JP5117787B2 - 光画像計測装置 - Google Patents

光画像計測装置 Download PDF

Info

Publication number
JP5117787B2
JP5117787B2 JP2007210636A JP2007210636A JP5117787B2 JP 5117787 B2 JP5117787 B2 JP 5117787B2 JP 2007210636 A JP2007210636 A JP 2007210636A JP 2007210636 A JP2007210636 A JP 2007210636A JP 5117787 B2 JP5117787 B2 JP 5117787B2
Authority
JP
Japan
Prior art keywords
light
image
detection signal
intensity
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007210636A
Other languages
English (en)
Other versions
JP2009042197A (ja
Inventor
健史 林
和彦 弓掛
央 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2007210636A priority Critical patent/JP5117787B2/ja
Priority to PCT/JP2008/002077 priority patent/WO2009022452A1/ja
Priority to EP08790341.5A priority patent/EP2177896B1/en
Priority to US12/733,174 priority patent/US20100157311A1/en
Publication of JP2009042197A publication Critical patent/JP2009042197A/ja
Application granted granted Critical
Publication of JP5117787B2 publication Critical patent/JP5117787B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明は、被測定物体に光ビームを照射し、その反射光に基づく干渉光を検出して被測定物体の画像を形成する光画像計測装置に関する。
近年、レーザ光源等からの光ビームを用いて被測定物体の表面形態や内部形態を表す画像を形成する光画像計測技術が注目を集めている。この光画像計測技術は、X線CT装置のような人体に対する侵襲性を持たないことから、特に医療分野における応用の展開が期待されている。
特許文献1には、測定腕が回転式転向鏡(ガルバノミラー)により物体を走査し、参照腕に参照ミラーが設置されており、さらにその出口では、計測腕及び参照腕からの光束の干渉によって現れる光の強度が分光器で分析もされるという干渉器が利用されていて、参照腕には参照光光束位相を不連続な値で段階的に変える装置が設けられた構成の光画像計測装置が開示されている。
特許文献1の光画像計測装置は、いわゆる「フーリエドメインOCT(Fourier Domain Optical Coherence Tomography)」の手法を用いるものである。すなわち、被測定物体に対して低コヒーレンス光のビームを照射し、その反射光のスペクトル強度分布を取得し、それをフーリエ変換することにより、被測定物体の深度方向(z方向)の形態を画像化するものである。
更に、特許文献1に記載の光画像計測装置は、光ビーム(信号光)を走査するガルバノミラーを備え、それにより被測定物体の所望の測定対象領域の画像を形成できるようになっている。なお、この光画像計測装置においては、z方向に直交する1方向(x方向)にのみ光ビームを走査するようになっているので、形成される画像は、光ビームの走査方向(x方向)に沿った深度方向(z方向)の2次元断層画像となる。
特許文献2には、信号光を水平方向及び垂直方向に走査することにより水平方向の2次元断層画像を複数形成し、これら複数の断層画像に基づいて測定範囲の3次元の断層情報を取得して画像化する技術が開示されている。この3次元画像化としては、たとえば、複数の断層画像を垂直方向に並べて表示させる方法や(スタックデータなどと呼ばれる)、複数の断層画像にレンダリング処理を施して3次元画像を形成する方法などが考えられる。
特許文献3には、このような光画像計測装置を眼科分野に適用した構成が開示されている。
特許文献4、5には、他のタイプの光画像計測装置が開示されている。特許文献4には、被測定物体に照射される光の波長を走査するタイプの光画像計測装置が記載されている。この光画像計測装置は、スウェプトソース(Swept Source)タイプなどと呼ばれる。
また、特許文献5には、所定のビーム径を有する光を被測定物体に照射して、光の進行方向に直交する断面の画像を形成する光画像計測装置が記載されている。この光画像計測装置は、フルフィールド(full−field)タイプ、或いはエンフェイス(en−face)タイプなどと呼ばれる。
特開平11−325849号公報 特開2002−139421号公報 特開2003−543号公報 特開2007−24677号公報 特開2006−153838号公報
光画像計測装置による計測では、被測定物体の状態等により干渉光の強度が低下し、明瞭な画像が得られないことがある。
たとえば、白内障等により被検眼の透光体が濁っている場合、被検眼を経由する信号光の強度が低下する。それにより干渉光の強度が低下して、眼底の明瞭な画像が得られないことがある。
この発明は、このような問題を解決するためになされたもので、干渉光の強度が低い場合であっても明瞭な画像を取得可能な光画像計測装置を提供することを目的とする。
上記目的を達成するために、請求項1に記載の発明は、から出力された光を信号光と参照光とに分割し、被測定物体を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成する干渉光生成手段と、前記干渉光を検出して検出信号を生成する検出手段と、前記検出信号に基づいて前記被測定物体の評価画像を形成する画像形成手段と、前記評価画像が形成された後に、前記検出信号の強度が所定閾値以上であるか判断する判断手段と、前記強度が所定閾値未満であると判断されたときに、干渉光の検出信号の強度を増大させるように制御を行う制御手段と、を備え、前記画像形成手段は、強度が増大された検出信号に基づいて前記被測定物体の画像を形成する、ことを特徴とする光画像計測装置である。
また、請求項2に記載の発明は、請求項1に記載の光画像計測装置であって、前記検出手段は、干渉光を受光して電荷に変換し、電荷を蓄積して検出信号を生成し、前記制御手段は、前記検出手段による電荷の蓄積量を増大させるように制御を行うことにより干渉光の検出信号の強度を増大させる、ことを特徴とする。
また、請求項3に記載の発明は、請求項2に記載の光画像計測装置であって、前記制御手段は、前記検出手段を制御して電荷の蓄積時間を増大させることにより前記蓄積量を増大させる、ことを特徴とする。
また、請求項4に記載の発明は、請求項3に記載の光画像計測装置であって、前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、前記制御手段は、前記走査手段を制御して、増大後の蓄積時間に応じた走査速度で信号光を走査させる、ことを特徴とする。
また、請求項5に記載の発明は、請求項3に記載の光画像計測装置であって、前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、前記制御手段は、前記走査手段を制御して、増大後の蓄積時間に応じた個数の走査点に対して順次に信号光を照射させる、ことを特徴とする。
また、請求項6に記載の発明は、請求項2に記載の光画像計測装置であって、前記制御手段は、前記光源を制御して光の出力時間を増大させることにより前記蓄積量を増大させる、ことを特徴とする。
また、請求項7に記載の発明は、請求項6に記載の光画像計測装置であって、前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、前記制御手段は、前記走査手段を制御して、増大後の出力時間に応じた走査速度を求め、当該走査速度で信号光を走査させる、ことを特徴とする。
また、請求項8に記載の発明は、請求項6に記載の光画像計測装置であって、前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、前記制御手段は、前記走査手段を制御して、増大後の出力時間に応じた走査点の個数を求め、当該個数の走査点に対して順次に信号光を照射させる、ことを特徴とする。
また、請求項9に記載の発明は、請求項2に記載の光画像計測装置であって、前記制御手段は、前記光源を制御して光の出力強度を増大させることにより前記蓄積量を増大させる、ことを特徴とする。
また、請求項10に記載の発明は、請求項9に記載の光画像計測装置であって、前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、前記制御手段は、前記走査手段を制御して、増大後の出力強度に応じた走査速度で信号光を走査させる、ことを特徴とする。
また、請求項11に記載の発明は、請求項9に記載の光画像計測装置であって、前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、前記制御手段は、前記走査手段を制御して、増大後の出力強度に応じた個数の走査点に対して順次に信号光を照射させる、ことを特徴とする。
また、請求項12に記載の発明は、請求項1〜請求項11のいずれか一項に記載の光画像計測装置であって、前記画像形成手段は、前記検出信号の複数の周波数成分を求める演算手段を備え、前記判断手段は、前記複数の周波数成分の強度のうちの最小値を特定し、前記最小値が所定値以上であるか判断することにより前記検出信号の強度を判断し、前記制御手段は、前記最小値が所定値未満であると判断されたときに、前記最小値に対応する周波数成分が所定値以上になるように干渉光の検出信号の強度を増大させる、ことを特徴とする。
また、請求項13に記載の発明は、請求項1〜請求項11のいずれか一項に記載の光画像計測装置であって、前記判断手段は、前記画像の複数の画素の画素値のうちの最大値を特定し、前記最大値が所定値以上であるか判断することにより前記検出信号の強度を判断し、前記制御手段は、前記最大値が所定値未満であると判断されたときに、前記最大値に対応する画素の画素値が所定値以上になるように干渉光の検出信号の強度を増大させる、ことを特徴とする。
また、請求項14に記載の発明は、請求項1〜請求項11のいずれか一項に記載の光画像計測装置であって、前記判断手段は、前記画像の複数の画素のうち画素値が所定値以上である画素を特定し、前記特定された画素の個数が所定数以上であるか判断することにより前記検出信号の強度を判断し、前記制御手段は、前記個数が所定数未満であると判断されたときに、画素値が所定値以上である画素の個数が所定数以上になるように干渉光の検出信号の強度を増大させる、ことを特徴とする。
また、請求項15に記載の発明は、請求項1〜請求項11のいずれか一項に記載の光画像計測装置であって、前記判断手段は、制御手段による制御後の新たな干渉光の検出信号の強度が前記所定閾値以上であるか判断し、前記制御手段は、前記新たな強度が所定閾値未満であると判断されたときに、前記光源、前記検出手段及び前記画像形成手段を制御し、二以上の画像を形成させ、前記二以上の画像を重ね合わせて新たな画像を形成させる、ことを特徴とする。
また、請求項16に記載の発明は、請求項1〜請求項11のいずれか一項に記載の光画像計測装置であって、前記判断手段は、制御手段による制御後の新たな検出信号の強度が前記所定閾値以上であるか判断し、前記制御手段は、前記新たな強度が所定閾値未満であると判断されたときに、前記画像形成手段を制御し、前記画像に対して画質を向上させるための所定の画像処理を施させる、ことを特徴とする。
また、請求項17に記載の発明は、請求項1〜請求項11のいずれか一項に記載の光画像計測装置であって、前記判断手段は、制御手段による制御後の新たな干渉光の検出信号の強度が前記所定閾値以上であるか判断し、前記制御手段は、前記新たな強度が所定閾値未満であると判断されたときに、前記画像形成手段を制御し、前記検出信号の振幅を増大させて新たな検出信号を生成させ、前記新たな検出信号に基づく画像を形成させる、ことを特徴とする。
また、請求項18に記載の発明は、から出力された光を信号光と参照光とに分割し、被測定物体を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成する干渉光生成手段と、前記干渉光を検出して検出信号を生成する検出手段と、前記検出信号に基づいて前記被測定物体の評価画像を形成する画像形成手段と、前記評価画像が形成された後に、前記検出信号の強度が所定閾値以上であるか判断する判断手段と、前記強度が所定閾値未満であると判断されたときに、前記光源、前記検出信号及び前記画像形成手段を制御し、二以上の画像を形成させ、前記二以上の画像を重ね合わせて新たな画像を形成させる制御手段と、を備えることを特徴とする光画像計測装置である。
また、請求項19に記載の発明は、から出力された光を信号光と参照光とに分割し、被測定物体を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成する干渉光生成手段と、前記干渉光を検出して検出信号を生成する検出手段と、前記検出信号に基づいて前記被測定物体の評価画像を形成する画像形成手段と、前記評価画像が形成された後に、前記検出信号の強度が所定閾値以上であるか判断する判断手段と、前記強度が所定閾値未満であると判断されたときに、前記画像形成手段を制御し、前記画像に対して画質を向上させるための所定の画像処理を施させる制御手段と、を備えることを特徴とする光画像計測装置である。
また、請求項20に記載の発明は、請求項16又は請求項19に記載の光画像計測装置であって、前記所定の画像処理は、前記画像における画素値の分布を平均化する平均化処理、又は、前記画像の画素について、周囲の画素の画素値を基に画素値を修正するフィルタリング処理である、ことを特徴とする。
また、請求項21に記載の発明は、から出力された光を信号光と参照光とに分割し、被測定物体を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成する干渉光生成手段と、前記干渉光を検出して検出信号を生成する検出手段と、を有し、前記検出信号に基づいて前記被測定物体の画像を形成する画像形成手段と、前記検出信号の強度が所定閾値以上であるか判断する判断手段と、前記強度が所定閾値未満であると判断されたときに、前記画像形成手段を制御し、前記検出信号の振幅を増大させて新たな検出信号を生成させ、前記新たな検出信号に基づく画像を形成させる制御手段と、を備えることを特徴とする光画像計測装置である。
また、請求項22に記載の発明は、請求項17又は請求項21に記載の光画像計測装置であって、前記画像形成手段は、前記検出信号に含まれるノイズを除去することにより前記新たな検出信号を生成させる、ことを特徴とする。
この発明によれば、干渉光の検出信号の強度が所定閾値未満である場合に、この検出信号の強度を増大させて画像を形成するように作用するので、干渉光の強度が低い場合であっても明瞭な画像を取得することができる。
この発明によれば、干渉光の検出信号の強度が所定閾値未満である場合に、二以上の画像を形成し、これらの画像を重ね合わせて新たな画像を形成するように作用するので、干渉光の強度が低い場合であっても画像の明瞭化を図ることができる。
この発明によれば、干渉光の検出信号の強度が所定閾値未満である場合に、画像に対して所定の画像処理を施すことができる。この画像処理としては、平均化処理やフィルタリング処理がある。したがって、干渉光の強度が低い場合であっても画像の明瞭化を図ることができる。
この発明によれば、干渉光の検出信号の強度が所定閾値未満である場合に、干渉光の検出信号の振幅を増大させて新たな検出信号を生成し、この新たな検出信号に基づく画像を形成するように作用するので、干渉光の強度が低い場合であっても画像の明瞭化を図ることができる。
この発明に係る光画像計測装置の実施形態の一例について、図面を参照しながら詳細に説明する。
この発明に係る光画像計測装置は、OCT技術を用いて被測定物体の断層画像や3次元画像を形成する装置である。適用される計測手法は、フーリエドメインタイプ、スウェプトソースタイプ、フルフィールドタイプなど、任意の手法でよい。なお、信号光の走査に関する制御を実行する場合には、フーリエドメインタイプやスウェプトソースタイプなど、信号光を走査する任意の計測手法を適用する。
[装置構成]
この実施形態では、眼底のOCT画像(断層画像、3次元画像等)を取得する眼底観察装置について説明する。図1に示す眼底観察装置1は、フーリエドメインタイプの光画像計測装置として機能する。この実施形態において、被測定物体は眼底である。
[全体構成]
眼底観察装置1は、図1に示すように、眼底カメラユニット1A、OCTユニット150及び演算制御装置200を含んで構成される。眼底カメラユニット1Aは、従来の眼底カメラとほぼ同様の光学系を有する。なお、眼底カメラは、眼底表面の2次元画像を撮影する装置である。OCTユニット150は、OCT画像を取得するための光学系を格納している。演算制御装置200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。
OCTユニット150には、接続線152の一端が取り付けられている。接続線152の他端には、接続線152を眼底カメラユニット1Aに接続するコネクタ部151が取り付けられている。接続線152の内部には光ファイバが導通されている。このように、OCTユニット150と眼底カメラユニット1Aは、接続線152を介して光学的に接続されている。
〔眼底カメラユニットの構成〕
眼底カメラユニット1Aは、眼底表面の2次元画像を形成するための光学系を有する。ここで、眼底表面の2次元画像とは、眼底表面を撮影したカラー画像やモノクロ画像、更には蛍光画像(フルオレセイン蛍光画像、インドシアニングリーン蛍光画像等)などを表す。眼底カメラユニット1Aは、従来の眼底カメラと同様に、眼底Efを照明する照明光学系100と、この照明光の眼底反射光を撮像装置10に導く撮影光学系120とを備えている。
なお、詳細は後述するが、撮影光学系120の撮像装置10は、近赤外領域の波長を有する照明光を検出する。また、撮影光学系120には、可視領域の波長を有する照明光を検出する撮像装置12が別途設けられている。更に、撮影光学系120は、OCTユニット150からの信号光を眼底Efに導くとともに、眼底Efを経由した信号光をOCTユニット150に導くように作用する。
照明光学系100は、観察光源101、コンデンサレンズ102、撮影光源103、コンデンサレンズ104、エキサイタフィルタ105及び106、リング透光板107、ミラー108、LCD(Liquid Crystal Display)109、照明絞り110、リレーレンズ111、孔開きミラー112、対物レンズ113を含んで構成される。
観察光源101は、たとえば約400nm〜700nmの範囲に含まれる可視領域の波長の照明光を出力する。また、撮影光源103は、たとえば約700nm〜800nmの範囲に含まれる近赤外領域の波長の照明光を出力する。撮影光源103から出力される近赤外光は、OCTユニット150で使用する光の波長よりも短く設定されている(後述)。
また、撮影光学系120は、対物レンズ113、孔開きミラー112(の孔部112a)、撮影絞り121、バリアフィルタ122及び123、変倍レンズ124、リレーレンズ125、撮影レンズ126、ダイクロイックミラー134、フィールドレンズ(視野レンズ)128、ハーフミラー135、リレーレンズ131、ダイクロイックミラー136、撮影レンズ133、撮像装置10(撮像素子10a)、反射ミラー137、撮影レンズ138、撮影装置12(撮像素子12a)、レンズ139及びLCD140を含んで構成される。
更に、撮影光学系120には、ダイクロイックミラー134、ハーフミラー135、ダイクロイックミラー136、反射ミラー137、撮影レンズ138、レンズ139及びLCD140が設けられている。
ダイクロイックミラー134は、照明光学系100からの照明光の眼底反射光(約400nm〜800nmの範囲に含まれる波長を有する)を反射するとともに、OCTユニット150からの信号光LS(たとえば約800nm〜900nmの範囲に含まれる波長を有する;後述)を透過させるように構成されている。
また、ダイクロイックミラー136は、照明光学系100からの可視領域の波長を有する照明光(観察光源101から出力される波長約400nm〜700nmの可視光)を透過させるとともに、近赤外領域の波長を有する照明光(撮影光源103から出力される波長約700nm〜800nmの近赤外光)を反射するように構成されている。
LCD140は、被検眼Eを固視させるための固視標(内部固視標)を表示する。LCD140からの光は、レンズ139により集光された後に、ハーフミラー135により反射され、フィールドレンズ128を経由してダイクロイックミラー136に反射される。更に、この光は、撮影レンズ126、リレーレンズ125、変倍レンズ124、孔開きミラー112(の孔部112a)、対物レンズ113等を経由して、被検眼Eに入射する。それにより、被検眼Eの眼底Efに内部固視標が投影される。
撮像素子10aは、テレビカメラ等の撮像装置10に内蔵されたCCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子であり、特に、近赤外領域の波長の光を検出する。つまり、撮像装置10は、近赤外光を検出する赤外線テレビカメラである。撮像装置10は、近赤外光を検出した結果として映像信号を出力する。
タッチパネルモニタ11は、この映像信号に基づいて、眼底Efの表面の2次元画像(眼底画像Ef′)を表示する。また、この映像信号は演算制御装置200に送られ、ディスプレイ(後述)に眼底画像が表示される。
なお、撮像装置10による撮影時には、たとえば撮影光源103から出力される近赤外領域の波長を有する照明光が用いられる。
一方、撮像素子12aは、テレビカメラ等の撮像装置12に内蔵されたCCDやCMOS等の撮像素子であり、特に、可視領域の波長の光を検出する。つまり、撮像装置12は、可視光を検出するテレビカメラである。撮像装置12は、可視光を検出した結果として映像信号を出力する。
タッチパネルモニタ11は、この映像信号に基づいて、眼底Efの表面の2次元画像(眼底画像Ef′)を表示する。また、この映像信号は演算制御装置200に送られ、ディスプレイ(後述)に眼底画像が表示される。
なお、撮像装置12による眼底撮影時には、たとえば観察光源101から出力される可視領域の波長を有する照明光が用いられる。
眼底カメラユニット1Aには、走査ユニット141とレンズ142とが設けられている。走査ユニット141は、OCTユニット150から出力される光(信号光LS;後述)の眼底Efに対する照射位置を走査する。走査ユニット141は、この発明の「走査手段」の一例である。
レンズ142は、OCTユニット150から接続線152を通じて導光された信号光LSを平行な光束にして走査ユニット141に入射させる。また、レンズ142は、走査ユニット141を経由してきた信号光LSの眼底反射光を集束させる。
図2に、走査ユニット141の構成の一例を示す。走査ユニット141は、ガルバノミラー141A、141Bと、反射ミラー141C、141Dとを含んで構成されている。
ガルバノミラー141A、141Bは、それぞれ回動軸141a、141bを中心に回動可能に配設された反射ミラーである。各ガルバノミラー141A、141Bは、後述の駆動機構(図5に示すミラー駆動機構241、242)によって回動軸141a、141bを中心にそれぞれ回動される。それにより、各ガルバノミラー141A、141Bの反射面(信号光LSを反射する面)の向きが変更される。
回動軸141a、141bは、互いに直交して配設されている。図2においては、ガルバノミラー141Aの回動軸141aは、紙面に対して平行方向に配設されている。また、ガルバノミラー141Bの回動軸141bは、紙面に対して直交する方向に配設されている。
すなわち、ガルバノミラー141Bは、図2中の両側矢印に示す方向に回動可能に構成され、ガルバノミラー141Aは、当該両側矢印に対して直交する方向に回動可能に構成されている。それにより、ガルバノミラー141A、141Bは、信号光LSの反射方向を互いに直交する方向に変更するようにそれぞれ作用する。図1、図2から分かるように、ガルバノミラー141Aを回動させると信号光LSはx方向に走査され、ガルバノミラー141Bを回動させると信号光LSはy方向に走査される。
ガルバノミラー141A、141Bにより反射された信号光LSは、反射ミラー141C、141Dにより反射され、ガルバノミラー141Aに入射したときと同じ向きに進行するようになっている。
なお、接続線152の内部の光ファイバ152aの端面152bは、レンズ142に対峙して配設される。端面152bから出射された信号光LSは、レンズ142に向かってビーム径を拡大しつつ進行し、レンズ142によって平行な光束とされる。逆に、眼底Efを経由した信号光LSは、レンズ142により端面152bに向けて集束されて光ファイバ152aに入射する。
〔OCTユニットの構成〕
次に、OCTユニット150の構成について図3を参照しつつ説明する。OCTユニット150は、眼底のOCT画像を形成するための光学系を有する。
OCTユニット150は、従来の光画像計測装置とほぼ同様の光学系を備えている。すなわち、OCTユニット150は、低コヒーレンス光を参照光と信号光に分割し、被検眼を経由した信号光と参照物体を経由した参照光とを重畳させて干渉光を生成してこれを検出する。この検出結果(検出信号)は演算制御装置200に入力される。演算制御装置200は、この検出信号を解析して眼底の断層画像や3次元画像を形成する。
低コヒーレンス光源160は、低コヒーレンス光L0を出力する広帯域光源により構成される。広帯域光源としては、たとえば、スーパールミネセントダイオード(SLD:Super Luminescent Diode)や、発光ダイオード(LED:Light Emitted Diode)などが用いられる。低コヒーレンス光源160は、この発明の「光源」の一例である。
低コヒーレンス光L0は、たとえば、近赤外領域の波長の光を含み、かつ、数十マイクロメートル程度の時間的コヒーレンス長を有する光とされる。低コヒーレンス光L0は、眼底カメラユニット1Aの照明光(波長約400nm〜800nm)よりも長い波長、たとえば約800nm〜900nmの範囲に含まれる波長を有する。
低コヒーレンス光源160から出力された低コヒーレンス光L0は、光ファイバ161を通じて光カプラ162に導かれる。光ファイバ161は、たとえばシングルモードファイバやPMファイバ(Polarization maintaining fiber;偏波面保持ファイバ)等により構成される。光カプラ162は、低コヒーレンス光L0を参照光LRと信号光LSとに分割する。
なお、光カプラ162は、光を分割する手段(スプリッタ;splitter)、及び、光を重畳する手段(カプラ;coupler)の双方として作用するものであるが、ここでは慣用的に「光カプラ」と称することにする。
光カプラ162により生成された参照光LRは、シングルモードファイバ等からなる光ファイバ163により導光されてファイバ端面から出射される。更に、参照光LRは、コリメータレンズ171により平行光束とされた後に、ガラスブロック172及び濃度フィルタ173を経由し、参照ミラー174により反射される。参照ミラー174は、この発明の「参照物体」の例である。
参照ミラー174により反射された参照光LRは、再び濃度フィルタ173及びガラスブロック172を経由し、コリメータレンズ171によって光ファイバ163のファイバ端面に集光され、光ファイバ163を通じて光カプラ162に導かれる。
ここで、ガラスブロック172と濃度フィルタ173は、参照光LRと信号光LSの光路長(光学距離)を合わせるための遅延手段として、また、参照光LRと信号光LSの分散特性を合わせるための分散補償手段として作用する。
また、濃度フィルタ173は、参照光LRの光量を減少させる減光フィルタとしても作用する。濃度フィルタ173は、たとえば、回転型のND(Neutral Density)フィルタにより構成される。濃度フィルタ173は、モータ等の駆動装置を含んで構成される駆動機構(後述の濃度フィルタ駆動機構244;図5参照)によって回転駆動される。それにより、干渉光LCの生成に寄与する参照光LRの光量が変更される。
また、参照ミラー174は、参照光LRの進行方向(図3に示す両側矢印方向)に移動可能とされている。それにより、被検眼Eの眼軸長やワーキングディスタンス(対物レンズ113と被検眼Eとの距離)などに応じた参照光LRの光路長を確保できる。また、参照ミラー174を移動させることにより、眼底Efの任意の深度位置の画像を取得することができる。なお、参照ミラー174は、モータ等の駆動装置を含んで構成される駆動機構(後述の参照ミラー駆動機構243;図5参照)によって移動される。
一方、光カプラ162により生成された信号光LSは、シングルモードファイバ等からなる光ファイバ164により接続線152の端部まで導光される。接続線152の内部には光ファイバ152aが導通されている。ここで、光ファイバ164と光ファイバ152aは、単一の光ファイバから形成されていてもよいし、各々の端面同士を接合するなどして一体的に形成されていてもよい。いずれにしても、光ファイバ164、152aは、眼底カメラユニット1AとOCTユニット150との間で、信号光LSを伝送可能に構成されていれば十分である。
信号光LSは、接続線152内部を導光されて眼底カメラユニット1Aに案内される。更に、信号光LSは、レンズ142、走査ユニット141、ダイクロイックミラー134、撮影レンズ126、リレーレンズ125、変倍レンズ124、撮影絞り121、孔開きミラー112の孔部112a、対物レンズ113を経由して被検眼Eに照射される。なお、信号光LSを被検眼Eに照射させるときには、バリアフィルタ122、123は、それぞれ事前に光路から退避される。
被検眼Eに入射した信号光LSは、眼底Ef上にて結像し反射される。このとき、信号光LSは、眼底Efの表面で反射されるだけでなく、眼底Efの深部領域にも到達して屈折率境界において散乱される。したがって、眼底Efを経由した信号光LSは、眼底Efの表面形態を反映する情報と、眼底Efの深層組織の屈折率境界における後方散乱の状態を反映する情報とを含んでいる。この光を単に「信号光LSの眼底反射光」と呼ぶことがある。
信号光LSの眼底反射光は、眼底カメラユニット1A内の上記経路を逆向きに進行して光ファイバ152aの端面152bに集光され、光ファイバ152を通じてOCTユニット150に入射し、光ファイバ164を通じて光カプラ162に戻ってくる。
光カプラ162は、被検眼Eを経由して戻ってきた信号光LSと、参照ミラー174にて反射された参照光LRとを重畳して干渉光LCを生成する。この干渉光LCは、シングルモードファイバ等からなる光ファイバ165を通じてスペクトロメータ180に導かれる。
なお、この実施形態ではマイケルソン型の干渉計を採用しているが、たとえばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。
この発明の「干渉光生成手段」は、たとえば、光カプラ162と、信号光LSの光路上の光学部材(つまり光カプラ162と被検眼Eとの間に配置された光学部材)と、参照光LRの光路上の光学部材(つまり光カプラ162と参照ミラー174との間に配置された光学部材)とを含んで構成される。特に、干渉光生成手段は、光カプラ162、光ファイバ163、164及び参照ミラー174を具備する干渉計を含んで構成される。
スペクトロメータ(分光計)180は、コリメータレンズ181、回折格子182、結像レンズ183、CCD184を含んで構成される。回折格子182は、光を透過させる透過型の回折格子であってもよいし、光を反射する反射型の回折格子であってもよい。また、CCD184に代えて、CMOS等の他の光検出素子を用いることも可能である。
スペクトロメータ180に入射した干渉光LCは、コリメータレンズ181により平行光束とされ、回折格子182によって分光(スペクトル分解)される。分光された干渉光LCは、結像レンズ183によってCCD184の撮像面上に結像される。CCD184は、分光された干渉光LCの各スペクトル成分を検出して電荷に変換する。CCD184は、この電荷を蓄積して検出信号を生成する。更に、CCD184は、この検出信号を演算制御装置200に送信する。電荷の蓄積する時間やタイミング、更には検出信号の送信タイミングは、たとえば演算制御装置200によって制御される。CCD184は、この発明の「検出手段」の一例である。
〔演算制御装置の構成〕
次に、演算制御装置200の構成について説明する。演算制御装置200は、OCTユニット150のCCD184から入力される検出信号を解析して、眼底EfのOCT画像を形成する。このときの解析手法は、従来のフーリエドメインOCTの手法と同様である。
また、演算制御装置200は、眼底カメラユニット1Aの撮像装置10、12から出力される映像信号に基づいて眼底Efの表面の形態を示す2次元画像を形成する。
更に、演算制御装置200は、眼底カメラユニット1A及びOCTユニット150の各部を制御する。
眼底カメラユニット1Aの制御として、演算制御装置200は、観察光源101や撮影光源103による照明光の出力制御、エキサイタフィルタ105、106やバリアフィルタ122、123の光路上への挿入/退避動作の制御、LCD140等の表示装置の動作制御、照明絞り110の移動制御(絞り値の制御)、撮影絞り121の絞り値の制御、変倍レンズ124の移動制御(倍率の制御)などを行う。更に、演算制御装置200は、ガルバノミラー141A、141Bの動作制御を行う。
また、OCTユニット150の制御として、演算制御装置200は、低コヒーレンス光源160による低コヒーレンス光L0の出力制御、参照ミラー174の移動制御、濃度フィルタ173の回転動作(参照光LRの光量の減少量の変更動作)の制御、CCD184の蓄積タイミングや信号出力タイミングの制御などを行う。
このような演算制御装置200のハードウェア構成について図4を参照しつつ説明する。
演算制御装置200は、従来のコンピュータと同様のハードウェア構成を備えている。具体的には、演算制御装置200は、マイクロプロセッサ201、RAM202、ROM203、ハードディスクドライブ(HDD)204、キーボード205、マウス206、ディスプレイ207、画像形成ボード208及び通信インターフェイス(I/F)209を含んで構成される。これら各部は、バス200aにより接続されている。
マイクロプロセッサ201は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等を含んで構成される。マイクロプロセッサ201は、制御プログラム204aをハードディスクドライブ204から読み出してRAM202上に展開することにより、この実施形態に特徴的な動作を眼底観察装置1に実行させる。
また、マイクロプロセッサ201は、前述した装置各部の制御や、各種の演算処理などを実行する。また、マイクロプロセッサ201は、キーボード205やマウス206からの操作信号を受け、その操作内容に応じて装置各部を制御する。更に、マイクロプロセッサ201は、ディスプレイ207による表示処理の制御や、通信インターフェイス209によるデータや信号の送受信処理の制御などを行う。
キーボード205、マウス206及びディスプレイ207は、眼底観察装置1のユーザインターフェイスとして使用される。キーボード205は、たとえば文字や数字等をタイピング入力するためのデバイスとして用いられる。マウス206は、ディスプレイ207の表示画面に対する各種入力操作を行うためのデバイスとして用いられる。
また、ディスプレイ207は、たとえばLCDやCRT(Cathode Ray Tube)ディスプレイ等の表示デバイスであり、眼底観察装置1により形成された眼底Efの画像などの各種の画像を表示したり、操作画面や設定画面などの各種の画面を表示したりする。
なお、眼底観察装置1のユーザインターフェイスは、このような構成に限定されるものではなく、たとえばトラックボール、ジョイスティック、タッチパネル式のLCD、眼科検査用のコントロールパネルなどを含んでいてもよい。ユーザインターフェイスとしては、情報を表示出力する機能と、情報を入力したり装置の操作を行ったりする機能とを具備する任意の構成を採用できる。
画像形成ボード208は、眼底Efの画像(画像データ)を形成する処理を行う専用の電子回路である。画像形成ボード208には、眼底画像形成ボード208aとOCT画像形成ボード208bとが設けられている。
眼底画像形成ボード208aは、撮像装置10や撮像装置12からの映像信号に基づいて眼底画像の画像データを形成する専用の電子回路である。
また、OCT画像形成ボード208bは、OCTユニット150のCCD184からの検出信号に基づいて眼底Efの断層画像の画像データを形成する専用の電子回路である。
このような画像形成ボード208を設けることにより、眼底画像や断層画像を形成する処理の処理速度を向上させることができる。
通信インターフェイス209は、マイクロプロセッサ201からの制御信号を、眼底カメラユニット1AやOCTユニット150に送信する。また、通信インターフェイス209は、撮像装置10、12からの映像信号や、OCTユニット150のCCD184からの検出信号を受信して、画像形成ボード208に入力する。このとき、通信インターフェイス209は、撮像装置10、12からの映像信号を眼底画像形成ボード208aに入力し、CCD184からの検出信号をOCT画像形成ボード208bに入力するようになっている。
また、演算制御装置200がLAN(Local Area Network)やインターネット等の通信回線に接続されている場合には、LANカード等のネットワークアダプタやモデム等の通信機器を通信インターフェイス209に具備させ、この通信回線を介してデータ通信を行えるように構成できる。この場合、制御プログラム204aを格納するサーバを通信回線上に設置するとともに、演算制御装置200を当該サーバのクライアント端末として構成することにより、眼底観察装置1を動作させることができる。
〔制御系の構成〕
次に、眼底観察装置1の制御系の構成について図5及び図6を参照しつつ説明する。
(制御部)
眼底観察装置1の制御系は、演算制御装置200の制御部210を中心に構成される。制御部210は、マイクロプロセッサ201、RAM202、ROM203、ハードディスクドライブ204(制御プログラム204a)、通信インターフェイス209等を含んで構成される。
制御部210には、主制御部211と記憶部212が設けられている。主制御部211は、前述した各種の制御を行う。
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、たとえば、OCT画像の画像データ、検出信号の強度(各周波数成分の強度)、被検者情報(患者IDや氏名など、被検者に関する情報)などがある。主制御部211は、記憶部212にデータを書き込む処理や、記憶部212からデータを読み出す処理を行う。
(画像形成部)
画像形成部220は、撮像装置10、12からの映像信号に基づいて眼底画像Ef′の画像データを形成する。
また、画像形成部220は、CCD184からの検出信号に基づいて眼底Efの断層画像の画像データを形成する。この処理には、たとえば、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などが含まれている。特に、周波数成分演算部221は、FFTを実行することにより、検出信号の周波数成分の強度を求める。なお、検出信号の周波数成分は、干渉光LCのスペクトル成分に対応する。周波数成分演算部221は、この発明の「演算手段」の一例である。
画像形成部220は、たとえば、検出信号の強度、より詳しくは周波数成分の強度に基づいて画素値(輝度値)を決定することにより、OCT画像の画像データを形成する。このように、検出信号(強度)と画像データ(画素値)とは対応関係にある。この明細書では、検出信号の強度と画像データの画素値とを同一視することがある。
画像形成部220は、画像形成ボード208や通信インターフェイス209等を含んで構成される。なお、この明細書では、「画像データ」と、それに基づいて表示される「画像」とを同一視することがある。
(画像処理部)
画像処理部230は、画像形成部220により形成された画像の画像データに対して各種の画像処理や解析処理を施す。たとえば、画像処理部230は、画像の輝度補正や分散補正等の各種補正処理などを実行する。また、画像処理部230は、後述のように、検出信号(周波数成分)に関する処理も行う。
また、画像処理部230は、画像形成部220により形成された断層画像の間の画素を補間する補間処理を実行することにより、眼底Efの3次元画像の画像データを形成する。
なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、画像処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。ディスプレイ207等の表示デバイスには、この画像データに基づく擬似的な3次元画像が表示される。
また、3次元画像の画像データとして、複数の断層画像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断層画像を、走査線の位置関係に基づいて3次元的に配列させることにより得られる画像データである。
画像処理部230の強度判断部231は、検出信号の強度が所定閾値以上であるか判断する。換言すると、強度判断部231は、OCT画像の画像データの画素の画素が所定閾値以上であるか判断する。なお、ここで言う「所定閾値以上」は、所定閾値と等しいか又は所定閾値を超えるという意味であるが、前者において所定閾値と厳密に等しい必要はなく、この実施形態の作用効果が奏される程度の誤差は許容するものとする。これは、用語「未満」等についても同様である。強度判断部231は、この発明の「判断手段」の一例である。以下、強度判断部231が実行する処理の例を説明する。
第1の処理例は、検出信号の周波数成分に基づくものである。検出信号には、複数の周波数成分が含まれている。各周波数成分の強度は、周波数成分演算部221によって取得される。強度判断部231は、複数の周波数成分の強度を比較して最小値を特定する。
次に、強度判断部231は、この最小値が所定値以上であるか判断する。この所定値は事前に設定される。強度判断部231は、最小値が所定値以上であるときに、検出信号の強度は所定閾値以上であると判断する。逆に、最小値が所定値未満であるときには、検出信号の強度は所定閾値未満であると判断される。
第2の処理例は、OCT画像(断層画像)の画素の画素値(輝度値)に基づくものである。強度判断部231は、OCT画像の複数の画素の画素値を比較して最大値を特定する。
次に、強度判断部231は、この最大値が所定値以上であるか判断する。この所定値は事前に設定される。強度判断部231は、最大値が所定値以上であるときに、検出信号の強度は所定閾値以上であると判断する。逆に、最大値が所定値未満であるときには、検出信号の強度は所定閾値未満であると判断される。
第3の処理例もOCT画像(断層画像)の画素の画素値(輝度値)に基づくものである。強度判断部231は、OCT画像の複数の画素のうち、画素値が所定値以上である画素を特定する。この処理は、各画素の画素値と所定値とを比較し、画素値が所定値以上であるか判断することで実行できる。この所定値は事前に設定される。
次に、強度判断部231は、所定値以上の画素値を有する画素の個数が所定数以上であるか判断する。この処理は、所定値以上の画素値を有する画素の個数をカウントし、その個数と所定数とを比較することで実行できる。また、OCT画像における画素値のヒストグラムを作成し、所定値以上の画素値を有する画素の個数を特定し、その個数と所定数とを比較することにより同様の判断を実行してもよい。この所定数は事前に設定される。強度判断部231は、所定値以上の画素値を有する画素の個数が所定数以上であるときに、検出信号の強度は所定閾値以上であると判断する。逆に、この個数が所定数未満であるときには、検出信号の強度は所定閾値未満であると判断される。
制御設定部232は、強度判断部231により検出信号の強度が所定閾値未満であると判断されたときに動作する。制御設定部232は、検出信号の強度を増大させるための各種の制御内容を設定する。この制御内容としては、低コヒーレンス光L0の出力強度や発光時間、信号光LSの走査速度や走査位置、CCD184による電荷の蓄積時間などがある。
出力強度設定部233は、低コヒーレンス光源160により出力される低コヒーレンス光L0の強度(明るさ)を設定する。なお、眼科分野等の医療分野に光画像計測装置を適用する場合には、低コヒーレンス光の強度の最大値が予め設定されており、この最大値を超える強度の設定は禁止される。これは、低コヒーレンス光L0(信号光LS)が患者にダメージを与える事態を回避し、安全に計測を行うための配慮である。以下、低コヒーレンス光の出力強度の設定処理の例を説明する。
第1の処理例として、出力強度設定部233は、強度判断部231による判断対象になった検出信号の基の低コヒーレンス光L0の出力強度(元の出力強度)を所定量だけ増大させることにより新たな出力強度を設定する。このときの増大量は予め設定されている。
第2の処理例として、出力強度設定部233は、検出信号の強度と所定閾値との差に基づいて、低コヒーレンス光L0の新たな出力強度を設定する。
たとえば、強度判断部231の第1の処理例が適用される場合、出力強度設定部233は、検出信号の周波数成分の最小値が所定値未満であるときに、所定値から最小値を減算し、この差の値に基づいて新たな出力強度を設定する。この処理は、たとえば、差の値と増大量とを関連付ける情報を予め作成して記憶しておき、この情報に基づいて増大量を決定することにより行うことができる。また、最小値と差の値との関係から増大量を算出するようにしてもよい。
強度判断部231の第2の処理例が適用される場合、出力強度設定部233は、画素値の最大値が所定値未満であるときに、所定値から最大値を減算し、この差の値に基づいて新たな出力強度を設定する。この処理は、たとえば、差の値と増大量とを関連付ける情報を予め作成して記憶しておき、この情報に基づいて増大量を決定することにより行うことができる。また、最大値と差の値との関係から増大量を算出するようにしてもよい。
強度判断部231の第3の処理例が適用される場合、出力強度設定部233は、所定値以上の画素値を有する画素の個数が所定数未満であるときに、所定数から個数を減算し、この差の値に基づいて新たな出力強度を設定する。この処理は、たとえば、差の値と増大量とを関連付ける情報を予め作成して記憶しておき、この情報に基づいて増大量を決定することにより行うことができる。また、個数と差の値との関係から増大量を算出するようにしてもよい。
発光時間設定部234は、低コヒーレンス光源160による低コヒーレンス光L0の出力時間(発光時間)を設定する。発光時間設定部234は、たとえば、前述した出力強度の設定と同様にして発光時間を設定する。なお、出力強度の場合と同様に、人体に照射可能な最大光量を超えるような発光時間の設定は禁止される。この最大光量は、たとえば出力強度に応じて設定される。
走査速度設定部235は、信号光LSの走査速度を設定する。ここで、眼底Efを走査される信号光LSの速度(次元は距離/時間)として走査速度を定義することもできるし、隣接する走査点(後述)に信号光LSを移動させる時間間隔(つまり計測の時間間隔)として走査速度を定義することもできる。
走査速度設定部235は、他の設定内容を参照して走査速度を設定することができる。たとえば、走査速度設定部235は、出力強度設定部233により設定された出力強度を参照して走査速度を設定する。この処理は、たとえば、出力強度と走査速度とを関連付ける情報に基づいて行われる。走査速度は、たとえば、被検眼Eに照射される累積光量が安全な範囲に収まるように設定される。
また、走査速度設定部235は、発光時間設定部234により設定された発光時間を参照して走査速度を設定する。このとき、走査速度(計測の時間間隔)は、発光時間に同期されるように設定される。
走査位置設定部236は、信号光LSの走査位置を設定する。走査位置は、後述のように、走査点の位置として設定される(走査線についても走査点の配列により決定される)。
走査位置設定部236は、他の設定内容を参照して走査位置を設定することができる。たとえば、走査位置設定部236は、出力強度設定部233により設定された出力強度を参照して走査位置を設定する。この処理では、たとえば、被検眼Eに照射される累積光量が安全な範囲に収まるように走査点の個数を決定し、これらの走査点を等間隔で配列させることにより走査位置を設定する。
また、走査位置設定部236は、発光時間設定部234により設定された発光時間を参照して走査位置を設定する。この処理では、たとえば、眼球運動による位置ずれの影響を考慮して(予め)定めされた走査時間と、発光時間とに基づいて走査点の個数を決定し、これらの走査点を等間隔で配列させることにより走査位置を設定する。
蓄積時間設定部237は、CCD184による電荷の蓄積時間を設定する。以下、この処理の例を説明する。蓄積時間設定部237は、前述した出力強度の設定処理と同様に、予め設定された量だけ蓄積時間を増大させることもできるし、検出信号の強度と所定閾値との差に基づいて蓄積時間の増大量を演算することもできる。
なお、走査速度設定部235は、蓄積時間設定部237により設定された蓄積時間を参照して信号光LSの走査速度を設定することができる。また、走査位置設定部236は、設定された蓄積時間に基づいて信号光LSの走査位置を設定することができる。走査速度や走査位置は、蓄積時間に同期されるように設定される。
ここで、走査ユニット141、低コヒーレンス光源160及びCCD184の制御タイミングについて図7、図8を参照して説明する。ここで、図7に示すタイミングチャートは、制御内容を変更する前の制御タイミングを表す。図8に示すタイミングチャートは、変更後の制御内容を表す。この例では、変更の前後においてフレーム間隔は等しいものとする。
図7に示す制御タイミングでは、まず、時刻t1に、第1の走査点の計測を開始する。すなわち、時刻t1に、低コヒーレンス光源160を制御して低コヒーレンス光L0の出力を開始させると同時に、CCD184を制御して電荷の蓄積を開始させる。なお、これらの制御タイミングの間に僅かなズレがあってもよい。たとえば、低コヒーレンス光源160の制御の僅か前にCCD184を制御することにより、出力開始時の低コヒーレンス光L0を検出し損ねないように余裕を持たせることができる。
次に、時刻t2に、低コヒーレンス光源160を制御して低コヒーレンス光L0の出力を停止させる。
続いて、時刻t3に、CCD184を制御して電荷の蓄積を停止させる。なお、CCD184による電荷の蓄積は、実際的には時刻t2に終了しているが、当該制御タイミングにおいては、時刻t2の後の時刻t3に電荷の蓄積を停止させることで、出力停止直前の低コヒーレンス光L0を検出し損ねないように余裕を持たせている。以上で、第1の走査点の計測は終了となる。
次に、時刻t4〜時刻t5の間に、走査ユニット141を制御して信号光LSの照射位置を移動させる。それにより、信号光LSの照射位置が第2の走査点に移動する。
そして、時刻t6に、低コヒーレンス光L0の出力を開始させるとともに電荷の蓄積を開始させて、第2の走査点の計測を開始する。ここでも同様のタイミングで制御を行って第2の走査点の計測を行う。同様に、時刻t11には、第3の走査点の計測が開始される。この制御タイミングのフレーム間隔は、t(k+5)−tk(k=1、2、・・・)である。
このような制御タイミングで計測を実施して得られた検出信号の強度が所定閾値以下であったとする。これを受けて、制御設定部232は新たな制御タイミングを設定する。
制御設定部232は、低コヒーレンス光L0の発光時間を設定し、更に、この新たな発光時間に応じて信号光LSの走査速度を設定したものとする。図8に示す制御タイミングは、このようにして設定されたものである。
図8に示す制御タイミングでは、まず、変更前と同じ時刻t1に、第1の走査点の計測を開始する。すなわち、時刻t1に、低コヒーレンス光L0の出力を開始させるとともに電荷の蓄積を開始させる。なお、これらの制御タイミングのズレについても変更前と同様である。
次に、変更前と異なる時刻T2に、低コヒーレンス光源160を制御して低コヒーレンス光L0の出力を停止させる。ここで、T2>t2である。つまり、発光時間設定部234は、低コヒーレンス光L0の発光時間を、変更前よりも長く設定するので、T2−t1>t2−t1、すなわちT2>t2となる。
続いて、変更前と異なる時刻T3に、CCD184を制御して電荷の蓄積を停止させる。なお、電荷の蓄積は、実際的には時刻T2に終了しているが、時刻T2の後の時刻T3に電荷の蓄積を停止させることにより余裕を持たせている。変更後の蓄積時間T3−t1は、蓄積時間設定部237により、変更前の蓄積時間t3−t1よりも長く設定されている(つまりT3>t3)。ここで、変更前の蓄積時間t3が時刻T2よりも後に設定されていた場合には、蓄積時間を新たに設定しなくてもよい。以上で、第1の走査点の計測は終了となる。
次に、変更前と異なる時刻T4に、走査ユニット141を制御して信号光LSの照射位置の移動を開始させる。時刻T4は、時刻T2よりも後に、更には時刻T3よりも後に設定される。
続いて、変更前と同じ時刻t5に、走査ユニット141を制御して信号光LSの照射位置の移動を停止させる。それにより、信号光LSの照射位置が第2の走査点に移動する。
ここで、第1の走査点と第2の走査点との距離が同じであるとすると、変更後の移動時間t5−T4が、変更前の移動時間t5−t4よりも短いことを考慮すると(t5−T4<t5−t4)、変更後の走査速度は変更前よりも速くなければならない。走査速度設定部235は、この条件を満たすように、変更後の発光時間(及び変更後の蓄積時間)に基づいて、新たな走査速度を設定する。
次に、変更前と同じ時刻t6に、第2の走査点の計測を開始する。ここでも同様のタイミングで制御を行って第2の走査点の計測を行う。同様に、時刻t11には、第3の走査点の計測が開始される。
以上の例では、走査速度を新たに設定する場合を説明したが、走査位置を新たに設定する場合についても同様である。走査速度を変更しない場合には、発光時間等の延長に伴い、変更前の走査点のうちの幾つか(たとえば一つおき)を新たな走査点として設定したり、変更前の走査線のうちの幾つか(たとえば一つおき)を新たな走査線として設定したりできる。また、走査速度と走査位置の双方を変更するようにしてもよい。
また、低コヒーレンス光L0の出力強度が増大された場合についても、以上の例と同様に、その増大量に応じて、走査速度や走査位置や蓄積時間を新たに設定することが可能である。更に、出力強度の増大量に応じて発光時間を変更することも可能である。
データ加工部238は、画像データや検出信号を加工する。以下、データ加工部238が実行する処理の例を説明する。
第1の処理例として、データ加工部238は、眼底Ef上の(ほぼ)同じ位置を計測して得られた二枚以上の画像を重ね合わせた画像(重畳画像)を生成する。この重畳画像は、たとえば同じ走査線に沿った二枚以上の画像を重ね合わせたものである。
画像の重ね合わせ処理は、たとえば、次のようにして実行される。まず、必要に応じて、画像の位置合わせを行う。この処理は、たとえば、血管の断面や形態的な特徴部位(黄斑部等)などの特徴領域を各画像中から探索し、この特徴領域の位置を一致させることにより実行される。また、各画像が3次元画像の一部である場合には、眼底Efの深度方向に3次元画像を積算して得られる積算画像を用いて位置合わせを行うことができる(たとえば特開2007−130403号公報を参照)。このような位置合わせにより、二枚以上の画像が画素単位で対応付けられる。
画像の位置合わせが為されたら、対応付けられた二以上の画素の画素値(輝度値等)を足し合わせる。このとき、必要に応じ、画素値の和の値を、対応付けられた画素の個数(つまり重ね合わされる画像の枚数)で除算する。
このようにして得られた画素値を有する画素によって新たな画像データを生成する。この新たな画像データが、上記の重畳画像の画像データである。それにより、輝度にメリハリのついた重畳画像が得られる。
第2の処理例として、データ加工部238は、OCT画像に対して所定の画像処理を施す。この画像処理としては、たとえば、平均化処理やフィルタリング処理などがある。平均化処理は、画像における画素値の分布を平均化する処理である。たとえば、輝度画像に平均化処理を施すと、画像中の明るさの分布が均一化される。また、フィルタリング処理は、或る画素の画素値を、その周囲の画素の画素値に基づいて修正する処理である。このような画像処理を施すことで、画像の品質向上を図ることができる。
第3の処理例として、データ加工部238は、検出信号の振幅を増大させる信号処理を施す。この信号処理は、たとえば、検出信号に含まれるノイズを除去する処理である。これには、検出信号に含まれるノイズの一部を除去する処理、つまりノイズの低減処理も含まれる。ノイズが除去されて得られた新たな検出信号は画像形成部220に送られる。画像形成部220は、この新たな検出信号に基づくOCT画像(断層画像)を形成する。
以上に説明した画像処理部230は、マイクロプロセッサ201、RAM202、ROM203、ハードディスクドライブ204(制御プログラム204a)等を含んで構成される。
画像形成部220と画像処理部230(特にデータ加工部238)は、この発明の「画像形成手段」に含まれる。また、制御部210及び制御設定部232は、この発明の「制御手段」に含まれる。
(ユーザインターフェイス)
ユーザインターフェイス(User Interface;UI)240には、表示部240Aと操作部240Bが設けられている。表示部240Aは、ディスプレイ207等の表示デバイスにより構成される。また、操作部240Bは、キーボード205やマウス206などの入力デバイスや操作デバイスにより構成される。
〔信号光の走査及び画像処理について〕
信号光LSの走査態様及び画像処理の態様について、その一例を説明する。信号光LSは、走査ユニット141により走査される。より詳しくは、信号光LSは、制御部210がミラー駆動機構241、242を制御してガルバノミラー141A、141Bの反射面の向きを変更することにより走査される。
ガルバノミラー141Aは、信号光LSを水平方向(図1のx方向)に走査する。ガルバノミラー141Bは、信号光LS垂直方向(図1のy方向)に走査する。また、ガルバノミラー141A、141Bの双方を同時に動作させることで、xy平面上の任意方向に信号光LSを走査できる。
図9は、眼底Efの画像を形成するための信号光LSの走査態様の一例を表している。図9(A)は、信号光LSが被検眼Eに入射する方向から眼底Efを見た(つまり図1の−z方向から+z方向を見た)ときの、信号光LSの走査態様の一例を表す。また、図9(B)は、眼底Ef上の各走査線における走査点(計測位置)の配列態様の一例を表す。
図9(A)に示すように、信号光LSは、矩形の走査領域R内を走査される。走査領域R内には、x方向に沿った複数(m本)の走査線R1〜Rmが設定されている。走査線Ri(i=1〜m)は、y方向に配列されている。各走査線Riの方向(x方向)を「主走査方向」と呼び、それに直交する方向(y方向)を「副走査方向」と呼ぶ。
各走査線Ri上には、図9(B)に示すように、複数(n個)の走査点Ri1〜Rinが設定されている。なお、走査領域Rや走査線Riや走査点Rijの位置は、計測を行う前に適宜に設定される。
図9に示す走査を実行するために、制御部210は、まず、ガルバノミラー141A、141Bを制御し、眼底Efに対する信号光LSの入射目標を第1の走査線R1上の走査開始位置RS(走査点R11)に設定する。続いて、制御部210は、低コヒーレンス光源160を制御し、低コヒーレンス光L0をフラッシュ発光させて、走査開始位置RSに信号光LSを入射させる。CCD184は、この信号光LSの走査開始位置RSにおける反射光に基づく干渉光LCを受光して電荷を蓄積し、検出信号を生成する。
次に、制御部210は、ガルバノミラー141Aを制御して、信号光LSを主走査方向に走査して、その入射目標を走査点R12に設定し、低コヒーレンス光L0をフラッシュ発光させて走査点R12に信号光LSを入射させる。CCD184は、この信号光LSの走査点R12における反射光に基づく干渉光LCを受光して電荷を蓄積し、検出信号を生成する。
制御部210は、同様にして、信号光LSの入射目標を走査点R13、R14、・・・、R1(n−1)、R1nと順次移動させつつ、各走査点において低コヒーレンス光L0をフラッシュ発光させることにより、各走査点に対応する検出信号を生成させる。
第1の走査線R1の最後の走査点R1nにおける計測が終了したら、制御部210は、ガルバノミラー141A、141Bを同時に制御して、信号光LSの入射目標を、線換え走査rに沿って第2の走査線R2の最初の走査点R21まで移動させる。そして、制御部210は、この第2の走査線R2の各走査点R2j(j=1〜n)について同様の計測を実行させ、各走査点R2jに対応する検出信号をそれぞれ生成させる。
同様に、制御部210は、第3の走査線R3、・・・・、第m−1の走査線R(m−1)、第mの走査線Rmのそれぞれについて計測を行わせ、各走査点に対応する検出信号を生成させる。なお、走査線Rm上の符号REは、走査点Rmnに対応する走査終了位置である。
このようにして、制御部210は、走査領域R内のm×n個の走査点Rij(i=1〜m、j=1〜n)に対応するm×n個の検出信号を生成させる。走査点Rijに対応する検出信号をDijと表すことがある。
以上の制御において、制御部210は、ガルバノミラー141A、141Bを動作させるときに、各走査点Rijの位置情報(xy座標系における座標)を取得する。この位置情報(走査位置情報)は、OCT画像を形成するときなどに参照される。
次に、図9に示す走査が実施された場合における画像処理の例を説明する。
画像形成部220は、各走査線Ri(主走査方向)に沿った眼底Efの断層画像を形成する。また、画像処理部230は、画像形成部220により形成された断層画像に基づいて眼底Efの3次元画像を形成する。
断層画像の形成処理は、従来と同様に、2段階の演算処理を含んで構成される。第1段階では、各検出信号Dijに基づいて、走査点Rijにおける眼底Efの深度方向(図1に示すz方向)の画像を形成する。
第2段階では、走査点Ri1〜Rinにおける深度方向の画像を走査位置情報に基づいて配列させて、走査線Riに沿った断層画像Giを形成する。以上のような処理により、m個の断層画像G1〜Gmが得られる。
画像処理部230は、走査位置情報に基づいて断層画像G1〜Gmを配列させ、隣接する断層画像Gi、G(i+1)の間の画像を補間する補間処理などを行って、眼底Efの3次元画像を生成する。この3次元画像は、たとえば走査位置情報に基づく3次元座標系(x、y、z)により定義されている。
また、画像処理部230は、この3次元画像に基づいて、任意の断面における断層画像を形成できる。断面が指定されると、画像処理部230は、指定断面上の各走査点(及び/又は補間された深度方向の画像)の位置を特定し、各特定位置における深度方向の画像(及び/又は補間された深度方向の画像)を3次元画像から抽出し、抽出された複数の深度方向の画像を走査位置情報等に基づき配列させることにより、指定断面における断層画像を形成する。
なお、図10に示す画像Gmjは、走査線Rm上の走査点Rmjにおける深度方向の画像を表す。同様に、前述した第1段階の処理において形成される、走査点Rijにおける深度方向の画像を「画像Gij」と表す。
眼底観察装置1による信号光LSの走査態様は、上記のものに限定されるものではない。たとえば、信号光LSを水平方向(x方向)にのみ走査させたり、垂直方向(y方向)にのみ走査させたり、縦横1本ずつ十字型に走査させたり、放射状に走査させたり、円形状に走査させたり、同心円状に走査させたり、螺旋状に走査させたりできる。すなわち、前述のように、走査ユニット141は、信号光LSをx方向及びy方向にそれぞれ独立に走査できるように構成されているので、xy面上の任意の軌跡に沿って信号光LSを走査することが可能である。
[使用形態]
眼底観察装置1の使用形態について説明する。図11〜図13に示すフローチャートは、眼底観察装置1の使用形態の一例である。
まず、被検眼Eに対する光学系のアライメントを行う(S1)。アライメントは、従来の眼底カメラと同様にして行われる。たとえば、被検眼Eにアライメント輝点(図示せず)を投影してその状態を観察しつつ眼底カメラユニット1Aの位置を調整することによりアライメントを行う。
次に、参照ミラー174の位置を調整し、信号光と参照光との干渉状態を調整する(S2)。このとき、眼底Efの所望の深度位置の画像が明瞭になるように調整を行う。なお、参照ミラー174の位置調整は、操作部240Bを用いて手作業で行ってもよいし、自動的に行うようにしてもよい。
次に、眼底Efの画像を取得する(S3)。このとき、たとえば、図7のタイミングチャートに示す制御態様と、図9に示す走査態様とを適用して計測を行う。この画像は、当該計測条件の下に好適な画像が得られるか評価するためのものである(評価画像と呼ぶ)。主制御部211は、この評価画像を表示部240Aに表示させる(S4)。
強度判断部231は、干渉光LCの検出信号(周波数成分)又は評価画像に基づいて、検出信号の強度と所定閾値とを比較して大小関係を判断する(S5)。
〔検出信号の強度が所定閾値以上である場合〕
検出信号の強度が所定閾値以上であると判断された場合(S6;Y)、主制御部211は、計測条件が適当である旨の情報を表示部240Aに表示させる(S7)。この表示情報は、たとえば、OKマークや、所定のメッセージなどである。また、評価画像等を所定の色(たとえば青や緑)で表示させるようにしてもよい。また、音声情報を出力することもできる。
オペレータは、操作部240Bを用いて画像の取得を指示する(S8)。この指示は、たとえば、従来の眼底カメラと同様に、撮影ボタンを押下することで行う。主制御部211は、この指示を受けて、評価画像と同じ計測条件で計測を実施させ、画像を取得させる(S9)。そして、主制御部211は、この画像を表示部240Aに表示させる(S10)。以上で、この場合の処理は終了となる。この画像は、医師等による観察に供される。
〔検出信号の強度が所定閾値未満である場合〕
一方、検出信号の強度が所定閾値未満であると判断された場合(S6;N)、主制御部211は、計測条件が適当でない旨の情報を表示部240Aに表示させる(S11)。この表示情報は、たとえば、「信号が弱いです」等のメッセージや、信号強度を示す数値などである。また、評価画像等を所定の色(たとえば赤)で表示させるようにしてもよい。また、音声情報を出力することもできる。
また、制御設定部232は、新たな計測条件を設定する(S12)。このとき、図8のタイミングチャートに示す制御態様が設定されるものとする。なお、走査位置が新たに設定される場合には、図9の走査態様も変更される。ただし、一般に、走査線の配列態様は変更されない(走査線の本数については変更されることもある)。
主制御部211は、この新たな計測条件で計測を実施させ、画像を取得させる(S13)。更に、主制御部211は、この画像を表示部240Aに表示させる(S14)。
強度判断部231は、新たな計測条件で得られた検出信号(周波数成分)又は画像に基づいて、検出信号の強度と所定閾値とを比較して大小関係を判断する(S15)。
検出信号の強度が所定閾値以上であると判断された場合(S16;Y)、主制御部211は、計測条件が適当である旨の情報を表示部240Aに表示させる(S17)。
オペレータは、操作部240Bを用いて画像の取得を指示する(S18)。主制御部211は、この指示を受けて、当該計測条件で計測を実施させ、画像を取得させる(S19)。そして、主制御部211は、この画像を表示部240Aに表示させる(S20)。この画像は、医師等による観察に供される。
主制御部211は、当該計測条件(及び走査態様)を、当該被検者の患者情報とともに記憶部212に記憶させる(S21)。なお、これらの情報の記憶先は、他の記憶装置であってもよい。このように、計測条件等を記憶しておくことにより、将来の検査において当該計測条件等を自動的に再現できる。以上で、この場合の処理は終了となる。
一方、検出信号の強度が所定閾値未満であると判断された場合(S16;N)、主制御部211は、画像に加工を施すか否か選択させるための情報を表示部240Aに表示させる(S22)。
オペレータは、操作部240Bを操作して、加工を施すか否か選択する(S23)。加工を施さない場合(S23;N)、主制御部211は、好適な画像を取得できない旨の情報を表示部240Aに表示させる(S24)。以上で、この場合の処理は終了となる。
データの加工として、重畳画像を生成する場合について説明する(S23;Y)。この場合、ステップ22において、重畳する画像の枚数を設定することができる。また、制御設定部232は、必要に応じ、計測条件を新たに設定してもよい。
主制御部211は、低コヒーレンス光源160、走査ユニット141、CCD184等を制御し、所定枚数の画像を取得させる(S25)。データ加工部238は、これらの画像を重ね合わせて重畳画像を生成する(S26)。
主制御部211は、この重畳画像を表示部240Aに表示させる(S27)。また、主制御部211は、当該計測条件(及び走査態様)を、当該被検者の患者情報とともに記憶部212に記憶させる(S28)。以上で、この場合の処理は終了となる。
なお、データの加工として画像処理を行う場合、主制御部211は、新たな画像を取得させ、データ加工部238は、この新たな画像に画像処理を施す。
また、データの加工として検出信号の振幅を増大させる場合には、主制御部211は、新たな計測を実施させ、データ加工部238は、それにより得られた検出信号の振幅を増大させて新たな検出信号を生成し、画像形成部220は、この新たな検出信号に基づいて画像を形成する。
[作用・効果]
以上のような眼底観察装置1の作用及び効果について説明する。
眼底観察装置1は、低コヒーレンス光L0を信号光LSと参照光LRとに分割し、眼底Efを経由した信号光LSと参照ミラー174を経由した参照光LRとを重畳させて干渉光LRを生成し、干渉光LCを検出して検出信号を生成し、この検出信号に基づいて眼底Efの画像を形成する光画像計測装置として機能する。更に、眼底観察装置1は、干渉光LCの検出信号の強度が所定閾値以上であるか判断し、強度が所定閾値未満であると判断されたときに、干渉光LCの検出信号の強度を増大させるように制御を行う。
干渉光LCは、CCD184により検出される。CCD184は、干渉光LCを受光して電荷に変換し、電荷を蓄積して検出信号を生成する。制御部210は、CCD184による電荷の蓄積量を増大させるように制御を行うことにより検出信号の強度を増大させるように作用する。
特に、眼底観察装置1は、電荷の蓄積量を増大させるために、次のような制御を行う:(1)CCD184による電荷の蓄積時間を増大させる;(2)低コヒーレンス光L0の出力時間を増大させる;(3)低コヒーレンス光の出力強度を増大させる。なお、これらの制御内容の設定は、それぞれ単体で行ってもよいし、互いに連係させて行ってもよい。
また、検出信号の強度の判断処理には、次のようなものがある。第1の判断処理として、検出信号の周波数成分の強度のうち、最小値のものが所定値以上であるか判断することにより、検出信号の強度を判断する手法がある。この場合において、最小値が所定値未満であると判断された場合、当該最小値に対応する周波数成分が当該所定値以上になるように、干渉光LCの検出信号の強度を増大させることが望ましい。なお、そのように強度を増大させられないときには、前述のデータ加工を施すことができる。
第2の判断処理として、画像を構成する画素の画素値のうちの最大値が所定値以上であるか判断することにより、検出信号の強度を判断する手法がある。この場合において、最大値が所定値未満であると判断された場合、当該最大値に対応する画素の画素値が当該所定値以上になるように、干渉光LCの検出信号の強度を増大させることが望ましい。そのように強度を増大させられないときには、前述のデータ加工を施すことができる。
第3の判断処理として、画像を構成する画素のうち画素値が所定値以上である画素を特定し、これらの画素の個数が所定数以上であるか判断することにより、検出信号の強度を判断する手法がある。この場合において、この個数が当該所定数未満であると判断された場合、そのような画素の個数が当該所定数以上になるように、干渉光LCの検出信号の強度を増大させることが望ましい。そのように強度を増大させられないときには、前述のデータ加工を施すことができる。
また、眼底観察装置1は、新たな制御内容の設定後に得られた検出信号の強度が所定閾値以上であるか判断する。この新たな強度が所定閾値未満であると判断された場合、眼底観察装置1は、二以上の画像を重ね合わせて重畳画像を形成する。重畳画像は、元々の各画像よりも明瞭な画像となる。また、画像に対して所定の画像処理を施したり、検出信号の振幅を増大させる信号処理を施すなどして、画像の明瞭化を図ることができる。
このような眼底観察装置1によれば、干渉光LCの強度が低い場合であっても、干渉光LCの検出信号の強度を増大させることができるので、明瞭な画像を取得することができる。
なお、検出信号の強度を十分に増大させることができない場合には、重畳画像を形成したり、画像処理を施したり、検出信号の振幅を増大させるなどして、画像の明瞭化を図ることができる。
[変形例]
以上に説明した構成は、この発明に係る光画像計測装置を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形を適宜に施すことが可能である。
上記の実施形態では、低コヒーレンス光L0の出力強度や発光時間、信号光LSの走査速度や走査位置、CCD184の蓄積時間などの設定を自動的に行っているが、これらの設定を手作業で行えるように構成することができる。その場合、これらを設定するための画面を表示部240Aに表示させる。オペレータは、操作部240Bを制御して、所望の制御内容を手作業で設定することができる。なお、上記実施形態のように自動的に設定した後に、その設定内容を表示し、それを手作業で変更できるように構成することも可能である。
上記の実施形態では、干渉光の検出信号の強度を増大させても十分な強度にならないときに重畳画像を形成するようになっているが、それ以外の状況で重畳画像を形成するように構成することも可能である。
たとえば、評価画像に対応する検出信号の強度が所定閾値未満であると判断されたときに、二以上の画像を形成し、これらの画像を重ね合わせて重畳画像を形成することができる。このような構成によれば、検出信号の強度が十分でない場合であっても、画像の明瞭化を図ることができる。
また、上記の実施形態では、干渉光の検出信号の強度を増大させても十分な強度にならないときに所定の画像処理(平均化処理やフィルタリング処理等を施すようになっているが、それ以外の状況で画像処理を施すように構成することも可能である。
たとえば、評価画像に対応する検出信号の強度が所定閾値未満であると判断されたときに、画像(評価画像又は新たに取得された画像)に対して画像処理を施すことができる。このような構成によれば、検出信号の強度が十分でない場合であっても、画像の明瞭化を図ることができる。
また、上記の実施形態では、干渉光の検出信号の強度を増大させても十分な強度にならないときに検出信号の振幅を増大させる信号処理を行うようになっているが、それ以外の状況で当該信号処理を行うように構成することも可能である。
たとえば、評価画像に対応する検出信号の強度が所定閾値未満であると判断されたときに、検出信号(評価画像に対応する検出信号、又は、新たに取得された検出信号)に対して当該信号処理を行うことができる。このような構成によれば、検出信号の強度が十分でない場合であっても、画像の明瞭化を図ることができる。
上記の実施形態においては、参照ミラー174の位置を変更して信号光LSの光路と参照光LRの光路との光路長差を変更しているが、光路長差を変更する手法はこれに限定されるものではない。たとえば、被検眼Eに対して眼底カメラユニット1A及びOCTユニット150を一体的に移動させて信号光LSの光路長を変更することにより光路長差を変更することができる。また、特に被測定物体が生体でない場合には、被測定物体を深度方向(z方向)に移動させることにより光路長差を変更することもできる。
また、上記の実施形態では、眼底のOCT画像を取得する装置について説明したが、たとえば角膜等の被検眼の他の部位のOCT画像を取得可能な装置に対しても上記実施形態の構成を適用することが可能である。また、この発明は、眼以外の各種の被測定物体のOCT画像を計測する光画像計測装置に適用することも可能である。たとえば、この発明に係る光画像計測装置は、工学分野や生物学分野等の任意の分野に適用できる。
上記の実施形態における制御プログラム204aを、コンピュータのドライブ装置によって読み取り可能な任意の記録媒体に記憶させることができる。この記録媒体としては、たとえば、光ディスク、光磁気ディスク(CD−ROM/DVD−RAM/DVD−ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。また、ハードディスクドライブやメモリ等の記憶装置に記憶させることも可能である。更に、インターネットやLAN等のネットワークを通じてこのプログラムを送信することも可能である。
この発明に係る光画像計測装置として機能する眼底観察装置の実施形態の全体構成の一例を表す概略構成図である。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態における眼底カメラユニットに内蔵される走査ユニットの構成の一例を表す概略構成図である。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態におけるOCTユニットの構成の一例を表す概略構成図である。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態における演算制御装置のハードウェア構成の一例を表す概略ブロック図である。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態の制御系の構成の一例を表す概略ブロック図である。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態の制御系の構成の一例を表す概略ブロック図である。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態による制御のタイミングの一例を表すタイミングチャートである。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態による制御のタイミングの一例を表すタイミングチャートである。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態による信号光の走査態様の一例を表す概略図である。図9(A)は、被検眼に対する信号光の入射側から眼底を見たときの信号光の走査態様の一例を表している。また、図9(B)は、各走査線上の走査点の配列態様の一例を表している。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態による信号光の走査態様、及び、各走査線に沿って形成される断層画像の態様の一例を表す概略図である。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態の使用形態の一例を表すフローチャートである。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態の使用形態の一例を表すフローチャートである。 この発明に係る光画像計測装置として機能する眼底観察装置の実施形態の使用形態の一例を表すフローチャートである。
符号の説明
1 眼底観察装置(光画像計測装置)
1A 眼底カメラユニット
141 走査ユニット
150 OCTユニット
160 低コヒーレンス光源
174 参照ミラー
180 スペクトロメータ
184 CCD
200 演算制御装置
210 制御部
220 画像形成部
221 周波数成分演算部
230 画像処理部
231 強度判断部
232 制御設定部
233 出力強度設定部
234 発光時間設定部
235 走査速度設定部
236 走査位置設定部
237 蓄積時間設定部
238 データ加工部
240 ユーザインターフェイス

Claims (22)

  1. から出力された光を信号光と参照光とに分割し、被測定物体を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成する干渉光生成手段と、
    前記干渉光を検出して検出信号を生成する検出手段と、
    前記検出信号に基づいて前記被測定物体の評価画像を形成する画像形成手段と、
    前記評価画像が形成された後に、前記検出信号の強度が所定閾値以上であるか判断する判断手段と、
    前記強度が所定閾値未満であると判断されたときに、干渉光の検出信号の強度を増大させるように制御を行う制御手段と、
    を備え、
    前記画像形成手段は、強度が増大された検出信号に基づいて前記被測定物体の画像を形成する、
    ことを特徴とする光画像計測装置。
  2. 前記検出手段は、干渉光を受光して電荷に変換し、電荷を蓄積して検出信号を生成し、
    前記制御手段は、前記検出手段による電荷の蓄積量を増大させるように制御を行うことにより干渉光の検出信号の強度を増大させる、
    ことを特徴とする請求項1に記載の光画像計測装置。
  3. 前記制御手段は、前記検出手段を制御して電荷の蓄積時間を増大させることにより前記蓄積量を増大させる、
    ことを特徴とする請求項2に記載の光画像計測装置。
  4. 前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、
    前記制御手段は、前記走査手段を制御して、増大後の蓄積時間に応じた走査速度で信号光を走査させる、
    ことを特徴とする請求項3に記載の光画像計測装置。
  5. 前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、
    前記制御手段は、前記走査手段を制御して、増大後の蓄積時間に応じた個数の走査点に対して順次に信号光を照射させる、
    ことを特徴とする請求項3に記載の光画像計測装置。
  6. 前記制御手段は、前記光源を制御して光の出力時間を増大させることにより前記蓄積量を増大させる、
    ことを特徴とする請求項2に記載の光画像計測装置。
  7. 前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、
    前記制御手段は、前記走査手段を制御して、増大後の出力時間に応じた走査速度を求め、当該走査速度で信号光を走査させる、
    ことを特徴とする請求項6に記載の光画像計測装置。
  8. 前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、
    前記制御手段は、前記走査手段を制御して、増大後の出力時間に応じた走査点の個数を求め、当該個数の走査点に対して順次に信号光を照射させる、
    ことを特徴とする請求項6に記載の光画像計測装置。
  9. 前記制御手段は、前記光源を制御して光の出力強度を増大させることにより前記蓄積量を増大させる、
    ことを特徴とする請求項2に記載の光画像計測装置。
  10. 前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、
    前記制御手段は、前記走査手段を制御して、増大後の出力強度に応じた走査速度で信号光を走査させる、
    ことを特徴とする請求項9に記載の光画像計測装置。
  11. 前記干渉光生成手段は、前記被測定物体に対する信号光の照射位置を走査する走査手段を備え、
    前記制御手段は、前記走査手段を制御して、増大後の出力強度に応じた個数の走査点に対して順次に信号光を照射させる、
    ことを特徴とする請求項9に記載の光画像計測装置。
  12. 前記画像形成手段は、前記検出信号の複数の周波数成分を求める演算手段を備え、
    前記判断手段は、前記複数の周波数成分の強度のうちの最小値を特定し、前記最小値が所定値以上であるか判断することにより前記検出信号の強度を判断し、
    前記制御手段は、前記最小値が所定値未満であると判断されたときに、前記最小値に対応する周波数成分が所定値以上になるように干渉光の検出信号の強度を増大させる、
    ことを特徴とする請求項1〜請求項11のいずれか一項に記載の光画像計測装置。
  13. 前記判断手段は、前記画像の複数の画素の画素値のうちの最大値を特定し、前記最大値が所定値以上であるか判断することにより前記検出信号の強度を判断し、
    前記制御手段は、前記最大値が所定値未満であると判断されたときに、前記最大値に対応する画素の画素値が所定値以上になるように干渉光の検出信号の強度を増大させる、
    ことを特徴とする請求項1〜請求項11のいずれか一項に記載の光画像計測装置。
  14. 前記判断手段は、前記画像の複数の画素のうち画素値が所定値以上である画素を特定し、前記特定された画素の個数が所定数以上であるか判断することにより前記検出信号の強度を判断し、
    前記制御手段は、前記個数が所定数未満であると判断されたときに、画素値が所定値以上である画素の個数が所定数以上になるように干渉光の検出信号の強度を増大させる、
    ことを特徴とする請求項1〜請求項11のいずれか一項に記載の光画像計測装置。
  15. 前記判断手段は、制御手段による制御後の新たな干渉光の検出信号の強度が前記所定閾値以上であるか判断し、
    前記制御手段は、前記新たな強度が所定閾値未満であると判断されたときに、前記光源、前記検出手段及び前記画像形成手段を制御し、二以上の画像を形成させ、前記二以上の画像を重ね合わせて新たな画像を形成させる、
    ことを特徴とする請求項1〜請求項11のいずれか一項に記載の光画像計測装置。
  16. 前記判断手段は、制御手段による制御後の新たな検出信号の強度が前記所定閾値以上であるか判断し、
    前記制御手段は、前記新たな強度が所定閾値未満であると判断されたときに、前記画像形成手段を制御し、前記画像に対して画質を向上させるための所定の画像処理を施させる、
    ことを特徴とする請求項1〜請求項11のいずれか一項に記載の光画像計測装置。
  17. 前記判断手段は、制御手段による制御後の新たな干渉光の検出信号の強度が前記所定閾値以上であるか判断し、
    前記制御手段は、前記新たな強度が所定閾値未満であると判断されたときに、前記画像形成手段を制御し、前記検出信号の振幅を増大させて新たな検出信号を生成させ、前記新たな検出信号に基づく画像を形成させる、
    ことを特徴とする請求項1〜請求項11のいずれか一項に記載の光画像計測装置。
  18. から出力された光を信号光と参照光とに分割し、被測定物体を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成する干渉光生成手段と、
    前記干渉光を検出して検出信号を生成する検出手段と、
    前記検出信号に基づいて前記被測定物体の評価画像を形成する画像形成手段と、
    前記評価画像が形成された後に、前記検出信号の強度が所定閾値以上であるか判断する判断手段と、
    前記強度が所定閾値未満であると判断されたときに、前記光源、前記検出信号及び前記画像形成手段を制御し、二以上の画像を形成させ、前記二以上の画像を重ね合わせて新たな画像を形成させる制御手段と、
    を備えることを特徴とする光画像計測装置。
  19. から出力された光を信号光と参照光とに分割し、被測定物体を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成する干渉光生成手段と、
    前記干渉光を検出して検出信号を生成する検出手段と、
    前記検出信号に基づいて前記被測定物体の評価画像を形成する画像形成手段と、
    前記評価画像が形成された後に、前記検出信号の強度が所定閾値以上であるか判断する判断手段と、
    前記強度が所定閾値未満であると判断されたときに、前記画像形成手段を制御し、前記画像に対して画質を向上させるための所定の画像処理を施させる制御手段と、
    を備えることを特徴とする光画像計測装置。
  20. 前記所定の画像処理は、前記画像における画素値の分布を平均化する平均化処理、又は、前記画像の画素について、周囲の画素の画素値を基に画素値を修正するフィルタリング処理である、
    ことを特徴とする請求項16又は請求項19に記載の光画像計測装置。
  21. から出力された光を信号光と参照光とに分割し、被測定物体を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成する干渉光生成手段と、
    前記干渉光を検出して検出信号を生成する検出手段と、
    を有し、前記検出信号に基づいて前記被測定物体の画像を形成する画像形成手段と、
    前記検出信号の強度が所定閾値以上であるか判断する判断手段と、
    前記強度が所定閾値未満であると判断されたときに、前記画像形成手段を制御し、前記検出信号の振幅を増大させて新たな検出信号を生成させ、前記新たな検出信号に基づく画像を形成させる制御手段と、
    を備えることを特徴とする光画像計測装置。
  22. 前記画像形成手段は、前記検出信号に含まれるノイズを除去することにより前記新たな検出信号を生成させる、
    ことを特徴とする請求項17又は請求項21に記載の光画像計測装置。
JP2007210636A 2007-08-13 2007-08-13 光画像計測装置 Active JP5117787B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007210636A JP5117787B2 (ja) 2007-08-13 2007-08-13 光画像計測装置
PCT/JP2008/002077 WO2009022452A1 (ja) 2007-08-13 2008-08-01 光画像計測装置
EP08790341.5A EP2177896B1 (en) 2007-08-13 2008-08-01 Optical image measuring device
US12/733,174 US20100157311A1 (en) 2007-08-13 2008-08-01 Optical image measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007210636A JP5117787B2 (ja) 2007-08-13 2007-08-13 光画像計測装置

Publications (2)

Publication Number Publication Date
JP2009042197A JP2009042197A (ja) 2009-02-26
JP5117787B2 true JP5117787B2 (ja) 2013-01-16

Family

ID=40350510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210636A Active JP5117787B2 (ja) 2007-08-13 2007-08-13 光画像計測装置

Country Status (4)

Country Link
US (1) US20100157311A1 (ja)
EP (1) EP2177896B1 (ja)
JP (1) JP5117787B2 (ja)
WO (1) WO2009022452A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706506B2 (ja) * 2009-04-15 2015-04-22 株式会社トプコン 眼科装置
JP5627260B2 (ja) * 2009-05-22 2014-11-19 キヤノン株式会社 撮像装置および撮像方法
JP5306269B2 (ja) 2009-06-25 2013-10-02 キヤノン株式会社 光干渉断層法を用いる撮像装置及び撮像方法
JP5726238B2 (ja) * 2009-06-25 2015-05-27 キヤノン株式会社 撮像装置及び撮像方法
JP5473429B2 (ja) 2009-06-25 2014-04-16 キヤノン株式会社 眼底撮像装置及びその制御方法
JP5801577B2 (ja) * 2010-03-25 2015-10-28 キヤノン株式会社 光断層撮像装置及び光断層撮像装置の制御方法
US8892398B2 (en) * 2010-04-21 2014-11-18 Tesa Sa Optical measurement method and apparatus
WO2012029225A1 (ja) * 2010-09-03 2012-03-08 富士電機株式会社 光源装置
JP5220208B2 (ja) * 2011-03-31 2013-06-26 キヤノン株式会社 制御装置、撮像制御方法、およびプログラム
CN102252621B (zh) * 2011-05-11 2012-11-28 谭国清 书写字迹鉴别方法
JP6023406B2 (ja) * 2011-06-29 2016-11-09 キヤノン株式会社 眼科装置、評価方法および当該方法を実行するプログラム
JP6057567B2 (ja) 2011-07-14 2017-01-11 キヤノン株式会社 撮像制御装置、眼科撮像装置、撮像制御方法及びプログラム
US9778018B2 (en) * 2014-02-14 2017-10-03 Carl Zeiss Meditec, Inc. Swept source interferometric imaging systems and methods
JP6490519B2 (ja) * 2015-06-30 2019-03-27 株式会社トプコン 眼科用顕微鏡システム
JP6632285B2 (ja) * 2015-09-17 2020-01-22 キヤノン株式会社 眼科撮影装置及びその制御方法、並びに、プログラム
JP6294423B2 (ja) * 2016-09-08 2018-03-14 株式会社トーメーコーポレーション 眼科装置
JP7195769B2 (ja) * 2018-05-24 2022-12-26 キヤノン株式会社 撮影装置及びその作動方法
JP6732870B2 (ja) * 2018-12-19 2020-07-29 キヤノン株式会社 撮像装置
JP7114655B2 (ja) * 2020-07-09 2022-08-08 キヤノン株式会社 撮像装置
JPWO2023149296A1 (ja) * 2022-02-07 2023-08-10
CN116840808A (zh) * 2022-03-24 2023-10-03 深圳市速腾聚创科技有限公司 激光雷达回波信号处理方法、装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267631A (ja) * 1997-03-26 1998-10-09 Kowa Co 光学測定装置
DE19814057B4 (de) 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Anordnung zur optischen Kohärenztomographie und Kohärenztopographie
JP2002139421A (ja) 2000-11-01 2002-05-17 Fuji Photo Film Co Ltd 光断層画像取得装置
US9897538B2 (en) * 2001-04-30 2018-02-20 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
DE10128219A1 (de) 2001-06-11 2002-12-12 Zeiss Carl Jena Gmbh Anordnungen für Kohärenz-topographisches Ray Tracing am Auge
US7355716B2 (en) * 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7347548B2 (en) * 2003-05-01 2008-03-25 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
JP4522724B2 (ja) * 2004-03-16 2010-08-11 株式会社トプコン 光画像計測装置
JP4409332B2 (ja) * 2004-03-30 2010-02-03 株式会社トプコン 光画像計測装置
JP4409331B2 (ja) * 2004-03-30 2010-02-03 株式会社トプコン 光画像計測装置
GB0415766D0 (en) * 2004-07-14 2004-08-18 Taylor Hobson Ltd Apparatus for and a method of determining a characteristic of a layer or layers
JP5215664B2 (ja) * 2004-09-10 2013-06-19 ザ ジェネラル ホスピタル コーポレイション 光学コヒーレンス撮像のシステムおよび方法
JP4597744B2 (ja) 2004-11-08 2010-12-15 株式会社トプコン 光画像計測装置及び光画像計測方法
JP4804820B2 (ja) 2005-07-15 2011-11-02 サンテック株式会社 光断層画像表示システム
JP4850495B2 (ja) 2005-10-12 2012-01-11 株式会社トプコン 眼底観察装置及び眼底観察プログラム
JP4837982B2 (ja) * 2005-11-30 2011-12-14 株式会社ニデック 眼科装置
EP1994361B1 (en) * 2006-01-19 2016-07-27 Optovue, Inc. A fourier-domain optical coherence tomography imager
EP1962051A1 (de) * 2007-02-21 2008-08-27 Agfa HealthCare N.V. System und Verfahren zur optischen Kohärenztomographie
JP5473265B2 (ja) * 2008-07-09 2014-04-16 キヤノン株式会社 多層構造計測方法および多層構造計測装置

Also Published As

Publication number Publication date
EP2177896A4 (en) 2015-04-22
US20100157311A1 (en) 2010-06-24
EP2177896A1 (en) 2010-04-21
JP2009042197A (ja) 2009-02-26
WO2009022452A1 (ja) 2009-02-19
EP2177896B1 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP5117787B2 (ja) 光画像計測装置
JP4940070B2 (ja) 眼底観察装置、眼科画像処理装置及びプログラム
JP4971863B2 (ja) 光画像計測装置
JP4971864B2 (ja) 光画像計測装置及びそれを制御するプログラム
JP4896794B2 (ja) 光画像計測装置、それを制御するプログラム及び光画像計測方法
JP4996918B2 (ja) 光画像計測装置及び光画像計測装置を制御するプログラム
JP5523658B2 (ja) 光画像計測装置
JP4940069B2 (ja) 眼底観察装置、眼底画像処理装置及びプログラム
JP5101975B2 (ja) 眼底観察装置及び眼底画像処理装置
JP4996917B2 (ja) 光画像計測装置及び光画像計測装置を制御するプログラム
JP5089940B2 (ja) 眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラム
JP4921201B2 (ja) 光画像計測装置及び光画像計測装置を制御するプログラム
JP5138977B2 (ja) 光画像計測装置
JP4869756B2 (ja) 眼底観察装置
JP4823693B2 (ja) 光画像計測装置
JP5367047B2 (ja) 眼底観察装置
JP5415812B2 (ja) 光画像計測装置及びその制御方法
JP2009183332A (ja) 眼底観察装置、眼底画像処理装置及びプログラム
JP2013116366A (ja) 眼科情報処理装置及び眼科検査装置
JP2007181631A (ja) 眼底観察装置
JP4994911B2 (ja) 光画像計測装置
JP2007181632A (ja) 眼底観察装置
JP5209143B2 (ja) 眼底観察装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Ref document number: 5117787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250