JP5130483B2 - 石炭灰を溶融した高炉スラグの水砕方法 - Google Patents

石炭灰を溶融した高炉スラグの水砕方法 Download PDF

Info

Publication number
JP5130483B2
JP5130483B2 JP2008097189A JP2008097189A JP5130483B2 JP 5130483 B2 JP5130483 B2 JP 5130483B2 JP 2008097189 A JP2008097189 A JP 2008097189A JP 2008097189 A JP2008097189 A JP 2008097189A JP 5130483 B2 JP5130483 B2 JP 5130483B2
Authority
JP
Japan
Prior art keywords
slag
blast furnace
molten
coal ash
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008097189A
Other languages
English (en)
Other versions
JP2009249213A (ja
Inventor
敏隆 湯木
健一 八ケ代
泰 高本
郁男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008097189A priority Critical patent/JP5130483B2/ja
Publication of JP2009249213A publication Critical patent/JP2009249213A/ja
Application granted granted Critical
Publication of JP5130483B2 publication Critical patent/JP5130483B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、例えば、コンクリート用骨材に使用可能な水砕スラグを製造する高炉スラグの水砕方法に係り、更に詳細には、多孔性を改善し吸水率のばらつきを抑制した骨材を製造できる石炭灰を溶融した高炉スラグの水砕方法に関する。
高炉から排出される溶融高炉スラグ(以下、溶融スラグともいう)は、冷却し凝固させて粒度調整した後、主にセメント原料又は道路用路盤材として利用されているが、コンクリート用骨材としては、一般の天然砂又は天然石と比較して、その使用範囲が制限されている。これは、溶融スラグを凝固させて製造した高炉スラグ骨材(以下、単に骨材ともいう)が、多くの気孔を内在するため多孔質となっており、吸水率が高く、骨材として不利な点を有することに起因する。この骨材に内在する気孔は、溶融スラグの冷却時の温度低下による溶解度の減少により、溶融スラグ中に溶存する一酸化炭素及び窒素ガスがガス化して生成するものと考えられている。
一方、石炭灰は、石炭火力発電所から発生し、埋立処理がなされているものがあり、資源リサイクルの観点から、有効利用技術の確立が強く望まれているものである。
そこで、溶融スラグに石炭灰を添加し溶融させて、骨材を製造する技術が開示されている。
例えば、特許文献1には、高炉から排出される溶融スラグに石炭灰を添加した後、この溶融スラグの凝固処理を行って、ガラス化率を30%を超え80%未満とした骨材の製造方法が提案されている。このように、溶融スラグに石炭灰を添加することで、溶融スラグの粘性を低下でき、その結果、溶融スラグ中の溶存ガス量を低減し、生成した気泡の合体排出を促進できるため、含まれる気孔を低減させた骨材を製造できる。
特開2006−315907号公報
しかしながら、前記従来の方法には、以下の改善点がある。
例えば、JIS A 1109(高炉スラグ細骨材)に記される吸水率測定方法に準拠して、対象物の吸水率を測定した場合、吸水率3.5質量%以下のものを、骨材として使用できることが規定されている。しかし、一般には、吸水率が3.5質量%以下を満足する骨材であっても、吸水率のばらつきが小さいものほど、品質が良いとされる場合がある。
図2に示す●印及び△印はともに、石炭灰を吹き込み溶融させた溶融高炉スラグから製造した水砕スラグの吸水率と、石炭灰添加率との関係を示している。なお、石炭灰添加率は、石炭灰添加量(トン)を溶融スラグ量(トン)で除した値である。
図2から明らかなように、水砕スラグの吸水率は、JISで規定された吸水率3.5質量%以下を満足するものであるが、そのばらつきは、石炭灰添加率の大小に相関性が無く、0.6〜1.8質量%の範囲で発生している。このような、吸水率のばらつきは、水砕スラグを骨材として使用するに際して、改善の余地があるといえる場合がある。
本発明はかかる事情に鑑みてなされたもので、多孔性を改善して吸水率のばらつきを抑制し、資源リサイクルにも寄与できる石炭灰を溶融した高炉スラグの水砕方法を提供することを目的とする。
前記目的に沿う本発明に係る石炭灰を溶融した高炉スラグの水砕方法は、石炭灰を溶融させた溶融高炉スラグを、スラグ鍋から注ぎ出す際に、注ぎ出される該溶融高炉スラグに対して水を噴射し、水砕スラグを製造する石炭灰を溶融した高炉スラグの水砕方法において、
前記スラグ鍋に貯留された30トン以上100トン以下の前記溶融高炉スラグを、前記スラグ鍋の上部に形成した高さ200mm以上かつ幅50mm以上1000mm以下の注ぎ口から注ぎ出す。
本発明に係る石炭灰を溶融した高炉スラグの水砕方法において、前記溶融高炉スラグに溶融させた前記石炭灰量は、前記石炭灰を溶融する前の前記溶融高炉スラグ量の1質量%以上30質量%以下であることが好ましい。
本発明に係る石炭灰を溶融した高炉スラグの水砕方法において、前記溶融高炉スラグには、前記石炭灰を含む添加物が溶融され、しかも該添加物中の全鉄量が該添加物の11質量%以下であることが好ましい。
請求項1〜3記載の石炭灰を溶融した高炉スラグの水砕方法は、スラグ鍋に規定量の溶融高炉スラグを貯留することで、スラグ鍋に貯留された溶融高炉スラグの放熱による温度低下を抑制でき、しかも溶融高炉スラグの注ぎ出し量のコントロールも容易にできる。
また、スラグ鍋の上部に注ぎ口を形成し、その高さを200mm以上とするので、注ぎ口が形成されていない場合、及びその高さが低い場合と比較して、注ぎ口から注ぎ出される溶融高炉スラグの温度を高めることができる。また、注ぎ口の幅を規定することで、例えば、注ぎ口の閉塞等が生じることなく溶融高炉スラグの安定した注ぎ出しが可能になる。
このように、溶融高炉スラグの温度低下を抑制することで、これに起因する吸水率のばらつきを抑制して、良好な品質の骨材を製造でき、しかも資源リサイクルにも寄与できる。
特に、請求項2記載の石炭灰を溶融した高炉スラグの水砕方法は、溶融高炉スラグに溶解させる石炭灰量を規定することで、溶融高炉スラグの粘度低下に伴う気泡の除去を促進でき、しかも石炭灰の添加による溶融高炉スラグの融点低下効果が得られ、吸水率を更に低減して、そのばらつきを抑制した骨材を、安定に製造できる。
請求項3記載の石炭灰を溶融した高炉スラグの水砕方法は、添加物中の全鉄量を添加物の11質量%以下としているので、溶融高炉スラグに溶融させる添加物、特に従来石炭火力発電所から発生している石炭灰の種類のほとんどを溶融処理でき、資源リサイクルに更に寄与できる。
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1(A)は本発明の一実施の形態に係る石炭灰を溶融した高炉スラグの水砕方法に使用するスラグ鍋の部分拡大正面図、(B)は同スラグ鍋を傾動させたときのスラグ鍋の部分拡大側断面図、図2は水砕スラグの吸水率と石炭灰添加率との関係を示す説明図、図3は溶融スラグの固相率の温度依存度と全鉄量との関係を示す説明図、図4はスラグの温度とスラグ表面からの距離との関係を示す説明図である。
図1(A)、(B)、図2に示すように、本発明の一実施の形態に係る石炭灰を溶融した高炉スラグの水砕方法は、フライアッシュ(石炭灰の一例)を溶融させた溶融高炉スラグ(以下、溶融スラグともいう)10を、スラグ鍋11から注ぎ出す際に、スラグ鍋11の上部に形成された注ぎ口12から注ぎ出される溶融スラグ10に対して水を噴射し、従来よりも多孔性を改善して吸水率のばらつきを抑制した水砕スラグ、即ち骨材を製造する方法である。
本発明者らは、従来の水砕スラグ(凝固後)の多孔性を改善するにあたり、水砕スラグの吸水率のばらつきの実態について検討した。
まず、図1(A)に示す高さHの注ぎ口12が形成されたスラグ鍋11を使用して水砕スラグを製造し、水砕スラグの吸水率と石炭灰(フライアッシュ)添加率との関係を調査した結果を図2に示す。なお、前記したように、図2の縦軸の水砕スラグの吸水率は、JIS A 1109に記される吸水率測定方法に準拠して求めた値であり、横軸の石炭灰添加率は、石炭灰添加量(トン)を溶融スラグ量(トン)で除した値である。
この図2中の●印と△印は、溶融スラグへの酸化鉄ダストの添加の有無と、溶融スラグを注ぎ出すスラグ鍋の注ぎ口の高さHの2つの水砕条件が異なっている。
即ち、●印は、酸化鉄ダスト(全鉄量で8.5質量%以上、ここでは、16〜17質量%)を添加した溶融スラグを、高さHが120mmの注ぎ口から注ぎ出し、水砕して得られた水砕スラグの吸水率である。
また、△印は、酸化鉄ダストが添加されていない溶融スラグを、高さHが300mmの注ぎ口から注ぎ出し、水砕して得られた水砕スラグの吸水率である。
図2から明らかなように、●印の水砕スラグの吸水率は、0.6質量%以上1.8質量%以下の範囲でばらついていたが(ばらつき範囲:1.2質量%)、△印の水砕スラグの吸水率は、0.6〜1.2質量%の範囲でばらつき(ばらつき範囲:0.6質量%)、そのばらつき範囲を●印の半分程度に低減できた。
酸化鉄ダストを添加した場合、石炭灰添加後の溶融スラグの固液共存領域(例えば、1300℃以上1350℃未満)の固相率の温度依存性が小さくなるので、固相が晶出する際の気泡排出のコントロールが容易になる。しかし、このような前提があっても、水砕スラグの吸水率が0.6〜1.8質量%の範囲となるように、水砕スラグの気泡体積率がばらついている。
また、酸化鉄ダストの添加量(石炭灰に対するT−Fe質量%)とスラグ固相率の温度依存度との関係について、図3を参照しながら説明する。なお、図3は、溶融スラグへの石炭灰の添加量を10質量%に固定した条件で、溶融スラグの温度を1350℃から1340℃まで10℃冷却した際の溶融スラグの固相率変化量(図3縦軸)について、全鉄量(T−Fe量)との相関を示したグラフである。
図3において、●印のように、酸化鉄ダストの全鉄量が16〜17質量%の場合、固相率のばらつきが少ない領域、即ち気泡排出が比較的安定した状態で水砕できるが、このような前提があっても、図2に示す水砕スラグの吸水率がばらついている。
一方、図2中の△印は、酸化鉄ダストが添加されていない水砕条件であるが、石炭灰に元々含まれる全鉄量は、通常1質量%以上2質量%以下であり、高いもので2質量%を超え5質量%未満程度、まれに5質量%以上11質量%以下のものが存在するものがある。この全鉄量を考慮する場合、溶融スラグの固相率の温度依存度が大きい(図3の縦軸が大きい)領域で水砕処理がなされることになるが、それにも関わらず、△印の吸水率のばらつき範囲は、●印の吸水率のばらつき範囲1.2質量%を下回る0.6質量%であった。
以上のことから、前記した水砕条件の1つである酸化鉄ダストの有無は、●印と△印の吸水率のばらつきの差を拡大することにつながるという結果が得られたため、他の水砕条件であるスラグ鍋の注ぎ口の高さが、吸水率のばらつきの差の低減に極めて大きな影響を持つことが分かった。
次に、注ぎ口の高さが吸水率のばらつきに及ぼす影響を検討した結果について、図4を参照しながら説明する。この図4は、スラグ鍋を、その軸心が鉛直方向となるように安置した状態で、30トン以上100トン以下の溶融スラグを貯留する場合を前提として、その温度分布を計算した結果である。なお、温度分布は、スラグ深さ(溶融スラグの深さ+溶融スラグ上に形成された凝固スラグ100mm)を3.0mとし、放射温度計による凝固スラグ表面の温度測定結果と、熱電対による溶融スラグの深さ方向の異なる2点(凝固スラグの表面から300mmと700mmの地点)の温度測定結果を用い、凝固スラグ表面からの放射熱ロス、凝固スラグによる断熱効果、及び溶融スラグの対流伝熱を考慮したモデル計算から推定した代表的なものである。
図1(A)に示すように、その軸心を鉛直方向となるように安置したスラグ鍋11を、図1(B)に示すように傾け(例えば、15°〜40°の範囲)、注ぎ口12から溶融スラグ10を注ぎ出して水砕を行う場合、前記した●印のように、注ぎ口12の高さHを120mmに設定すれば、注ぎ口12の下端位置は、凝固スラグ13表面からの深さ位置hが、104〜116mmの位置に相当する。スラグ鍋11を鉛直状態から傾けた場合、凝固スラグ13表面からの距離とスラグ温度の関係は実質的に変化しないため、注ぎ口12の高さHが120mmの場合、図4に示す横軸の100〜116mmの範囲の溶融スラグ10がスラグ鍋11の外へ流出することになる。このとき、流出する溶融スラグの平均温度は1315℃となる(なお、0〜100mmの範囲は凝固スラグであるため鍋外へ流出しない)。
同様に、注ぎ口の高さHが300mmの場合、図4に示す横軸の260〜290mmの範囲の溶融スラグ10がスラグ鍋11の外へ流出することになる。このとき、流出する溶融スラグの平均温度は1330℃となる。
以上から、溶融スラグの平均温度は、注ぎ口の高さHを120mmとした場合に対して、注ぎ口の高さHを300mmとした場合の方が、15℃高くなることが分かる。
ここで、前記した図3のT−Fe量が11質量%以下の範囲(石炭灰に酸化鉄ダストを添加することなく、石炭灰に含まれるT−Feの最大値を考慮した範囲)では、縦軸の(固相率変化/スラグ温度変化)が、約1〜1.8に相当する。これに、上記した溶融スラグの平均温度の温度差である15℃を乗ずると、固相率変化が15〜27%となる。
また、前記した図3のT−Fe量が10〜20質量%(石炭灰に酸化鉄ダストを添加する場合)で、●印の平均である16〜17質量%においては、図3の縦軸が0.9程度であり、上記した溶融スラグの平均温度の温度差である15℃を乗ずると、固相率変化が13.5%となる。
以上のことから、溶融スラグへの酸化鉄ダストの添加の有無に関わらず、注ぎ口12の高さHが120mmの場合に比べて300mmの場合は、固相率変化が13.5〜27%低いという結果となる。
従って、前記した図3の吸水率のばらつきの差(●印と△印の吸水率のばらつきの差)は、上記した固相率の差と推定できる。以下にその理由を示す。
溶融スラグの温度低下に伴い、液体の溶融スラグ中に固相が晶出し、溶融スラグに溶存している一酸化炭素ガスや窒素ガスの気泡が、溶融スラグ中に生成するため、溶融スラグの水砕時の気泡原因となる溶存ガス量が低減する。しかし、溶融スラグの温度低下が著しい場合、晶出した固相に、生成した気泡が付着し、逆に水砕スラグ中に気泡として残留する場合があるものと考えられる。このため、水砕時の固相率には最適値があるものと考えられる。
更に、注ぎ口の高さHが120mmの場合は、300mmの場合に比べ、固相の晶出が進むため、溶存ガス量は低減する。しかし、スラグ鍋内の凝固スラグ直下に気泡が集積するため、鍋外へ溶融スラグを注ぎ出す際に、集積した気泡が断続的に、注ぎ出される溶融スラグに混入し、図2の●印のように、吸水率がばらつくものと推定される。
一方、注ぎ口の高さHが300mmの場合は、120mmの場合に比べ、固相の晶出が進まないため、120mmの場合に比べて溶存ガス量の低減は望めないものの、スラグ鍋内の凝固スラグ直下の気泡の集積は少ないものと推定される。このため、注ぎ出される溶融スラグへの気泡の混入は抑制され、図2の△印のように、吸水率のばらつきが小さい水砕スラグが得られるものと推定される。
以上のことから、溶融スラグの温度低下を抑制することにより、製造した水砕スラグの吸水率のばらつき範囲を低減できることが分かった。
なお、前記したように、水砕時の溶融スラグの温度差が15℃程度発生すれば、この温度差が吸水率のばらつきに影響するが、逆に15℃程度であれば、溶融スラグの注ぎ出しの温度制御(例えば、保温対策による注ぎ出し温度の向上、バーナー等での加熱による注ぎ出し温度の向上、等)を実施できるのではないかとも考えられる。
しかし、スラグ鍋から溶融スラグを注ぎ出して水砕する場合、多量の水蒸気等が発生するため、このような環境下で、注ぎ出される溶融スラグの温度を測定することは困難である。また、温度測定を伴わない単なるバーナー加熱等の手段を講じれば、逆に溶融スラグの温度のばらつきが大きくなり、その結果、製造した水砕スラグの吸水率を安定する効果が得られない。
また、本発明は、溶融スラグを、例えば、1300℃以上1350℃未満程度の固液共存領域で水砕する必要があるが、石炭灰の溶解においては、溶融スラグの温度が低下するため、石炭灰を多く溶解するには、保温による水砕温度の向上は望みにくく、更には、スラグ鍋内の凝固スラグ直下に存在する溶融スラグの低温域を無くすことが不可能である。
以上のことから、スラグ鍋11から注ぎ出される溶融スラグ10の温度を向上するには、溶融スラグ10を保温したり加熱したりすることに比べて、スラグ鍋11の注ぎ口12の高さHを所定の高さ以上にして、溶融スラグ10の温度を高めることが、技術的に最も実現し得る手段であると考えられた。
以上の結果に基づき、本発明の一実施の形態に係る石炭灰を溶融した高炉スラグの水砕方法について説明する。
図1(A)、(B)に示すように、スラグ鍋11に、フライアッシュを溶融させた溶融高炉スラグ10を貯留する。
使用するスラグ鍋11は、30トン以上100トン以下の溶融高炉スラグを貯留できるものであり、その上部には、溶融高炉スラグ10の注ぎ口12が形成されている。
この注ぎ口12は、スラグ鍋11の上方へ向けて開口(切欠き状に形成)しており、正面視して、長方形となっている。なお、注ぎ口は、例えば、正方形、三角形、又は楕円形でもよく、また角形の角部に丸みを形成したものでもよい。また、注ぎ口は、スラグ鍋の上方へ向けて開口した状態に形成しているが、スラグ鍋の高さ方向途中位置に、貫通孔を形成して設けてもよい。更に、注ぎ口は、スラグ鍋の側壁を上方へ延設(増設)し、この延設した側壁に形成してもよい。
この注ぎ口12の高さHは、200mm以上である。
水砕スラグの吸水率のばらつき範囲は、前記した図2の結果からも分かるように、1.0質量%程度で一定の改善効果があるものとみなすことができる。この図2においては、注ぎ口の高さを300mmとした場合に、ばらつき範囲を0.6質量%まで低減できることを確認できた。
そこで、1.0質量%以下のばらつき範囲を実現できる注ぎ口の高さを種々検討したところ、注ぎ口の高さHを200mmとした場合でも実現できる結果が得られたため、高さの下限を200mm(好ましくは250mm、更に好ましくは270mm)とした。
一方、注ぎ口の高さHを高くすることにより、溶融スラグの温度を高める効果が得られるため、上限については特に定めていない。しかし、高い寸法の注ぎ口を、スラグ鍋に切欠き又は貫通孔により形成する場合は、スラグ鍋のスラグ貯蔵量の減少を招く。また、スラグ鍋の上端に側壁を増設して注ぎ口を設ける場合は、耐熱性を考慮した強度を満足する側壁を設置する必要がある。
これらを勘案すると、注ぎ口の高さHは500mmが上限になると考えられる。しかし、溶融スラグは、約1400℃から固相が晶出し始め、石炭灰を添加する場合は、1370〜1400℃で固相の晶出が始まるため、スラグ温度が図4の縦軸で1400℃以下となるような、横軸の値を選定するとよい。この考え方では、注ぎ口の高さHの上限が1200mmとなる。
このように、注ぎ口12の高さHの上限は、スラグ貯蔵量や側壁強度の観点から決定する。
なお、上記した注ぎ口の高さHは、スラグ鍋を、その軸心を鉛直方向となるように安置した(傾動させない)場合、注ぎ口の底(下端)位置が、スラグ鍋内の溶融スラグ(凝固スラグ)の上面位置と同位置、又はその上面位置よりも上方となるように形成している。
また、注ぎ口12の内幅Wは50mm以上1000mm以下である。
注ぎ口の幅Wが50mm未満の場合、その幅が狭過ぎるため、スラグ鍋内の溶融スラグの表層に形成された凝固スラグの断片が、注ぎ口を閉塞する恐れがある。一方、注ぎ口の幅Wの上限は、水砕設備の水噴射能力にもよるが、一般的な水砕設備では1000mm程度まで対応できる。
以上のことから、注ぎ口12の幅Wを50mm以上1000mm以下としたが、下限を100mm、上限を900mm、更には800mmとすることが好ましい。
このスラグ鍋11に、石炭灰が溶融された溶融高炉スラグ10を、30トン以上100トン以下貯留する。
スラグ鍋に貯留する溶融スラグ量が30トン未満の場合、スラグ鍋内で凝固したスラグ表面からの放射冷却の影響が大きくなり、またスラグ鍋内のスラグの深さ(図4の横軸)も浅いものとなる。このため、この場合の温度勾配と、図4に示す温度勾配との乖離が大きくなるため、本発明の構成が異なるものとなる。
一方、溶融スラグ量が100トンを超える場合、水砕処理に長時間を要し、スラグ鍋内の温度勾配が大きく変動するため好ましくない。また、スラグ鍋の単位傾動角度変化量に対する溶融スラグの注ぎ出し量の変化量が大きくなるため、これによる注ぎ出し量(kg/分)のコントロールが困難となり、そのばらつきが大きくなるため、実用的でない。
従って、スラグ鍋に30トン以上100トン以下の溶融高炉スラグを貯留したが、下限を40トン、上限を90トン、更には80トンとすることが好ましい。
溶融高炉スラグに溶融させる石炭灰としては、石炭火力発電所のボイラーから発生するフライアッシュを使用することが好ましいが、ボトムアッシュを使用してもよい。なお、フライアッシュを用いる場合には、フライアッシュの溶融スラグへの溶解が容易となり、石炭灰の顕著な未溶融を抑制でき、溶融スラグ内へより均等に混合することができ、前記した吸水率低減の実現が容易になる。
この石炭灰の溶解場所は、スラグ鍋に貯留された溶融スラグに対して吹き込み撹拌することが好ましいが、溶融スラグをスラグ鍋へ搬送する途中(例えば、樋)で、流れる溶融スラグに吹き込んでもよい。
この溶融スラグに溶融させる石炭灰量は、石炭灰を溶融する前の溶融スラグ量の1質量%以上30質量%以下とすることが好ましい。
本発明の重要な作用効果は、溶融スラグの溶存ガス量を減少させることにあるが、減少させ過ぎると、前記したように、逆に凝固した水砕スラグに気泡が混入するという恐れがある。
ここで、石炭灰量を1質量%未満とした場合、石炭灰量が少なくなり過ぎ、溶融スラグの粘度低下が図れなくなり、気泡の除去が促進できず、石炭灰を添加しない高炉スラグの水砕品と同程度の気泡混入状況(スラグの吸水率)となる。
また、石炭灰を溶融スラグに添加するにあたり、酸化鉄ダストを併用すると、溶融スラグの固相率の温度依存度を低下させることはできるが、酸化鉄ダストの溶融に熱が必要であるため、石炭灰の溶融量には限界がある。この限界は20質量%程度である。しかし、酸化鉄ダストを用いない場合、溶融スラグの固相率の温度依存性は大きいが、前記したように、固相率の温度依存性が高くても、凝固スラグの吸水率のばらつきを抑制できる。このため、石炭灰の添加量の上限を30質量%程度とすることができる。
なお、石炭灰の添加量が30質量%を超える場合は、詳細な解析が必要であるが、石炭灰の量が増え過ぎ、石炭灰を添加した溶融スラグの融点低下効果が得にくく、従来の水砕方法では、水砕スラグの製造が困難であると考えられる。
以上のことから、石炭灰量は、石炭灰を溶融する前の溶融スラグ量の1質量%以上30質量%以下としたが、下限を3質量%、更には5質量%とし、上限を27質量%、更には25質量%とすることが好ましい。
上記したように、溶融スラグには、石炭灰を溶融させているが、更に酸化鉄ダスト(例えば、焼結機の集塵ダスト)を溶融させてもよい。このとき、溶融スラグに溶融させるものが石炭灰のみであれば、これが添加物であり、石炭灰と酸化鉄ダストであれば、これらが添加物となる。
なお、添加物中の全鉄量は、添加物の11質量%以下とすることが好ましい。
石炭灰を溶融スラグにより多量に溶解するには、前記したとおり、酸化鉄ダストの添加量を低減する(下限を、0.5質量%、更には1質量%)又は添加しない(0質量%)のが好ましい。
酸化鉄ダストの添加量を減少させると溶融スラグの固相率の温度依存性が大きくなるが、前記したように、凝固スラグの吸水率のばらつきを低減することには、固相率の温度依存性が大きな問題とならない。
そこで、酸化鉄ダストを添加しない石炭灰を前提とすることより、多量の石炭灰を溶融スラグに溶解できる。
なお、前記したように、石炭灰はまれではあるが、全鉄量が5質量%以上11質量%以下のものがあるが、通常1質量%以上2質量%以下であり、高いもので2質量%を超え5質量%未満程度であるので、上限を5質量%、更には3質量%とすることが好ましい。
このように、石炭灰を溶融させた溶融スラグ10を、スラグ鍋11の軸心を15〜40°の範囲で傾動させ、スラグ鍋11に形成した注ぎ口12から注ぎ出し、注ぎ出される溶融スラグ10に対して水を噴射して水砕スラグを製造する。なお、水砕開始時の溶融スラグ10の温度は、例えば、1280〜1345℃の範囲である。
そして、スラグ鍋11の溶融スラグ10の貯蔵量を大幅に減少させた後に、その軸心を75°まで傾けて水砕処理を完了する。
これにより、溶融スラグの温度を高めることができるので、従来よりも多孔性を改善して吸水率のばらつきを抑制した水砕スラグ、即ちコンクリートに使用可能な骨材を製造できる。
次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、高さHが300mm、幅Wが500mmの注ぎ口が形成されたスラグ鍋を使用し、酸化鉄ダストが添加されていない溶融高炉スラグを水砕した。比較例として、高さHが120mm、幅Wが500mmの注ぎ口が形成されたスラグ鍋を使用し、酸化鉄ダストの一例である焼結粉が添加された溶融高炉スラグを水砕した。この結果は、図2中に△印(実施例)と●印(比較例)で示されている。
まず、高炉出銑にて分離した1450〜1550℃の溶融高炉スラグを、貯蔵量50トンのスラグ鍋に貯蔵した。そして、この溶融高炉スラグ中に二重管ランスを浸漬し、その外管からはキャリアガスに空気を使用してフライアッシュ(全鉄量:1〜2質量%)を、内管からは酸素ガスを、それぞれ溶融高炉スラグに吹き込んだ。このとき、キャリアガスの流量を2〜5Nm/分、フライアッシュの吹き込み速度を110〜400kg/分とし、酸素ガスの流量を、キャリアガスである空気中の酸素も含めて16〜25Nm/分とした。
なお、比較例については、焼結粉を16〜17質量%添加した。
フライアッシュの添加を、図2に示す所定の添加率まで行い、その添加が完了した後、スラグ鍋を20〜60分静置した。これにより、フライアッシュが溶融された溶融高炉スラグを、約50トン程度製造した。
そして、スラグ鍋を傾動して、溶融高炉スラグの水砕を開始した。なお、水砕処理は、スラグ鍋の軸心を15〜40°の範囲で傾け、スラグ鍋のスラグ貯蔵量を大幅に減少させた後、更に75°まで傾けることで完了した。このとき、水砕開始時のスラグ温度の大まかな把握のため、スラグ鍋内の凝固スラグを割砕し、放射温度計にて溶融スラグの表面温度を測定した。その温度範囲は、1280〜1345℃の範囲であった。
前記したように、●印の水砕スラグの吸水率は、0.6質量%以上1.8質量%以下の範囲でばらついていたが(ばらつき範囲:1.2質量%)、△印の水砕スラグの吸水率は、0.6〜1.2質量%の範囲でばらつき(ばらつき範囲:0.6質量%)、そのばらつき範囲を●印の半分程度に低減できた。
従って、本発明の石炭灰を溶融した高炉スラグの水砕方法を使用することにより、従来よりも多孔性を改善して吸水率のばらつきを抑制した水砕スラグ、即ちコンクリートに使用可能な骨材を製造できることを確認できた。
以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の石炭灰を溶融した高炉スラグの水砕方法を構成する場合も本発明の権利範囲に含まれる。
(A)は本発明の一実施の形態に係る石炭灰を溶融した高炉スラグの水砕方法に使用するスラグ鍋の部分拡大正面図、(B)は同スラグ鍋を傾動させたときのスラグ鍋の部分拡大側断面図である。 水砕スラグの吸水率と石炭灰添加率との関係を示す説明図である。 溶融スラグの固相率の温度依存度と全鉄量との関係を示す説明図である。 スラグの温度とスラグ表面からの距離との関係を示す説明図である。
符号の説明
10:溶融高炉スラグ、11:スラグ鍋、12:注ぎ口、13:凝固スラグ

Claims (3)

  1. 石炭灰を溶融させた溶融高炉スラグを、スラグ鍋から注ぎ出す際に、注ぎ出される該溶融高炉スラグに対して水を噴射し、水砕スラグを製造する石炭灰を溶融した高炉スラグの水砕方法において、
    前記スラグ鍋に貯留された30トン以上100トン以下の前記溶融高炉スラグを、前記スラグ鍋の上部に形成した高さ200mm以上かつ幅50mm以上1000mm以下の注ぎ口から注ぎ出すことを特徴とする石炭灰を溶融した高炉スラグの水砕方法。
  2. 請求項1記載の石炭灰を溶融した高炉スラグの水砕方法において、前記溶融高炉スラグに溶融させた前記石炭灰量は、前記石炭灰を溶融する前の前記溶融高炉スラグ量の1質量%以上30質量%以下であることを特徴とする石炭灰を溶融した高炉スラグの水砕方法。
  3. 請求項1及び2のいずれか1項に記載の石炭灰を溶融した高炉スラグの水砕方法において、前記溶融高炉スラグには、前記石炭灰を含む添加物が溶融され、しかも該添加物中の全鉄量が該添加物の11質量%以下であることを特徴とする石炭灰を溶融した高炉スラグの水砕方法。
JP2008097189A 2008-04-03 2008-04-03 石炭灰を溶融した高炉スラグの水砕方法 Active JP5130483B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097189A JP5130483B2 (ja) 2008-04-03 2008-04-03 石炭灰を溶融した高炉スラグの水砕方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097189A JP5130483B2 (ja) 2008-04-03 2008-04-03 石炭灰を溶融した高炉スラグの水砕方法

Publications (2)

Publication Number Publication Date
JP2009249213A JP2009249213A (ja) 2009-10-29
JP5130483B2 true JP5130483B2 (ja) 2013-01-30

Family

ID=41310259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097189A Active JP5130483B2 (ja) 2008-04-03 2008-04-03 石炭灰を溶融した高炉スラグの水砕方法

Country Status (1)

Country Link
JP (1) JP5130483B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151877A (en) * 1980-04-28 1981-11-25 Nippon Steel Corp Water granulating blowing method
JPH08231253A (ja) * 1995-02-24 1996-09-10 Sumitomo Metal Ind Ltd 水砕スラグの製造装置
JP2002226239A (ja) * 2001-01-30 2002-08-14 Kawasaki Steel Corp 硬質水砕スラグの製造方法およびその装置
JP2006315907A (ja) * 2005-05-12 2006-11-24 Nippon Steel Corp 石炭灰を用いた高炉スラグ骨材

Also Published As

Publication number Publication date
JP2009249213A (ja) 2009-10-29

Similar Documents

Publication Publication Date Title
CN102303108A (zh) 一种可改善易切钢铸坯质量的连铸生产工艺
TWI403461B (zh) Method and apparatus for improving yield and yield of metallurgical silicon
JP6318982B2 (ja) 凝固スラグの熱回収方法および熱回収システム
JP2006247735A (ja) 鋼の連続鋳造用モールドパウダー
JP4650452B2 (ja) 鋼の連続鋳造方法
JP5130483B2 (ja) 石炭灰を溶融した高炉スラグの水砕方法
JP2006315907A (ja) 石炭灰を用いた高炉スラグ骨材
JP4388482B2 (ja) スラグの処理方法
JP2017512895A (ja) 融解されたフェロクロムの造粒
KR20150084789A (ko) 금속 슬래그를 가공하는 방법 및 기기
JP4901795B2 (ja) フライアッシュの溶融スラグへの溶解方法
JP6180030B2 (ja) フェロニッケルの製造方法
JP5847686B2 (ja) 連続鋳造鋳型内へのモールドフラックスの添加方法
JP2022021235A (ja) 改質転炉スラグの製造方法、および道路路盤材用粒状材の製造方法
JP2007210859A (ja) シリコンのスラグ精錬方法
JP4697092B2 (ja) 溶融金属の連続鋳造に用いるモールドパウダー
JP2008261038A (ja) 製鋼スラグの溶融改質処理方法
JP2007270247A (ja) 連続鋳造用パウダーの製造方法及び鋼の連続鋳造方法
JP3785331B2 (ja) 硬質水砕スラグの製造方法
CN102674870A (zh) 高密度白刚玉及其制备工艺
JP4191867B2 (ja) 硬質人工骨材の製造方法
KR20130070667A (ko) 용융 및 고상 몰드 플럭스의 하이브리드 조업을 이용한 고 Al 함유 강의 연속 주조 방법
JP5811878B2 (ja) 鋼の連続鋳造用球形状顆粒モールドパウダー
JPH04138858A (ja) 連続鋳造用フラックス
JP4191866B2 (ja) 高炉スラグと石炭灰を原料とする軽質人工骨材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5130483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350