JP5151712B2 - ノイズ解析装置 - Google Patents

ノイズ解析装置 Download PDF

Info

Publication number
JP5151712B2
JP5151712B2 JP2008156008A JP2008156008A JP5151712B2 JP 5151712 B2 JP5151712 B2 JP 5151712B2 JP 2008156008 A JP2008156008 A JP 2008156008A JP 2008156008 A JP2008156008 A JP 2008156008A JP 5151712 B2 JP5151712 B2 JP 5151712B2
Authority
JP
Japan
Prior art keywords
power supply
circuit
semiconductor integrated
noise
internal circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008156008A
Other languages
English (en)
Other versions
JP2009301366A (ja
Inventor
耕一 中山
健一 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008156008A priority Critical patent/JP5151712B2/ja
Publication of JP2009301366A publication Critical patent/JP2009301366A/ja
Application granted granted Critical
Publication of JP5151712B2 publication Critical patent/JP5151712B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

本発明は、半導体集積回路内の電源に発生する電源ノイズを解析するノイズ解析装置に関し、特に、内部回路の待機時消費電力を抑制するための電源制御回路を用いて半導体集積回路内の電源接続・切断を行った際に半導体集積回路内に発生する電源ノイズを高精度かつ短時間で解析するノイズ解析装置に関する。
従来より、半導体集積回路内の電源は、半導体集積回路の動作開始時に電源を投入すると、動作時・非動作時に関わらず常に一定電圧の電源を供給することを前提としていた。
一方、近年半導体集積回路を構成するトランジスタの微細化が進むにつれて、電源投入した後の半導体集積回路の非動作時の消費電流量が増加する傾向が顕著になってきた。
このため半導体集積回路が動作していない時の消費電力を抑制するために電源制御回路を半導体集積回路内に作製することが必要とされている。
しかし、電源投入時に電源供給源であるPCB(Print Circuit Board)から半導体集積回路に、従来半導体集積回路が動作している時には想定していない量の電流が流れ込むことが明らかになってきた。
そして半導体集積回路の電源投入時に流れ込む電流に起因し、従来一定電圧の電源を供給していた半導体集積回路内の電源配線上において電源ノイズが発生する。半導体集積回路内で動作中の回路が、この電源ノイズにより誤動作すると言った問題がある。
電源投入時の半導体集積回路の誤動作を検証するために、電源投入から定常状態に至る過程における複雑な電源電圧波形を擬似的に生成して被検査回路に印加し、理想的な立ち上がりを表す電源電圧波形で被検査回路に印加したときの出力パターンを比較して動作異常の発生の有無を検証する技術が知られている。
特開平5−80118号公報
しかしながら、上述したような検証方法では、被検査回路が作製された後に電源投入時の誤動作が検証されるため、動作異常を検出した際には、設計の見直し及び製造工程の見直しなど相当の作業量を要する。設計の初期段階で電源投入時に流れ込む電流に起因して発生する電源ノイズについて十分に解析しておくことが望ましい。
電源制御回路を有する半導体集積回路の構成と電源ノイズの発生状態について図1で説明する。図1(A)に示される半導体集積回路1は、ボード(BOARD)の電源部2から供給される電力は、パッケージ(PKG)のインダクタンスLvdd(H)・抵抗Rvdd(Ω)を介して電源電位及びインダクタンスLvss(H)・抵抗Rvss(Ω)とを介して接地電位がそれぞれ、内部回路10が構成されるダイ(DIE)へと印加される。電源電位及び接地電位は、抵抗R1及びR2の各々によって所定のVDD電源及びVSS電源となり内部回路10へ供給される。
DIE上の内部回路10は同時に電源オン・オフされるパワードメイン10iで構成され、パワードメイン10iに低消費電力制御が行われる。更に、DIEには、内部回路10がレイアウトされるパワードメイン10iが動作時には電源供給をオンし、動作しない時にはオフする複数のパワースイッチ(PSW)5と、これらPSW5を制御するパワースイッチ(PSW)制御回路3と、PSW制御回路3からの制御信号に応じてPSW5をオン・オフするためのPSW駆動バッファ4とによって、内部回路10に対するパワーゲーティング(Power Gating)を行う電源制御回路6が構成される。電源制御回路6によって、内部回路10のパワードメイン10iにはVDDPD電源が供給される。
このように設計された半導体集積回路1を論理解析する際には、電源部2から供給される電源を理想電源とし、内部回路10へ供給されるVDDPD電源を仮想電源としてシミュレーションされる。
PSW5のオン・オフは、このパワーゲーティングによる電源ノイズを発生させ、内部回路10への流入電流が生じる。図1(B)に示すグラフは、PSW5がオンとなった際の時間Tの経過に応じた電源ノイズ量[mV]とVDDPD電源電圧[V]の状態を表している。PSW5のオンによってVDDPD電源電圧が所定電圧まで上昇するまでのある時刻tで急激にVDD−VSS電源間に発生する電源ノイズ量がピークとなっていることを示している。このグラフに示されるようなVDDPD電源電圧の波形や電源ノイズ量の波形は、論理回路の設計はほぼ完了したようなレイアウトデータを用いて検証した場合、又は作製された半導体集積回路をLSIテスタなどで検証した場合などに得られる波形である。
例えば、半導体集積回路1全体のレイアウトデータが略完成した状態で内部回路10の誤動作又は性能劣化を招くような図1(B)に示す電源ノイズ量を検出した場合、論理回路のレイアウトを行う前段階の図2に示すような電源レイアウトにまで遡って電源ノイズを抑制するためのレイアウトを再検討しなければならない。図2に示す電源レイアウトでは、VDD電源のレイアウトデータから作成されるVDD電源モデル7bとVDDPD電源のレイアウトデータから作成されるVDDPD電源モデル8bとの間にPSW回路モデル6bが接続され、VDDPD電源モデル8bとVSS電源のレイアウトデータから作成されるVSS電源モデル9bとの間に内部回路モデル10bが接続されることが示される。PSW回路モデル6bは電源制御回路6を擬似的に表現した回路モデルであり、内部回路モデル10bは内部回路10を擬似的に表現した回路モデルである。
このようにレイアウトデータを元に電源ノイズの解析モデルを作成するため、電源ノイズを解析し算出した電源ノイズ量が半導体集積回路内の内部回路の誤動作もしくは性能劣化を発生させることが判明した場合に、電源ノイズを抑制しようとしても元のレイアウトを大幅に修正することは難しく、電源ノイズを抑制する修正手法は限られ、効果的に抑制できないという課題がある。またレイアウトデータを元に電源回路網や内部回路の回路モデルを抽出し、解析モデルを作成するには、非常に大きなサイズのデータを入力しなければならず、解析モデルの作成に時間が掛かり過ぎ、かつ計算機による解析に時間が掛かり過ぎるため、実際の設計では電源制御回路を用い半導体集積回路内の内部回路の電源接続・切断する際の半導体集積回路内に発生する電源ノイズを検討することが困難である。
前述のような従来の解析手法では、半導体集積回路の内部回路の電源接続時に発生する電源ノイズを見積もる前に、大規模な半導体集積回路の電源配線モデルと詳細な回路動作モデルを作成する必要がある。このため、半導体集積回路内の内部回路に対して内部回路の電源接続・切断時に半導体集積回路内に発生する電源ノイズを見積もることは、実際の半導体集積回路設計では困難である。
実際の半導体集積回路では電源接続する内部回路以外にもVDD電源を共有する、そして動作する他の内部回路が存在する。このため内部回路が電源接続した際に電源ノイズが発生すると、その電源ノイズは他の内部回路が誤動作する、もしくは性能劣化する原因となる場合がある。また半導体集積回路の電源配線上に発生する電源ノイズには、電源接続時に発生する電源ノイズ以外にも、内部回路動作時に発生する電源ノイズやSSO電源ノイズに代表される半導体集積回路の入出力回路(IO回路)動作時の電源ノイズがあり、電源ノイズの影響を避けられない状況がある。
このため電源接続時に発生する電源ノイズを考慮し、各内部回路の設計することは重要である。
よって、本発明の目的は、電源制御回路による内部回路の電源接続及び切断時に半導体集積回路内で発生する電源ノイズの解析精度を改善すると共に短時間で解析するノイズ解析装置を提供することである。
上記課題を解決するため、ノイズ解析装置に、半導体集積回路のレイアウトの前段階で、電源制御回路を用いた該半導体集積回路の内部回路を該内部回路に設計する論理回路の回路規模に相当するインバータ回路群でモデル化した該半導体集積回路の解析モデルを用いて、該内部回路の電源の接続及び切断時に発生する電源ノイズを算出する電源ノイズ算出手段と、前記算出された電源ノイズが第一基準値以下であるか否かを判定する基準値判定手段とを構成するようにする。

このようなノイズ解析装置では、レイアウトデータを用いることなく、半導体集積回路の設計初期段階で、半導体集積回路の内部回路に供給される電源のノイズ量と立ち上がりまでの時間とを解析するため、半導体集積回路の電源設計や論理回路設計への影響を低減することができる。
半導体集積回路の電源設計を検討している段階から、電源制御回路の動作により発生する電源ノイズ量を短時間で見積もることが可能になり、レイアウト前に発生する電源ノイズを抑制できる最適な電源構成を検討することが可能になる。
以下、本発明の実施の形態を図面に基づいて説明する。
先ず、内部回路の待機時消費電力を抑制する電源制御回路を有する半導体集積回路内の電源接続・切断を行った際に半導体集積回路内に発生する電源ノイズを解析するための解析モデルについて考察する。前述した図1(A)に示すような半導体集積回路1を設計するものとし、実際に作製された図1(B)に示すような半導体集積回路をLSIテスタなどで検証した場合などに得られる電源ノイズ量及びVDDPD電源電圧の波形を設計初期段階でシミュレーション可能とする解析モデルについて考察する。
図1(A)に示す内部回路10の解析モデルでは、内部回路の電源配線をモデル化し、その電源配線のモデルから内部回路のトランジスタモデルを使用した回路モデルを用いてモデル化する。そして電源配線間に挿入される電源安定化容量(デカップリングセル容量)およびSi基板上での電源間寄生容量などの容量成分をモデル化する。
図3は、解析モデルの考察例を示す図である。図3(A)では、図1(A)に示す半導体集積回路1において内部回路10を電源安定化容量21aでモデル化して内部回路20aとして設計された半導体集積回路1aが示される。半導体集積回路1aの他構成部は図1(A)の半導体集積回路1と同様に、ボード(BOARD)の電源部2から供給される電力は、パッケージ(PKG)のインダクタンスLvdd(H)・抵抗Rvdd(Ω)を介して電源電位及びインダクタンスLvss(H)・抵抗Rvss(Ω)とを介して接地電位がそれぞれ、内部回路20aが構成されるダイ(DIE)へと印加され、電源電位及び接地電位は、抵抗R1及びR2の各々によって所定のVDD電源及びVSS電源となり内部回路20aへ供給される。更に、内部回路20aが動作時には電源供給をオンし、動作しない時にはオフする複数のパワースイッチ(PSW)5と、これらPSW5を制御するパワースイッチ(PSW)制御回路3と、PSW制御回路3からの制御信号に応じてPSW5をオン・オフするためのPSW駆動バッファ4とによって、内部回路20aに対するパワーゲーティング(Power Gating)を行う電源制御回路6が構成される。ここで、同じVDD電源とVSS電源を使用する回路毎に分別してそれぞれ一つの内部回路20aとする。
そして分別した各内部回路別に電源ノイズの解析モデルを作成する。作成する解析モデルでは、半導体集積回路を実装するPCBボードから理想的な電源が供給されることを想定し、半導体集積回路のパッケージ上の電源配線による抵抗・インダクタンス・容量などをモデル化する。もしPCBボードから理想的な電源が供給されない場合は、PCBボード上の配線抵抗・インダクタンス・容量もモデル化する。
またパッケージから半導体集積回路のDIE上の電源配線による抵抗・インダクタンス・容量をモデル化し、これらに半導体集積回路内の電源制御回路であるパワースイッチPSW5をモデル化し内部回路20aに直結する電源配線(VDDPD電源配線)に接続する。PSW5の接続箇所に関して、電源制御回路を構成するパワースイッチの特性により、VDD電源側もしくはVSS電源側に接続する場合がある。解析モデルでは、PSW5の接続箇所に則して作成するようにすることで、必要な電源ノイズ量を解析できる。
内部回路20aについては、電源配線間に挿入される電源安定化容量(デカップリングセル容量)に基づく電源安定化容量21aでモデル化する。
内部回路20aを電源安定化容量のみでモデル化した半導体集積回路1aの解析モデルを用いて、電源ノイズ量及びVDDPD電源電圧をシミュレーションすると、例えば、図3(B)のようなグラフ結果を得る。図3(B)に示すグラフでは、シミュレーションによってPSW5がオンとなった際の時間Tの経過に応じた電源ノイズ量[mV]とVDDPD電源電圧[V]の状態を示す。図3(B)中、作製された半導体集積回路1をLSIテスタなどで検証した場合などに得られる電源ノイズ量は実電源ノイズ量30で示される。また、解析モデルを用いたシミュレーションによって得られる電源ノイズ量は電源ノイズ量31aで示され、VDDPD電源電圧はVDDPD41aで示される。
内部回路20aに対してシミュレーションしたVDDPD41aの電源の立ち上がり時間を高い精度で解析できる一方、実電源ノイズ量30が最大となる時刻tにおける電源ノイズ量31aを高い精度で解析するのが難しいことが分かる。
次に、電源安定化容量21aに加え、内部回路20aの電源間に存在するトランジスタの電源間容量を含めてモデル化した解析モデルについて図4で考察する。図4は、解析モデルの他の考察例を示す図である。図4(A)に示す半導体集積回路1bの構成は、図3(A)の半導体集積回路1aの構成と同様であり、前述したように解析モデルが作成される。半導体集積回路1bでは、図1(A)に示す半導体集積回路1において内部回路10を図3(A)に示す電源安定化容量21aに加えて内部回路20aの電源間に存在するトランジスタの電源間容量を含めた容量21bによってモデル化して内部回路20bとして示される。
このような半導体集積回路1bの解析モデルを用いて、電源ノイズ量及びVDDPD電源電圧をシミュレーションすると、例えば、図4(B)のようなグラフ結果を得る。図4(B)に示すグラフでは、シミュレーションによってPSW5がオンとなった際の時間Tの経過に応じた電源ノイズ量[mV]とVDDPD電源電圧[V]の状態を示す。図4(B)中、作製された半導体集積回路1をLSIテスタなどで検証した場合などに得られる電源ノイズ量は実電源ノイズ量30で示され、VDDPD電源電圧は実VDDPD40で示される。また、解析モデルを用いたシミュレーションによって得られる電源ノイズ量は電源ノイズ量31bで示され、VDDPD電源電圧はVDDPD41bで示される。
実電源ノイズ量30に対してシミュレーションした電源ノイズ量31bの時刻tでの最大値を正しく解析可能な解析モデルにできる一方、内部回路20bの電源間に挿入する容量によって内部回路20bのVDDPD41bによる電源の立ち上がり時間を高い精度で解析するのが難しいことが分かる。これは、内部回路20bの電源間に存在するトランジスタの電源間容量や信号配線の負荷容量を一つの容量素子としてモデル化した場合においても同様である。
前述したような解析モデルの考察を経て、本発明に係る実施形態を以下に説明する。本発明に係る実施形態では、内部回路のVDDPD電源電圧による電源の立ち上がり時間の精度を改善するために、上述したように図1(A)に示す半導体集積回路1の外部に接続する電源からパワースイッチPSW5を通して内部回路10に接続する電源構造を再現した解析モデルにおいて、解析モデルの内部回路10に内部回路部に設計する論理回路の回路規模に相当するインバータ回路群をモデル化するものである。インバータ回路群は、内部回路部に設計する論理回路の回路規模と同等数のインバータ回路を含む。インバータ回路群の入力信号として、初段のインバータ回路にVSS電源と同電位の入力信号を入力する。
内部回路10の電源(以下、VDDPD電源とする)が昇圧する前、仮に内部回路10の入力信号はVSS電源側に固定されている構成において、内部回路10の電流経路と電圧波形について図5で説明する。図5は、内部回路の電流経路と電圧波形の関係を説明するための図である。図5中、インバータ回路群でモデル化した内部回路を内部回路50として説明する。図5(A)では、インバータA及びインバータBでモデル化した内部回路50が示される。図5(B)では、インバータAの出力端子ノードAとインバータBの出力端子ノードBとによる内部回路50のVDDPD電源の電圧波形43cが、時間Tの経過に応じて示される。
内部回路50のVDDPD電源の昇圧時、図5(B)に示すように、期間(a)の初期は、例えばインバータA回路の出力端子ノードAに現われる出力信号は、インバータAが出力負荷を駆動できる駆動能力をもたないためVDDPD電源とVSS電源の中間電位を出力する。
その後VDDPD電源が、インバータAが回路動作可能な電圧値に昇圧すると期間(b)においてノードAはインバータAによりVDDPD電源の電圧値まで昇圧される(ノードAの電圧波形43a)。この時内部回路の電源からは経路(i)に示す経路で内部回路へ電流が流入する。
次にノードAがVDDPD電源の電圧に昇圧し始めて間もなく最初に動作したインバータAの次段の回路インバータBが動作し始める。このインバータBが動作し始めた初期の時間帯において、内部回路のVDDPD電源とVSS電源間をインバータBを介して貫通する貫通電流が経路(ii)に示す経路で比較的多く流れる。
次にインバータBがVDDPD電源とVSS電源の中間電位にあるノードBをVSS電源の電圧値まで降圧する。この時内部回路の電源へ経路(iii)に示す経路で内部回路へ電流が流出する。その後インバータBがノードBをVSS電源の電圧値まで降圧した後には、前述の経路(ii)を流れる貫通電流は殆ど流れなくなる(ノードBの電圧波形43b)。
このように内部回路のVDDPD電源が昇圧時に経路(i)、経路(ii)および経路(iii)を流れる電流が発生する。これらの電流が電源ノイズを発生させる原因になっている。従って、解析モデルの内部回路のパワードメイン部分に対して、設計する論理回路の回路規模に相当するインバータ回路群を挿入することによって、高い精度で電源ノイズを検証することができる。
内部回路部に内部回路に設計する論理回路の回路規模に相当するインバータ回路群をモデル化した解析モデルの例について以下に説明する。
図6は、電源ノイズを解析するための解析モデルの第一実施例を示す図である。図6(A)では、図1(A)に示す半導体集積回路1において内部回路10を図6(B)に示すようなインバータ回路群でモデル化したパワードメイン51bを含む内部回路51aとして論理設計された半導体集積回路91が示される。半導体集積回路91の他構成部は図3(A)と同様であるので、その説明を省略する。
半導体集積回路91の外部に接続する電源からパワースイッチPSW5を通して内部回路51aに接続する電源構造を再現した解析モデルにおいて、解析モデルの内部回路部に内部回路に設計する論理回路の回路規模に相当するインバータ回路群をモデル化している。
図6(B)では、VDDPD電源−VSS電源間の電源間容量に加えて、内部回路51aの信号配線駆動回路をモデル化した構成例が示される。パワードメイン51bにて、インバータ回路群の入力信号として、初段のインバータ回路95にVSS電源と同電位の入力信号を入力するようにする。インバータ回路群として5ゲート分の10個のインバータ回路95を直列に接続し、また最終段のインバータ回路95の出力負荷とする容量素子96aを接続し、容量素子96aのもう一方の端子はVSS電源に接続する。
この時出力負荷とする容量素子96aの容量値は、最終段のインバータ回路95が駆動する信号配線容量および次段の回路の入力容量を見積もった値とする。
インバータ回路群の回路規模が大きく、解析モデルの回路規模が大きくなり、解析時間が長くなる場合には、一定規模のインバータ回路群を作成し、作成したインバータ回路群を複数作成し、設計する論理回路の回路規模に相当する解析モデルを作成することができる。回路規模が100万ゲート分に相当する場合、例えば、10ゲート分でシミュレーションした結果を10万倍すればよい。
これにより解析モデルの動作を解析するシミュレータは、一つのインバータ回路群を詳細に解析するだけで、解析モデル内の複数のインバータ回路群を同時に電源接続した時の電源に発生する電源ノイズを短時間で解析することができる。
上述した第一実施例とは異なり、インバータ回路群の初段のインバータ回路にVDD電源と同電位の入力信号を入力するようにした第二実施例を図7で説明する。図7は、電源ノイズを解析するための解析モデルの第二実施例を示す図である。図7(A)では、図1(A)に示す半導体集積回路1において内部回路10を図7(B)に示すようなインバータ回路群でモデル化したパワードメイン52bを含む内部回路52aとして論理設計された半導体集積回路92が示される。半導体集積回路92の他構成部は図3(A)と同様であるので、その説明を省略する。
図7(B)では、VDDPD電源−VSS電源間の電源間容量に加えて、内部回路52aの信号配線駆動回路をモデル化した構成例が示される。パワードメイン52bにて、インバータ回路群の入力信号として、初段のインバータ回路95にVDD電源と同電位の入力信号を入力する。インバータ回路群として5ゲート分の10個のインバータ回路95を直列に接続し、また最終段のインバータ回路95の出力端子には、電源接続時に最終段のインバータ回路95が出力するHレベルの信号が駆動することになる出力負荷である容量素子96bを接続し、容量素子96bのもう一方の端子はVDDPD電源側に接続する。
この時出力負荷とする容量素子96bの容量値は、最終段のインバータ回路95が駆動する信号配線容量および次段の回路の入力容量を見積もった値とする。
第二実施例に示すように内部回路に設計する論理回路の回路規模に相当するインバータ回路群をモデル化して電源ノイズを解析する解析モデルとして使用することで、半導体集積回路の設計初期に電源制御回路による内部回路の電源接続・電源切断時に発生する電源ノイズを精度よく短時間で解析することができる。
上述した第一実施例及び第二実施例とは異なり、解析モデルの内部回路部の解析モデルにおいて、2つのインバータ回路群を作成してモデル化した第三実施例を図8で説明する。図8は、電源ノイズを解析するための解析モデルの第三実施例を示す図である。図8(A)では、図1(A)に示す半導体集積回路1において内部回路10を図8(B)に示すようなインバータ回路群でモデル化したパワードメイン53bを含む内部回路52aとして論理設計された半導体集積回路92が示される。半導体集積回路92の他構成部は図3(A)と同様であるので、その説明を省略する。
図8(B)では、VDDPD電源−VSS電源間の電源間容量に加えて、内部回路53aの信号配線駆動回路をモデル化した構成例が示される。所定ゲート分となる複数のインバータ回路95を直列に接続した2つのインバータ回路群を作成する。一方のインバータ回路群の最終段のインバータ回路95の出力端子には、初段のインバータ回路95の入力信号の信号レベルを固定するNAND回路97の入力端子に接続し、他方のインバータ回路群の最終段のインバータ回路95の出力端子には、初段のインバータ回路95の入力信号の信号レベルを固定するNOR回路98の入力端子に接続する。
これにより、最終段のインバータ回路95の出力負荷とする容量素子の容量値を見積もり値とすることなく、実際の回路の入力容量に近い容量値をモデル化することができる。
半導体集積回路で設計する論理回路には、回路の動作条件により、回路動作前の入力信号の信号レベルを固定して初期化する必要がある。このため電源接続時の内部回路の中には、入力信号をHレベルで初期化する回路や、Lレベルで初期化する回路が混在する。
例えば、図9に示すように、内部回路53に対して、交互に配置されたOR回路54とAND回路55とがアイソレータとして構成され、終端制御信号と終端制御信号に対するNOT回路の出力とによって回路動作前の入力信号の信号レベルを固定して初期化する。
そして入力信号をHレベルで固定し内部回路を電源接続した場合とLレベルで固定し内部回路を電源接続した場合で、初段のインバータ回路が次段の回路を駆動するトランジスタ種が異なる、または駆動能力が異なることで発生する電源ノイズが異なる場合がある。
第三実施例に示すように内部回路に設計する論理回路の回路規模に相当する2つのインバータ回路群をモデル化して電源ノイズを解析する解析モデルとして使用することで、上述のような動作前に入力信号の初期化する信号レベルが異なる回路が混在する場合においても、電源ノイズを精度良く解析することができる。
これにより内部回路のVDDPD電源を昇圧時に発生する電源ノイズ量の最大値のみでなく、電源ノイズ波形についても解析できる。その結果、図1(B)に示すように、内部回路の電源の昇圧時間も高い精度で解析できる。また論理回路の回路規模はレイアウト前後で大幅に変更されることがないため、レイアウト前の設計初期でも電源ノイズを精度良く解析できる。
図10は、パワーゲーティングによる電源ノイズ量を見積もるための処理フローを示す図である。図10において、図11に示すようなコンピュータ装置であるノイズ解析装置100は、インバータセルのネットリスト61aと、NANDセルのネットリスト61bと、NORセルのネットリスト61cとから、図8(B)に示すようなインバータ回路群を含む内部回路の基本単位ネットリスト62aを作成する(ステップS1)。
次に、ノイズ解析装置100は、PSW駆動バッファ4のセル種を示すPSW駆動バッファセル種情報63aと、PSW5のセル種を示すPSWセル情報63bと、内部回路の電源間容量を示す電源間容量情報63cと、内部回路の消費電流量を示す消費電流量情報63dと、PKGの電源抵抗・インダクタンス情報63eと、内部回路の回路規模を示す回路規模情報63fとを含む回路仕様によって特定される解析モデル情報63を用いて、半導体集積回路全体の解析モデルを作成して全体解析モデルのネットリスト62bを出力する(ステップS2)。
そして、ノイズ解析装置100は、PSW駆動バッファセルのネットリスト61dと、PSWセルのネットリスト61eと、全体解析モデルのネットリスト62bと、内部回路の基本単位ネットリスト62aとを用いて、パワーゲーティングによる回路動作時の解析を行う(ステップS3)。例えば、SPICE(Simulation Program with Integrated Circuit Emphasis)などの回路シミュレータを用いて解析する。
解析結果として、電源ノイズ情報64aとVDDPD電源の立ち上がり時間を示す立ち上がり時間情報64bとが出力される。解析を行う際には、内部回路の基本単位ネットリスト62aで解析した結果を、内部回路に設計する論理回路の回路規模に相当する基本単位ネットリスト62aの整数で乗算する。よって、例えば図8(B)に示すような所定のインバータ回路群を詳細に解析するだけで、解析モデル内の複数のインバータ回路群を同時に電源接続した時の電源に発生する電源ノイズを短時間で解析することができる。電源ノイズ情報64aでは、図1に示す時刻tにおける電源ノイズのピーク量が示され、立ち上がり時間情報64bでは、内部回路が動作可能な所定のVDDPD電源電圧に達した時間が示される。
ノイズ解析装置100は、電源ノイズ情報64aと電源ノイズが所定値以下であるための基準値を示す電源ノイズクライテリア情報65aとを用いて、電源ノイズ情報64aで示される電源ノイズのピーク値が電源ノイズクライテリア情報65aで示される電源ノイズの基準値以下であり、かつ、VDDPD電源の立ち上がり時間情報64bとVDDPD電源の立ち上がり時間が所定時間内であるための基準値を示す立ち上がり時間クライテリア情報65bとを用いて、立ち上がり時間情報64bで示される時間値が立ち上がり時間クライテリア情報65bで示される基準値以下であるか否かを判定する(ステップS4)。
ノイズ解析装置100がステップS4によるクライテリア判定が不成立であると判定した場合、回路設計者は解析モデル情報63の見直しを行う。一方、ノイズ解析装置100がステップS4によるクライテリア判定が成立すると判定した場合、レイアウトデータを生成するレイアウト処理へと進む。
このような処理によって、半導体集積回路の電源設計を検討している段階から、電源制御回路の動作により発生する電源ノイズ量を短時間で見積もることが可能になり、レイアウト前に発生する電源ノイズを抑制できる最適な電源構成を検討することが可能になる。従って、レイアウトデータから図2に示すような複雑な電源配線網を抽出することなく、かつ内部回路を抽出することなく、短時間でシミュレーションモデルを作成できる。そして、シミュレーションモデルの規模、つまりモデルの回路を構成する回路素子数を抑制できるため、半導体集積回路に挿入した電源制御回路動作時に発生する電源ノイズを短時間で精度良く解析することが可能となる。
図10に示す処理フローを実行することによってノイズ解析装置として動作するノイズ解析装置100は、例えば図11に示すように構成される。図11は、ノイズ解析装置のハードウェア構成を示す図である。図11において、ノイズ解析装置100はコンピュータ装置であり、CPU(Central Processing Unit)11と、メモリユニット12と、表示ユニット13と、出力ユニット14と、入力ユニット15と、通信ユニット16と、記憶装置17と、ドライバ18とで構成され、システムバスBに接続される。
CPU11は、メモリユニット12に格納されたプログラムに従ってノイズ解析装置100を制御する。メモリユニット12は、RAM(Random Access Memory)及びROM(Read-Only Memory)等にて構成され、CPU11にて実行されるプログラム、CPU11での処理に必要なデータ、CPU11での処理にて得られたデータ等を格納する。また、メモリユニット12の一部の領域が、CPU11での処理に利用されるワークエリアとして割り付けられている
表示ユニット13は、CPU11の制御のもとに必要な各種情報を表示する。出力ユニット14は、プリンタ等を有し、回路設計者からの指示に応じて各種情報を出力するために用いられる。入力ユニット15は、マウス、キーボード等を有し、回路設計者がノイズ解析装置100が処理を行なうための必要な各種情報を入力するために用いられる。通信ユニット16は、例えばインターネット、LAN(Local Area Network)等に接続し、外部装置との間の通信制御をするための装置である。通信ユニット16として、例えばモデムやLANアダプタなどが採用される。記憶装置17は、例えば、ハードディスクユニットにて構成され、各種処理を実行するプログラム等のデータを格納する。また、必要に応じて画像を光学的に読み取った画像データを取り込むためのスキャナを備えるようにしてもよい。
ノイズ解析装置100よって行われる処理を実現するプログラムは、例えば、CD−ROM(Compact Disc Read-Only Memory)等の記憶媒体19によってノイズ解析装置100に提供される。即ち、プログラムが保存された記憶媒体19がドライバ18にセットされると、ドライバ18が記憶媒体19からプログラムを読み出し、その読み出されたプログラムがシステムバスBを介して記憶装置17にインストールされる。そして、プログラムが起動されると、記憶装置17にインストールされたプログラムに従ってCPU11がその処理を開始する。尚、プログラムを格納する媒体としてCD−ROMに限定するものではなく、コンピュータが読み取り可能な媒体であればよい。上述した処理フローを実行して電源ノイズを解析するプログラムは、通信ユニット16によってネットワークを介してダウンロードし、記憶装置17にインストールするようにしても良い。また、USB対応のノイズ解析装置100であれば、USB接続による着脱可能な外部記憶装置からインストールするようにしても良い。更に、SDカード等のフラッシュメモリ対応のノイズ解析装置100であれば、そのようなメモリカードからインストールするようにしても良い。
以上に述べたように、設計初期、特にIR−Drop電源ノイズに代表される内部回路動作時に発生する電源ノイズやSSO電源ノイズに代表される半導体集積回路の入出力回路(IO回路)動作時の電源ノイズなどを考慮する際に、電源接続時に発生する電源ノイズを考慮することができる。
この結果、設計後期のレイアウトデータを用いた解析を行わずに、半導体集積回路の電源設計や論理回路に影響する修正手法を講じることを可能にする。
以上の説明に関し、更に以下の項を開示する。
(付記1)
半導体集積回路のレイアウトの前段階で、電源制御回路を用いた該半導体集積回路の内部回路の電源の接続及び切断時に発生する電源ノイズを算出する電源ノイズ算出手段と、
前記算出された電源ノイズが第一基準値以下であるか否かを判定する基準値判定手段とを有するノイズ解析装置。
(付記2)
複数のインバータ回路で成るインバータ回路群を含むように、前記電源ノイズを算出するための前記半導体集積回路の解析モデルを作成する解析モデル作成手段を有する付記1記載のノイズ解析装置。
(付記3)
前記解析モデル作成手段は、前記内部回路に入力信号の初期化する信号レベルが異なる回路が混在する場合、前記初期化する信号レベル毎に異なる数のインバータ回路群を含むように前記解析モデルを作成する付記2記載のノイズ解析装置。
(付記4)
前記内部回路内のパワードメインに供給される電源の立ち上がり時間を算出する電源立ち上がり時間算出手段を更に有し、
前記基準値判定手段は、
前記算出された電源ノイズが前記第一基準値以下であり、かつ、前記算出された電源の立ち上がり時間が第二基準値以下であるか否かを判定する付記1乃至3のいずれか一項記載のノイズ解析装置。
(付記5)
半導体集積回路のレイアウトの前段階で、電源制御回路を用いた該半導体集積回路の内部回路の電源の接続及び切断時に発生する電源ノイズを算出する電源ノイズ算出段階と、
前記算出された電源ノイズが第一基準値以下であるか否かを判定する基準値判定段階とをコンピュータ装置が実行するノイズ解析方法。
(付記6)
半導体集積回路のレイアウトの前段階で、電源制御回路を用いた該半導体集積回路の内部回路の電源の接続及び切断時に発生する電源ノイズを算出する電源ノイズ算出機能と、
前記算出された電源ノイズが第一基準値以下であるか否かを判定する基準値判定機能としてコンピュータ装置に機能させるノイズ解析プログラム。
(付記7)
半導体集積回路のレイアウトの前段階で、電源制御回路を用いた該半導体集積回路の内部回路の電源の接続及び切断時に発生する電源ノイズを算出する電源ノイズ算出機能と、
前記算出された電源ノイズが第一基準値以下であるか否かを判定する基準値判定機能としてコンピュータ装置に機能させるノイズ解析プログラムを記憶したコンピュータ読み取り可能な記憶媒体。
本発明は、具体的に開示された実施例に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
電源制御回路を有する半導体集積回路の構成と電源ノイズの発生状態を説明するための図である。 電源レイアウトの例を示す図である。 解析モデルの考察例を示す図である。 解析モデルの他の考察例を示す図である。 内部回路の電流経路と電圧波形の関係を説明するための図である。 電源ノイズを解析するための解析モデルの第一実施例を示す図である。 電源ノイズを解析するための解析モデルの第二実施例を示す図である。 電源ノイズを解析するための解析モデルの第三実施例を示す図である。 第三実施例が適応される構成を示す図である。 パワーゲーティングによる電源ノイズ量を見積もるための処理フローを示す図である。 ノイズ解析装置のハードウェア構成を示す図である。
符号の説明
1、1a、1b 半導体集積回路
2 電源部
3 PSW制御回路
4 PSW駆動バッファ
5 PSW
6 電源制御回路
6b PSW回路モデル
7b VDD電源モデル
8b VDDPD電源モデル
9b VSS電源モデル
10 内部回路
10b 内部回路モデル
11 CPU
12 メモリユニット
13 表示ユニット
14 出力ユニット
15 入力ユニット
16 通信ユニット
17 記憶装置
18 ドライバ
19 記憶媒体
20a 内部回路
21a 電源安定化容量
21b 容量
30 実電源ノイズ量
31a、31b 電源ノイズ量
40 実VDDPD
41a VDDPD
43a ノードAの電圧波形
43b ノードBの電圧波形
43c VDDPD電源の電圧波形
50 内部回路
51a、52a、53a 内部回路
51b、52b、53b パワードメイン
54 OR回路
55 AND回路
91 半導体集積回路
95 インバータ回路
96a、96b 容量素子
97 NAND回路
98 NOR回路
100 ノイズ解析装置

Claims (5)

  1. 半導体集積回路のレイアウトの前段階で、電源制御回路を用いた該半導体集積回路の内部回路を該内部回路に設計する論理回路の回路規模に相当するインバータ回路群でモデル化した該半導体集積回路の解析モデルを用いて、該内部回路の電源の接続及び切断時に発生する電源ノイズを算出する電源ノイズ算出手段と、
    前記算出された電源ノイズが第一基準値以下であるか否かを判定する基準値判定手段とを有するノイズ解析装置。
  2. 前記内部回路に設計する論理回路の回路規模と同等数のインバータ回路で成るインバータ回路群を含むように、前記電源ノイズを算出するための前記半導体集積回路の解析モデルを作成する解析モデル作成手段を有する請求項1記載のノイズ解析装置。
  3. 前記解析モデル作成手段は、前記内部回路に入力信号の初期化する信号レベルが異なる回路が混在する場合、前記初期化する信号レベル毎に異なる数のインバータ回路群を含むように前記解析モデルを作成する請求項2記載のノイズ解析装置。
  4. 前記内部回路内のパワードメインに供給される電源の立ち上がり時間を算出する電源立ち上がり時間算出手段を更に有し、
    前記基準値判定手段は、
    前記算出された電源ノイズが前記第一基準値以下であり、かつ、前記算出された電源の立ち上がり時間が第二基準値以下であるか否かを判定する請求項1乃至3のいずれか一項記載のノイズ解析装置。
  5. 半導体集積回路のレイアウトの前段階で、電源制御回路を用いた該半導体集積回路の内部回路を該内部回路に設計する論理回路の回路規模に相当するインバータ回路群でモデル化した該半導体集積回路の解析モデルを用いて、該内部回路の電源の接続及び切断時に発生する電源ノイズを算出する電源ノイズ算出段階と、
    前記算出された電源ノイズが第一基準値以下であるか否かを判定する基準値判定段階とをコンピュータ装置が実行するノイズ解析方法。
JP2008156008A 2008-06-13 2008-06-13 ノイズ解析装置 Expired - Fee Related JP5151712B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156008A JP5151712B2 (ja) 2008-06-13 2008-06-13 ノイズ解析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156008A JP5151712B2 (ja) 2008-06-13 2008-06-13 ノイズ解析装置

Publications (2)

Publication Number Publication Date
JP2009301366A JP2009301366A (ja) 2009-12-24
JP5151712B2 true JP5151712B2 (ja) 2013-02-27

Family

ID=41548177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156008A Expired - Fee Related JP5151712B2 (ja) 2008-06-13 2008-06-13 ノイズ解析装置

Country Status (1)

Country Link
JP (1) JP5151712B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958495B2 (en) 2014-12-05 2018-05-01 Samsung Electronics Co., Ltd. Computing device executing program performing method of analyzing power noise in semiconductor device, semiconductor device design method, and program storage medium storing program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199113A (ja) * 2010-03-23 2011-10-06 Fujitsu Ltd 解析装置及び半導体装置
JP2011227576A (ja) * 2010-04-15 2011-11-10 Fujitsu Ltd ノイズ解析装置及びノイズ解析方法
JP5565252B2 (ja) * 2010-10-04 2014-08-06 富士通株式会社 半導体集積回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3002575B2 (ja) * 1991-09-18 2000-01-24 富士通株式会社 回路異常検出装置
JP4924136B2 (ja) * 2006-05-23 2012-04-25 富士通株式会社 ノイズ解析プログラム、該プログラムを記録した記録媒体、ノイズ解析装置およびノイズ解析方法
JP2008065732A (ja) * 2006-09-11 2008-03-21 Nec Electronics Corp 半導体集積回路の設計方法及び設計システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958495B2 (en) 2014-12-05 2018-05-01 Samsung Electronics Co., Ltd. Computing device executing program performing method of analyzing power noise in semiconductor device, semiconductor device design method, and program storage medium storing program
US10444276B2 (en) 2014-12-05 2019-10-15 Samsung Electronics Co., Ltd. Computing device executing program performing method of analyzing power noise in semiconductor device, semiconductor device design method, and program storage medium storing program

Also Published As

Publication number Publication date
JP2009301366A (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
US8234617B2 (en) Method and system for re-using digital assertions in a mixed signal design
US10733342B2 (en) System and method for hierarchical power verification
US10255403B1 (en) Method and apparatus for concurrently extracting and validating timing models for different views in multi-mode multi-corner designs
JP5029096B2 (ja) 電源ノイズモデル生成方法及び電源ノイズモデル生成装置
JP5151712B2 (ja) ノイズ解析装置
CN104424377A (zh) 具有共享pode的标准集成电路单元的泄漏预估的系统和方法
JP2009237972A (ja) 半導体装置、その設計方法及び設計装置
JPWO2008155830A1 (ja) 回路シミュレーションモデル生成装置、回路シミュレーションモデル生成プログラム、回路シミュレーションモデル生成方法及び回路シミュレーション装置
US9298875B2 (en) Semiconductor circuit design method, memory compiler and computer program product
JPH10283394A (ja) 故障シミュレーション方法
JP2010170180A (ja) 回路検証装置およびプログラム
JP4539376B2 (ja) 伝送信号波形解析方法及びプログラム
US8818784B1 (en) Hardware description language (HDL) incorporating statistically derived data and related methods
US20140282333A1 (en) Design support apparatus and design support method
JP2004054522A (ja) 半導体装置の同時スイッチングノイズ評価方法
JP2003031664A (ja) レイアウト設計方法、レイアウト検証方法、レイアウト設計装置、プログラム及び記録媒体
US6042613A (en) LSI design aiding apparatus
US20180096087A1 (en) Design method
Hsu et al. Speeding up power verification by merging equivalent power domains in RTL design with UPF
JP5402356B2 (ja) 電源ノイズ解析方法及び電源ノイズ解析プログラム
JP4855283B2 (ja) 半導体集積回路の設計装置
JP2001222573A (ja) Emiシミュレーション用半導体集積回路の電源モデル及びその設計方法
US6912701B2 (en) Method and apparatus for power supply noise modeling and test pattern development
US7784001B2 (en) Circuit design method, circuit design system, and program product for causing computer to perform circuit design
JP4080464B2 (ja) 検証ベクタ生成方法およびこれを用いた電子回路の検証方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees