JP5157676B2 - 磁気センサー - Google Patents

磁気センサー Download PDF

Info

Publication number
JP5157676B2
JP5157676B2 JP2008166175A JP2008166175A JP5157676B2 JP 5157676 B2 JP5157676 B2 JP 5157676B2 JP 2008166175 A JP2008166175 A JP 2008166175A JP 2008166175 A JP2008166175 A JP 2008166175A JP 5157676 B2 JP5157676 B2 JP 5157676B2
Authority
JP
Japan
Prior art keywords
layer
magnetization
nonmagnetic
magnetic sensor
magnetization fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008166175A
Other languages
English (en)
Other versions
JP2010010294A (ja
Inventor
智生 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008166175A priority Critical patent/JP5157676B2/ja
Priority to US12/471,995 priority patent/US8637170B2/en
Publication of JP2010010294A publication Critical patent/JP2010010294A/ja
Application granted granted Critical
Publication of JP5157676B2 publication Critical patent/JP5157676B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1284Spin resolved measurements; Influencing spins during measurements, e.g. in spintronics devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1121Multilayer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1143Magnetoresistive with defined structural feature

Description

本発明は、磁気センサーに関するものである。
従来より、薄膜磁気記録再生ヘッド等に用いられる磁気センサーとして、磁気抵抗(MR: Magneto Resistive)素子が知られている。一般的にMR素子では、磁化固定層と磁化自由層との間に電流を流すため、高出力が得られる。しかしながら、MR素子では、電流が与えるスピントルクによる磁壁の移動などに起因する、磁気センサーとして不必要な信号が得られてしまう。
一方、磁化自由層及び磁化固定層を同一水平面(スピンを蓄積するための非磁性導電層)上に形成するスピン蓄積型(SA: Spin Accumulation)磁気センサーが知られている(例えば、特許文献1、特許文献2参照)。例えば、薄膜磁気記録再生ヘッドにスピン蓄積型磁気センサーを用いた場合、磁気記録媒体などの外部磁場を感知する磁化自由層には、電流を流す必要がない。すなわち、スピン蓄積型磁気センサーでは、スピン電流のみを利用して、磁気状態を出力電圧として検出することが可能である。従って、MR素子で観測されてしまう不必要な信号が、スピン蓄積型磁気センサーでは観測される恐れは少ない。
特開2007−299467号公報 特許第4029772号公報
ところで、薄型あるいは超小型のセンサーを作る観点からは、基体上に非磁性導電層を設け、さらに、非磁性導電層の第一の部分及び基体上に亘って磁化固定層を設けると共に、非磁性導電層の第一の部分とは異なる第二の部分及び基体上に亘って磁化自由層を設け、磁化固定層における非磁性導電層と重ならない端部から、磁化固定層における非磁性導電層と重なる部分を介して非磁性導電層に電流を印加し、また、磁化自由層における非磁性導電層と重なる部分を介して磁化自由層における非磁性導電層と重ならない端部から電圧を取り出すことが考えられる。
しかしながら、磁化自由層や磁化固定層は、非磁性導電層に比べて電気抵抗率が大きい場合が多い。したがって、磁化固定層における非磁性導電層と重ならない端部から非磁性導電層に電流を流す際に、磁化固定層における非磁性導電層と重なる部分の内の磁化固定層における非磁性導電層と重ならない端部に近い場所から選択的にスピン電流が非磁性導電層に供給されてしまい、非磁性導電層へのスピンの注入場所や拡散の開始場所が場所的に不均一となりやすい。また、磁化自由層における非磁性導電層と重なる部分の内の非磁性導電層と重ならない端部から遠い場所で発生する電圧を検出することが、磁化自由層自体の抵抗によって困難となることがある。したがって、磁化固定層に電流を注入する電極や、磁化自由層の電圧を検出する電極の位置の設計の自由度が低く、最適な設計が困難となることが判明した。
本発明は上記事情に鑑みてなされたものであり、電流注入位置や出力電圧検出位置の設計の自由度が高い磁気センサーを提供することを目的とする。
上述の課題を解決するため、本発明の磁気センサーは、基体と、基体上に設けられた非磁性導電層と、非磁性導電層の第一の部分及び基体上に亘って設けられた磁化固定層と、非磁性導電層の第一の部分とは異なる第二の部分及び基体上に亘って設けられた磁化自由層と、磁化固定層及び磁化自由層のうちの少なくとも一方の層における非磁性導電層と重なる部分上に設けられ、且つ一方の層の電気抵抗率よりも低い電気抵抗率を有する非磁性低抵抗層と、を備えている。
なお、「電気抵抗率(ElectricalResistivity)」とは、「比抵抗」、「体積抵抗率」とも呼ばれ、その物質に固有の値である。電気抵抗率をρ(Ωcm)、物質の長さをL(cm)、物質の断面積をS(cm)とした場合、物質の導電性の尺度である電気抵抗(Resistance)R(Ω)は下記の式で表される。
Figure 0005157676
本発明の磁気センサーによれば、磁化固定層及び磁化自由層のうちの少なくとも一方の層における非磁性導電層と重なる部分上に、当該一方の層の電気抵抗率よりも低い電気抵抗率を有する非磁性低抵抗層が設けられている。このため、当該一方の層が磁化固定層である場合には、磁化固定層の内の非磁性導電層と重なる部分の広い範囲からスピン電流を非磁性導電層に供給することが容易である。一方、当該一方の層が磁化自由層である場合には、磁化自由層の内の非磁性導電層と重なる部分の広い範囲から効率よくスピンの相互作用により生ずる電圧を取り出すことが可能である。
本発明の磁気センサーにおいて、非磁性低抵抗層は、当該一方の層における、非磁性導電層と重なる部分から基体上の部分まで亘って設けられていることが好ましい。これにより、当該一方の層が磁化固定層である場合には、電流が主として非磁性低抵抗層を流れ易くなり、磁化固定層の内の非磁性導電層と重なる部分の広い範囲からスピン電流を非磁性導電層に供給することがより容易となる。一方、当該一方の層が磁化自由層である場合には、磁化自由層の内の非磁性導電層と重なる部分の広い範囲から、より一層効率良く、スピンの相互作用により生ずる電圧を取り出すことが可能である。
本発明の磁気センサーにおいて、非磁性導電層の電気抵抗率は、当該一方の層の電気抵抗率よりも低いことが好ましい。
これにより、当該一方の層と非磁性低抵抗層とを流れた電流が非磁性導電層へ流れ易くなり、磁気センサーへの電流注入を好適に実現することが可能となる。
本発明の磁気センサーにおいて、磁化固定層及び磁化自由層は、形状異方性によって保磁力差が付けられていることが好ましい。
磁化固定層及び磁化自由層に形状異方性を設けることで、磁化固定層の磁化の向きを外部磁界に反応し難くし、一方、磁化自由層の磁化の向きを外部磁界に反応し易くすることが容易となる。
本発明の磁気センサーにおいて、磁化固定層の上に設けられた反強磁性層を更に備え、反強磁性層は磁化固定層の磁化の向きを固定することが好ましい。
磁化固定層上に反強磁性層を設けることで、磁化固定層の磁化の向きを外部磁界に反応し難くすることが容易となる。
本発明の磁気センサーにおいて、磁化固定層の保磁力は、磁化自由層の保磁力よりも大きいことが好ましい。
これにより、磁気センサーにおける磁化固定層及び磁化自由層を好適に実現することが可能である。
本発明の磁気センサーにおいて、非磁性低抵抗層を、磁化固定層及び磁化自由層の両方の層の上にそれぞれ備えることが好ましい。
これにより、特に配線の設計自由度が上がり、また、スピン電流に対して効率的な検出が可能になる。
本発明の磁気センサーにおいて、磁化固定層の材料は、B、V、Cr、Mn、Fe、Co、及びNiからなる群から選択される1以上の元素を含む合金又は酸化物であることが好ましい。
これらの材料はスピン分極率の大きい強磁性材料であるため、磁気センサーにおける磁化固定層を好適に実現することが可能である。
本発明の磁気センサーにおいて、磁化自由層の材料は、B、V、Cr、Mn、Fe、Co、及びNiからなる群から選択される1以上の元素を含む合金又は酸化物であることが好ましい。
これらの材料は軟磁性材料であるため、磁気センサーにおける磁化自由層を好適に実現することが可能である。
本発明の磁気センサーにおいて、非磁性低抵抗層の材料は、Mg、Al、Cu、Zn、Ag、Au、及びPtからなる群から選択される金属、又は群の元素を1以上含む合金であることが好ましい。
これらの材料は電気抵抗率が低いため、磁気センサーにおける非磁性低抵抗層を好適に実現することが可能となる。
本発明によれば、電流注入位置や出力電圧検出位置の設計の自由度が高い磁気センサーを提供することができる。
以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。
(第1実施形態)
以下、第1実施形態に係るスピン蓄積型磁気センサーの一例を説明する。
図1に、磁気センサー200を示す上面模式図を示す。図2は、図1の破線枠100に対応する斜視図である。図1に示すY−Y´線と、図2のY−Y´線とが対応している。
図1及び図2に示すように、磁気センサー200は、基体1上に、電子のスピンを蓄積する非磁性導電層2と、非磁性導電層2の第一の部分及び基体1上に亘って設けられた磁化固定層3と、非磁性導電層2の第一の部分上とは異なる第二の部分及び基体1上に亘って設けられた磁化自由層4と、磁化固定層3上に設けられた非磁性低抵抗層10aと、磁化自由層4上に設けられた非磁性低抵抗層10bと、を主として備えている。
(基体)
基体1としては、例えば、基板単独、又は、基板1a上に絶縁膜や金属膜などの下地膜1bを形成したもの(図2参照)を用いることができる。基板として、例えば、ガラス基板、SiO2基板、MgO基板、GaAs基板、AlTiC基板、SiC基板、Al23基板等が挙げられる。また、絶縁膜として、アルミナ等が挙げられる。
(非磁性導電層)
非磁性導電層2は、スピン注入によりスピンが蓄積される層である。非磁性導電層2は、基体1上において、X方向を短軸方向とし、Y方向を長軸方向とした矩形形状に設けられている。非磁性導電層2の電気抵抗率は、磁化固定層3及び磁化自由層4の電気抵抗率よりも低い。
非磁性導電層2の材料には、非強磁性導電材料を用いる。非磁性導電層2の材料として、スピン拡散長が長く、導電率が比較的小さい材料が選択されることが好ましい。例えば、非磁性導電層2の材料として、B、C、Mg、Al、Ag、及びCuからなる群から選択される1つ以上の元素を含む材料が挙げられる。具体的には、Cu、Alが挙げられる。非磁性導電層2の幅W2(図2に示すX軸方向の長さ)は、例えば、10〜500nmとすることができる。また、非磁性導電層2の厚みT2(図2に示すZ軸方向の長さ)は、例えば、10〜100nmとすることができる。
(磁化固定層)
磁化固定層3は、所定のスピンを有する電子を非磁性導電層2へ注入するための層である。磁化固定層3は、非磁性導電層2上において、Y方向を短軸方向とし、X方向を長軸方向として延在するように設けられており、非磁性導電層2と重なる部分と、重ならない部分とを有している。磁化固定層3の長軸方向(X方向)は、非磁性導電層2の長軸方向(Y方向)に概略直交する方向に延在している。また、図1に示すように、磁化固定層3の平面形状は、長さ方向の両端が尖った形状とされている。
磁化固定層3の材料として、スピン分極率の大きい強磁性金属材料を使用することができ、例えば、B、V、Cr、Mn、Fe、Co、及びNiからなる群から選択される1以上の元素を含む合金や酸化物が挙げられる。具体的には、CoFe、FeMnが挙げられる。磁化固定層3の幅W3(図2に示すY軸方向の長さ)は、例えば、50〜500nmとすることができる。また、磁化固定層3の厚みT3(図2に示すZ軸方向の長さ)は、例えば、10〜100nmとすることができる。
磁化固定層3の保磁力は、磁化自由層4の保磁力よりも大きい。磁化固定層3の磁化は、後述する反強磁性層を用いる磁化固定方法、及び磁化固定層3の形状異方性による磁化固定方法のうち少なくともいずれか一の磁化固定方法によって固定されていることが好ましい。これにより、磁化固定層3の磁化の向きを外部磁界に反応し難くすることが可能となる。
磁化固定層3の磁化固定方法として、反強磁性層を用いる磁化固定方法を用いる場合、反強磁性層が、磁化固定層3上に設けられている。この場合、非磁性低抵抗層10aは反強磁性層の上に設けられている。
反強磁性層が磁化固定層3と交換結合することにより、磁化固定層3の磁化方向を固定(一方向異方性を付与)することが可能となる。この場合、反強磁性層を設けない場合よりも、高い保磁力を一方向に有する磁化固定層3が得られる。従って、反強磁性層に用いられる材料は、磁化固定層3に用いられる材料に合わせて選択される。
例えば、反強磁性層として、Mnを用いた反強磁性を示す合金、具体的にはMnと、Pt,Ir,Fe,Ru,Cr,Pd,及びNiのうちから選ばれる少なくとも一つの元素とを含む合金が挙げられる。具体的には、例えば、IrMn、PtMnが挙げられる。
一方、磁化固定層3に形状異方性を持たせて、磁化固定層3の磁化を固定する方法を採用する場合には、反強磁性層を省略することが可能である。たとえば、磁化固定層3を、Z方向から見てX方向が長軸となる矩形形状にすればよい。なお、反強磁性層及び形状異方性の両方によって磁化を固定してもよいことは言うまでもない。
(磁化自由層)
磁化自由層4は、外部磁界を検出し、磁気記録媒体などの磁化方向の変化を鋭敏に検出するための層である。例えば、磁化自由層4を磁気記録媒体に近接して設置することにより、媒体から磁気情報を好適に読み取ることが可能である。
磁化自由層4の長軸方向(X方向)は、非磁性導電層2の長軸方向(Y方向)に概略直交する方向に延在しており、非磁性導電層2と重なる部分と、重ならない部分とを有している。また、磁化自由層4の長軸方向(X方向)は、磁化固定層3の長軸方向(X方向)に概略平行な方向に延在している。図1に示すように、磁化自由層4の形状は、長さ方向の一端が尖っており、他端には、幅が広くされた矩形の部分が形成されている。
磁化自由層4は、磁化固定層3とは所定距離だけ離間されている。具体的には、図1では、磁化固定層3よりも下側に設けられている。磁化自由層4と磁化固定層3との距離は、例えば、20〜350nmとすることができる。
磁化自由層4として強磁性材料、特に軟磁性材料が適用され、例えば、B、V、Cr、Mn、Fe、Co、及びNiからなる群から選択される1以上の元素を含む合金や酸化物が挙げられる。具体的には、CoFeB、NiFeが挙げられる。磁化自由層4の幅W4(図2に示すY軸方向の長さ)は、例えば、50〜500nmとすることができる。また、磁化自由層4の厚みT4(図2に示すZ軸方向の長さ)は、例えば、10〜100nmとすることができる。
(非磁性低抵抗層)
非磁性低抵抗層10aは磁化固定層3上に設けられ、非磁性低抵抗層10bは磁化自由層4上に設けられている。
非磁性低抵抗層10aは磁化固定層3の電気抵抗率よりも低い電気抵抗率を有し、非磁性低抵抗層10bは磁化自由層4の電気抵抗率よりも低い電気抵抗率を有する。
例えば、非磁性低抵抗層10a,10bの材料として、Mg、Al、Cu、Zn、Ag、Au、及びPtからなる群から選択される金属、又はこの群の元素を1以上含む合金が挙げられる。具体的には、Cu、AuCuが挙げられる。本実施形態では、非磁性低抵抗層10a,10bは、それぞれ、磁化固定層3及び磁化自由層4の上面の全面を覆っており、基体1に対して垂直な方向から見て磁化固定層3及び磁化自由層4と同様の形状を有している。
なお、非磁性低抵抗層10a,10bの上に、磁化固定層3や磁化自由層4などの劣化を防ぐためのキャップ層(図示しない)が設けられていても良い。キャップ層の材料として、例えば、Al、Ru、Pt、Au、Ta、及びTiからなる群から選択される金属、又は群の元素を1以上含む合金、酸化物、並びに窒化物等が挙げられる。具体的には、Ta、Ptが挙げられる。
(電極)
磁化固定層3へ検出用電流を流すべく、図1に示すように、非磁性低抵抗層10aにおける非磁性導電層2と重ならない部分(図1では右側端部)に電極E1が接続されており、非磁性導電層2における磁化固定層3と重ならず、且つ磁化固定層3に近い下側端部に電極E2が接続されている。
また、出力電圧を検出するために、非磁性低抵抗層10bにおける非磁性導電層2と重ならない右側端部に電極E3が接続されており、非磁性導電層2における磁化自由層4と重ならず、且つ磁化自由層4に近い上側の端部に電極E4が接続されている。なお、非磁性低抵抗層10bにおける非磁性導電層2と重ならない左側の端部にも検出補助用としての電極E5が接続されている。
なお、電極E1〜E5の材料として、例えば、Cu、CrやAlなどの金属材料が用いられる。
以下に、第1実施形態に係る磁気センサー200の動作について、図1を用いて説明する。
まず、電極E1及び電極E2に接続された電流源70から非磁性低抵抗層10aへ検出用電流を流す。この際、検出用電流は、磁化固定層3の電気抵抗率よりも低い電気抵抗率を有する非磁性低抵抗層10a内を流れ易い。そして、検出用電流は、主として、非磁性低抵抗層10a内を長軸方向へ流れていき、非磁性低抵抗層10aの非磁性導電層2と重なる部分に達し、その後、磁化固定層3を通過して、概ね少なくともX方向に均等に非磁性導電層2に流入することができる。
すると、磁化固定層3と非磁性導電層2との界面から効率よく非磁性導電層2内に磁化固定層3の磁化の向きに対応するスピンを有する電子が注入され、非磁性導電層2内を磁化固定層3側から磁化自由層4側に向かってスピンが拡散する。
そして、外部からの磁界によって変化される磁化自由層4の磁化の向き、すなわち電子のスピンと、非磁性導電層2の磁化自由層4と接する部分の電子のスピンとの相互作用により、非磁性導電層2と磁化自由層4との界面において電圧出力が発生する。本実施形態では、非磁性導電層2と磁化自由層4との間に生じるこの電圧を、電極E3及び電極E4間に設けられた電圧測定器80、もしくは電極E5及び電極E4間に設けられた電圧測定器90を用いて検出することができる。このようにして、磁気センサー200を外部磁場センサーとして応用することができる。
以下に、第1実施形態に係る磁気センサー200による効果を説明する。
第1実施形態に係る磁気センサー200によれば、磁化固定層3上に非磁性低抵抗層10aが設けられている。このため、磁化固定層3の内の非磁性導電層2と重なる部分の広い範囲からスピン電流を非磁性導電層2に供給することが容易である。また、磁化自由層4上に非磁性低抵抗層10bが設けられている。このため、磁化自由層4の内の非磁性導電層2と重なる部分の広い範囲から効率よく、非磁性導電層2と磁化自由層4との界面のスピンの相互作用により生ずる電圧を取り出すことが可能である。したがって、電極E1〜E5による電流注入位置や出力電圧検出位置の設計の自由度が広くなり、実用化が容易となる。
以上において説明した本発明の磁気センサー200は、例えば、小型ロボット、ディジタルカメラ、及びインクジェットプリンターなどで使用される磁気エンコーダー装置、薄膜磁気記録再生ヘッド、磁場計測装置、生体センサーなどの磁気検知装置等の各種用途に適用することが可能である。
なお、本発明は上記実施形態に限定されず様々な変形態様が可能である。例えば、上記実施形態では、非磁性低抵抗層10a,10bを両方備えているが、非磁性低抵抗層10aのみを備える構成、或いは、非磁性低抵抗層10bのみを備える構成でも本発明の実施は可能である。
また、上記実施形態では、非磁性低抵抗層10a及び10bは、磁化固定層3及び磁化自由層4の上面の全面上に形成されているが、非磁性低抵抗層10a、10bのそれぞれが、少なくとも非磁性導電層2と重なる部分上に設けられていれば本発明の実施は可能である。
さらに、上記実施形態では、電流源70や電圧測定器80、90と接続するための電極E1〜E5が、非磁性低抵抗層10a、10bにおける非磁性導電層2と重ならない部分と直接接触して接続されているが、磁化固定層3や磁化自由層4における非磁性導電層2とは重ならない部分に直接接触して接続されていても本発明の実施は可能である。この場合でも、磁化固定層3や磁化自由層4における非磁性導電層2と重なる部分に非磁性低抵抗層10a、10bがあれば、上述と同様の作用効果を奏する。
また、上記実施形態において、磁化固定層3に対して電流注入を行い、磁化自由層4において外部磁場による電圧検出を行う例を説明したが、逆に、電流注入を磁化自由層4において行い、外部磁場による電圧検出を磁化固定層3において行っても構わない。
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
<磁気センサーの作製方法>
先ず、基板及び下地膜からなる基体上にCu膜を成膜した。続いて、この膜をフォトリソグラフィー法によりパターンニングして、図3に示すような矩形形状を有する非磁性導電層2を形成した。非磁性導電層2の長軸方向(Y方向)の長さL2は20μm、短軸方向(X方向)の長さW2は0.5μm、膜厚T2は0.1μmであった。
次に、非磁性導電層2の上に、Co及びFeを含む合金からなる膜(厚み50nm)と、Cu膜(厚み100nm)とを連続成膜し、フォトリソグラフィーによりパターンニングして、図4(a)に示すような両端部が尖った鑓型形状を有する磁化固定層3及び非磁性低抵抗層10aと、図4(b)に示すような一方の端部が正方形状を有し、他方の端部が尖った鑓型形状を有する磁化自由層4及び非磁性低抵抗層10bと、を形成した。
磁化固定層3及び非磁性低抵抗層10aの長軸方向(X方向)の長さL3は15μm、短軸方向(Y方向)の長さW3は0.1μm、合計膜厚は0.1μmであった。一方、磁化自由層4及び非磁性低抵抗層10bの長軸方向(X方向)の長さL4は20μm、短軸方向(Y方向)の長さW4は0.1μmであり、正方形形状の一辺Sqが4μmであり、合計膜厚は0.1μmであった。このような形状を設けることにより、磁化固定層3と磁化自由層4との間に保磁力差を形成した。また、磁化固定層3と磁化自由層4との距離は0.1μmとした。
次に、下から順にCr膜及びAu膜を有する積層膜を基体上に成膜し、イオンミリングによって余分な膜を取り除き、リフトオフ加工によって、図1に示すような電極E1〜E5を形成した。
こうして、図1に示す磁気センサー200と同様の構成を有する実施例1の磁気センサーを得た。
<外部磁界測定時における出力電圧の評価>
実施例1で作製した磁気センサーに対して外部磁界を印加し、これに応じて出力される出力電圧を測定した。外部磁界は、500Oeの範囲とした。また、磁化固定層3から非磁性導電層2へスピンを注入するために、電極E1及びE2に接続された電流源70からの検出用電流を磁化固定層3から非磁性導電層2へ流した。また、磁化自由層4の磁化変化による電圧出力を、電極E3、E4間に接続された電圧測定器80、及び、電極E4、E5間に接続された電圧測定器90により測定した。
その結果、電圧測定器80すなわち電極E3及び電極E4間で観測された出力電圧を1とすると、電圧測定器90すなわち電極E5及び電極E4間で観測された出力電圧は0.93であった。
この理由を、図5を用いて説明する。図5は、実施例1で作製した磁気センサーの主要部の上面模式図である。
実施例1で作製した磁気センサーは、磁化固定層3上に非磁性低抵抗層10aが設けられているため、電極E1及び電極E2間に検出用電流Iを流すと、検出用電流Iは、磁化固定層3の電気抵抗率よりも低い電気抵抗率を有する非磁性低抵抗層10aの方に多く流れると推察される。
図5に示すように、電極E1から注入された検出用電流Iは、非磁性低抵抗層10aの長軸方向(X方向)に向かって流れ、検出用電流Iは、非磁性低抵抗層10aから磁化固定層3を介して非磁性導電層2に流れると考えられる。すなわち、電極E1から注入された検出用電流Iは、図5に示す領域Aのみならず領域Dまで流れる。その結果、領域Aから電子のスピン流Sbが領域Bへ注入され、領域Dからも電子のスピン流Scが領域Cへ注入されると推察される。
これにより、非磁性導電層2から磁化自由層4へ流れるスピン流の殆どが、非磁性導電層2における磁化固定層3と重なった部分と磁化自由層4との間の距離dcを辿ることになり、一定のスピン抵抗を受け、X方向でほぼ同等の大きさのスピンが磁化自由層4付近まで拡散できるものと推察される。
従って、実施例1で作製した磁気センサーでは、電圧測定器80、90でも殆ど変わらない電圧が観測されたと推測される。このように、磁化固定層3上に設けられた非磁性低抵抗層10aへ電流が流れ易くなったため、電流注入位置と出力電圧検出位置との距離に関わらず、出力電圧のばらつきが低減できたことが判る。
(比較例1)
比較例1で作製した磁気センサーが、実施例1で作製した磁気センサーと異なる点は、非磁性低抵抗層10a,10bがいずれも形成されていない点である。従って、電極E1が磁化固定層3の非磁性導電層2と重ならない部分に接続され、電極E3が磁化自由層4の非磁性導電層2と重ならない一方の端部に接続され、電極E5が磁化自由層4の非磁性導電層2と重ならない他方の端部に接続されている。その他の構成は実施例1と同様であるので、説明を省略する。
<外部磁界測定時における出力電圧の評価>
次に、比較例1で作製した磁気センサーを用いて、外部磁界による出力電圧を測定した。その結果、電圧測定器80すなわち電極E3及び電極E4間で観測された出力電圧を1とすると、電圧測定器90すなわち電極E5及び電極E4間で観測された出力電圧は0.27であった。
これは以下のように説明できる。比較例1で作製した磁気センサーでは、電極E1及び電極E2間に検出用電流Iを流すと、検出用電流Iは、磁化固定層3の電気抵抗率よりも低い電気抵抗率を有する非磁性導電層2の方へ流れ易くなると考えられる。
その結果、図6に示すように、電極E1から注入された検出用電流Iは、主として、領域Aの辺りにおいて、磁化固定層3から非磁性導電層2へ流れてしまうと推測される。その結果、領域Aから領域Bへ電子のスピン流Sbが注入されるとともに、領域Aから領域Cへも電子のスピン流Sdが注入されるものと考えられる。
ここで、領域Aから領域Bへ流れるスピン流Sbは、非磁性導電層2における磁化固定層3と重なった部分と磁化自由層4との間の距離dcを辿るが、領域Aから対角線上にある領域Cへ流れるスピン流Sdは、距離dcよりも長い距離を辿ることと推測される。これにより、スピン流Sdはスピン流Sbよりもスピン抵抗を多く受けることになり、電極E3及び電極E4間における出力電圧と、電極E5及び電極E4間における出力電圧との間にばらつきが生じたと考えられる。すなわち、電極E1の磁化固定層3に対するX方向の接続位置や、電極E3、E5の磁化自由層4に対するX方向の接続位置の影響を大きく受けるセンサーとなり、好ましくない。
磁気センサー200を示す上面模式図である。 図1の破線枠100に対応する斜視図である。 非磁性導電層2の形状を説明するための模式図である。 磁化固定層3と非磁性低抵抗層10a及び磁化自由層4と非磁性低抵抗層10bの形状を説明するための模式図である。 実施例1で作製した磁気センサーの上面図である。 比較例1で作製した磁気センサーの上面図である。
符号の説明
200…磁気センサー、1…基体、1a…基板、1b…下地膜、2…非磁性導電層、3…磁化固定層、4…磁化自由層、10a,10b…非磁性低抵抗層、70…電流源、80,90…電圧測定器、E1〜E5…電極、I,I…検出用電流、Sb,Sc,Sd…スピン流。

Claims (10)

  1. 基体と、
    前記基体上に設けられた非磁性導電層と、
    前記非磁性導電層の第一の部分及び前記基体上に亘って設けられた磁化固定層と、
    前記非磁性導電層の前記第一の部分とは異なる第二の部分及び前記基体上に亘って設けられた磁化自由層と、
    前記磁化固定層及び前記磁化自由層のうちの少なくとも一方の層における前記非磁性導電層と重なる部分上に設けられ、且つ前記一方の層の電気抵抗率よりも低い電気抵抗率を有する非磁性低抵抗層と、を備える磁気センサー。
  2. 前記非磁性低抵抗層は、前記一方の層における、前記非磁性導電層と重なる部分から
    前記基体上の部分まで亘って設けられている請求項1に記載の磁気センサー。
  3. 前記非磁性導電層の電気抵抗率は、前記一方の層の電気抵抗率よりも低い請求項1〜2に記載の磁気センサー。
  4. 前記磁化固定層及び前記磁化自由層は、形状異方性によって保磁力差が付けられている請求項1〜3のいずれか1項に記載の磁気センサー。
  5. 前記磁化固定層の上に設けられた反強磁性層を更に備え、
    前記反強磁性層は前記磁化固定層の磁化の向きを固定する請求項1〜4のいずれか1項に記載の磁気センサー。
  6. 前記磁化固定層の保磁力は、前記磁化自由層の保磁力よりも大きい請求項1〜5のいずれか1項に記載の磁気センサー。
  7. 前記非磁性低抵抗層を、前記磁化固定層及び前記磁化自由層の両方の層の上にそれぞれ備える請求項1〜6のいずれか記載の磁気センサー。
  8. 前記磁化固定層の材料は、B、V、Cr、Mn、Fe、Co、及びNiからなる群から選択される1以上の元素を含む合金又は酸化物である請求項1〜7のいずれか1項に記載の磁気センサー。
  9. 前記磁化自由層の材料は、B、V、Cr、Mn、Fe、Co、及びNiからなる群から選択される1以上の元素を含む合金又は酸化物である請求項1〜8のいずれか1項に記載の磁気センサー。
  10. 前記非磁性低抵抗層の材料は、Mg、Al、Cu、Zn、Ag、Au、及びPtからなる群から選択される金属、又は前記群の元素を1以上含む合金である請求項1〜9のいずれか1項に記載の磁気センサー。
JP2008166175A 2008-06-25 2008-06-25 磁気センサー Expired - Fee Related JP5157676B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008166175A JP5157676B2 (ja) 2008-06-25 2008-06-25 磁気センサー
US12/471,995 US8637170B2 (en) 2008-06-25 2009-05-26 Magnetic sensor including a free magnetization layer and a fixed magnetization layer on a nonmagnetic conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166175A JP5157676B2 (ja) 2008-06-25 2008-06-25 磁気センサー

Publications (2)

Publication Number Publication Date
JP2010010294A JP2010010294A (ja) 2010-01-14
JP5157676B2 true JP5157676B2 (ja) 2013-03-06

Family

ID=41447091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166175A Expired - Fee Related JP5157676B2 (ja) 2008-06-25 2008-06-25 磁気センサー

Country Status (2)

Country Link
US (1) US8637170B2 (ja)
JP (1) JP5157676B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568602B2 (en) * 2011-01-19 2013-10-29 HGST Netherlands B.V. Method of manufacturing a magnetic read sensor having a low resistance cap structure

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052520B1 (en) 1999-05-10 2005-07-27 Hitachi Europe Limited Magnetoelectric device
JP2003008105A (ja) * 2001-06-25 2003-01-10 Matsushita Electric Ind Co Ltd 磁気抵抗素子および磁気メモリ
US20050111138A1 (en) 2002-06-27 2005-05-26 Kiyoshi Yamakawa Thin-film magnetic head and its manufacturing method
JP4714918B2 (ja) * 2002-11-29 2011-07-06 独立行政法人科学技術振興機構 スピン注入素子及びスピン注入素子を用いた磁気装置
JP4029772B2 (ja) * 2003-05-16 2008-01-09 株式会社日立製作所 磁気ヘッドおよびそれを用いた磁気記録再生装置
JP4082274B2 (ja) 2003-05-22 2008-04-30 株式会社日立製作所 磁気センサ及びそれを備える磁気ヘッド
JP4128938B2 (ja) 2003-10-28 2008-07-30 株式会社日立製作所 磁気ヘッド及び磁気記録再生装置
JP2005209248A (ja) 2004-01-20 2005-08-04 Hitachi Ltd 磁気ヘッド及び磁気記録再生装置
JP4291751B2 (ja) 2004-07-23 2009-07-08 富士通マイクロエレクトロニクス株式会社 半導体記憶装置
US7298597B2 (en) 2005-03-29 2007-11-20 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor based on spin accumulation effect with free layer stabilized by in-stack orthogonal magnetic coupling
US7522392B2 (en) * 2005-05-17 2009-04-21 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor based on spin accumulation effect with terminal connection at back end of sensor
JP4599259B2 (ja) 2005-09-20 2010-12-15 株式会社東芝 磁気素子及びこれを用いた磁気信号処理装置
JP2007157252A (ja) 2005-12-06 2007-06-21 Alps Electric Co Ltd 磁気ヘッド装置
JP4758812B2 (ja) 2006-04-26 2011-08-31 株式会社日立製作所 スピン流狭窄層を備えたスピン蓄積素子及びその作製方法
JP4731393B2 (ja) * 2006-04-28 2011-07-20 株式会社日立製作所 磁気再生ヘッド
US7678475B2 (en) * 2006-05-05 2010-03-16 Slavin Andrei N Spin-torque devices
JP2009146512A (ja) 2007-12-14 2009-07-02 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッド及び磁気記録装置
US7492631B1 (en) * 2008-05-09 2009-02-17 International Business Machines Corporation Methods involving resetting spin-torque magnetic random access memory
JP5257007B2 (ja) 2008-11-10 2013-08-07 Tdk株式会社 磁気センサー

Also Published As

Publication number Publication date
US20090323230A1 (en) 2009-12-31
US8637170B2 (en) 2014-01-28
JP2010010294A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5257007B2 (ja) 磁気センサー
US8125746B2 (en) Magnetic sensor with perpendicular anisotrophy free layer and side shields
JP5297075B2 (ja) 磁気センサおよびその製造方法、並びに電流検出方法および電流検出装置
EP2284557B1 (en) Magnetic sensor
JP4105147B2 (ja) 電流センサ
JP5764684B2 (ja) スピンホール効果を利用する磁気読み取りセンサー
CN102298932B (zh) 在abs处具有电流约束的三层读取器
US7929258B2 (en) Magnetic sensor including a free layer having perpendicular to the plane anisotropy
US8339750B2 (en) Spin accumulation magnetic sensor
JP5888402B2 (ja) 磁気センサ素子
JP2001015826A (ja) トンネル磁気抵抗効果型ヘッド
JP2002359412A (ja) 磁気抵抗効果素子、磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、および磁気メモリ
JP6413428B2 (ja) 磁気センサ、磁気ヘッド及び生体磁気センサ
JP6439413B6 (ja) 磁気センサ、磁気ヘッド及び生体磁気センサ
US6621666B2 (en) Magnetoresistive-effect element having electrode layers oppositely disposed on main surfaces of a magnetoresistive-effect thin film having hard magnetic bias layers with a particular resistivity
EP1589594B1 (en) Cpp-type giant magnetoresistance effect element and magnetic component and magnetic device using it
JP5338264B2 (ja) 磁気センサー
JP2016186476A (ja) 磁気センサ及び磁気式エンコーダ
US8665568B2 (en) Magnetic sensor
JP5157676B2 (ja) 磁気センサー
JP6614002B2 (ja) 磁気センサ、磁気ヘッド及び磁気記録装置
JP2011018415A (ja) 磁気センサ
JP2006202999A (ja) 薄膜素子の製造方法及びウエハ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5157676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees