JP5170328B2 - 作動ガス循環型エンジン - Google Patents

作動ガス循環型エンジン Download PDF

Info

Publication number
JP5170328B2
JP5170328B2 JP2011552611A JP2011552611A JP5170328B2 JP 5170328 B2 JP5170328 B2 JP 5170328B2 JP 2011552611 A JP2011552611 A JP 2011552611A JP 2011552611 A JP2011552611 A JP 2011552611A JP 5170328 B2 JP5170328 B2 JP 5170328B2
Authority
JP
Japan
Prior art keywords
gas
combustion chamber
engine
specific heat
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011552611A
Other languages
English (en)
Other versions
JPWO2011096057A1 (ja
Inventor
錬太郎 黒木
大作 澤田
享 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5170328B2 publication Critical patent/JP5170328B2/ja
Publication of JPWO2011096057A1 publication Critical patent/JPWO2011096057A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • F02B47/10Circulation of exhaust gas in closed or semi-closed circuits, e.g. with simultaneous addition of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/02Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to oxygen-fed engines
    • F02D21/04Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to oxygen-fed engines with circulation of exhaust gases in closed or semi-closed circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

本発明は、作動ガス循環型エンジンに関する。
従来のエンジンとして、作動ガスを燃焼室の排気側から吸気側に循環させ再び燃焼室に供給可能な、いわゆる、クローズドサイクルエンジンとしての作動ガス循環型エンジンが知られている。このような従来の作動ガス循環型エンジンとして、例えば、特許文献1には燃焼室内にて燃料としての水素を燃焼させるとともに不活性ガスを作動ガスとして使用する内燃機関が開示されている。この内燃機関は、燃焼室から排出されたガスに含まれる生成物としての水蒸気を水分除去装置によって除去し、水蒸気を除去した不活性ガスを循環経路を介して燃焼室に再び循環させるとともに、除去した水に溶存している不活性ガスの分子を脱気装置によって気体の状態に戻しこれも燃焼室に再度供給する。
特開2007−064092号公報
ところで、上述のような特許文献1に記載されている内燃機関は、例えば、作動ガスを燃焼室の排気側から吸気側に循環させる循環経路に外部からガス(例えば大気)が流入するなどして循環経路を循環するガス中に不要なガスが混入した場合に熱効率の低下をまねくおそれがあり、これにより、安定した出力が得られないおそれがあった。
本発明は、上記の事情に鑑みてなされたものであって、安定した出力を得ることができる作動ガス循環型エンジンを提供することを目的とする。
上記目的を達成するために、本発明に係る作動ガス循環型エンジンは、燃料の燃焼に伴って空気より比熱比の高い作動ガスが膨張可能である燃焼室と、前記作動ガスを含むガスを前記燃焼室の排気側から吸気側に循環させ再び前記燃焼室に供給可能である循環経路と、前記循環経路を循環するガスの比熱比に基づいて、前記燃料の燃焼を制御するための制御パラメータを変える制御装置とを備えることを特徴とする。
また、上記作動ガス循環型エンジンでは、前記制御装置は、前記循環経路を循環するガスの比熱比が小さくなるほど前記燃料の燃焼が向上するように前記制御パラメータを変えるものとすることができる。
また、上記作動ガス循環型エンジンでは、前記制御装置は、前記循環経路を循環するガスの圧力又は温度に基づいて前記制御パラメータを変えるものとすることができる。
また、上記作動ガス循環型エンジンでは、前記制御パラメータは、少なくとも、前記燃焼室に前記燃料を供給する供給時期、前記燃焼室内の前記燃料に点火する点火時期、あるいは、前記燃焼室に供給する前記燃料の供給量のいずれか1つを含むものとすることができる。
また、上記作動ガス循環型エンジンでは、前記制御装置は、少なくとも、前記循環経路を循環するガスの比熱比が小さくなるほど前記燃焼室に前記燃料を供給する供給時期を進角する制御、前記循環経路を循環するガスの比熱比が小さくなるほど前記燃焼室内の前記燃料に点火する点火時期を進角する制御、あるいは、前記循環経路を循環するガスの比熱比が小さくなるほど前記燃焼室に供給する前記燃料の供給量を多くする制御のいずれか1つの制御を実行するものとすることができる。
本発明に係る作動ガス循環型エンジンは、制御装置が循環経路を循環するガスの比熱比に基づいて燃料の燃焼を制御するための制御パラメータを変えることから、安定した出力を得ることができる、という効果を奏する。
図1は、実施形態1に係るエンジンの模式的な概略構成図である。 図2は、実施形態1に係るエンジンの他の構成を説明する模式的な概略構成図である。 図3は、実施形態1に係るエンジンにおける制御の一例を説明するフローチャートである。 図4は、実施形態1に係るエンジンにおける比熱比検出の一例を説明する模式図である。 図5は、実施形態1に係るエンジンの制御マップの一例である。 図6は、実施形態2に係るエンジンの模式的な概略構成図である。 図7は、実施形態2に係るエンジンにおける制御の一例を説明するフローチャートである。 図8は、実施形態2に係るエンジンにおける制御の一例を説明するフローチャートである。
以下に、本発明に係る作動ガス循環型エンジンの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。
[実施形態1]
図1は、実施形態1に係るエンジンの模式的な概略構成図、図2は、実施形態1に係るエンジンの他の構成を説明する模式的な概略構成図、図3は、実施形態1に係るエンジンにおける制御の一例を説明するフローチャート、図4は、実施形態1に係るエンジンにおける比熱比検出の一例を説明する模式図、図5は、実施形態1に係るエンジンの制御マップの一例である。
図1に示す本実施形態の作動ガス循環型エンジンとしてのエンジン1は、エンジン本体10の燃焼室11に酸化剤と燃料と作動ガスとが供給され、この燃焼室11にて燃料の燃焼に伴って作動ガスが膨張することで動力を発生させる。そして、このエンジン1は、燃焼室11の吸気側と排気側とを繋ぐ循環経路20を介して、燃焼室11の排気側から吸気側に作動ガスを循環させ、基本的には大気へと放出することなく再びこの燃焼室11に供給可能に構成したいわゆるクローズドサイクルエンジンである。燃焼室11と循環経路20とは、ともに作動ガスが充填されており、作動ガスは、燃焼室11と循環経路20との間で循環する。
ここで、このエンジン1に用いられる酸化剤は、酸素(O2)であり、燃料は水素(H2)である。また、このエンジン1に用いられる作動ガスは、空気よりも比熱比の高いものであり、ここでは、単原子ガスのアルゴン(Ar)である。
具体的には、このエンジン1は、図1に示すように、燃焼室11が設けられるエンジン本体10と、循環経路20と、酸素供給装置30と、水素供給装置40と、凝縮器50と、制御装置としての電子制御装置60とを備える。
エンジン本体10は、酸素と水素とアルゴンとが供給され、水素の燃焼に伴ってアルゴンが膨張可能である燃焼室11を含んで構成される。燃焼室11は、水素の燃焼後にアルゴンと燃焼生成物としての水蒸気(H2O)とを排気可能である。なお、このエンジン本体10は、図示していないが複数の燃焼室11(気筒)を有している。循環経路20は、アルゴンを含む循環ガスを燃焼室11の排気側から吸気側に循環させ再び燃焼室11に供給可能なものである。循環経路20は、燃焼室11に連通する吸気ポート12及び排気ポート13と、吸気ポート12と排気ポート13とを燃焼室11の外側で接続する循環通路21とを含んで構成され、基本的には全体として外気に対して密閉された循環系をなす。
ここで、循環ガスとは、循環経路20を介して燃焼室11の排気側から吸気側に循環されるガスであり、作動ガスとしてのアルゴンの他、燃焼室11での水素の燃焼後に燃焼室11から排気される排気ガス等を含むものである。ここで、排気ガスとは、例えば、燃焼室11での水素の燃焼後に残留する余剰の酸素、水素などからなる余剰ガスや水素の燃焼に伴って生成される生成物としての水蒸気などを含むものである。つまり、ここでの循環ガスは、作動ガスとしてのアルゴン、燃焼後の余剰の酸素、水素などからなる余剰ガス、水蒸気などを含むものである。
酸素供給装置30は、高圧酸素を循環経路20内、ここでは吸気ポート12内に向けて噴射して供給し、アルゴンなどを含む循環ガスと共に燃焼室11に供給するものである。水素供給装置40は、高圧水素を燃焼室11内に向けて直接噴射して供給するものである。凝縮器50は、循環経路20に設けられこの循環経路20を循環する循環ガスから大部分の水蒸気を取り除くものである。凝縮器50は、冷却水循環路51に設けられた冷却水ポンプ52が駆動することで、ラジエータ53にて冷却された冷却媒体としての冷却水が冷却水循環路51を介して内部に供給される。そして、凝縮器50は、冷却水と循環ガスとを熱交換させることで循環ガスを冷却し、循環ガス中に含まれる水蒸気を液化・凝縮し凝縮水とし、この循環ガスから大部分の水蒸気を分離する。凝縮器50で凝縮された凝縮水は、排出弁54を介して循環経路20の循環系外に排出される。
電子制御装置60は、CPU、ROM、RAM及びインターフェースを含む周知のマイクロコンピュータを主体とする電子回路である。電子制御装置60は、アクセル開度を検出するアクセル開度センサ61、クランク角度を検出するクランク角度センサ62、筒内圧力を検出する筒内圧力センサ63などの種々のセンサが検出した検出結果に対応した電気信号が入力される。ここで、アクセル開度は、車両の運転席に設けられるアクセルペダル(不図示)の操作量に相当し、さらに言えば、運転者がこのエンジン1に対して要求する要求エンジン負荷(要求負荷率)に応じた値である。クランク角度は、ピストン16にコネクティングロッドを介して連結されるクランクシャフトの回転角度に相当する。筒内圧力は、燃焼室11内の圧力に相当する。電子制御装置60は、例えば、クランク角度センサ62が検出したクランク角度に基づいて各気筒における吸気行程、圧縮行程、膨張行程、排気行程を判別すると共に、エンジン1の回転速度としてエンジン回転数(rpm)を算出する。電子制御装置60は、入力された検出結果に応じて酸素供給装置30、水素供給装置40、冷却水ポンプ52、排出弁54などのエンジン1の各部に駆動信号を出力しこれらの駆動を制御する。
上記のように構成されるエンジン1は、水素を拡散燃焼させるものとして例示する。エンジン1は、吸気ポート12に設けられた吸気弁14の開弁時に、循環経路20を循環する循環ガスが酸素供給装置30からの酸素と共に燃焼室11に吸気(供給)される。エンジン1は、ピストン16の動作に応じて燃焼室11内に形成された高温の圧縮ガス(酸素及びアルゴン)の中に水素供給装置40から高圧の水素を噴射することにより、この水素の一部が自己着火し、水素と圧縮ガス(酸素)とが拡散混合しながら燃焼する。エンジン1は、これに伴って燃焼室11内で水蒸気が生成されると共に、比熱比の大きいアルゴンが熱膨張を起こす。この結果、このエンジン1は、水素の燃焼とアルゴンの熱膨張とによってピストン16が押し下げられクランクシャフトが回転し、機械的な動力を発生させることができる。そして、エンジン1は、排気ポート13に設けられた排気弁15の開弁に伴って、燃焼室11内から水素の燃焼後の排気ガスがアルゴンと共に排気ポート13に排気(排出)され、排気ガスとアルゴンとが循環ガスとして循環経路20を循環し再び燃焼室11に吸気される。この間、エンジン1は、循環ガス中の水蒸気の大部分が凝縮器50にて液化・凝縮され分離される。これにより、エンジン1は、比熱比の小さい水蒸気が燃焼室11に供給されず、比熱比の大きいアルゴンが燃焼室11へと再び供給されるので、アルゴンによる熱効率の高い運転を行うことができる。
この間、電子制御装置60は、アクセル開度センサ61が検出したアクセル開度やクランク角度センサ62が検出したクランク角度等に基づいた要求エンジン負荷やエンジン回転数等の運転状態に応じて、酸素供給装置30、水素供給装置40による酸素、水素の供給量(噴射量)や供給時期(噴射時期)を制御する。電子制御装置60は、基本的には、現在のエンジン回転数において、エンジン1に要求された要求エンジン負荷を得ることができる水素、酸素の供給量、供給時期を決定する。
なお、このエンジン1は、水素を燃焼室11内に向けて直接噴射して自己着火させ拡散燃焼させる筒内直噴自己着火拡散燃焼形式の構成として例示したがこれに限らない。エンジン1は、例えば、図2に示すように、燃焼室11に供給された水素に点火可能な点火装置としての点火プラグ17を備え、この点火プラグ17が燃焼室11内で水素に点火する火花点火形式の構成であってもよいし、水素に対して点火プラグ17で点火して水素の自己着火の補助を行い拡散燃焼させる形式の構成であってもよい。また、エンジン1は、例えば、水素を循環経路20内ここでは吸気ポート12内に向けて噴射して供給しアルゴンなどを含む循環ガスと共に燃焼室11に供給する吸気予混合形式の構成であってもよい。また、エンジン1は、酸素を燃焼室11内に向けて直接噴射する形式の構成であってもよい。また、エンジン1は、いわゆる希薄燃焼形式の構成であってもよい。
ところで、エンジン1は、上述したように循環経路20が基本的には全体として外気に対して密閉された循環系をなしているものの、循環経路20を構成する部材間を完全にシールすることや燃焼室11内で生じる不要なガス(例えばエンジンオイルが燃えることで発生する二酸化炭素(CO2)など)の蓄積を完全に防ぐことは困難である。このため、このようなエンジン1は、例えば、循環経路20を循環する循環ガス中に酸素、水素、アルゴン等以外の不要な不純ガスが混入することで、循環ガス中のアルゴン比率(アルゴン濃度)が変化しこの循環ガスの比熱比が変化し燃焼室11内での水素の燃焼条件が変動し、結果的に熱効率の低下をまねくおそれがある。これにより、エンジン1は、安定した出力が得られないおそれがある。
そこで、本実施形態のエンジン1は、電子制御装置60が循環経路20を循環する循環ガスの状態をあらわすパラメータに基づいて燃焼室11における水素の燃焼を制御するための制御パラメータを変える。これにより、エンジン1は、循環ガスの組成や状態の変化に応じた最適な運転条件となるように運転することができるので、安定した出力を得ることができる。
具体的には、電子制御装置60は、循環ガスの状態をあらわすパラメータとして循環経路20を循環する循環ガスの比熱比に基づいて制御パラメータを変える。電子制御装置60は、種々の公知の手法によって循環経路20を循環する循環ガスの比熱比を検出すればよい。
ここで、制御パラメータは、燃焼室11における水素燃焼に関する操作量であり、エンジン本体10を通じて燃焼室11における水素燃焼に影響を与える値である。ここでの制御パラメータは、少なくとも燃焼室11に水素を供給する供給時期、燃焼室11内の水素に点火する点火時期、あるいは、燃焼室11に供給する水素の供給量のいずれか1つを含む。つまり、電子制御装置60は、制御パラメータとして、水素の供給量(噴射量)、図1、図2のように筒内直噴式の場合には水素の供給時期(噴射時期)、図2のように点火プラグ17を備える場合には水素の点火時期のいずれか1つあるいは全部を循環ガスの比熱比に基づいて変える。
電子制御装置60は、基準となる基準制御パラメータ(基準供給時期、基準点火時期、基準供給量)を循環経路20内の循環ガスの比熱比に応じた所定の補正量で補正することで、循環ガスの比熱比に応じて制御パラメータを変える。基準制御パラメータは、例えば、上述のようにアクセル開度やクランク角度等に基づいた要求エンジン負荷やエンジン回転数等の運転状態に応じて決定される。
具体的には、電子制御装置60は、循環経路20内の循環ガスの比熱比が小さくなるほど水素の燃焼が向上するように上記制御パラメータを変更(補正)する。ここでは、電子制御装置60は、少なくとも、循環経路20を循環する循環ガスの比熱比が小さくなるほど燃焼室11に水素を供給する供給時期を進角する制御、循環経路20を循環する循環ガスの比熱比が小さくなるほど燃焼室11内の水素に点火する点火時期を進角する制御、あるいは、循環経路20を循環する循環ガスの比熱比が小さくなるほど燃焼室11に供給する水素の供給量を多くする制御のいずれか1つの制御を実行する。これにより、エンジン1は、循環経路20内の循環ガスの比熱比が小さくなるにしたがって水素の燃焼を向上させることができる。
例えば、電子制御装置60は、エンジン1が筒内直噴式の場合に循環ガスの比熱比が小さくなるほど水素の供給時期を進角させ、循環ガスの比熱比が大きくなるほど水素の供給時期を遅角させる。エンジン1は、例えば、循環ガスの比熱比が低下した場合には、上記のように電子制御装置60がこの比熱比の低下に応じて水素の供給時期を進角補正することで、着火遅れ時間があっても水素の燃焼完了時期を進角できるので、水素の燃焼を向上させることができ、安定した出力を得ることができる。これにより、エンジン1は、循環ガスの比熱比が変化し燃焼室11内での水素の燃焼条件が変動した場合であっても、熱効率の低下を抑制することができ、安定した出力を得ることができる。
また例えば、電子制御装置60は、エンジン1が点火プラグ17を備える場合に循環ガスの比熱比が小さくなるほど水素の点火時期を進角させ、循環ガスの比熱比が大きくなるほど水素の点火時期を遅角させる。エンジン1は、例えば、循環ガスの比熱比が低下した場合には、上記のように電子制御装置60がこの比熱比の低下に応じて水素の点火時期を進角補正することで、着火遅れ時間があっても水素の燃焼完了時期を進角できるので、水素の燃焼を向上させることができ、安定した出力を得ることができる。これにより、エンジン1は、循環ガスの比熱比が変化し燃焼室11内での水素の燃焼条件が変動した場合であっても、熱効率の低下を抑制することができ、安定した出力を得ることができる。
また例えば、電子制御装置60は、循環ガスの比熱比が小さくなるほど水素の供給量を多くし、循環ガスの比熱比が大きくなるほど水素の供給量を少なくする。エンジン1は、例えば、循環ガスの比熱比が低下した場合には、上記のように電子制御装置60がこの比熱比の低下に応じて水素の供給量を増量補正することで、水素の燃焼を向上させることができ、安定した出力を得ることができる。これにより、エンジン1は、循環ガスの比熱比が変化し燃焼室11内での水素の燃焼条件が変動した場合であっても、熱効率が変化することに起因したアクセル開度に対する出力変化を抑制することができ、安定した出力を得ることができる。なお、電子制御装置60は、循環ガスの比熱比に応じて水素の供給量を補正する場合、この水素の補正量に比例させて酸素の供給量も補正するとよい。
次に、図3のフローチャートを参照してエンジン1における制御の一例を説明する。なお、これらの制御ルーチンは、数msないし数十ms毎の制御周期で繰り返し実行される。
まず、電子制御装置60は、循環経路20を循環する循環ガスの比熱比を検出する(S100)。電子制御装置60は、例えば、燃焼室11に吸気された循環ガスがピストン16によって圧縮される前と圧縮された後とでの当該循環ガスの体積比及び圧力比に基づいて循環ガスの比熱比を見積もることができる。ここでは一例として、電子制御装置60は、クランク角度センサ62、筒内圧力センサ63が検出したクランク角度、筒内圧力に基づいて循環経路20を循環する循環ガスの比熱比を検出する。この場合、クランク角度センサ62及び筒内圧力センサ63は、循環経路20を循環する循環ガスの比熱比を検出する比熱比検出手段をなす。
例えば図4に示すように、ピストン16による圧縮前(吸気弁14の閉弁時期)のクランク角度t1における筒内圧力を「P1」、クランク角度t1における燃焼室11の容積を「V1」、ピストン16による圧縮後(水素の燃焼開始前)のクランク角度t2における筒内圧力を「P2」、クランク角度t2における燃焼室11の容積を「V2」、循環経路20を循環する循環ガスの比熱比を「k」とすると、これらの関係は、下記の基本式(1)で表すことができる。

P1V1k=P2V2k ・・・ (1)

この基本式(1)中の燃焼室11の容積V1、V2は、クランク角度センサ62が検出するクランク角度に応じて一義的に定まり、筒内圧力P1、P2は、筒内圧力センサ63による検出結果から得ることができる。したがって、電子制御装置60は、基本式(1)を用いてクランク角度と筒内圧力とから循環経路20を循環する循環ガスの比熱比を算出することができる。
図3に戻って、次に、電子制御装置60は、S100で検出した循環ガスの比熱比と予め設定される第1所定値とを比較し、循環ガスの比熱比が第1所定値より大きいか否かを判定する(S102)。ここで、第1所定値は、循環ガスの比熱比に対して予め設定される判定値であり、典型的には、上述した基準制御パラメータを設定する際に用いられる循環ガスの基準の比熱比に相当する。
電子制御装置60は、循環ガスの比熱比が第1所定値より大きいと判定した場合(S102:Yes)、基準制御パラメータに対して、水素筒内噴射の噴射時期(供給時期)を遅角する補正、水素の点火時期を遅角する補正、あるいは、水素、酸素の供給量を減量する補正のいずれか1つあるいは全部を行い(S104)、最終的に補正した制御パラメータに基づいて水素、酸素の供給や点火を実行し、現在の制御周期を終了し、次の制御周期に移行する。
ここでは、電子制御装置60は、例えば、図5に例示する制御マップに基づいて、基準制御パラメータである基準供給時期、基準点火時期、あるいは、基準供給量を補正するための補正量を求める。この制御マップは、横軸が循環ガスの比熱比、縦軸が供給時期、点火時期、供給量の補正量を示す。制御マップは、循環ガスの比熱比と各補正量との関係を記述したものである。この制御マップでは、供給時期、点火時期の各補正量は、循環ガスの比熱比の増加にともなってより遅角側に補正されるように変化し、供給量の補正量は、循環ガスの比熱比の増加にともなって減量側に補正されるように変化する。制御マップは、循環ガスの比熱比と各補正量との関係が予め設定された上で電子制御装置60の記憶部に格納されている。電子制御装置60は、この制御マップに基づいて、S100で検出した循環ガスの比熱比から補正量を求め、求めた補正量に応じて基準供給時期、基準点火時期、あるいは、基準供給量を補正する。なお、本実施形態では、電子制御装置60は、図5に例示する制御マップを用いて補正量を求めたが、本実施形態はこれに限定されない。電子制御装置60は、例えば、図5に例示する制御マップに相当する数式に基づいて補正量を求めてもよい。
図3に戻って、電子制御装置60は、S102にて循環ガスの比熱比が第1所定値以下であると判定した場合(S102:No)、S100で検出した循環ガスの比熱比と第1所定値とを比較し、循環ガスの比熱比が第1所定値より小さいか否かを判定する(S106)。
電子制御装置60は、循環ガスの比熱比が第1所定値より小さいと判定した場合(S106:Yes)、基準制御パラメータに対して、水素筒内噴射の噴射時期(供給時期)を進角する補正、水素の点火時期を進角する補正、あるいは、水素、酸素の供給量を増量する補正のいずれか1つあるいは全部を行い(S108)、最終的に補正した制御パラメータに基づいて水素、酸素の供給や点火を実行し、現在の制御周期を終了し、次の制御周期に移行する。電子制御装置60は、図5で例示した制御マップに基づいて、S100で検出した循環ガスの比熱比から補正量を求め、求めた補正量に応じて基準供給時期、基準点火時期、あるいは、基準供給量を補正する。
電子制御装置60は、S106にて循環ガスの比熱比が第1所定値以上であると判定した場合(S106:No)、補正していない基準制御パラメータに基づいて水素、酸素の供給や点火を実行し、現在の制御周期を終了し、次の制御周期に移行する。
以上で説明した本発明の実施形態に係るエンジン1によれば、水素の燃焼に伴って空気より比熱比の高いアルゴンが膨張可能である燃焼室11と、アルゴンを含むガスを燃焼室11の排気側から吸気側に循環させ再び燃焼室11に供給可能である循環経路20と、循環経路20を循環するガスの比熱比に基づいて水素の燃焼を制御するための制御パラメータを変える電子制御装置60とを備える。したがって、エンジン1は、例えば、循環ガスに不純物が混入し循環ガスの比熱比が変化した場合であっても、循環ガスの比熱比に応じた最適な運転条件となるように運転することができるので、安定した出力を得ることができる。
[実施形態2]
図6は、実施形態2に係るエンジンの模式的な概略構成図、図7、図8は、実施形態2に係るエンジンにおける制御の一例を説明するフローチャートである。実施形態2に係る作動ガス循環型エンジンは、循環経路を循環するガスの圧力又は温度に基づいて制御パラメータを変える点で実施形態1に係る作動ガス循環型エンジンとは異なる。その他、上述した実施形態と共通する構成、作用、効果については、重複した説明はできるだけ省略するとともに、同一の符号を付す。
本実施形態の作動ガス循環型エンジンとしてのエンジン201は、図6に示すように、循環経路20を循環する循環ガスの圧力を検出する圧力検出手段としての圧力センサ264と、循環経路20を循環する循環ガスの温度を検出する温度検出手段としての温度センサ265とを備える。
エンジン201は、例えば、循環ガス中への不要な不純ガスの混入やアルゴンなどの外部への漏洩による循環ガスのモル量の変化や外気の温度変化などによって循環ガスの圧力や温度も変化し燃焼室11内での水素の燃焼条件が変動するおそれがある。そこで、本実施形態の電子制御装置60は、循環ガスの状態をあらわすパラメータとして、循環ガスの比熱比に加えて、圧力センサ264、温度センサ265が検出した循環ガスの圧力又は温度に基づいて制御パラメータを変える。これにより、エンジン201は、循環ガスの組成や状態の変化に応じたさらなる最適な運転条件となるように運転することができるので、より安定した出力を得ることができる。
具体的には、電子制御装置60は、循環経路20内の循環ガスの圧力が小さくなるほど、あるいは、循環経路20内の循環ガスの温度が低くなるほど、水素の燃焼が向上するように上記制御パラメータを変更(補正)する。
例えば、電子制御装置60は、エンジン201が筒内直噴式の場合に循環ガスの圧力、温度が小さくなるほど水素の供給時期を進角させ、循環ガスの圧力、温度が大きくなるほど水素の供給時期を遅角させる。また、電子制御装置60は、エンジン201が点火プラグ17を備える場合に循環ガスの圧力、温度が小さくなるほど水素の点火時期を進角させ、循環ガスの圧力、温度が大きくなるほど水素の点火時期を遅角させる。これにより、エンジン201は、循環ガスに不純物が混入したり外気の温度が変化したりして循環ガスの圧力や温度が変化し燃焼室11内での水素の燃焼条件が変動した場合であっても、より最適な運転状態で運転できる。つまり、エンジン201は、ピストン16による圧縮後、水素の燃焼直前の燃焼室11内の圧力、温度が変化して、着火遅れ時間や水素の燃焼期間が変化しても最適な運転状態で運転でき、熱効率の低下を抑制することができ、より安定した出力を得ることができる。
また、電子制御装置60は、循環ガスの圧力、温度が小さくなるほど水素の供給量を多くし、循環ガスの圧力、温度が大きくなるほど水素の供給量を少なくする。これにより、エンジン201は、循環ガスの圧力、温度が変化し燃焼室11内での水素の燃焼条件が変動した場合であっても、熱効率が変化することに起因したアクセル開度に対する出力変化を抑制することができ、より安定した出力を得ることができる。
次に、図7、図8のフローチャートを参照してエンジン201における制御の一例を説明する。なおここでも、図3で説明した制御と異なる点を重点的に説明する。
図7に例示する制御では、まず、電子制御装置60は、循環経路20を循環する循環ガスの圧力を検出する(S200)。循環ガスの圧力は、圧力センサ264による検出結果から得ることができる。
次に、電子制御装置60は、S200で検出した循環ガスの圧力と予め設定される第2所定値とを比較し、循環ガスの圧力が第2所定値より大きいか否かを判定する(S202)。ここで、第2所定値は、循環ガスの圧力に対して予め設定される判定値であり、典型的には、上述した基準制御パラメータを設定する際に用いられる循環ガスの基準の圧力に相当する。
電子制御装置60は、循環ガスの圧力が第2所定値より大きいと判定した場合(S202:Yes)、上述したS104と同様の処理を実行し、現在の制御周期を終了し、次の制御周期に移行する。ただしこの場合、電子制御装置60は、図5で例示した制御マップに基づいて、S200で検出した循環ガスの圧力から補正量を求め、求めた補正量に応じて基準供給時期、基準点火時期、あるいは、基準供給量を補正する。この場合、制御マップは、図5の括弧内に例示するように、横軸が循環ガスの圧力、縦軸が供給時期、点火時期、供給量の補正量を示す。この制御マップでは、供給時期、点火時期の各補正量は、循環ガスの圧力の増加にともなってより遅角側に補正されるように変化し、供給量の補正量は、循環ガスの圧力の増加にともなって減量側に補正されるように変化する。
電子制御装置60は、S202にて循環ガスの圧力が第2所定値以下であると判定した場合(S202:No)、S200で検出した循環ガスの圧力と第2所定値とを比較し、循環ガスの圧力が第2所定値より小さいか否かを判定する(S206)。電子制御装置60は、循環ガスの圧力が第2所定値より小さいと判定した場合(S206:Yes)、上述したS108と同様の処理を実行し、現在の制御周期を終了し、次の制御周期に移行する。電子制御装置60は、S206にて循環ガスの圧力が第2所定値以上であると判定した場合(S206:No)、現在の制御周期を終了し、次の制御周期に移行する。
同様に図8に例示する制御では、まず、電子制御装置60は、循環経路20を循環する循環ガスの温度を検出する(S300)。循環ガスの温度は、温度センサ265による検出結果から得ることができる。
次に、電子制御装置60は、S300で検出した循環ガスの温度と予め設定される第3所定値とを比較し、循環ガスの温度が第3所定値より大きいか否かを判定する(S302)。ここで、第3所定値は、循環ガスの温度に対して予め設定される判定値であり、典型的には、上述した基準制御パラメータを設定する際に用いられる循環ガスの基準の温度に相当する。
電子制御装置60は、循環ガスの温度が第3所定値より大きいと判定した場合(S302:Yes)、上述したS104と同様の処理を実行し、現在の制御周期を終了し、次の制御周期に移行する。ただしこの場合、電子制御装置60は、図5で例示した制御マップに基づいて、S300で検出した循環ガスの温度から補正量を求め、求めた補正量に応じて基準供給時期、基準点火時期、あるいは、基準供給量を補正する。この場合、制御マップは、図5の括弧内に例示するように、横軸が循環ガスの温度、縦軸が供給時期、点火時期、供給量の補正量を示す。この制御マップでは、供給時期、点火時期の各補正量は、循環ガスの温度の増加にともなってより遅角側に補正されるように変化し、供給量の補正量は、循環ガスの温度の増加にともなって減量側に補正されるように変化する。
電子制御装置60は、S302にて循環ガスの温度が第3所定値以下であると判定した場合(S302:No)、S300で検出した循環ガスの温度と第3所定値とを比較し、循環ガスの温度が第3所定値より小さいか否かを判定する(S306)。電子制御装置60は、循環ガスの温度が第3所定値より小さいと判定した場合(S306:Yes)、上述したS108と同様の処理を実行し、現在の制御周期を終了し、次の制御周期に移行する。電子制御装置60は、S306にて循環ガスの温度が第3所定値以上であると判定した場合(S306:No)、現在の制御周期を終了し、次の制御周期に移行する。
なお図7、図8の制御は、図3の制御と並行して行われればよく、つまり、電子制御装置60は、循環ガスの比熱比と圧力と温度とに応じて制御パラメータを補正し、最終的に補正した制御パラメータに基づいて、水素、酸素の供給や点火を実行すればよい。
以上で説明した本発明の実施形態に係るエンジン201によれば、電子制御装置60は、循環経路20を循環するガスの圧力又は温度に基づいて制御パラメータを変える。したがって、エンジン201は、例えば、循環ガスに不純物が混入し循環ガスの圧力又は温度が変化した場合であっても、循環ガスの圧力、温度に応じた最適な運転条件となるように運転することができるので、より安定した出力を得ることができる。
なお、上述した本発明の実施形態に係る作動ガス循環型エンジンは、上述した実施形態に限定されず、請求の範囲に記載された範囲で種々の変更が可能である。本発明の実施形態に係る作動ガス循環型エンジンは、以上で説明した実施形態を複数組み合わせることで構成してもよい。
以上で説明したエンジン201は、電子制御装置60が循環ガスの比熱比と圧力と温度とに応じて制御パラメータを補正するものとして説明したがこれに限らない。電子制御装置60は、循環ガスの温度には関係なく循環ガスの比熱比と圧力とに応じて制御パラメータを補正してもよいし、循環ガスの圧力には関係なく循環ガスの比熱比と温度とに応じて制御パラメータを補正してもよい。
以上で説明した作動ガス循環型エンジンは、酸化剤が酸素であり燃料が水素であるものとして説明したが、これに限らず、燃焼室にて燃料の燃焼に伴って作動ガスを膨張させることができるものであればよい。また、以上で説明した作動ガスは、アルゴンに限らず、例えば単原子ガスであるヘリウム(He)等の希ガスであってもよい。
以上のように本発明に係る作動ガス循環型エンジンは、作動ガスを燃焼室の排気側から吸気側に循環させ再び燃焼室に供給可能な種々の作動ガス循環型エンジンに適用して好適である。
1、201 エンジン(作動ガス循環型エンジン)
10 エンジン本体
11 燃焼室
20 循環経路
30 酸素供給装置
40 水素供給装置
50 凝縮器
60 電子制御装置(制御装置)
61 アクセル開度センサ
62 クランク角度センサ
63 筒内圧力センサ
264 圧力センサ
265 温度センサ

Claims (5)

  1. 燃料の燃焼に伴って空気より比熱比の高い作動ガスが膨張可能である燃焼室と、
    前記作動ガスを含むガスを前記燃焼室の排気側から吸気側に循環させ再び前記燃焼室に供給可能である循環経路と、
    前記循環経路を循環するガスの比熱比に基づいて、前記燃料の燃焼を制御するための制御パラメータを変える制御装置とを備えることを特徴とする、
    作動ガス循環型エンジン。
  2. 前記制御装置は、前記循環経路を循環するガスの比熱比が小さくなるほど前記燃料の燃焼が向上するように前記制御パラメータを変える、
    請求項1に記載の作動ガス循環型エンジン。
  3. 前記制御装置は、前記循環経路を循環するガスの圧力又は温度に基づいて前記制御パラメータを変える、
    請求項1又は請求項2に記載の作動ガス循環型エンジン。
  4. 前記制御パラメータは、少なくとも、前記燃焼室に前記燃料を供給する供給時期、前記燃焼室内の前記燃料に点火する点火時期、あるいは、前記燃焼室に供給する前記燃料の供給量のいずれか1つを含む、
    請求項1乃至請求項3のいずれか1項に記載の作動ガス循環型エンジン。
  5. 前記制御装置は、少なくとも、前記循環経路を循環するガスの比熱比が小さくなるほど前記燃焼室に前記燃料を供給する供給時期を進角する制御、前記循環経路を循環するガスの比熱比が小さくなるほど前記燃焼室内の前記燃料に点火する点火時期を進角する制御、あるいは、前記循環経路を循環するガスの比熱比が小さくなるほど前記燃焼室に供給する前記燃料の供給量を多くする制御のいずれか1つの制御を実行する、
    請求項1乃至請求項4のいずれか1項に記載の作動ガス循環型エンジン。
JP2011552611A 2010-02-03 2010-02-03 作動ガス循環型エンジン Expired - Fee Related JP5170328B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051527 WO2011096057A1 (ja) 2010-02-03 2010-02-03 作動ガス循環型エンジン

Publications (2)

Publication Number Publication Date
JP5170328B2 true JP5170328B2 (ja) 2013-03-27
JPWO2011096057A1 JPWO2011096057A1 (ja) 2013-06-10

Family

ID=44355085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011552611A Expired - Fee Related JP5170328B2 (ja) 2010-02-03 2010-02-03 作動ガス循環型エンジン

Country Status (4)

Country Link
US (1) US8989990B2 (ja)
EP (1) EP2532856A4 (ja)
JP (1) JP5170328B2 (ja)
WO (1) WO2011096057A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008294A1 (ja) * 2011-07-11 2013-01-17 トヨタ自動車株式会社 作動ガス循環型ガスエンジンの気密異常検出方法及び同方法を使用する作動ガス循環型ガスエンジン
US20150122237A1 (en) * 2012-06-06 2015-05-07 Toyota Jidosha Kabushiki Kaisha Working gas circulation type engine
US11512985B2 (en) * 2014-05-12 2022-11-29 Phaedrus, Llc Control system and method for detecting a position of a movable object
DE102017116648A1 (de) * 2017-07-24 2019-01-24 Keyou GmbH Verbrennungskraftmaschine, insbesondere für ein Kraftfahrzeug, sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine
IT202100004295A1 (it) * 2021-02-24 2022-08-24 Turboden Spa Macchina motrice volumetrica alimentata con idrogeno e ossigeno liquido
GB2621076A (en) * 2021-05-20 2024-01-31 Nabors Energy Transition Solutions Llc Systems and methods for a smart hydrogen injection controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193681A (ja) * 1997-09-22 1999-04-06 Mitsubishi Heavy Ind Ltd 水素エンジン
JP2007077834A (ja) * 2005-09-12 2007-03-29 Toyota Motor Corp 内燃機関
JP2009281208A (ja) * 2008-05-20 2009-12-03 Toyota Motor Corp 内燃機関

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308694B1 (en) * 1999-01-11 2001-10-30 Ford Global Technologies, Inc. Flow measurement and control
US6994077B2 (en) * 2002-09-09 2006-02-07 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
JP3861046B2 (ja) * 2002-11-01 2006-12-20 トヨタ自動車株式会社 内燃機関のegrガス流量推定装置
JP2005023850A (ja) 2003-07-02 2005-01-27 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4631616B2 (ja) 2005-08-31 2011-02-16 トヨタ自動車株式会社 内燃機関
JP4952452B2 (ja) * 2007-09-04 2012-06-13 トヨタ自動車株式会社 作動ガス循環型水素エンジン
US7788922B2 (en) * 2007-10-04 2010-09-07 Delphi Technologies, Inc. System and method for model based boost control of turbo-charged engines
US7748217B2 (en) * 2007-10-04 2010-07-06 Delphi Technologies, Inc. System and method for modeling of turbo-charged engines and indirect measurement of turbine and waste-gate flow and turbine efficiency
CN101980929B (zh) 2008-04-09 2012-04-25 默克雪兰诺有限公司 防儿童开启的药物容器
JP2009281206A (ja) * 2008-05-20 2009-12-03 Toyota Motor Corp 作動ガス循環型エンジン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193681A (ja) * 1997-09-22 1999-04-06 Mitsubishi Heavy Ind Ltd 水素エンジン
JP2007077834A (ja) * 2005-09-12 2007-03-29 Toyota Motor Corp 内燃機関
JP2009281208A (ja) * 2008-05-20 2009-12-03 Toyota Motor Corp 内燃機関

Also Published As

Publication number Publication date
EP2532856A1 (en) 2012-12-12
JPWO2011096057A1 (ja) 2013-06-10
US20120285428A1 (en) 2012-11-15
US8989990B2 (en) 2015-03-24
EP2532856A4 (en) 2014-10-08
WO2011096057A1 (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5170328B2 (ja) 作動ガス循環型エンジン
JP3760710B2 (ja) 内燃機関の燃焼制御装置
JP2004308510A (ja) 圧縮比変更機構の故障を検知して制御を行う内燃機関
JP2010281235A (ja) エンジンの制御方法および制御装置
JP4983983B2 (ja) 作動ガス循環型エンジン
JP2009068392A (ja) 作動ガス循環型水素エンジン
JP2006077638A (ja) 内燃機関のガス燃料噴射制御装置
JP5447019B2 (ja) 作動ガス循環型エンジン
JP2009191802A (ja) 圧縮着火式内燃機関の制御装置
JP2016133085A (ja) 火花点火式内燃機関の制御装置
JP2010065558A (ja) 内燃機関の燃焼安定化装置
JP2009150280A (ja) 圧縮着火式内燃機関の制御装置
JP5447051B2 (ja) 作動ガス循環型エンジン
JP2010229961A (ja) 内燃機関
JP4730252B2 (ja) ガス燃料内燃機関
JP2009144634A (ja) 圧縮着火式内燃機関の燃料セタン価推定装置及び圧縮着火式内燃機関の制御装置
JP2011196198A (ja) 作動ガス循環型エンジン及び比熱比検出装置
JP5402733B2 (ja) 作動ガス循環型エンジン
JP5514635B2 (ja) 内燃機関の制御装置
JP6848917B2 (ja) エンジンの制御装置
JP4352901B2 (ja) 圧縮着火内燃機関の始動制御装置
JP6777113B2 (ja) エンジンの低温酸化反応検出方法及び制御方法、並びに、エンジンの低温酸化反応検出装置及び制御装置
JP2005120969A (ja) 筒内噴射式エンジンの制御装置
JP6848919B2 (ja) エンジンの制御方法および制御装置
JP6848918B2 (ja) エンジンの制御方法、エンジンのノック検出方法およびエンジンの制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5170328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees