が異なる。そのため、本相違点を中心に説明する。尚、本発明の制御部の一例は、本実施の形態3の制御部22に相当する。
本実施の形態3における燃料電池発電システムの動作については実施の形態2と同様に、発電終了後の動作についてのみ図5を参照しながら説明する。尚、図5は本実施の形態3における燃料電池発電システムの停止時の動作を示すフロー図である。
燃料電池11に供給している空気の供給が停止され(S11)、同時に原料ガス遮断弁15が閉じられ(S12)、燃料処理装置12への原料ガスの供給が停止される。
次に、圧力計20では燃料処理装置12より上流の側の圧力Pが検知される(S13)。検知された圧力Pは制御部22で第3の圧力閾値P3と比較される(S14)。ここで第3の圧力閾値P3は、密閉空間となりうる空間の内圧がP3以下になったとき、空間を密閉にするための設定値である。そのためP3の上限値は、システムの性能上および構造上耐え得る高圧側圧力より低い値に設定する。またP3の下限値は、流路が密閉される前の圧力回復動作を防止するために、P1より高い値に設定する。
P≦P3となると、燃料ガス遮断弁17が閉じられ(S15)、燃料電池11への燃料ガスの供給が停止されるとともに、燃料処理装置12および原料ガス供給路14と燃料ガス供給路16の一部が封止され密閉状態となる。
続いて、圧力計20では燃料処理装置12を含む密閉空間の燃料処理装置12より上流側の圧力Pが検知(S16)される。検知された圧力Pは制御部22で第1の圧力閾値P1と比較(S17)される。
P≦P1の時は、バイパス路弁19が開かれ(S18)、燃料処理装置バイパス路18を通じて燃料ガス遮断弁17より上流の燃料ガス供給路16に、原料ガスが供給される。この燃料ガス供給路16への原料ガス供給により、燃料処理装置12を含む密閉空間の圧力は回復される。
続いて、圧力Pが検知され(S19)、検知された圧力Pと第2の圧力閾値P2が、制御部22で比較され(S20)、P≧P2の時は、バイパス路弁19が閉じられ(S21)、燃料処理装置バイパス路18が封止される。
上記本実施の形態3における燃料電池発電システムの構成および運転方法を採用すると、実施の形態2に説明した作用効果に加えて、更に以下の作用効果が得られる。
発電停止のために原料ガスと改質用の水の供給を停止することにより、燃料処理装置12での水素生成が停止する。また、原料ガスは原料ガス遮断弁15を閉とすることで瞬時に供給停止することができる。
一方、改質用の水供給を停止しても、停止直前に燃料処理装置12内部に供給された水は、その後内部余熱で加熱蒸発する。そのため、原料ガス供給停止と同時に燃料ガス遮断弁17も閉じられると、燃料処理装置12を含む密閉空間の内部の圧力が異常に上昇する。
しかし、本実施の形態3では、燃料処理装置12の上流側の圧力が圧力計20で検知され、その圧力が本発明の第3の所定閾値である第3の圧力閾値P3以上の時は燃料ガス遮断弁17が開かれ、燃料電池11への燃料ガス流路が確保される。このように改質部2の内部で加熱蒸発された圧力の高い水蒸気を含む燃料ガスを燃料処理装置12の下流の燃料電池11へ排出することにより内部圧力を低下することができる。又、圧力計20で検知される圧力が第3の圧力閾値P3以下に低下すると燃料ガス遮断弁17を閉とし、燃料処理装置12を含む空間を密閉状態にすることができる。
(実施の形態4)
図6は、本発明の実施の形態4に係る燃料電池発電システムを示す構成図である。ただし、図2と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。本実施の形態4における燃料電池発電システムは、図2に示す実施の形態2の燃料電池発電システムと基本的構成は同じであるが、圧力計20に代えて、原料ガス遮断弁15と燃料処理装置12との間の原料ガス供給路14の温度を検知する温度検知器23と、実施の形態2の制御部21に代えて、温度検知器23の信号を受けてバイパス路弁19の開閉を制御する制御部24とを備えている。そのため、本相違点を中心に説明する。尚、本実施の形態における温度検知器23および制御部24は、本発明における温度検知部および制御部の一例である。
本実施の形態4における燃料電池発電システムの動作については、実施の形態2と同様に発電終了後の動作についてのみ図7を参照しながら説明する。尚、図7は本実施の形態4における燃料電池発電システムの発電終了時の動作を示すフロー図である。
燃料電池11に供給している空気の供給が停止され(S31)、同時に原料ガス遮断弁15が閉じられ(S32)、燃料処理装置12への原料ガスの供給が停止される。また、燃料ガス遮断弁17が閉じられ(S33)、燃料電池11への燃料ガスの供給が停止される。
温度検知器23では燃料処理装置12を含む密閉空間の燃料処理装置12より上流側の温度Tが検知される(S34)。検知された温度Tは制御部24で温度閾値T1と比較される。(S35)
ここで、T≦T1の時は、バイパス路弁19が開かれ(S36)、燃料処理装置バイパス路18を通じて、燃料ガス遮断弁17より上流の燃料ガス供給路16に、原料ガスが供給される。この燃料ガス供給路16への原料ガス供給が完了すると、バイパス路弁19が閉じられ(S37)、燃料処理装置バイパス路18が封止される。
上記本実施の形態4における燃料電池発電システムの構成および運転方法を採用すると、以下の作用効果が得られる。
停止時には、燃料処理装置12および原料ガス供給路14と燃料ガス供給路16の一部は、原料ガス遮断弁15および燃料ガス遮断弁17により遮断されているため、密閉状態である。そのため時間の経過とともに燃料処理装置12等の内部温度が低下し、圧力低下が起こる。さらに、内部に封入されている燃料ガス中の水蒸気が凝縮することにより、更なる圧力低下が起こる。
図8は、図6に示す燃料電池発電システムの停止時における燃料処理装置12を含む密閉空間の、温度検知器23による温度変化と圧力変化を示す図である。図8に示すように、温度低下とともに圧力低下が進行している。このため、本実施の形態4では、実施の形態2で用いた圧力計20の代わりに温度検知器23を用いることにより、燃料処理装置12を含む密閉空間内の圧力の低下を検知することが可能となる。
上述した様に、本実施の形態4では、上記の密閉空間の温度を温度検知器23で検知し、その温度が温度閾値T1より低下すると、燃料処理装置バイパス路18を通じて、燃料ガス遮断弁17より上流の燃料ガス供給路16に原料ガスが供給され、原料ガス供給完了後に、バイパス路弁19が閉じられ、流路封止が行なわれるため、燃料処理装置12を含む密閉空間の圧力を回復することが実現できる。尚、本発明の第4の所定閾値の一例は、本実施の形態4の温度閾値T1に相当する。
また、改質部2の改質触媒は400℃以上の温度で、水蒸気が不足したメタン等の炭化水素雰囲気にすると触媒上に炭素析出し、触媒性能の劣化が起こる。しかし、本実施の形態では、燃料処理装置12の下流から原料ガスを温度低下に応じて供給するので、改質部2の下流側に位置するシフト反応部3及び選択酸化反応部4に原料ガスが供給される。そのため、上流に位置する改質部2には、例え原料ガスが流入したとしても拡散によって流入する程度の極小量であり、又、少量の水蒸気は改質部2内に残っているため、触媒性能には影響を与えず、性能の確保を実現することができる。
なお、本実施の形態4では、「バイパス路弁19が開かれることによる燃料ガス供給路16への原料ガス供給」を1回する場合について説明したが、この動作は「燃料処理装置12を含む密閉空間の圧力を回復」するためのものであり、制御部24において温度閾値をT1、T2、T3、…と複数個設定し、温度検知器23からの温度信号により複数回行なっても構わない。
なお、本実施の形態4では、「温度検知器23を原料ガス遮断弁15と燃料処理装置12との間の原料ガス供給路14に備える」としたが、温度検知器23は原料ガス遮断弁15と燃料ガス遮断弁17とにより密閉となる少なくとも燃料処理装置12を含む空間の温度を検知できればいいので、燃料処理装置12と燃料ガス遮断弁17との間の燃料ガス供給路16に備えても良いし、バイパス路弁19より下流の燃料処理装置バイパス路18に備えても良いし、さらには、燃料処理装置12の内部に備えても良い。
(実施の形態5)
図9は、本発明の実施の形態5に係る燃料電池発電システムを示す構成図である。ただし、図1と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。本実施の形態5における燃料電池発電システムは、図1に示す実施の形態1の燃料電池発電システムと基本的構成は同じであるが、燃料ガス遮断弁17の代わりに、燃料ガスの通流方向を基準として、燃料電池出口遮断弁25が燃料電池11より下流の燃料ガス排出路27に備えられ、かつ、燃料処理装置バイパス路18が燃料ガス排出路27に合流するように設置されている点が異なる。又、実施の形態1の制御部5の代わりに、原料ガス遮断弁15、バイパス路弁19、及び燃料電池出口遮断弁25を制御するための制御部26が設置されている。尚、本発明の制御部の一例は、本実施の形態5の制御部26に相当し、本発明における第2の弁の一例は、本実施の形態5における燃料電池出口遮断弁25に相当する。
本実施の形態5における燃料電池発電システムの発電時の動作については実施の形態1と同様のため省略し、本実施の形態5における燃料電池発電システムの発電終了後の動作についてのみ説明する。
燃料電池11に供給している空気の供給が停止され、同時に原料ガス遮断弁15が閉じられ、燃料処理装置12への原料ガスの供給が停止される。また、燃料電池出口遮断弁25が閉じられ、燃料電池11と燃料処理装置12を含む空間が封止され密閉空間を形成する。
次に、バイパス路弁19が開かれ、燃料処理装置バイパス路18を通じて原料ガスが燃料電池出口遮断弁25より上流の燃料ガス排出路27に供給される。原料ガスの供給が終了すると、バイパス路弁19が閉じられ、燃料処理装置バイパス路18が封止される。
上記本実施の形態5における燃料電池発電システムの構成および運転方法によれば、以下の作用効果が得られる。
停止時には、燃料電池11、燃料処理装置12、並びに原料ガス供給路14及び燃料ガス供給路16及び燃料ガス排出路27の一部は、原料ガス遮断弁15および燃料電池出口遮断弁25により遮断されているため、密閉状態である。そのため時間の経過とともに燃料処理装置12等の内部温度が低下し、圧力低下が起こる。さらに、内部に封入されている燃料ガス中の水蒸気が凝縮することにより、更なる圧力低下が起こる。
しかし、本実施の形態5では、燃料処理装置バイパス路18を通じて原料ガスを燃料電池出口遮断弁25より上流の燃料ガス排出路27に供給するため、燃料電池11及び燃料ガス供給路16を通じて燃料処理装置12を含む密閉空間の圧力を回復することが実現できる。
また、改質部2の改質触媒は400℃以上の温度で、水蒸気が不足したメタン等の炭化水素雰囲気にすると触媒上に炭素析出し、触媒性能の劣化が起こる。しかし、本実施の形態5では、燃料電池11の下流から原料ガスを供給するので、改質部2の下流側に位置するシフト反応部3、選択酸化反応部4、及び燃料電池11に原料ガスが圧力低下に応じて供給される。そのため、上流に位置する改質部2には、例え原料ガスが流入したとしても拡散によって流入する程度の極小量であり、又、改質部2内には少量の水蒸気が残っているため、触媒性能には影響を与えず、性能の確保を実現することができる。
また、本実施の形態5では、燃料電池11の下流から原料ガスを供給するので、燃料電池のスタック内部の水蒸気を追い出すことで、停止処理時のスタックの温度低下に伴うアノード経路内の水凝縮が抑制され、次回の運転時のフラッディングが抑制出来るという効果を発揮する。
又、本発明の一酸化炭素低減部の一例は、本実施の形態5のシフト反応部3及び選択酸化反応部4に相当するが、シフト反応部のみであってもよい。
(実施の形態6)
図10は、本発明の実施の形態6に係る燃料電池発電システムを示す構成図である。図10に示すように、本実施の形態6における燃料電池発電システムは、燃料ガスと酸化剤ガスを用いて発電を行う燃料電池31と、原料ガスを水蒸気改質し水素リッチな燃料ガスを生成する燃料処理装置32と、燃料処理装置32に原料ガスを供給する原料供給源34とを備えている。燃料処理装置32は、実施の形態1と同様に、脱硫部45、改質部46、シフト反応部47、及び選択酸化反応部48を有しており、この改質部46を加熱するバーナ33が設置されている。
又、原料ガスを原料供給源34から燃料処理装置32に供給する原料ガス供給路35と、燃料ガスを燃料処理装置32から燃料電池31に供給する燃料ガス供給路37と、燃料電池31での発電に使用しなかった燃料ガスをバーナ33へ供給する燃料ガス排出路38が設置されている。又、これら燃料ガス供給路37と燃料ガス排出路38を結び、燃料ガスを燃料電池31をバイパスして燃料ガス排出路38に供給する燃料電池バイパス路39が設置されている。
又、原料ガス供給路35上には、燃料処理装置32への原料ガスの供給/遮断を行う原料ガス遮断弁36が設置されており、燃料電池バイパス路39と燃料ガス供給路37の合流部には、燃料ガスを燃料電池31側または燃料電池バイパス路39側に切り替える燃料流路切替弁40が設置されている。又、燃料電池バイパス路39と燃料ガス排出路38の合流部と燃料電池31の間の燃料ガス排出路38上には、停止時に燃料電池11のガス逆流を防止する燃料電池出口弁41が設置されている。又、燃料電池バイパス路39と燃料ガス排出路38の合流部とバーナ33の間の燃料ガス排出路38上には、バーナ33への燃料ガスの供給/遮断と停止時のバーナ33からの空気等のガス逆流を防止する燃料ガス排出路弁42が設置されている。
原料供給源34からの原料ガスを原料ガス遮断弁36より上流の原料ガス供給路35より分岐し、燃料ガス排出路弁42より上流でかつ燃料電池出口弁41より下流の燃料ガス排出路38に合流する燃料処理装置バイパス路43が設置されており、燃料処理装置バイパス路43上に燃料処理装置バイパス路43への原料ガスの供給/遮断を行うバイパス路弁44が設置されている。
又、原料ガス遮断弁36、燃料流路切替弁40、燃料電池出口弁41、燃料ガス排出路弁42、及びバイパス路弁44を制御する制御部30が設置されている。
尚、本発明の第1の原料ガス供給路の一例は、本実施の形態6の原料ガス供給路35に相当し、本発明の第1の弁の一例は、本実施の形態6の原料ガス遮断弁36に相当する。本発明の第2の弁の一例は、本実施の形態6の燃料ガス排出路弁42に相当する。又、本発明の第2の原料ガス供給路の一例は、本実施の形態6の燃料処理装置バイパス路43に相当し、本発明の第3の弁の一例は、本実施の形態6のバイパス路弁44に相当する。又、本発明の制御部の一例は、本実施の形態6の制御部30に相当する。
又、本発明の加熱部の一例は、本実施の形態6ではバーナ33に相当し、改質部46の加熱を行っているが、シフト反応部47、選択酸化反応部48の加熱を行っても良い。
又、本発明の第1の弁と第2の弁で閉じられた流路の一例は、本実施の形態6では、原料ガス遮断弁36、燃料流路切替弁40、及び燃料ガス排出路弁42により遮断されている、燃料処理装置32、燃料電池バイパス路39、並びに原料ガス供給路35、燃料ガス供給路37及び燃料ガス排出路38の一部に相当する。以下、燃料処理装置32を含む密閉空間ともいう。
また、原料ガスとしては、メタンや天然ガス、都市ガス等が考えられる。さらに、原料供給源34としては、メタンや天然ガス等の炭化水素系ガスが充填されたボンベや、都市ガス等の配管が考えられる。
以下に、上記構成の本実施の形態6の燃料電池発電システムの動作について説明する。
まず、本実施の形態6における燃料電池発電システムの発電時の動作について説明する。
原料ガス遮断弁36と燃料ガス排出路弁42が開かれ、燃料電池出口弁41とバイパス路弁44が閉じられ、燃料流路切替弁40は燃料電池バイパス路39側に切り替えられて、原料供給源34の原料ガスは原料ガス供給路35を通じて燃料処理装置32に供給される。燃料処理装置32に供給された原料ガスは、脱硫部45にて原料ガス中の硫黄成分が除去され、改質部46にて600℃以上の高温下において水蒸気とともに改質反応され、水素リッチな燃料ガスを生成する。そして、燃料処理装置32のシフト反応部47及び選択酸化反応部48にて燃料ガスに含まれる一酸化炭素が燃料電池31の触媒にダメージを与えない濃度まで除去される。
しかしながら、燃料処理装置32の起動時には燃料ガス中の一酸化炭素濃度が高いため、燃料ガス供給路37へ流入した燃料ガスは、燃料流路切替弁40によって燃料電池バイパス路39側に供給され、燃料ガス排出路38を通じてバーナ33に供給される。バーナ33に供給された燃料ガスは、燃料処理装置32の加熱源として燃焼される。
一方、燃料ガス中の一酸化炭素濃度が低減されると、燃料流路切替弁40は燃料電池31側に切り替えられ、燃料電池出口弁41が開かれる。燃料処理装置32により一酸化炭素濃度を十分低減された水素リッチな燃料ガスは、燃料ガス供給路37を通じて燃料電池31へ供給され、供給空気とともに発電が行われる。なお、燃料電池31からは発電に用いられなかった燃料ガスが燃料電池31の排出側から排出され、燃料ガス排出路38を通じてバーナ33に供給され燃焼される。
次に、本実施の形態6における燃料電池発電システムの発電終了後の動作について説明する。なお、本実施の形態6の燃料電池発電システムの発電終了後の動作について説明しながら、本発明の運転方法の一実施の形態についても説明する。又、以下の実施の形態についても同様である。
燃料電池31に供給している空気の供給が停止され、同時に原料ガス遮断弁36が閉じられ、燃料処理装置32への原料ガスの供給が停止される。また、燃料流路切替弁40が燃料電池バイパス路39側に切り替えられ、燃料電池出口弁41が閉じられ、燃料電池31への燃料ガスの供給が停止され、燃料電池31が密閉状態にされる。さらに燃料ガス排出路弁42が閉じられ、バーナ33への燃料ガスの供給が停止されるとともに、燃料処理装置32を含む空間が密閉状態となる。
次に、バイパス路弁44が開かれ、燃料処理装置バイパス路43を通じて、燃料ガス排出路弁42より上流の燃料ガス排出路38に、原料ガスが供給される。原料ガスの供給が終了すると、バイパス路弁44が閉じられ、燃料処理装置バイパス路43が封止される。
上記本実施の形態6における燃料電池発電システムの構成および運転方法を採用すると、以下の作用効果が得られる。
停止時には、燃料処理装置32、燃料電池バイパス路39、並びに原料ガス供給路35、燃料ガス供給路37、及び燃料ガス排出路38の一部は、原料ガス遮断弁36、燃料流路切替弁40および燃料ガス排出路弁42により遮断されているため、密閉状態である。そのため時間の経過とともに燃料処理装置32等の内部温度が低下し、圧力低下が起こる。さらに、内部に封入されている燃料ガス中の水蒸気が凝縮することにより、更なる圧力低下が起こる。しかし、本実施の形態6では、燃料処理装置バイパス路43を通じて原料ガスを燃料ガス排出路弁42より上流の燃料ガス排出路38に供給するため、燃料処理装置32を含む密閉空間の圧力を回復することが実現できる。
また、改質部46の改質触媒は400℃以上の温度で、水蒸気が不足したメタン等の炭化水素雰囲気にすると触媒上に炭素析出し、触媒性能の劣化が起こる。しかし、本実施の形態6では、燃料処理装置32から配管距離のある燃料ガス排出路弁42の上流近傍から原料ガスが圧力低下に応じて供給される。ここで、改質触媒のある改質部46から原料ガスの供給される燃料処理装置バイパス路43までには、シフト反応部47、選択酸化反応部48、燃料ガス供給路37の一部、燃料電池バイパス路39、及び燃料ガス排出路38の一部が配置されているため、改質部46には、例え原料ガスが流入したとしても拡散によって流入する程度の極小量であり、又少量の水蒸気は改質部46に残っているため、触媒性能には影響を与えず、性能の確保を実現することができる。
ところで、燃料電池バイパス路39は、その流路をバイパス路39から燃料電池31に切り替えた際に、燃料電池側とバイパス路側とで圧力損失に大きな差があると燃焼バーナ33に対して供給されるガスの流量が急激に変動し、燃焼安定性が悪くなる。そのため、通常、バイパス路39は、燃料電池側の圧力損失と等しくなるよう非常に断面積の小さい流路で構成される。従って、バイパス路39内に水蒸気を含む燃料ガスが残留していると、バイパス路39内において、次回の起動時に水詰まりの問題が生じたり、凍結による破損等の危険性が生じる。
従って、本実施の形態6で述べた様に、原料ガス供給で圧張りを行う際に、残留燃料ガスに比して水分の少ない都市ガス等の原料ガスが、バイパス路39を経由して水素生成装置に注入されるよう燃料ガス排出路38より供給されることで、バイパス路39内の水分が排出され、水詰まりや凍結破損の危険性が低減されるという効果を発揮する。上記効果は、以下の実施の形態についても同様に発揮される。
また、本実施の形態では、上記の通り水分の少ない都市ガス等の原料ガスを供給するため、次回の起動時の残留ガスの燃焼時にバーナ33の着火性が向上出来るという効果も発揮する。
尚、このバイパス路39内の水詰まり、凍結防止、及び着火性向上の効果は、以下の実施の形態についても同様に発揮される。
又、本発明の一酸化炭素低減部の一例は、本実施の形態1のシフト反応部3及び選択酸化反応部4に相当するが、シフト反応部のみであってもよい。又、燃料処理装置バイパス路43の下流端は、本発明の一酸化炭素低減部の途中の一例であるシフト反応部47と選択酸化反応部48の間、選択酸化反応部48から燃料流路切替弁40の間、燃料電池バイパス路39上、又は燃料電池出口弁41と燃料ガス排出路弁42の間に接続されていても良い。要するに、燃料処理装置バイパス路43を介して供給される原料ガスが、例え改質部46内に流入したとしても触媒性能に影響を与えない量しか流入しないように、改質部46の下流側に所定の容量があればよい。
なお、本実施の形態6では、「バイパス路弁44が開かれることによる燃料ガス排出路38への原料ガス供給」を1回する場合について説明したが、この動作は「燃料処理装置32を含む密閉空間の圧力を回復」するためのものであり、複数回行なってもかまわない。
(実施の形態7)
図11は、本発明の実施の形態7に係る燃料電池発電システムを示す構成図である。ただし、図10と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。本実施の形態7における燃料電池発電システムは、図10に示す実施の形態6の燃料電池発電システムと基本的構成は同じであるが、原料ガス遮断弁36と燃料処理装置32との間の原料ガス供給路35の圧力を検知する圧力計49と、実施の形態6の制御部30に代えて、圧力計49の信号を受けてバイパス路弁44の開閉を制御する制御部50とを備えている点が異なる。尚、本実施の形態7における圧力計49および制御部50は、本発明における圧力検知部および制御部の一例である。
本実施の形態7における燃料電池発電システムの発電時の動作については実施の形態6と同様のため省略し、本実施の形態7における燃料電池発電システムの発電終了後の動作についてのみ図12を参照しながら説明する。尚、図12は本実施の形態7における燃料電池発電システムの停止時の動作を示すフロー図である。
燃料電池31に供給している空気の供給が停止され(S41)、同時に原料ガス遮断弁36が閉じられ、燃料処理装置32への原料ガスの供給が停止される(S42)。また、燃料流路切替弁40がバイパス側に切り替えられ(S43)、燃料電池出口弁41が閉じられ(S44)、燃料電池31への燃料ガスの供給が停止され、燃料電池31が密閉状態となる。
さらに燃料ガス排出路弁42が閉じられ(S45)、バーナ33への燃料ガスの供給が停止されるとともに、燃料処理装置32を含む空間が密閉状態となる。
圧力計49では燃料処理装置32を含む密閉空間の燃料処理装置32より上流側の圧力Pが検知される(S46)。検知された圧力Pは制御部50で第1の圧力閾値P1と比較される(S47)。
ここで、P≦P1の時は、バイパス路弁44が開かれ(S48)、燃料処理装置バイパス路43を通じて、燃料ガス排出路弁42より上流の燃料ガス排出路38に、原料ガスが供給される。この燃料ガス排出路38への原料ガス供給により、燃料処理装置32を含む密閉空間の圧力は回復される。
続いて、圧力Pが検知されており(S49)、検知された圧力Pは制御部50で第2の圧力閾値P2と比較され(S50)、P≧P2の時は、バイパス路弁44が閉じられ(S51)、燃料処理装置バイパス路43が封止される。
上記本実施の形態7における燃料電池発電システムの構成および運転方法を採用すると、以下の作用効果が得られる。
停止時には、燃料処理装置32、燃料電池バイパス路39、並びに原料ガス供給路35、燃料ガス供給路37、及び燃料ガス排出路38の一部は、原料ガス遮断弁36、燃料流路切替弁40および燃料ガス排出路弁42により遮断されているため、密閉状態である。そのため時間の経過とともに燃料処理装置32等の内部温度が低下し、圧力低下が起こる。さらに、内部に封入されている燃料ガス中の水蒸気が凝縮することにより、更なる圧力低下が起こる。しかし、本実施の形態7では、上記の燃料処理装置32を含む密閉空間の圧力を圧力計49で検知し、その圧力が第1の圧力閾値P1以下になると、燃料処理装置バイパス路43を通じて、燃料ガス排出路弁42より上流の燃料ガス排出路38に、原料ガスが供給される。そして、原料ガス供給により圧力計49で検知する圧力が第2の圧力閾値P2以上になると、バイパス路弁44が閉じられ、流路封止が行なわれるため、燃料処理装置32を含む密閉空間の圧力を回復することが実現できる。
また、改質部46の改質触媒は400℃以上の温度で、水蒸気が不足したメタン等の炭化水素雰囲気にすると触媒上に炭素析出し、触媒性能の劣化が起こる。しかし、本実施の形態7では、燃料処理装置32から配管距離のある燃料ガス排出路弁42の上流近傍から原料ガスが圧力低下に応じて供給される。ここで、改質触媒のある改質部46から原料ガスの供給される燃料処理装置バイパス路43までには、シフト反応部47、選択酸化反応部48、燃料ガス供給路37の一部、燃料電池バイパス路39、及び燃料ガス排出路38の一部が配置されているため、改質部46には、例え原料ガスが流入したとしても拡散によって流入する程度の極小量であり、又少量の水蒸気は改質部46内に残っているため、触媒性能には影響を与えず、性能の確保を実現することができる。
なお、本実施の形態7では、「バイパス路弁44が開かれることによる燃料ガス排出路38への原料ガス供給」を1回する場合について説明したが、この動作は「燃料処理装置32を含む密閉空間の圧力を回復」するためのものであり、制御部50での圧力計49からの圧力信号により複数回行なっても構わない。
また、上記第1の圧力閾値P1と第2の圧力閾値P2を、P2≧P1となるように設定すると、原料ガス供給を十分に行なうことができるため好ましい。また、上記第1の圧力閾値P1を、P1≧0となるように設定すると、密閉空間の負圧を確実に回避できるため好ましい。さらには、原料ガスとして一般の家庭用都市ガスを用いる時は、そのガス圧がゲージ圧で1.0kPa〜2.5kPaであるため、1.0≧P2と設定すると、原料ガス供給後の流路封止を確実に実現できるため好ましい。尚、本発明の第1の所定閾値の一例は、本実施の形態7の第1の圧力閾値P1に相当し、本発明の第2の所定閾値の一例は、本実施の形態7の第2の圧力閾値P2に相当する。
また、本実施の形態7では、「圧力計49は原料ガス遮断弁36と燃料処理装置32との間の原料ガス供給路35に備える」としたが、圧力計49は原料ガス遮断弁36と燃料ガス排出路弁42とにより密閉となる少なくとも燃料処理装置32を含む空間の圧力を検知できさえすればいいので、燃料処理装置32と燃料流路切替弁40との間の燃料ガス供給路37に備えても良い。又、バイパス路弁44より下流の燃料処理装置バイパス路43に備えても良いし、燃料電池バイパス路39や、燃料電池出口弁41と燃料ガス排出路弁42との間の燃料ガス排出路38に備えても良いし、燃料処理装置32内に備えても良い。
(実施の形態8)
図13は、本発明の実施の形態8に係る燃料電池発電システムを示す構成図である。ただし、図11と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。本実施の形態8における燃料電池発電システムは、図11に示す実施の形態7の燃料電池発電システムと基本的構成は同じであるが、実施の形態7の制御部50に対して、圧力計49の信号を受けて燃料ガス排出路弁42の開閉を制御する機能をさらに有する制御部51を備えている点が異なる。そのため、本相違点を中心に説明する。尚、本発明の制御部の一例は、本実施の形態8の制御部51に相当する。
本実施の形態8における燃料電池発電システムの動作については実施の形態7と同様に、発電終了の動作についてのみ図14を参照しながら説明する。尚、図14は本実施の形態8における燃料電池発電システムの停止時の動作を示すフロー図である。
燃料電池31に供給している空気の供給が停止され(S61)、同時に原料ガス遮断弁36が閉じられ(S62)、燃料処理装置32への原料ガスの供給が停止される。また、燃料流路切替弁40が燃料電池バイパス路39側に切り替えられ(S63)、燃料電池出口弁41が閉じられ(S64)、燃料電池31への燃料ガスの供給が停止され、燃料電池31が密閉状態となる。
圧力計49では燃料処理装置32より上流の側の圧力Pが検知され(S65)、検知された圧力Pは制御部51で第3の圧力閾値P3と比較される(S66)。
ここで、P≦P3となると、燃料ガス排出路弁42が閉じられ(S67)、バーナ33への燃料ガスの供給が停止されるとともに、燃料処理装置32を含む空間が密閉状態となる。
続いて、圧力計49では燃料処理装置12を含む密閉空間の燃料処理装置32より上流側の圧力Pが検知される(S68)。検知された圧力Pは制御部46で第1の圧力閾値P1と比較される(S69)。
ここで、P≦P1の時は、バイパス路弁44が開かれ(S70)、燃料処理装置バイパス路43を通じて、燃料ガス排出路弁42より上流の燃料ガス排出路38に、原料ガスが供給される。この燃料ガス排出路38への原料ガス供給により、燃料処理装置32を含む密閉空間の圧力は回復される。
さらに続いて、圧力Pが検知され(S71)、検知された圧力Pは制御部51で第2の圧力閾値P2と比較され(S72)、P≧P2の時は、バイパス路弁44が閉じられ(S73)、燃料処理装置バイパス路43が封止される。
上記本実施の形態8における燃料電池発電システムの構成および運転方法を採用すると、実施の形態7に説明した作用効果に加えて、更に以下の作用効果が得られる。
発電停止のために原料ガスと改質用の水の供給を停止することにより、燃料処理装置32での水素生成が停止する。また、原料ガスは原料ガス遮断弁36を閉とすることで瞬時に供給停止することができる。
一方、改質用の水供給を停止しても、停止直前に燃料処理装置32内部に供給された水は、その後内部余熱で加熱蒸発する。そのため、原料ガス供給停止と同時に燃料ガス排出路弁42も閉じられると、燃料処理装置32を含む空間の内部の圧力が異常に上昇する。
しかし、本実施の形態8では、燃料処理装置32の上流側の圧力が圧力計49で検知され、その圧力が第3の圧力閾値P3以上の時は燃料ガス排出路弁42が開かれ、燃料処理装置32から燃料電池バイパス路39を通じて、バーナ33への燃料ガス流路が確保される。このように改質部46内部で加熱蒸発された圧力の高い水蒸気を含む燃料ガスを、燃料処理装置12の下流のバーナ33へ排出することにより内部圧力を低下することができる。又、圧力計49で検知される圧力が第3の圧力閾値P3より低下すると燃料ガス排出路弁42を閉とし、燃料処理装置32を含む空間を密閉状態にすることができる。尚、本発明の第3の所定閾値の一例は、本実施の形態8の第3の圧力閾値P3に相当する。
(実施の形態9)
図15は、本発明の実施の形態9に係る燃料電池発電システムを示す構成図である。ただし、図11と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。本実施の形態9における燃料電池発電システムは、図11に示す実施の形態7の燃料電池発電システムと基本的構成は同じであるが、実施の形態7の圧力計49に代えて、原料ガス遮断弁36と燃料処理装置32との間の原料ガス供給路35の温度を検知する温度検知器52と、実施の形態7の制御部50に代えて、温度検知器52の信号を受けてバイパス路弁44の開閉を制御する制御部53とを備えている点が異なる。そのため、本相違点を中心に説明する。尚、本実施の形態9における温度検知器52および制御部53は、本発明における温度検知部および制御部の一例である。
本実施の形態9における燃料電池発電システムの動作については実施の形態7と同様に発電終了時の動作についてのみ図16を参照しながら説明する。尚、図16は本実施の形態9における燃料電池発電システムの停止時の動作を示すフロー図である。
燃料電池31に供給している空気の供給が停止され(S81)、同時に原料ガス遮断弁36が閉じられ(S82)、燃料処理装置32への原料ガスの供給が停止される。また、燃料流路切替弁40が燃料電池バイパス路39側に切り替えられ(S83)、燃料電池出口弁41が閉じられ(S84)、燃料電池31への燃料ガスの供給が停止され、燃料電池31が密閉状態になる。
さらに燃料ガス排出路弁42が閉(S85)じられ、バーナ33への燃料ガスの供給が停止されるとともに、燃料処理装置32を含む空間が密閉状態となる。
温度検知器52では燃料処理装置32を含む密閉空間の燃料処理装置32より上流側の温度Tが検知される(S86)。検知された温度Tは制御部53で温度閾値T1と比較される(S87)。
ここで、T≦T1の時は、バイパス路弁44が開かれ(S88)、燃料処理装置バイパス路43を通じて、燃料ガス排出路弁42より上流の燃料ガス排出路38に、原料ガスが供給される。そして、燃料ガス排出路38への原料ガス供給が完了すると、バイパス路弁44が閉じられ(S89)、燃料処理装置バイパス路43が封止される。
上記本実施の形態9における燃料電池発電システムの構成および運転方法を採用すると、以下の作用効果が得られる。
停止時には、燃料処理装置32、燃料電池バイパス路39、並びに原料ガス供給路35、燃料ガス供給路37、及び燃料ガス排出路38の一部は、原料ガス遮断弁36、燃料流路切替弁40および燃料ガス排出路弁42により遮断されているため、密閉状態である。そのため時間の経過とともに燃料処理装置32等の内部温度が低下し、圧力低下が起こる。さらに、内部に封入されている燃料ガス中の水蒸気が凝縮することにより、更なる圧力低下が起こる。
ここで、実施の形態4と同様に、燃料電池発電システムの停止時における燃料処理装置32を含む密閉空間の温度検知器52よる温度は、圧力低下とともに低下する。このため、本実施の形態9では、実施の形態7で用いた圧力計49の代わりに温度検知器52を用いることにより、密閉空間内の圧力低下を検知することが可能となる。
上述したように、本実施の形態9では、上記の密閉空間の温度を温度検知器52で検知し、その温度が温度閾値T1より低下すると、燃料処理装置バイパス路43を通じて、燃料ガス排出路弁42より上流の燃料ガス排出路38に、原料ガスが供給され、原料ガス供給完了後に、バイパス路弁44が閉じられ、流路封止が行なわれるため、燃料処理装置32を含む密閉空間の圧力を回復することが実現できる。尚、本発明の第4の所定閾値の一例は、本実施の形態9の温度閾値T1に相当する。
また、改質部46の改質触媒は400℃以上の温度で、水蒸気の不足したメタン等の炭化水素雰囲気にすると触媒上に炭素析出し、触媒性能の劣化が起こる。しかし、本実施の形態9では、燃料処理装置32から配管距離のある燃料ガス排出路弁42の上流近傍から原料ガスが温度低下に応じて供給される。ここで、改質触媒のある改質部46から原料ガスの供給される燃料処理装置バイパス路43までには、シフト反応部47、選択酸化反応部48、燃料ガス供給路37の一部、燃料電池バイパス路39、及び燃料ガス排出路38の一部が配置されているため、改質部46には、例え原料ガスが流入したとしても拡散によって流入する程度の極小量であり、又、少量の水蒸気が改質部46に残っているため、触媒性能には影響を与えず、性能の確保を実現することができる。
なお、本実施の形態9では、「バイパス路弁44が開かれることによる燃料ガス排出路38への原料ガス供給」を1回する場合について説明したが、この動作は「燃料処理装置32を含む密閉空間の圧力を回復」するためのものであり、制御部53において温度閾値をT1、T2、T3、…と複数個設定し、温度検知器52からの温度信号により複数回行なっても構わない。
なお、本実施の形態9では、「温度検知器52は原料ガス遮断弁36と燃料処理装置32との間の原料ガス供給路35に設置されている」としたが、温度検知器52は原料ガス遮断弁36と燃料ガス排出路弁42とにより密閉となる少なくとも燃料処理装置32を含む密閉空間の圧力を検知できればいいので、燃料処理装置32と燃料流路切替弁40との間の燃料ガス供給路37に備えても良いし、バイパス路弁44より下流の燃料処理装置バイパス路43に備えても良いし、燃料電池バイパス路39や、燃料電池出口弁41と燃料ガス排出路弁42との間の燃料ガス排出路38に備えても良い。さらには、燃料処理装置2の内部に備えても良い。
(実施の形態10)
図17は、本発明の実施の形態10に係る燃料電池発電システムを示す構成図である。ただし、図15と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。本実施の形態10における燃料電池発電システムは、図15に示す実施の形態9の燃料電池発電システムと基本的構成は同じであるが、バーナ33での燃焼状態を監視するために火炎検知器55を備え、さらに実施の形態9の制御部53に代えて、火炎検知器55の信号を受けて燃料ガス排出路弁42の開閉を制御する機能を有する制御部54を備えている点が異なる。そのため、本相違点を中心に説明する。尚、本発明の燃焼検知部の一例は、本実施の形態10の火炎検知器55に相当し、本発明の制御部の一例は、本実施の形態10の制御部54に相当する。
本実施の形態10における燃料電池発電システムの動作については実施の形態9と同様に、発電終了の動作についてのみ図18を参照しながら説明する。尚、図18は本実施の形態10における燃料電池発電システムの停止時の動作を示すフロー図である。
燃料電池31に供給している空気の供給が停止され(S91)、同時に原料ガス遮断弁36が閉じられ(S92)、燃料処理装置32への原料ガスの供給が停止される。また、燃料流路切替弁40が燃料電池バイパス路39側に切り替えられ(S93)、燃料電池出口弁41が閉じられ(S94)、燃料電池31への燃料ガスの供給が停止され、燃料電池31が密閉状態となる。
制御部54は火炎検知器55から出力される信号を受けて、バーナ33での燃焼状態を監視する(S95)。バーナ33での燃焼の停止が検知されると(S96)、燃料ガス排出路弁42が閉じられる(S97)ことにより、バーナ33への燃料ガスの供給が停止されるとともに、燃料処理装置32を含む空間が密閉状態となる。
次に、温度検知器52では燃料処理装置32を含む密閉空間の燃料処理装置32より上流側の温度Tが検知される(S98)。検知された温度Tは制御部54で温度閾値T1と比較される(S99)。
ここで、T≦T1の時は、バイパス路弁44が開かれる(S100)ことにより、燃料処理装置バイパス路43を通じて、燃料ガス排出路弁42より上流の燃料ガス排出路38に、原料ガスが供給される。燃料ガス排出路38への原料ガス供給が完了すると、バイパス路弁44を閉じられ(S101)、燃料処理装置バイパス路43が封止される。尚、本発明の第4の所定閾値は、本実施の形態10の温度閾値T1に相当する。
上記本実施の形態10における燃料電池発電システムの構成および運転方法を採用すると、実施の形態8に説明した作用効果に加えて、更に以下の作用効果が得られる。
発電停止のために原料ガスと改質用の水の供給を停止することにより、燃料処理装置32での水素生成が停止する。また、原料ガスは原料ガス遮断弁36を閉とすることで瞬時に供給停止することができる。
一方、改質用の水供給を停止しても、停止直前に燃料処理装置32内部に供給された水は、その後内部余熱で加熱蒸発する。そのため、原料ガス供給停止と同時に燃料ガス排出路弁42も閉じられると、燃料処理装置32を含む空間の内部の圧力が異常に上昇する。
しかし、本実施の形態10では、燃料ガス排出路弁42が開かれることにより、水蒸気蒸発により燃料処理装置32から押し出される水素リッチな燃料ガスをバーナ33で燃焼させることが可能となる。水蒸気蒸発の終了により燃料処理装置32内部の圧力が低下し、燃料ガスの押し出しがなくなると、バーナ33での燃焼も停止するが、バーナ33での燃焼状態を火炎検知器55を用いて監視することによりその時機を確実に検知でき、結果、燃料処理装置32を含む空間の圧力を低下することができる。バーナ33での燃焼停止を検知された時に、燃料ガス排出路弁42が閉じられ、燃料処理装置32を含む空間を密閉状態にすることができる。
なお、本実施の形態10における火炎検知器55としては、フレームロッドや熱電対を用いることができる。
又、上述した本発明の目的を達成するために、本発明の燃料電池発電システムの運転方法の制御工程の動作をコンピュータにより実行させるためのプログラムを提供することも有効である。
又、上述した本発明の目的を達成するために、上述した本発明の燃料電池発電システムの運転方法の制御工程の全部又は一部の動作をコンピュータにより実行させるためのプログラムを担持した記録媒体であり、コンピュータにより読み取り可能且つ、読み取られた前記プログラムが前記コンピュータと協動して前記動作を実行する記録媒体を提供することも有効である。
又、上記「工程の動作」とは、前記工程の全部又は一部の動作を意味する。
又、上記プログラムの一利用形態は、コンピュータにより読み取り可能な記録媒体に記録され、コンピュータと協働して動作する態様であっても良い。
又、上記プログラムの一利用形態は、伝送媒体中を伝送し、コンピュータにより読みとられ、コンピュータと協働して動作する態様であっても良い。
又、上記記録媒体としては、ROM等が含まれ、伝送媒体としては、インターネット等の伝送媒体、光・電波・音波等が含まれる。
又、上述したコンピュータは、CPU等の純然たるハードウェアに限らず、ファームウェアや、OS、更に周辺機器を含むものであっても良い。
尚、以上説明した様に、本発明の構成は、ソフトウェア的に実現しても良いし、ハードウェア的に実現しても良い。
本発明にかかる燃料電池発電システムおよび燃料電池発電システムの運転方法は、システム運転終了後の燃料処理装置を含む密閉空間における負圧化を回避することを実現できる効果を有し、燃料電池発電システムおよび燃料電池発電システムの運転方法等として有用である。またメタン等の炭化水素系ガスの燃料を改質することにより生成される水素を使用する燃料電池自動車等の用途にも応用できる。
本発明にかかる実施の形態1における燃料電池発電システムを示す構成図 本発明にかかる実施の形態2における燃料電池発電システムを示す構成図 本発明にかかる実施の形態2における燃料電池発電システムの動作を示すフロー図 本発明にかかる実施の形態3における燃料電池発電システムを示す構成図 本発明にかかる実施の形態3における燃料電池発電システムの動作を示すフロー図 本発明にかかる実施の形態4における燃料電池発電システムを示す構成図 本発明にかかる実施の形態4における燃料電池発電システムの動作を示すフロー図 本発明にかかる実施の形態4の燃料電池発電システムの燃料処理装置を含む密閉空間の内部温度変化と圧力変化の関係のグラフを示す図 本発明にかかる実施の形態5における燃料電池発電システムを示す構成図 本発明にかかる実施の形態6における燃料電池発電システムを示す構成図 本発明にかかる実施の形態7における燃料電池発電システムを示す構成図 本発明にかかる実施の形態7における燃料電池発電システムの動作を示すフロー図 本発明にかかる実施の形態8における燃料電池発電システムを示す構成図 本発明にかかる実施の形態8における燃料電池発電システムの動作を示すフロー図 本発明にかかる実施の形態9における燃料電池発電システムを示す構成図 本発明にかかる実施の形態9における燃料電池発電システムの動作を示すフロー図 本発明にかかる実施の形態10における燃料電池発電システムを示す構成図 本発明にかかる実施の形態10における燃料電池発電システムの動作を示すフロー図 従来の燃料電池発電システムを示す構成図
符号の説明
1、45、脱硫部
2、46、改質部
3、47 シフト反応部
4、48 選択酸化反応部
5、21、22、24、26、30、50、51、53、54 制御部
11、31 燃料電池
12、32 燃料処理装置
13、34 原料供給源
14、35 原料ガス供給路
15、36 原料ガス遮断弁
16、37 燃料ガス供給路
17 燃料ガス遮断弁
18、43 燃料処理装置バイパス路
19、44 バイパス路弁
20、49 圧力計
23、52 温度検知器
33 バーナ
27、38 燃料ガス排出路
39 燃料電池バイパス路
40 燃料流路切替弁
25、41 燃料電池出口弁
42 燃料ガス排出路弁
55 火炎検知器

Claims (14)

  1. 燃料ガスと酸化剤ガスを用いて発電を行う燃料電池と、
    少なくとも炭素及び水素から構成される有機化合物を含む原料ガスを反応させて水素リッチな燃料ガスを生成する改質部と、
    前記燃料ガス中の一酸化炭素を低減させ、前記燃料電池に供給する一酸化炭素低減部と、
    前記原料ガスを前記改質部に供給する第1の原料ガス供給路と、
    前記第1の原料ガス供給路に設けられた第1の弁と、
    前記一酸化炭素低減部の下流側に設けられた第2の弁と、
    前記一酸化炭素低減部の途中又はその下流側かつ前記第2の弁の上流側の流路内に原料ガスを供給するための第2の原料ガス供給路と、
    前記第2の原料ガス供給路に設けられた原料ガス供給制御部と、
    制御部とを備え、
    前記制御部は、発電終了後に、前記原料ガス供給制御部により、前記第1の弁及び前記第2の弁で閉じられた流路内に前記原料ガスの供給が行われるよう制御することを特徴とする、燃料電池発電システム。
  2. 前記第1の弁及び前記第2の弁で閉じられた流路上に設置された圧力検知部を更に備え、
    前記制御部は、発電終了後に、前記圧力検知部により検知された圧力値が第1の所定閾値以下になると、前記原料ガス供給制御部により、前記第1の弁及び前記第2の弁で閉じられた流路内に前記原料ガスの供給を行うよう制御することを特徴とする、請求項1記載の燃料電池発電システム。
  3. 前記制御部は、前記原料ガス供給制御部により前記原料ガスの供給を行った後、前記圧力検知部による圧力値が第1の所定閾値より大きい第2の所定閾値以上になると前記原料ガス供給制御部により前記原料ガスの供給を停止するよう制御することを特徴とする、請求項2記載の燃料電池発電システム。
  4. 前記原料ガス供給制御部が、第3の弁であり、前記第3の弁を開閉することで前記原料の供給または停止がなされることを特徴とする、請求項1記載の燃料電池発電システム。
  5. 前記第1の弁及び前記第2の弁で閉じられた流路上に設置された圧力検知部を更に備え、
    前記制御部は、発電終了後に、前記第1の弁を閉じると共に、前記圧力検知部による圧力値が第3の所定閾値以下になると前記第2の弁を閉じることを特徴とする、請求項1記載の燃料電池発電システム。
  6. 前記圧力検知部は前記第1の弁と前記改質部の間に設置されていることを特徴とする、請求項2、3、又は5記載の燃料電池発電システム。
  7. 前記第1の弁及び前記第2の弁で閉じられた流路上に設置された温度検知部を更に備え、
    前記制御部は、発電終了後に、前記温度検知部により検知された値が、第4の所定閾値以下になると前記原料ガス供給制御部により、前記第1の弁及び前記第2の弁で閉じられた流路内に前記原料ガスの供給が行われるよう制御することを特徴とする、請求項1記載の燃料電池発電システム。
  8. 前記一酸化炭素低減部は、
    前記燃料ガス中の一酸化炭素と水蒸気から二酸化炭素と水素を生成するシフト反応部と、
    前記シフト反応部から送出される燃料ガス中の一酸化炭素を選択反応により低減する選択酸化反応部とを有していることを特徴とする、請求項1記載の燃料電池発電システム。
  9. 前記一酸化炭素低減部の途中とは、前記シフト反応部と前記選択酸化反応部の間であることを特徴とする、請求項8記載の燃料電池発電システム。
  10. 前記燃料電池から排出される燃料ガスが流れる燃料ガス排出路を更に備え、
    前記第2の弁は、燃料ガス排出路に設けられていることを特徴とする、請求項1、5又は7記載の燃料電池発電システム。
  11. 前記燃料電池から排出される燃料ガスが流れる燃料ガス排出路と、
    前記燃料ガス排出路と接続され、前記改質部を加熱するための加熱部と、
    前記一酸化炭素低減部と前記燃料電池の間に設置された前記燃料ガスを供給するための燃料ガス供給路と、
    前記燃料ガス供給路と前記燃料ガス排出路とを結び、前記燃料電池をバイパスする燃料電池バイパス路とを更に備え、
    前記第2の弁は、
    前記燃料ガス供給路と前記燃料電池バイパス路の合流部に設置された、前記燃料ガスを前記燃料電池側又は前記燃料電池バイパス路側に切り替える燃料流路切替弁と、
    前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記燃料電池との間の、前記燃料ガス排出路上に設置された燃料電池出口弁と、
    前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記加熱部との間の、前記燃料ガス排出路上に設置された燃料ガス排出路弁とを有し、
    前記第2の弁を閉じるとは、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替え、前記燃料電池出口弁及び前記燃料ガス排出路弁を閉じることであることを特徴とする、請求項1、2、5又は7記載の燃料電池発電システム。
  12. 前記燃料電池から排出される燃料ガスが流れる燃料ガス排出路と、
    前記燃料ガス排出路と接続され、前記改質部を加熱するための加熱部と、
    前記一酸化炭素低減部と前記燃料電池の間に設置された前記燃料ガスを供給するための燃料ガス供給路と、
    前記燃料ガス供給路と前記燃料ガス排出路とを結び、前記燃料電池をバイパスする燃料電池バイパス路とを更に備え、
    前記第2の弁は、
    前記燃料ガス供給路と前記燃料電池バイパス路の合流部に設置された、前記燃料ガスを前記燃料電池側又は前記燃料電池バイパス路側に切り替える燃料流路切替弁と、
    前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記燃料電池との間の、前記燃料ガス排出路上に設置された燃料電池出口弁と、
    前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記加熱部との間の、前記燃料ガス排出路上に設置された燃料ガス排出路弁とを有し、
    前記第1の弁よりも下流の前記第1の原料ガス供給路に設けられた圧力検知部を更に備え、
    前記第2の弁を閉じるとは、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替え、前記燃料電池出口弁及び前記燃料ガス排出路弁を閉じることであり、
    前記制御部は、発電終了後に、前記第1の弁及び前記燃料電池出口弁を閉じると共に、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替えた後、前記圧力検知部による圧力値が第3の閾値以下になると前記燃料ガス排出路弁を閉じることを特徴とする、請求項1記載の燃料電池発電システム。
  13. 前記燃料電池から排出される燃料ガスが流れる燃料ガス排出路と、
    前記燃料ガス排出路と接続され、前記改質部を加熱するための加熱部と、
    前記一酸化炭素低減部と前記燃料電池の間に設置された前記燃料ガスを供給するための燃料ガス供給路と、
    前記燃料ガス供給路と前記燃料ガス排出路とを結び、前記燃料電池をバイパスする燃料電池バイパス路とを更に備え、
    前記第2の弁は、
    前記燃料ガス供給路と前記燃料電池バイパス路の合流部に設置された、前記燃料ガスを前記燃料電池側又は前記燃料電池バイパス路側に切り替える燃料流路切替弁と、
    前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記燃料電池との間の、前記燃料ガス排出路上に設置された燃料電池出口弁と、
    前記燃料電池バイパス路と前記燃料ガス排出路の合流部と、前記加熱部との間の、前記燃料ガス排出路上に設置された燃料ガス排出路弁とを有し、
    前記加熱部の燃焼を検知するための燃焼検知部を更に備え、
    前記第2の弁を閉じるとは、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替え、前記燃料電池出口弁及び前記燃料ガス排出路弁を閉じることであり、
    前記制御部は、発電終了後に、前記第1の弁及び前記燃料電池出口弁を閉じると共に、前記燃料流路切替弁を前記燃料電池バイパス路側に切り替えた後、前記燃焼検知部により前記加熱部の燃焼の停止を検知すると前記燃料ガス排出路弁を閉じることを特徴とする、請求項1又は7記載の燃料電池発電システム。
  14. 燃料ガスと酸化剤ガスを用いて発電を行う燃料電池と、
    少なくとも炭素及び水素から構成される有機化合物を含む原料ガスを反応させて水素リッチな燃料ガスを生成する改質部と、
    前記燃料ガス中の一酸化炭素を低減させ、前記燃料電池に供給する一酸化炭素低減部と、
    前記原料ガスを前記改質部に供給するための第1の原料ガス供給路と、
    前記第1の原料ガス供給路に設けられた第1の弁と、
    前記一酸化炭素低減部の下流側に設けられた第2の弁と、
    前記一酸化炭素低減部の途中又はその下流側かつ前記第2の弁の上流側の流路内に原料ガスを供給するための第2の原料ガス供給路と、
    前記第2の原料ガス供給路に設けられた原料ガス供給制御部と、
    を備える燃料電池発電システムの運転方法であって、
    発電終了後に、前記原料ガス供給制御部により、前記第1の弁及び前記第2の弁で閉じられた流路内に前記原料ガスの供給が行われるよう制御することを特徴とする、燃料電池発電システムの運転方法。
JP2007500641A 2005-01-31 2006-01-30 燃料電池発電システム、燃料電池発電システムの運転方法 Expired - Fee Related JP5178188B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007500641A JP5178188B2 (ja) 2005-01-31 2006-01-30 燃料電池発電システム、燃料電池発電システムの運転方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005024163 2005-01-31
JP2005024163 2005-01-31
PCT/JP2006/301488 WO2006080512A1 (ja) 2005-01-31 2006-01-30 燃料電池発電システム、燃料電池発電システムの運転方法
JP2007500641A JP5178188B2 (ja) 2005-01-31 2006-01-30 燃料電池発電システム、燃料電池発電システムの運転方法

Publications (2)

Publication Number Publication Date
JPWO2006080512A1 JPWO2006080512A1 (ja) 2008-06-19
JP5178188B2 true JP5178188B2 (ja) 2013-04-10

Family

ID=36740529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007500641A Expired - Fee Related JP5178188B2 (ja) 2005-01-31 2006-01-30 燃料電池発電システム、燃料電池発電システムの運転方法

Country Status (4)

Country Link
US (2) US8257873B2 (ja)
JP (1) JP5178188B2 (ja)
CN (1) CN101111961B (ja)
WO (1) WO2006080512A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647195B2 (ja) * 2003-07-23 2011-03-09 パナソニック株式会社 燃料電池システム及び燃料電池システムの運転方法
JP5154174B2 (ja) * 2007-09-06 2013-02-27 本田技研工業株式会社 燃料電池システム及びその運転方法
JP5236554B2 (ja) * 2009-03-31 2013-07-17 パナソニック株式会社 燃料電池システム
JP5634986B2 (ja) * 2009-04-17 2014-12-03 パナソニック株式会社 水素生成装置及びこれを備える燃料電池システム
EP2498328A1 (en) * 2009-11-04 2012-09-12 Panasonic Corporation Fuel cell system
JP5132839B2 (ja) * 2010-12-13 2013-01-30 パナソニック株式会社 発電システム及びその運転方法
US9490495B2 (en) * 2012-03-02 2016-11-08 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator, fuel cell system, and method of operating hydrogen generator
JP6521824B2 (ja) * 2015-07-14 2019-05-29 大阪瓦斯株式会社 エネルギ供給システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095504A (ja) * 1998-09-22 2000-04-04 Matsushita Electric Works Ltd 改質装置
JP2003229149A (ja) * 2001-11-30 2003-08-15 Matsushita Electric Ind Co Ltd 燃料電池発電システムおよび燃料電池発電方法
JP2003272688A (ja) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp 燃料電池発電装置および燃料電池発電装置の運転方法
US20030203256A1 (en) * 2002-04-30 2003-10-30 Keskula Donald H. System and method for controlling steam in a fuel system with a fuel processor
JP2004178842A (ja) * 2002-11-25 2004-06-24 Mitsubishi Electric Corp 燃料電池発電装置およびその運転方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2887346B2 (ja) * 1988-07-06 1999-04-26 富士電機 株式会社 燃料電池発電装置
JPH035301A (ja) * 1989-05-30 1991-01-11 Fuji Electric Corp Res & Dev Ltd 燃料改質装置の運転停止方法
JPH0668894A (ja) 1992-08-20 1994-03-11 Fuji Electric Co Ltd 燃料電池発電装置及びその起動時のガスパージ方法
JPH11191426A (ja) 1997-12-26 1999-07-13 Sanyo Electric Co Ltd 燃料電池発電システム
JP2000072402A (ja) * 1998-08-25 2000-03-07 Matsushita Electric Works Ltd 改質装置
JP4380836B2 (ja) * 1999-04-05 2009-12-09 パナソニック株式会社 水素発生装置の運転方法
DE69924682T2 (de) 1998-09-09 2005-09-29 Matsushita Electric Industrial Co., Ltd., Kadoma Vorrichtung zur Herstellung von Wasserstoff
JP4089039B2 (ja) 1998-10-09 2008-05-21 松下電器産業株式会社 水素精製装置
KR100427165B1 (ko) * 1999-12-28 2004-04-14 마쯔시다덴기산교 가부시키가이샤 수소생성기
JP3970064B2 (ja) * 2001-03-26 2007-09-05 大阪瓦斯株式会社 水素含有ガス生成装置の運転方法
US7192669B2 (en) * 2001-11-30 2007-03-20 Matsushita Electric Industrial Co., Ltd. System and method of fuel cell power generation
JP3923421B2 (ja) 2001-12-13 2007-05-30 三菱電機株式会社 燃料電池発電システム、燃料電池発電システムの運転方法及び燃料電池発電システムのガス貯蔵装置
EP1487042A4 (en) * 2002-03-19 2007-09-19 Matsushita Electric Ind Co Ltd FUEL CELL POWER GENERATION SYSTEM
JP2004014174A (ja) 2002-06-04 2004-01-15 Nissan Motor Co Ltd 燃料電池システム
JP4130603B2 (ja) 2003-04-03 2008-08-06 東京瓦斯株式会社 水素製造システムの運転方法
US6984464B2 (en) * 2003-08-06 2006-01-10 Utc Fuel Cells, Llc Hydrogen passivation shut down system for a fuel cell power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095504A (ja) * 1998-09-22 2000-04-04 Matsushita Electric Works Ltd 改質装置
JP2003229149A (ja) * 2001-11-30 2003-08-15 Matsushita Electric Ind Co Ltd 燃料電池発電システムおよび燃料電池発電方法
JP2003272688A (ja) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp 燃料電池発電装置および燃料電池発電装置の運転方法
US20030203256A1 (en) * 2002-04-30 2003-10-30 Keskula Donald H. System and method for controlling steam in a fuel system with a fuel processor
JP2004178842A (ja) * 2002-11-25 2004-06-24 Mitsubishi Electric Corp 燃料電池発電装置およびその運転方法

Also Published As

Publication number Publication date
US20120295170A1 (en) 2012-11-22
CN101111961B (zh) 2010-07-21
US20080311444A1 (en) 2008-12-18
CN101111961A (zh) 2008-01-23
US8475965B2 (en) 2013-07-02
WO2006080512A1 (ja) 2006-08-03
US8257873B2 (en) 2012-09-04
JPWO2006080512A1 (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5178188B2 (ja) 燃料電池発電システム、燃料電池発電システムの運転方法
US8481219B2 (en) Fuel cell system and operation method thereof
JP5264040B2 (ja) 燃料電池システム
JP4984543B2 (ja) 燃料電池システム
US8303674B2 (en) Hydrogen generator and fuel cell system
US7811712B2 (en) Fuel cell system and operation method thereof
JP4130681B2 (ja) 燃料電池システム
US9070915B2 (en) Hydrogen generator, operating method of hydrogen generator, and fuel cell system
JP5628791B2 (ja) 水素生成装置、それを備える燃料電池システム、水素生成装置の運転方法、及び燃料電池システムの運転方法
WO2008053768A1 (fr) Système de pile à combustible
JP2005259586A (ja) 燃料電池システム
JP5735606B2 (ja) 燃料電池システムの停止保管方法
JP6703926B2 (ja) エネルギ供給システム
JP2017022078A (ja) エネルギ供給システム
JP2005206414A (ja) 水素生成装置
JP5624606B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
KR101448773B1 (ko) 연료 전지 시스템 및 그의 운전 방법
JP2003297402A (ja) 燃料電池発電装置
JP2005158556A (ja) 燃料電池システム
JP5577682B2 (ja) 燃料電池システム
JP2008097962A (ja) 燃料電池システム及びその運転方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R150 Certificate of patent or registration of utility model

Ref document number: 5178188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees