JP2004054522A - 半導体装置の同時スイッチングノイズ評価方法 - Google Patents

半導体装置の同時スイッチングノイズ評価方法 Download PDF

Info

Publication number
JP2004054522A
JP2004054522A JP2002210175A JP2002210175A JP2004054522A JP 2004054522 A JP2004054522 A JP 2004054522A JP 2002210175 A JP2002210175 A JP 2002210175A JP 2002210175 A JP2002210175 A JP 2002210175A JP 2004054522 A JP2004054522 A JP 2004054522A
Authority
JP
Japan
Prior art keywords
power supply
cell
model
input
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002210175A
Other languages
English (en)
Inventor
Satoshi Hoshi
星 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002210175A priority Critical patent/JP2004054522A/ja
Publication of JP2004054522A publication Critical patent/JP2004054522A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

【課題】半導体装置の同時スイッチングノイズを高い精度で評価することを可能とし、設計初期段階からノイズ対策を講じることを可能にする。
【解決手段】半導体装置の同時スイッチングノイズ評価方法において、電源配線上の入出力セルの各々を、入力バッファセル、出力バッファセル、第1の電源セル、第2の電源セル、接地用電源セルを含む複数のセルのモデルの中のいずれかに対応させる手順と、各入出力セルに対し、半導体装置の設計仕様と構成を考慮して設定、もしくは半導体装置のレイアウト情報から抽出した容量、抵抗、インダクタンスの値を用いたモデルを生成する手順と、半導体装置の内部負荷及び内部電源配線のモデルを生成する手順と、各入出力セルのモデルと前記内部負荷・内部電源配線モデルとを結合して全体モデルを生成する手順とを有する。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、LSI等の半導体集積回路において、複数の入出力が同時にスイッチングすることにより発生しうる電源ノイズを評価するための同時スイッチングノイズ評価方法に関する。
【従来の技術】
近年、LSIは半導体プロセスの微細化によって大規模化し、入出力ピン数が増大すると共に、電源電圧も低下している。このため、LSIの開発過程において同時スイッチングノイズの影響が無視できない程度に大きくなっている。すなわち、同時スイッチングノイズを無視した場合、シミュレーションでLSIが正常に動作しても、実際に製造されたLSIは正常に動作しないという事態が起こりうる。従って、設計対象のLSIに発生しうる同時スイッチングノイズを高い精度で評価する評価手法が求められている。
【0002】
同時スイッチングノイズによる電源変動は、入出力バッファのスイッチングによって、電源・接地配線へ瞬間的に大きな過渡電流が流れることによって引き起こされる。例えば、CMOS回路では、主に複数の出力バッファが同時にスイッチするときに大きな過渡電流が電源・接地配線に流れるため、電源電圧の変動により論理誤動作や動作の不安定性を引き起こす。スイッチング時に特定の電源・接地配線で発生する電源変動は、簡易的に、前記電源・接地配線の実効インダクタンス(L)と、前記電源・接地配線に流れ込む同時スイッチングによって発生した過渡電流の電流変化率(di/dt)との積(L*di/dt)と考えることができる。すなわち、この電源変動は、電磁誘導の原理に基づいた逆起電力を意味している。
【0003】
ところで、従来の同時スイッチンノイズの解析においては、入出力バッファやパッケージをモデル化したシミュレーションを行う場合、パッケージやLSI内部の電源配線の抵抗、容量、インダクタンス、LSI内部および外部の負荷容量のように多数存在する素子を集中定数で表現する簡略モデルを使用していた。
例えば、「VLSIシステム設計 回路と実装の基礎」(中澤 喜三郎 中村宏監訳 丸善株式会社出版、pp.317−318)には、CMOSチップ上の集積回路に電源電圧を供給するパスの入出力ピン(VDDピンとVSS(グランド)ピン)のインダクタンスを集中定数Lで表現した回路モデルが示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した集中定数で表現する従来の単純なモデルを用いた方法では、入出力ピン数の増大化し、電源電圧も低下しているLSIに対する電源ノイズ評価を十分な精度で行うことは困難である。その理由として、上記の簡略モデルでは、同時にスイッチする回路やノイズによって大きな過渡電流が流れる電源の分布、すなわち入出力セル・電源セルの配置やLSIの内部電源配線構造を考慮していないため、どの入出力セルがどのタイミングでスイッチし、前記内部電源配線を通じてノイズがどのように伝播・相互作用するかを表現できないためである。以上から、十分な精度のノイズ見積もりができないために、ノイズ対策としては、設計者の経験に頼らざるを得ないという問題があった。
【0005】
さらに、従来の方法では、ノイズ見積もりの精度が不足することで設計初期からノイズ対策を講じることが困難であるために、LSI設計をやり直すなどの無駄を生じかねないという課題があった。
【0006】
本発明は、上記の点に鑑みてなされたものであり、設計対象の半導体装置の同時スイッチングノイズを高精度で見積もることが可能であり、設計初期段階からノイズ対策を講じることを可能にする同時スイッチングノイズ評価方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載した発明は、半導体装置の同時スイッチングノイズを評価するノイズ評価方法であって、前記半導体装置の電源配線上の入出力セルの各々を、入力バッファセル、出力バッファセル、第1の電源セル、第2の電源セル、接地用電源セルを含む複数のセルのモデルの中のいずれかに対応させる手順と、前記複数のセルのモデルのいずれかに対応させた前記入出力セルの各々に対し、前記半導体装置の設計仕様と構成を踏まえ過去の設計事例などから設定、もしくは前記半導体装置の実際のレイアウト情報から抽出した容量、抵抗、インダクタンスの値を用いて、それぞれ個別のモデルを生成する手順と、前記半導体装置の内部に存在する内部負荷(例えば、デカップリングキャパシタのようにLSI内部に存在する容量)及び内部電源配線に対し、前記半導体装置の設計仕様と構成を踏まえ過去の設計事例などから設定、もしくは前記半導体装置の実際のレイアウト情報から抽出した前記内部負荷の容量の値や前記内部電源配線の容量、抵抗、インダクタンスの値を用いて内部負荷・内部電源配線モデルを生成する手順と、前記入出力セルの各モデルと前記内部負荷・内部電源配線モデルとを結合して前記半導体装置の全体モデルを生成する手順とを有することを特徴とする。
【0008】
請求項2に記載した発明は、請求項1記載のノイズ評価方法において、前記入力バッファセルのモデルが、入力バッファの出力負荷となる容量(例えば、入力バッファの出力につながるトランジスタのゲート容量など)と、パッド容量(チップとボンディングワイヤの接続部分に寄生する容量)と、パッケージのボンディングワイヤやリードフレームの抵抗、インダクタンスとを含めて構成されることを特徴とする。
【0009】
請求項3に記載した発明は、請求項1記載のノイズ評価方法において、前記出力バッファセルのモデルが、出力バッファの出力負荷となる外部負荷の容量(出力バッファにとって出力負荷となる容量)と、パッド容量(チップとボンディングワイヤの接続部分に寄生する容量)と、パッケージのボンディングワイヤやリードフレームの抵抗、インダクタンスとを含めて構成されることを特徴とする。
【0010】
請求項4に記載した発明は、請求項1記載のノイズ評価方法において、前記第1の電源セルのモデルが、第1の電源ラインと接続するパッケージのボンディングワイヤ、リードフレームの抵抗、インダクタンスを含めて構成されることを特徴とする。
【0011】
請求項5に記載した発明は、請求項1記載のノイズ評価方法において、前記第2の電源セルのモデルが、第2の電源ラインと接続するパッケージのボンディングワイヤ、リードフレームの抵抗、インダクタンスを含めて構成されることを特徴とする。
【0012】
請求項6に記載した発明は、請求項1記載のノイズ評価方法において、前記接地用電源セルのモデルが、接地用電源ラインと接続するパッケージのボンディングワイヤ、リードフレームの抵抗、インダクタンスを含めて構成されることを特徴とする。
【0013】
請求項7に記載した発明は、請求項1記載のノイズ評価方法において、前記内部負荷及び内部電源配線のモデルが、所定の内部容量と、所定の抵抗網の抵抗とを含めて構成されることを特徴とする。
【0014】
請求項8に記載した発明は、請求項1記載のノイズ評価方法がさらに、各入出力バッファへの入力信号のタイミングを指定してシミュレーションを実行することにより、前記半導体装置の同時スイッチングノイズを解析する手順を有することを特徴とする。
【発明の実施の形態】
以下、本発明の実施の形態を添付の図面を参照しながら具体的に説明する。
【0015】
図1は、本発明に係る同時スイッチングノイズ評価方法で行われる、設計対象の半導体装置(以下、LSIという)のモデル化を説明するための図である。
【0016】
図1に示したように、本発明の同時スイッチングノイズ評価方法では、LSI10の電源配線上の入出力ピンごとに、入出力バッファ、ボンディングワイヤ、リードフレーム、パッド容量、及び各入出力ピンに接続される外部回路を信号源や負荷として詳細にモデル化する。以下、本発明によるLSIのモデル化について説明する。
【0017】
まず、LSI全体を外部負荷、パッケージ、入出力バッファ、パッド容量、電源配線(リング配線、内部電源配線)、内部負荷▲1▼、内部負荷▲2▼、内部信号源、外部信号源に切り分けて考える。
【0018】
次に、入出力部を作成する。図3乃至図7のようにセルごとにモデルを作成し、それぞれのセルを図1のように実際のピン配置通りに並べ、結合させる。また、LSI内部については、内部負荷▲1▼、内部負荷▲2▼、内部信号源、内部電源配線の抵抗でモデル化する。内部のデカップリングキャパシタや内部電源配線間容量など第2の電源(VDD)と接地用電源(VSS)の間に存在する容量成分を内部負荷▲1▼とし、入力バッファの出力につながる内部回路の容量成分を内部負荷▲2▼とし、出力バッファへの入力となる内部回路の出力信号は内部信号源としてモデル化する。ここで、内部負荷▲2▼は入力バッファセルのモデルに組み込まれ、内部信号源は出力バッファセルのモデルに組み込む。さらに、内部負荷▲1▼と内部電源配線の抵抗を用いて分布定数によるモデル化を行う。
【0019】
最後に、図8に示すLSI内部の電源配線の抵抗と内部負荷▲1▼を用いて作成した分布定数モデルを、作成した入出力部の各モデルに結合させ、LSI全体のモデルを作成する。
【0020】
ここで、入出力バッファのモデル化には、レイアウトデータなどから得られるトランジスタレベルのもの、もしくはトランジスタレベルと同等の解析精度をもつ回路モデルを使用する。また、電源配線等の容量、抵抗、インダクタンスの値は、設計対象の半導体装置(LSI)の設計仕様と構成を踏まえ過去の設計事例などから設定、または実際のレイアウト情報から抽出する。シミュレーションを実行するときには、入出力バッファへの入力信号のタイミング等をすべて指定する。
【0021】
以上のように、本発明の半導体装置の同時スイッチングノイズ評価方法は、LSI全体のモデル化において入出力ピンごとにモデル化を行うことを特徴とし、同時スイッチングノイズの高精度な見積もりを可能にする。
【0022】
次に、図3乃至図7を参照しながら、LSI10の電源のリング配線(IORPB)9上の各入出力セルに対応させる複数のセルのモデルの各々について説明する。
【0023】
図1に示したLSI10において、電源のリング配線9上に配置される入出力セルには、大別して、入出力バッファセル1と、電源セル2とがある。さらに、入出力バッファセル1には、入力バッファ1aを有する入力バッファセルと、出力バッファ1bを有する出力バッファセルとがある。また、電源セル2には、第1の電源(VDE)セル2aと、第2の電源(VDD)セル2bと、接地用電源(VSS)セル2cとがある。
【0024】
図3に、図1のLSIモデルに使用される出力バッファセルのモデルを示す。
【0025】
図3の例では、出力バッファ1bのスイッチング時の電位変動分を考慮するため、出力バッファ1bと接続する電源のリング配線9の、第1の電源(VDE)ライン51、第2の電源(VDD)ライン52、接地用電源(VSS)ライン53のそれぞれについて、抵抗値、インダクタンス値及び容量値が図示のように設定されている。なお、R1乃至R6はリング配線9上の1セル(出力バッファセル)当たりの抵抗を表し、L1乃至L6はリング配線9上の1セル(出力バッファセル)当たりのインダクタンスを表し、C1乃至C6はリング配線9上の1セル(出力バッファセル)当たりの容量を表す。そして、図3の出力バッファセルのモデルは、入力信号の信号源8と、外部負荷の容量7と、パッドの容量Cpadと、パッケージ3のボンディングワイヤやリードフレームの抵抗3a、インダクタンス3bとを含めて構成されている。
【0026】
図4に、図1のLSIモデルに使用される入力バッファセルのモデルを示す。図4に示したように、入力バッファ1aのスイッチング時の電位変動分を考慮するため、入力バッファ1aと接続する電源のリング配線9の、第1の電源ライン51、第2の電源ライン52、接地用電源ライン53のそれぞれについて、抵抗値、インダクタンス値及び容量値が図示のように設定されている。そして、入力バッファ1aを有する入力バッファセルのモデルは、入力信号の信号源8と、内部負荷の容量C0と、パッドの容量Cpadと、パッケージ3のボンディングワイヤやリードフレームの抵抗3a、インダクタンス3bとを含めて構成されている。
【0027】
図5に、図1のLSIモデルに使用される第1の電源(VDE)セル2aのモデルを示す。図5に示したように、入出力バッファのスイッチング時の電位変動分を考慮するため、電源のリング配線9の、第1の電源ライン51、第2の電源ライン52、接地用電源ライン53のそれぞれについて、抵抗値、インダクタンス値及び容量値が図示のように設定されている。そして、第1の電源セル2aのモデルは、第1の電源ライン51と接続するパッケージ3のボンディングワイヤやリードフレームの抵抗3a、インダクタンス3bを含めて構成されている。
【0028】
図6に、図1のLSIモデルに使用される第2の電源(VDD)セル2bのモデルを示す。図6に示したように、入出力バッファのスイッチング時の電位変動分を考慮するため、電源のリング配線9の、第1の電源ライン51、第2の電源ライン52、接地用電源ライン53のそれぞれについて、抵抗値、インダクタンス値及び容量値が図示のように設定されている。そして、第2の電源セル2bのモデルは、第2の電源ライン52と接続するパッケージ3のボンディングワイヤやリードフレームの抵抗3a、インダクタンス3bを含めて構成されている。
【0029】
図7に、図1のLSIモデルに使用される接地用電源(VSS)セル2cのモデルを示す。図7に示したように、入出力バッファのスイッチング時の電位変動分を考慮するため、電源のリング配線9の、第1の電源ライン51、第2の電源ライン52、接地用電源ライン53のそれぞれについて、抵抗値、インダクタンス値及び容量値が図示のように設定されている。そして、接地用電源セル2cのモデルは、接地用電源ライン53と接続するパッケージ3のボンディングワイヤやリードフレームの抵抗3a、インダクタンス3bを含めて構成されている。
【0030】
また、図8は、図1のLSIモデルに使用される内部負荷容量と内部電源配線のモデルを示す。図8の例は、スイッチング時の電位変動分を考慮するため、内部負荷容量と内部電源配線のモデルは、第2の電源(VDD)モデルを表す所定の抵抗網の抵抗5と、接地用電源(VSS)モデルを表す所定の抵抗網の抵抗5と、LSI内部のデカップリングキャパシタや内部電源配線間容量などの所定の容量成分(内部負荷▲1▼)を表す所定の容量6とを含めて構成されている。
【0031】
ここで、図8の内部負荷・内部電源配線モデルでは、抵抗と容量で電源モデルが表現されているが、実際のLSI内部電源配線を考えた場合、抵抗と容量に加え、若干のインダクタンス成分も存在することが想定される。より正確なモデルでシミュレーションを行うという観点からすると、内部負荷・内部電源配線モデルを、抵抗、容量、インダクタンスで表現することが望ましい。ただし、必要とされるノイズ見積もりの精度に応じて、抵抗、容量、インダクタンスのいずれかのパラメータを省略してもよい。図8のモデル例では、インダクタンス成分を省略している。
【0032】
図1、図3乃至図8のような詳細なモデルを使用し、入出力ごとの入力信号をすべて指定することで、現実の入出力タイミング・パターンでの同時スイッチングノイズ検証が可能となり、高精度の見積もりが可能である。
【0033】
また、LSIの構成や入出力タイミング・パターンを詳細にわたってシミュレーションすることが可能なため、設計初期からノイズの見積もりを行い、仕様変更等によるノイズ対策を講じることで設計工数の無駄を省くことが可能である。
【0034】
図2は、本発明の同時スイッチングノイズ評価方法を用いた設計手順を説明するためのフロー図である。
【0035】
まず、設計対象のLSIの設計仕様や構成を決定する(S1)。
【0036】
次に、本発明の同時スイッチングノイズ評価方法により、LSIの同時スイッチングノイズを解析する(S2)。このステップS2では、プログラムを用いた回路シミュレーション用実行ファイルの作成、及び回路シミュレータによるシミュレーションの実行とノイズ解析が行われる。
【0037】
上記回路シミュレーション用実行ファイルの作成では、実行ファイルを出力するプログラムに対し、入力として回路パラメータ・回路モデル設定ファイルを与える。これら設定ファイルはシミュレーション実行用回路モデル作成のための各種パラメータや部品として使用される回路モデルを記述しており、実際のレイアウト情報から抽出、もしくは過去の設計事例から想定される値や回路モデルの指定などを行う。
【0038】
回路パラメータ、及び回路モデルとして、第一に、入出力セル・電源セルの外部に存在する情報、つまりプリント基板情報及びパッケージ情報が定義される。具体的には、プリント基板情報を出力バッファの出力負荷となる外部負荷容量として、パッケージ情報を各入出力セル・電源セルにそれぞれ対応するボンディングワイヤ、及びリードフレームの抵抗、インダクタンスの値として定義する。第二に、入出力セル・電源セルの回路情報を定義する。具体的には、電源電圧値(第1の電源(VDE)、第2の電源(VDD)、接地用電源(VSS)の値)、入出力セル・電源セルの配置情報、各入出力バッファへの入力となる信号源の動作周波数・スルーレート(遷移時間)・動作タイミング・入出力電圧、さらに入出力バッファ自体の回路モデル記述、パッド容量、入力バッファの出力負荷(内部容量▲2▼)である。第三に、LSI内部の回路情報を定義する。具体的には、LSI内部の電源配線や電源のリング配線の抵抗・容量・インダクタンス、及びLSI内部に存在するデカップリングキャパシタなどの負荷(内部容量▲1▼)の値である。
【0039】
以上のように、実行ファイル作成プログラムへの入力として、回路パラメータ・回路モデル設定ファイルを与えることで、回路シミュレーション用実行ファイルを作成する。さらに、この作成された実行ファイルを用いて、回路シミュレータによるシミュレーションを実行して、LSIの同時スイッチングノイズの解析が行われる。
【0040】
ステップS2で同時スイッチングノイズの解析が行われると、設計者は、シミュレーション結果に基づいて、LSIに発生しうる同時スイッチングノイズの量が所定のレベル未満であるか否かを判断する(S3)。
【0041】
ステップS3で同時スイッチングノイズの量が所定のレベル未満である場合、LSIのレイアウト設計を行う(S4)。そして、レイアウト設計を行ったLSIに対して、前記回路パラメータや回路モデルの精度を必要に応じて上げるために電源配線の抵抗などの回路パラメータや入出力バッファの回路モデルをレイアウトデータから抽出する。その後、再度、本発明の同時スイッチングノイズ評価方法を用いたLSIの同時スイッチングノイズの解析を行う(S5)。
【0042】
逆に、ステップS3で同時スイッチングノイズの量が所定のレベルを超える場合には、同時スイッチングノイズの量を低減するよう、ステップS1で決定したLSIの設計仕様と構成を変更する(S7)。ステップS7を行った後、上記のステップS2に戻って、再度、本発明の同時スイッチングノイズ評価方法を用いたLSIの同時スイッチングノイズの解析を行う。
【0043】
ステップS5で同時スイッチングノイズの解析が行われると、設計者は、シミュレーション結果に基づいて、レイアウト設計後のLSIに発生しうる同時スイッチングノイズの量が所定のレベル未満であるか否かを判断する(S6)。
【0044】
ステップS6で同時スイッチングノイズの量が所定のレベル未満である場合、LSIの設計工程を終了する。逆に、所定のレベルを超える場合には、ステップS7に戻り、LSIの同時スイッチングノイズの量を低減するよう、設計仕様と構成を変更する。
【0045】
設計初期段階において、レイアウト情報やプリント基板情報が未決定であり、抵抗、容量、インダクタンスの正確な値が分からない場合には、ノイズの見積もり段階として過去の設計事例から予想される値を用いてノイズ評価を行うこともできる。
【0046】
図2に示したように、本発明によれば、半導体装置の同時スイッチングノイズの見積もりを設計の初期段階から行うことが可能であり、半導体装置の設計工数の無駄を省くことができる。また、LSIのレイアウト情報から回路パラメータや回路モデルを抽出することで回路パラメータや回路モデルの精度向上が可能であるため、設計最終段階のノイズ検証も可能である。
【0047】
図9は、入出力タイミングの調整前のLSIモデルの同時スイッチングノイズのシミュレーション結果を示す。図10は、本発明の同時スイッチングノイズ評価方法で得られたノイズ見積もりに基づいて入出力タイミングを調整した後のLSIモデルの同時スイッチングノイズのシミュレーション結果を示す。図9の波形に比べ、図10の波形ではノイズ量が減少していることを検証できる。
【0048】
(付記1)
半導体装置の同時スイッチングノイズを評価するノイズ評価方法であって、 前記半導体装置の電源配線上の入出力セルの各々を、入力バッファセル、出力バッファセル、第1の電源セル、第2の電源セル、接地用電源セルを含む複数のセルのモデルの中のいずれかに対応させる手順と、前記複数のセルのモデルのいずれかに対応させた前記入出力セルの各々に対し、前記半導体装置の設計仕様と構成を考慮して設定、もしくは前記半導体装置の実際のレイアウト情報から抽出した容量、抵抗、インダクタンスの値を用いて、それぞれ個別のモデルを生成する手順と、前記半導体装置の内部に存在する内部負荷及び内部電源配線に対し、前記半導体装置の設計仕様と構成を考慮して設定、もしくは前記半導体装置の実際のレイアウト情報から抽出した前記内部負荷の容量の値や前記内部電源配線の容量、抵抗、インダクタンスの値を用いて内部負荷・内部電源配線モデルを生成する手順と、前記入出力セルの各モデルと前記内部負荷・内部電源配線モデルとを結合して前記半導体装置の全体モデルを生成する手順とを有することを特徴とするノイズ評価方法。
【0049】
(付記2)
前記入力バッファセルのモデルは、入力バッファの出力負荷となる容量と、パッド容量と、パッケージのボンディングワイヤやリードフレームの抵抗、インダクタンスとを含めて構成されることを特徴とする付記1記載のノイズ評価方法。
【0050】
(付記3)
前記出力バッファセルのモデルは、出力バッファの出力負荷となる外部負荷の容量と、パッド容量と、パッケージのボンディングワイヤやリードフレームの抵抗、インダクタンスとを含めて構成されることを特徴とする付記1記載のノイズ評価方法。
【0051】
(付記4)
前記第1の電源セルのモデルは、第1の電源ラインと接続するパッケージのボンディングワイヤ、リードフレームの抵抗、インダクタンスを含めて構成されることを特徴とする付記1記載のノイズ評価方法。
【0052】
(付記5)
前記第2の電源セルのモデルは、第2の電源ラインと接続するパッケージのボンディングワイヤ、リードフレームの抵抗、インダクタンスを含めて構成されることを特徴とする付記1記載のノイズ評価方法。
【0053】
(付記6)
前記接地用電源セルのモデルは、接地用電源ラインと接続するパッケージのボンディングワイヤ、リードフレームの抵抗、インダクタンスを含めて構成されることを特徴とする付記1記載のノイズ評価方法。
【0054】
(付記7)
前記内部負荷及び内部電源配線のモデルは、所定の内部容量と、所定の抵抗網の抵抗とを含めて構成されることを特徴とする付記1記載のノイズ評価方法。
【0055】
(付記8)
前記ノイズ評価方法はさらに、各入出力バッファへの入力信号のタイミングを指定してシミュレーションを実行することにより、前記半導体装置の同時スイッチングノイズを解析する手順を有することを特徴とする付記1記載のノイズ評価方法。
【0056】
(付記9)
前記ノイズ評価方法はさらに、前記シミュレーションの結果に基づいて、前記入力信号のタイミングを調整することにより、前記半導体装置の同時スイッチングノイズを解析する手順を有することを特徴とする付記8記載のノイズ評価方法。
【0057】
(付記10)
前記シミュレーションの結果に基づいて、前記半導体装置のノイズ見積もりを行うことを特徴とする付記8記載のノイズ評価方法。
【発明の効果】
上述したように、本発明のノイズ評価方法によれば、設計対象のLSIで発生しうる同時スイッチングノイズを高い精度で見積もることができると共に、設計の初期段階からノイズ見積もりが可能であるため、本発明のノイズ評価方法を利用することにより、高品質なLSIを効率よく設計することが可能である。
【図面の簡単な説明】
【図1】本発明の同時スイッチングノイズ評価方法に係るLSIモデルを示す概略図である。
【図2】本発明の同時スイッチングノイズ評価方法を用いた設計手順を説明するためのフロー図である。
【図3】図1のLSIモデルに使用される出力バッファセルのモデルを示す図である。
【図4】図1のLSIモデルに使用される入力バッファセルのモデルを示す図である。
【図5】図1のLSIモデルに使用される電源(VDE)セルのモデルを示す図である。
【図6】図1のLSIモデルに使用される電源(VDD)セルのモデルを示す図である。
【図7】図1のLSIモデルに使用される電源(VSS)セルのモデルを示す図である。
【図8】図1のLSIモデルに使用される内部負荷容量と電源配線のモデルを示す図である。
【図9】入出力タイミングの調整前のLSIモデルのシミュレーション結果を示す波形図である。
【図10】本発明によるノイズ見積もりに基づき入出力タイミングを調整した後のLSIモデルのシミュレーション結果を示す波形図である。
【符号の説明】
1 入出力バッファセル
1a 入力バッファ
1b 出力バッファ
2 電源セル
2a 第1の電源(VDE)セル
2b 第2の電源(VDD)セル
2c 接地用電源(VSS)セル
3 パッケージ
3a ボンディングワイヤ、リードフレームの抵抗
3b ボンディングワイヤ、リードフレームのインダクタンス
5 内部電源配線の抵抗
6 内部負荷▲1▼の容量
7 外部負荷の容量
8 信号源
9 電源のリング配線(IORPB)
10 半導体装置(LSI)
11 内部負荷▲2▼の容量
51 第1の電源(VDE)ライン
52 第2の電源(VDD)ライン
53 接地用電源(VSS)ライン
R1−R6 リング配線上の1セル当たりの抵抗
L1−L6 リング配線上の1セル当たりのインダクタンス
C1−C6 リング配線上の1セル当たりの容量
Cpad パッドの容量

Claims (8)

  1. 半導体装置の同時スイッチングノイズを評価するノイズ評価方法であって、
    前記半導体装置の電源配線上の入出力セルの各々を、入力バッファセル、出力バッファセル、第1の電源セル、第2の電源セル、接地用電源セルを含む複数のセルのモデルの中のいずれかに対応させる手順と、
    前記複数のセルのモデルのいずれかに対応させた前記入出力セルの各々に対し、前記半導体装置の設計仕様と構成を考慮して設定、もしくは前記半導体装置の実際のレイアウト情報から抽出した容量、抵抗、インダクタンスの値を用いて、それぞれ個別のモデルを生成する手順と、
    前記半導体装置の内部に存在する内部負荷及び内部電源配線に対し、前記半導体装置の設計仕様と構成を考慮して設定、もしくは前記半導体装置の実際のレイアウト情報から抽出した前記内部負荷の容量の値や前記内部電源配線の容量、抵抗、インダクタンスの値を用いて内部負荷・内部電源配線モデルを生成する手順と、
    前記入出力セルの各モデルと前記内部負荷・内部電源配線モデルとを結合して前記半導体装置の全体モデルを生成する手順と、
    を有することを特徴とするノイズ評価方法。
  2. 前記入力バッファセルのモデルは、入力バッファの出力負荷となる容量と、パッド容量と、パッケージのボンディングワイヤやリードフレームの抵抗、インダクタンスとを含めて構成されることを特徴とする請求項1記載のノイズ評価方法。
  3. 前記出力バッファセルのモデルは、出力バッファの出力負荷となる外部負荷の容量と、パッド容量と、パッケージのボンディングワイヤやリードフレームの抵抗、インダクタンスとを含めて構成されることを特徴とする請求項1記載のノイズ評価方法。
  4. 前記第1の電源セルのモデルは、第1の電源ラインと接続するパッケージのボンディングワイヤ、リードフレームの抵抗、インダクタンスを含めて構成されることを特徴とする請求項1記載のノイズ評価方法。
  5. 前記第2の電源セルのモデルは、第2の電源ラインと接続するパッケージのボンディングワイヤ、リードフレームの抵抗、インダクタンスを含めて構成されることを特徴とする請求項1記載のノイズ評価方法。
  6. 前記接地用電源セルのモデルは、接地用電源ラインと接続するパッケージのボンディングワイヤ、リードフレームの抵抗、インダクタンスを含めて構成されることを特徴とする請求項1記載のノイズ評価方法。
  7. 前記内部負荷・内部電源配線モデルは、所定の内部容量と、所定の抵抗網の抵抗とを含めて構成されることを特徴とする請求項1記載のノイズ評価方法。
  8. 前記ノイズ評価方法はさらに、各入出力バッファへの入力信号のタイミングを指定してシミュレーションを実行することにより、前記半導体装置の同時スイッチングノイズを解析する手順を有することを特徴とする請求項1記載のノイズ評価方法。
JP2002210175A 2002-07-18 2002-07-18 半導体装置の同時スイッチングノイズ評価方法 Pending JP2004054522A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210175A JP2004054522A (ja) 2002-07-18 2002-07-18 半導体装置の同時スイッチングノイズ評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210175A JP2004054522A (ja) 2002-07-18 2002-07-18 半導体装置の同時スイッチングノイズ評価方法

Publications (1)

Publication Number Publication Date
JP2004054522A true JP2004054522A (ja) 2004-02-19

Family

ID=31933802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210175A Pending JP2004054522A (ja) 2002-07-18 2002-07-18 半導体装置の同時スイッチングノイズ評価方法

Country Status (1)

Country Link
JP (1) JP2004054522A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059553A (ja) * 2006-07-31 2008-03-13 Fujitsu Ltd 半導体装置に対する同時動作信号ノイズ見積り方法、半導体装置の設計方法、pcb基板の設計方法、およびプログラム
JP2008112233A (ja) * 2006-10-30 2008-05-15 Fujitsu Ltd 電源ノイズ解析プログラム、記録媒体、電源ノイズ解析装置および電源ノイズ解析方法
CN100416578C (zh) * 2005-09-05 2008-09-03 威盛电子股份有限公司 电源分配系统的分析方法
BG65533B1 (bg) * 2005-02-09 2008-11-28 Борислав КАШЧИЕВ Устройство за почистване на уши
US7681154B2 (en) 2006-09-14 2010-03-16 Elpida Memory, Inc. Method for designing device, system for aiding to design device, and computer program product therefor
US7689944B2 (en) 2005-08-29 2010-03-30 Elpida Memory, Inc. Method for designing semiconductor apparatus, system for aiding to design semiconductor apparatus, computer program product therefor and semiconductor package
US7694245B2 (en) 2006-02-28 2010-04-06 Elpida Memory Method for designing semiconductor package, system for aiding to design semiconductor package, and computer program product therefor
US8104010B2 (en) 2007-12-06 2012-01-24 Kabushiki Kaisha Toshiba Semiconductor integrated circuit design supporting method, semiconductor integrated circuit design supporting system, and computer readable medium
JP2015184860A (ja) * 2014-03-24 2015-10-22 株式会社メガチップス 端子配置装置および端子配置方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG65533B1 (bg) * 2005-02-09 2008-11-28 Борислав КАШЧИЕВ Устройство за почистване на уши
US7689944B2 (en) 2005-08-29 2010-03-30 Elpida Memory, Inc. Method for designing semiconductor apparatus, system for aiding to design semiconductor apparatus, computer program product therefor and semiconductor package
CN100416578C (zh) * 2005-09-05 2008-09-03 威盛电子股份有限公司 电源分配系统的分析方法
US7694245B2 (en) 2006-02-28 2010-04-06 Elpida Memory Method for designing semiconductor package, system for aiding to design semiconductor package, and computer program product therefor
JP2008059553A (ja) * 2006-07-31 2008-03-13 Fujitsu Ltd 半導体装置に対する同時動作信号ノイズ見積り方法、半導体装置の設計方法、pcb基板の設計方法、およびプログラム
US8214785B2 (en) 2006-07-31 2012-07-03 Fujitsu Limited Method and device for estimating simultaneous switching noise in semiconductor device, and storage medium
US7681154B2 (en) 2006-09-14 2010-03-16 Elpida Memory, Inc. Method for designing device, system for aiding to design device, and computer program product therefor
JP2008112233A (ja) * 2006-10-30 2008-05-15 Fujitsu Ltd 電源ノイズ解析プログラム、記録媒体、電源ノイズ解析装置および電源ノイズ解析方法
US8104010B2 (en) 2007-12-06 2012-01-24 Kabushiki Kaisha Toshiba Semiconductor integrated circuit design supporting method, semiconductor integrated circuit design supporting system, and computer readable medium
JP2015184860A (ja) * 2014-03-24 2015-10-22 株式会社メガチップス 端子配置装置および端子配置方法

Similar Documents

Publication Publication Date Title
Saleh et al. Clock skew verification in the presence of IR-drop in the power distribution network
US6499131B1 (en) Method for verification of crosstalk noise in a CMOS design
US6378109B1 (en) Method of simulation for gate oxide integrity check on an entire IC
US7039536B2 (en) Method and apparatus for analyzing a source current waveform in a semiconductor integrated circuit
US7480879B2 (en) Substrate noise tool
US8266559B2 (en) Nonlinear driver model for multi-driver systems
US8103997B2 (en) Method of employing slew dependent pin capacitances to capture interconnect parasitics during timing abstraction of VLSI circuits
US20080133202A1 (en) Systems and Methods of Efficient Library Characterization for Integrated Circuit Cell Libraries
US20080046851A1 (en) Partitioning electronic circuit designs into simulation-ready blocks
JPH10207937A (ja) レイアウト・クリティカルなネット用のタイミング・エラー限界値をフィルタリングすることにより、マイクロエレクトロニクス回路のレイアウト後検証を実行する方法、装置およびコンピュータ・プログラム製品
US20030145296A1 (en) Formal automated methodology for optimal signal integrity characterization of cell libraries
US6751744B1 (en) Method of integrated circuit design checking using progressive individual network analysis
KR100398850B1 (ko) 반도체 집적 회로에 대한 전자기 간섭 시뮬레이션을 위한 전원 모델, 전원 모델을 설계하는 방법, 전자기 간섭 시뮬레이터, 전원 모델 생성용 컴퓨터 프로그램을 저장하는 저장 매체, 및 전원 모델 설계 지원 시스템
JP2004054522A (ja) 半導体装置の同時スイッチングノイズ評価方法
Signorini et al. Present and future of I/O-buffer behavioral macromodels
US8122411B2 (en) Method of performing static timing analysis considering abstracted cell's interconnect parasitics
JP4320220B2 (ja) 電源ノイズ解析方法
JP2004234618A (ja) 半導体装置モデルとその作成方法及び装置
JP3965739B2 (ja) 集積回路のノイズシミュレーション装置及び記録媒体
US7260804B1 (en) Method for circuit block routing based on switching activity
US20030188272A1 (en) Synchronous assert module for hardware description language library
JP4199598B2 (ja) 電子機器のemiノイズ解析方法
JP2001222573A (ja) Emiシミュレーション用半導体集積回路の電源モデル及びその設計方法
Pulici et al. A modified IBIS model aimed at signal integrity analysis of systems in package
Palit et al. Modeling and analysis of crosstalk coupling effect on the victim interconnect using the ABCD network model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311