JP5113671B2 - 動電型振動計 - Google Patents

動電型振動計 Download PDF

Info

Publication number
JP5113671B2
JP5113671B2 JP2008215204A JP2008215204A JP5113671B2 JP 5113671 B2 JP5113671 B2 JP 5113671B2 JP 2008215204 A JP2008215204 A JP 2008215204A JP 2008215204 A JP2008215204 A JP 2008215204A JP 5113671 B2 JP5113671 B2 JP 5113671B2
Authority
JP
Japan
Prior art keywords
displacement
vibrator
feedback
electrodynamic
vibrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008215204A
Other languages
English (en)
Other versions
JP2010048751A (ja
Inventor
充 小田
敬英 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2008215204A priority Critical patent/JP5113671B2/ja
Publication of JP2010048751A publication Critical patent/JP2010048751A/ja
Application granted granted Critical
Publication of JP5113671B2 publication Critical patent/JP5113671B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、動電型振動計に関する。
微小地震や地盤の常時微動を観測するための動電型振動計(地震計)においては、長周期、すなわち、振動子の固有振動数が低い状態における速度観測の要求が高まっている。
振動子の固有振動数を低くするには、振動子の支持バネのバネ定数を低下させることや、振動子の質量を増加させることが有効である。
そこで、バネ定数を低下させる方法として、振動子の両端に強磁性体を設け、コイルに起電力を発生させる磁石から漏洩する磁束によって、強磁性体に生じる力を支持バネの負の復元力として利用したものが知られている(例えば、特許文献1参照)。
また、支持バネに代えて、自然周期を可変できる磁気バネ、例えば、ソレノイドコイル中の磁場軸に平行に円形棒磁石を挿入してバネポテンシャルを実現する機構等によって、弱い復元力を加え、長周期の垂直又は水平動を検出可能な地震計を実現する手法が知られている(例えば、特許文献2参照)。
さらに、振り子を磁気浮上機構で支持するとともに、弱いバネ機構としてX型ヒンジを用いて、X型ヒンジに対する振り子の錘の負荷をごく僅かとすることを可能にし、X型ヒンジを弱い板バネで構成できるものが知られている(例えば、特許文献3参照)。
特開平9−325067号公報 実開2002−357665号公報 特開2004−170215号公報
しかしながら、上記特許文献1〜3記載の発明によって長周期化(低固有振動数化)は可能となっているが、何れの発明も代替的なバネ機構を別途備えることによりバネ定数を低下させ、固有振動数を低くするというものであるので、そのバネ機構の構造の複雑さ等に起因する振動計の大型化や高コスト化を惹き起こすおそれがあるという問題があった。
本発明の課題は、振動計の大型化等を伴うことなく、高精度に長周期の速度計測が可能な動電型振動計を提供することにある。
以上の課題を解決するため、請求項1に記載の発明は、
ケースと、前記ケース内にバネ部材で支持される振動子と、前記ケース内に磁界を形成する磁界形成部と、前記磁界形成部により形成された磁界内に設けられ、前記振動子の移動時に発生する起電力を検出する検出コイルと、を備えた動電型振動計において、
前記ケース内に設けられた固定電極と前記固定電極に対向して前記振動子に設けられた可動電極との間の静電容量変化量により前記振動子の変位を検出する変位検出部と、
前記磁界内に設けられ、電流を流すことで前記振動子に駆動力を付与する変位帰還コイルと、
前記変位検出部により検出された変位に基づく正帰還ゲインに応じた電流を前記変位帰還コイルに供給する正帰還手段と、を備えることを特徴とする。
請求項2に記載の発明は、請求項1記載の動電型振動計において、
前記磁界内に設けられ、電流を流すことで前記振動子に駆動力を付与する速度帰還コイルと、前記変位検出部により検出された変位を微分した速度に基づく負帰還ゲインに応じた電流を前記速度帰還コイルに供給する負帰還手段と、を備えることを特徴とする。
請求項3に記載の発明は、請求項1又は2に記載の動電型振動計において、
前記磁界内に設けられ、電流を流すことで前記振動子に駆動力を付与する補正コイルと、前記変位検出部により検出された変位を、完全積分器を介して積分した積分値に基づく負帰還ゲインに応じた電流を、前記補正コイルに供給することでオフセット補正を行うオフセット補正手段と、を備えることを特徴とする。
本発明によれば、動電型振動計において、静電容量変化量により振動子の変位を検出する変位検出部と、磁界内に設けられ、電流を流すことで振動子に駆動力を付与する変位帰還コイルと、変位検出部により検出された変位に基づく正帰還ゲインに応じた電流を変位帰還コイルに供給する正帰還手段と、が備えられている。
そのため、上記振動系における復元力F=kx(k:バネ定数、x:振動子の変位)とは逆方向(振動子の変位を励起する方向)に、振動子の変位に比例した力(例えば、所定の比例定数をAとして、−Axなる力)を帰還させることができるため、等価的にバネ定数がk−Aという小さな値となり、そのバネ定数の平方根に比例する値を持つ固有振動数を小さくすることができるので、周期を長周期化することが可能となる。
つまり、本発明にかかる動電型振動計は、従来の構造に比べて振動計の大型化等を伴うことなく、高精度に長周期の速度計測が可能な動電型振動計であるといえる。
以下、図面を参照して、本発明である動電型振動計の最良の形態について詳細に説明する。
図1は、本発明に係る動電型振動計100の検出部10の概略構成図であり、図2は、本発明に係る動電型振動計100の要部構成を示すブロック図であり、図3は、本発明に係る変位正帰還及び速度負帰還の帰還制御系の動作機構を示すブロック図である。
図1〜図3に示すように、動電型振動計100は、検出部10と、制御部20と、を備えて構成される。
検出部10は、ケース1と、ケース1内に一端が固定されたバネ部材2と、バネ部材2の他端で支持され、外乱によって振動する振動子3と、ケース1内に固定され、ケース1に磁界を形成する磁界形成部としてのマグネット4と、振動子3と同心状に巻回された複数のコイルからなるコイル部5と、可動極板7bと固定極板7aから構成され、コンデンサとして機能するコンデンサギャップ7と、等を備えて構成される。
ケース1は、有底円筒形状であり、例えば、非磁性体であるアルミニウム、チタン等の金属で形成されている。
バネ部材2は、例えば、円板状のダイアフラムスプリングで形成されており、一端がケース1に固定され、他端側で振動子3を支持しており、振動子3の振動方向の両端にそれぞれ1組、合計2組使用されている。
振動子3は、バネ部材2で支持されており、外乱によって所定の固有振動数で振動する。
マグネット4は、例えば、ケース1の上部と下部のそれぞれに配置された環状の磁性部材で形成され、振動子3と同心上に配置されており、ケース1内に磁界を形成している。
コイル部5は、ケース1の上部と下部のそれぞれに配置され、図2に示すように、例えば、検出コイル5aと、変位帰還コイル5bと、速度帰還コイル5cと、補正コイル5dと、テストコイル5eと、等の振動子3と同心状に巻回された複数のコイルを含んで構成されている。
検出コイル5aは、振動子3と同心状に巻回されており、振動子3の振動時にマグネット4の形成する磁界により起電力を発生させ、後述の起電力検出部22によりその起電力を検出できるようになっている。
変位帰還コイル5bは、振動子3と同心状に巻回されており、後述の制御部20の正帰還制御部23により所定量の電流が流されると、その電流に応じた駆動力(電磁気力)を振動子3に付与することが出来る。
速度帰還コイル5cは、振動子3と同心状に巻回されており、後述の制御部20の負帰還制御部24により所定量の電流が流されると、その電流に応じた駆動力(電磁気力)を振動子3に付与することが出来る。
補正コイル5dは、振動子3と同心状に巻回されており、後述の制御部20のオフセット補正制御部25により所定量の電流が流されると、その電流に応じた駆動力(電磁気力)を振動子3に付与することが出来る。
テストコイル5eは、振動子3と同心状に巻回されており、予め定められた振動パターンの電流を流すことにより、振動子3が正常に稼動するか否かをテストすることができる。
コンデンサギャップ7は、振動子3の端部に取り付けられた可動極板7bと、可動極板7bと対向して配置され、ケース1に設けられた固定極板7aと、から構成され、後述の変位検出部21により、振動子3の振動に応じて変化する、可動極板7bと固定極板7a間の静電容量変化量を計測することによって、振動子3の変位を検出することが出来る。
制御部20は、変位検出部21と、起電力検出部22と、正帰還制御部23と、負帰還制御部24と、オフセット補正制御部25と、等を備えて構成される。
変位検出部21は、上述したコンデンサギャップ7と、このコンデンサギャップ7から出力される静電容量変化量から振動子3の変位を計測するための所定の回路と、を備えており、振動子3の変位を、所定の変位検出感度β[V/m]に比例した電圧値(変位信号)として検出できるように構成されている。
起電力検出部22は、例えば、電圧増幅器や電圧検出回路等を含んで構成されており、コイル部5に接続された出力端子(図示省略)を介して、検出コイル5aに誘起される誘導起電力が検出されるようになっている。
正帰還制御部23は、例えば、帰還制御用の回路やサーボアンプ等から構成されている。
具体的には、正帰還制御部23は、変位検出部21により検出された電圧値(変位信号)に基づいて、変位帰還ゲインA(正帰還ゲイン)に応じた電流が、コイル部5の変位帰還コイル5bに流れるようにサーボアンプを駆動制御し、振動子3に変位に応じた駆動力(電磁気力)を付与することが出来る。
負帰還制御部24は、例えば、帰還制御用の回路やサーボアンプや微分器から構成されている。
具体的には、負帰還制御部24は、変位検出部21により検出された電圧値(変位信号)を、微分器を介して微分することにより速度信号に変換し、変換後の速度信号に基づいて、速度帰還ゲインC(負帰還ゲイン)に応じた電流が、コイル部5の速度帰還コイル5cに流れるようにサーボアンプを駆動制御し、振動子3に速度に応じた駆動力(電磁気力)を付与することが出来る。
オフセット補正制御部25は、例えば、帰還制御用の回路やサーボアンプや完全積分器等から構成されている。
具体的には、オフセット補正制御部25は、変位検出部21により検出された電圧値(変位信号)を、完全積分器(例えば、後述の図7の1/τs)を介して変換された値に基づいて、変位帰還感度K(負帰還ゲイン)に応じた電流が、コイル部5の補正コイル5dに流れるようにサーボアンプを駆動制御し、振動子3に変位に応じた駆動力(電磁気力)を付与することが出来る。
次に、動電型振動計100による速度の検出について説明する。
まず、起電力検出部22により検出され、コイル部5の検出コイル5aに誘起される誘導起電力Eは、磁束密度をB[T]、検出コイル5aのコイル長をL[m]、振動子3のケース1に対する相対変位をx(相対速度x(・))とすると、次の式(1)で表される。
Figure 0005113671
また、相対変位x(相対速度x(・))と、ケース1の空間に対する絶対変位y(絶対速度y(・))との間には、振動子3に接続されたダンパ(図示省略)のダンピング係数をζ、振動子3の固有振動数をωとすると、次の式(2)の関係が成り立つ。
Figure 0005113671
そのため、上記(1)(2)より、起電力検出部22により誘導起電力Eを検出することによって、ケース1の空間に対する絶対速度y(・)を検出することが出来る。
次いで、図3を用いて、動電型振動計100による固有周期の長周期化について説明する。
図3に示すように、本発明に係る帰還制御系の動作機構は、B1からB4で構成されている。
B1では、絶対速度y(・)を微分器を介して絶対加速度y(・・)とし、それに振動子3の質量M[kg]を乗じた力を点P1に付与している。
B2では、点P1に作用する力に次式(3)のサイズモ系の伝達関数G(s)を乗じて得られる相対変位xを、変位検出部21により、変位検出感度β[V/m]を乗じて、相対変位xに比例する電圧値eとして出力している。
Figure 0005113671
B3では、変位帰還ゲイン(正帰還ゲイン)をA、変位帰還感度をKd[N/A]として、正帰還制御部23により、B2にて出力される振動子3の相対変位xに応じた電圧値eを、変位帰還コイル5bの抵抗(コイル抵抗値Rd[Ω])で除した電流に応じた力として、点P1に正帰還させている。
つまり、バネ部材2による復元力と逆方向に、変位に比例した力(変位を励起する力)を振動子3に及ぼしていることになるため、B3によって低固有振動数化(等価的なバネ定数の低下)を図ることが可能となる。
そのため、このB2とB3で形成されるループの伝達関数G(s)は次式(4)のように表される。
Figure 0005113671
B4では、速度帰還ゲイン(負帰還ゲイン)をC、速度帰還感度をKv[N/A]として、負帰還制御部23により、B2にて出力される振動子3の相対変位xに応じた電圧eを、微分器を介して相対速度x(・)とするとともに、速度帰還コイル5cの抵抗(コイル抵抗値Rv[Ω])で除した電流に応じた力として、点P1に負帰還させている。
つまり、振動子3に接続されたダンパ(図示省略)による吸振力とは逆方向に、速度に比例した力(振動を励起する力)を振動子3に及ぼしていることになるため、B4によって、B3がもたらす低固有振動数化による特性低下の改善を図っている。
そのため、このB2とB3とB4で形成されるループの伝達関数G(s)は次式(5)のように表される。
Figure 0005113671
以上より、帰還制御系全体の伝達関数G(s)は次式(6)のように表され
る。
Figure 0005113671
なお、式(6)の安定条件は、
Figure 0005113671
である。
一例として、上記式(6)について、ζ=0.707、ω=12.566[rad/s]、M=0.047[kg]、k=0.28[N/A]、k=11.536[N/A]、β=0.558[V/μm]、R=4[Ω]、R=1100[Ω]、とした場合に、A=0、C=0の時(つまり、変位正帰還及び速度負帰還を行わない場合)の振動数特性が図4に、A=0.0001898と仮定して、変位正帰還のみを行った時の振動数特性が図5に、A=0.0001898、C=0.002と仮定して、変位正帰還及び速度負帰還を行った時の振動数特性が、図6に示される。
図4より、変位正帰還及び速度負帰還を行わない状態における等価的な固有振動数(ゲインがピークに達する位置における振動数)ωは2.0Hzである。
そして、この状態から、所定の変位帰還ゲインA=0.0001898の下に変位正帰還を行うことにより、図5に示すように、等価的な固有振動数ωは0.0671Hzにまで低下していることがわかる。
さらに、この状態から、所定の速度帰還ゲインC=0.002の下に速度負帰還を行うことにより、等価的な固有振動数ω(=0.0671Hz)のゲインから−3dBまでを有意な帯域と仮定すると、図6に示すように、図5に比べ、ゲイン自体は低下しているが、低域側、高域側ともに、有意な帯域は伸張していることが分かる。
つまり、変位正帰還を行うことにより、等価的な固有振動数(等価的なバネ定数)を低下させることができるので、振動観測における長周期化を実現することが出来る。さらに、変位正帰還とともに速度負帰還を行うことにより、感度(ゲイン)自体は若干低下することとなるが、等価的な固有振動数が有意となる帯域(振動観測が可能な帯域)を大きく伸張することが可能となる。
次いで、図7を用いて、動電型振動計100のオフセット補正及び傾斜角の計測について説明する。
例えば、動電型振動計100を水平/鉛直方向に設置する場合、完全に水平/鉛直な状態にして設置することは困難であり、傾斜角θだけ傾斜した状態で設置される。この場合、振動子3には、傾斜方向にMg×sinθなる重力の分力が作用するため、振動子3の中立位置は、傾斜方向にずれる。このずれた位置から中立位置へと引き戻すように、バネ部材2の復元力が作用するが、上述の変位正帰還の影響により、等価的にバネ部材2のバネ定数が低下しているため、振動子3をもとの中立位置まで引き戻せない場合が考えられる。そのため、完全積分器を介したオフセット補正による変位負帰還を行うことによって、変位正帰還の影響を打ち消す(復元力を高める)ことが考えられる。
そのため、例えば、図7に示すようなオフセット補正による帰還制御系を用いることが考えられるが、図7に示されるように、上記制御系においては傾斜角θを入力値としているため、B11からB13で構成されるような帰還制御系の動作機構を用いることで、オフセット補正を実行するとともに、傾斜角の計測も可能となる(傾斜計としての機能も副次的に備えている)。
ここで、動電型振動計100の傾斜角θ[rad]が微小な範囲では、sin(θ) ≒θが成立することを考慮して、B11では、θに振動子3の重力Mg[N]を乗じた、振動子3に作用する傾斜方向の力Mgθを点P2に付与している。
B12では、点P2に作用する力を、上述の変位正帰還及び速度負帰還を付与した帰還制御系により導出される、等価的なバネ定数kで除して、変位検出感度β[V/m]を乗じて変位を取得し、その変位に時定数をτ[sec]とする完全積分器を介して積分して、電圧値eを出力している。
B13では、オフセット補正の変位帰還感度をK[N/A]として、電圧値eを補正コイル5dの抵抗(コイル抵抗値R[Ω])で除した電流に応じた力を点P2に負帰還している。
そのため、B11からB13で形成される傾斜計としての伝達関数H(s)は次式(8)のように表される。
Figure 0005113671
一例として、上記式(8)について、M=0.047[kg]、β=1.139[V/m]、R=6.1[Ω]、k=1.776×0.0001[N/m]、τ=44[sec]、K=11.948[N/A]、とした場合、傾斜計としての静的感度は1.09[mV/sec]となり、振動計測器100が傾斜計としても機能することがわかる。
次いで、テストコイル5eに、ある一定の電圧値を入力した場合の、動電型振動計100の出力特性を図示したものを図8と図9に示す。
図8は、変位正帰還、速度負帰還、オフセット補正を一切行わなかった場合における、動電型振動計100の出力特性(横軸:振動数(Hz)、縦軸:加速度ゲイン(dB)、位相(度))を示している。ここで、動電型振動計100の固有振動数3Hz付近で加速度ゲイン(dB)のピークを迎え、それより低い振動数域において、加速度ゲイン(dB)が平坦な特性を示していることにより、この帯域では加速度計として機能することがわかる。また動電型振動計100の固有振動数3Hz付近で加速度ゲイン(dB)のピークより高い振動数において、2次系で加速度ゲイン(dB)が減衰していくことより、この帯域では変位計としての一般特性が表れていることがわかる。
一方で、図9は、変位正帰還と速度負帰還を行い、オフセット補正を行わなかった場合における、動電型振動計100の出力特性(横軸:振動数(Hz)、縦軸:速度ゲイン(dB)、位相(度))を示している。速度ゲイン(dB)が平坦な特性を示している領域において、振動数が1Hzにおける速度ゲイン(dB)を基準値とし、その基準値より上下3dBを速度計としての有用な帯域と仮定すると、振動数が0.09Hz〜9.1Hz程度の帯域において、動電型振動計100が速度計として機能することがわかる。
以上のように、本発明に係る動電型振動計100は、コンデンサギャップ7の静電容量変化量により振動子3の変位を検出する変位検出部21と、マグネット4の形成する磁界内に設けられ、電流を流すことで振動子3に駆動力を付与する変位帰還コイル5bと、変位検出部21により検出された変位に基づく、変位帰還ゲインに応じた電流を変位帰還コイル5bに供給する正帰還制御部23と、が備えられている。
したがって、動電型振動計100の振動系における復元力とは逆方向(振動子3の変位を励起する方向)に、変位検出部21により検出された変位に基づく駆動力が帰還するように制御されるため、等価的にバネ定数が小さな値となり、そのバネ定数の平方根に比例する値を持つ固有振動数を小さくすることができるので、振動子3の振動周期を長周期化することが可能となる。
つまり、振動計の大型化等を伴うことなく、高精度に長周期の速度計測が可能な動電型振動計であるといえる。
また、本発明に係る動電型振動計100は、マグネット4の形成する磁界内に設けられ、電流を流すことで振動子3に駆動力を付与する速度帰還コイル5cと、変位検出部21により検出された変位を微分した速度に基づく、速度帰還ゲイン(負帰還ゲイン)に応じた電流を速度帰還コイル5cに供給する負帰還制御部24と、を備えている。
つまり、上述の変位正帰還に加えて、速度負帰還を行うことにより、動電型振動計100の速度計測における出力特性(感度)自体は、変位正帰還のみを行った場合に比べて若干低下することとなるが、等価的な固有振動数が有意となる帯域(振動観測が可能な帯域)を大きく伸張することが可能となる。
また、本発明に係る動電型振動計100は、マグネット4が形成する磁界内に設けられ、電流を流すことで振動子3に駆動力を付与する補正コイル5dと、コンデンサギャップ7により検出された変位に、完全積分器を介して積分した値に基づく負帰還ゲインに応じた電流を、補正コイル5dに供給することでオフセット補正を行うオフセット補正制御部25と、を備えている。
つまり、動電型振動計100を水平/鉛直方向に設置する場合、設置時に動電型振動計100が傾斜し、重力の影響によって振動子3の中立位置にずれが生じたとしても、オフセット補正を行うことで、もとの中立位置に引き戻すことが出来るので、水平動観測における水平だし、又は、垂直動観測における重力影響の相殺、を実現することが出来る。さらに、オフセット補正の帰還制御系において、入力値を傾斜角とするため、動電型振動計100は傾斜計としても使用することが出来る。
本発明に係る動電型振動計100の検出部10の概略構成図である。 本発明に係る動電型振動計100の要部構成を示すブロック図である。 本発明に係る変位正帰還及び速度負帰還の帰還制御系の動作機構を示すブロック図である。 本発明に係る動電型振動計100において、変位正帰還及び速度負帰還を行わない場合の振動数特性を示す図である。 本発明に係る動電型振動計100において、変位正帰還を行った場合の振動数特性を示す図である。 本発明に係る動電型振動計100の変位正帰還及び速度負帰還を行った場合の振動数特性を示す図である。 本発明に係るオフセット補正の帰還制御系の動作機構を示すブロック図である。 変位正帰還、速度負帰還、オフセット補正を行わなかった場合における、動電型振動計100の出力特性を示す図である。 変位正帰還と速度負帰還を行い、オフセット補正を行わなかった場合における、動電型振動計100の出力特性を示す図である。
符号の説明
1 ケース
2 バネ部材
3 振動子
4 マグネット(磁界形成部)
5 コイル部
5a 検出コイル
5b 変位帰還コイル
5c 速度帰還コイル
5d 補正コイル
7 コンデンサギャップ
10 検出部
20 制御部
21 変位検出部
23 正帰還制御部(正帰還手段)
24 負帰還制御部(負帰還手段)
25 オフセット補正制御部(オフセット補正手段)
100 動電型振動計

Claims (3)

  1. ケースと、前記ケース内にバネ部材で支持される振動子と、前記ケース内に磁界を形成する磁界形成部と、前記磁界形成部により形成された磁界内に設けられ、前記振動子の移動時に発生する起電力を検出する検出コイルと、を備えた動電型振動計において、
    前記ケース内に設けられた固定電極と前記固定電極に対向して前記振動子に設けられた可動電極との間の静電容量変化量により前記振動子の変位を検出する変位検出部と、
    前記磁界内に設けられ、電流を流すことで前記振動子に駆動力を付与する変位帰還コイルと、
    前記変位検出部により検出された変位に基づく正帰還ゲインに応じた電流を前記変位帰還コイルに供給する正帰還手段と、
    を備えることを特徴とする動電型振動計。
  2. 請求項1記載の動電型振動計において、
    前記磁界内に設けられ、電流を流すことで前記振動子に駆動力を付与する速度帰還コイルと、
    前記変位検出部により検出された変位を微分した速度に基づく負帰還ゲインに応じた電流を前記速度帰還コイルに供給する負帰還手段と、
    を備えることを特徴とする動電型振動計。
  3. 請求項1又は2に記載の動電型振動計において、
    前記磁界内に設けられ、電流を流すことで前記振動子に駆動力を付与する補正コイルと、前記変位検出部により検出された変位を、完全積分器を介して積分した積分値に基づく負帰還ゲインに応じた電流を、前記補正コイルに供給することでオフセット補正を行うオフセット補正手段と、
    を備えることを特徴とする動電型振動計。
JP2008215204A 2008-08-25 2008-08-25 動電型振動計 Active JP5113671B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215204A JP5113671B2 (ja) 2008-08-25 2008-08-25 動電型振動計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215204A JP5113671B2 (ja) 2008-08-25 2008-08-25 動電型振動計

Publications (2)

Publication Number Publication Date
JP2010048751A JP2010048751A (ja) 2010-03-04
JP5113671B2 true JP5113671B2 (ja) 2013-01-09

Family

ID=42065939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215204A Active JP5113671B2 (ja) 2008-08-25 2008-08-25 動電型振動計

Country Status (1)

Country Link
JP (1) JP5113671B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113729A (ja) * 2011-11-29 2013-06-10 Mitsutoyo Corp 地震計及び地震計に内蔵された振動検出器の感度設定方法
JP5904540B2 (ja) * 2012-05-30 2016-04-13 オムロン株式会社 エレクトレット型振動検出システム、外部振動情報の生成方法、外部振動に関する伝達関数情報を生成する方法、外部振動情報の生成プログラム、外部振動に関する伝達関数情報を生成するプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247838A (ja) * 1995-03-14 1996-09-27 Akashi:Kk バネ定数調整コイル付き動電型振動計
JP3604507B2 (ja) * 1996-06-04 2004-12-22 株式会社アカシ 変動周期型振動計
JPH1194639A (ja) * 1997-09-18 1999-04-09 National Reserch Institute For Disaster Prevention 負帰還式3出力型受振器
JP3502911B2 (ja) * 2001-05-31 2004-03-02 東京大学長 平行な磁場中に配置された永久磁石を有する振り子を用いた無定位回転型振動検出器
JP3650778B2 (ja) * 2001-07-27 2005-05-25 独立行政法人防災科学技術研究所 負帰還型デジタル加速度換振器並びに加速度地震計及び観測システム
JP3760232B2 (ja) * 2002-11-19 2006-03-29 国立大学法人 東京大学 水平地動検出器

Also Published As

Publication number Publication date
JP2010048751A (ja) 2010-03-04

Similar Documents

Publication Publication Date Title
CN101592678B (zh) 一种挠性摆式加速度计
US7347097B2 (en) Servo compensating accelerometer
US20050205309A1 (en) Electronic balance
EP2551653B1 (en) Long-period vibration sensor and method for correcting output value of the long-period vibration sensor
JP5492389B2 (ja) 磁場センサー装置
MX2011000110A (es) Gradiometro de gravedad.
JP2006162302A (ja) 電子天びん
JP5113671B2 (ja) 動電型振動計
JP3314187B2 (ja) 慣性質量測定器の力補償器
CN201464493U (zh) 一种挠性摆式加速度计
JP2009020057A (ja) 振動検出器
JP3502911B2 (ja) 平行な磁場中に配置された永久磁石を有する振り子を用いた無定位回転型振動検出器
JP3240660U (ja) ジオフォンを用いた加速度計
JPH0627135A (ja) 動電型加速度計
JP3250364B2 (ja) 電磁式の天びんまたは力測定器
JP2801842B2 (ja) コリオリ流量計
JPH1151968A (ja) 振動センサ
JP2805881B2 (ja) 振動検出器
Melton et al. Inertial seismograph design-Limitations in principle and practice (or how not to build a sensitive seismograph)
JP2004205284A (ja) サーボ型加速度計
JP3760232B2 (ja) 水平地動検出器
JP5912338B2 (ja) 力測定装置
JPH11183514A (ja) 加速度検出装置
JPH11148815A (ja) サーボ型変位センサ
JP4175639B2 (ja) 磁力支持式振動計測方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250