JP5113635B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5113635B2
JP5113635B2 JP2008149843A JP2008149843A JP5113635B2 JP 5113635 B2 JP5113635 B2 JP 5113635B2 JP 2008149843 A JP2008149843 A JP 2008149843A JP 2008149843 A JP2008149843 A JP 2008149843A JP 5113635 B2 JP5113635 B2 JP 5113635B2
Authority
JP
Japan
Prior art keywords
fuel cell
lower limit
power
regenerative
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008149843A
Other languages
English (en)
Other versions
JP2009295516A (ja
Inventor
卓也 白坂
暁 青柳
響 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008149843A priority Critical patent/JP5113635B2/ja
Publication of JP2009295516A publication Critical patent/JP2009295516A/ja
Application granted granted Critical
Publication of JP5113635B2 publication Critical patent/JP5113635B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、燃料電池と二次電池とを併用して負荷へ電力を供給する燃料電池システムに関し、特に、モータに電力を供給する燃料電池システムに関する。
燃料電池(Fuel Cell:FC)と二次電池(以下、バッテリという)とを並列接続して負荷に電力を供給する電源システムは燃料電池ハイブリッドシステムとも呼ばれているが、以下の説明では燃料電池システムということにする。このような燃料電池システムにおいて、低負荷では燃料電池の発電効率が急激に低下するため、所定の低負荷領域では燃料電池の発電出力(以下、FC出力という)に下限リミットを設け、それ以下の領域では燃料電池を発電させないように設定されている。その下限リミットは、あらかじめ取得した燃料電池のFC出力と発電効率との関係を示す発電効率特性から、発電効率が低下し始めるポイント(つまり、発電効率が最大となる燃料電池のFC出力の値)に設定されている。したがって、燃料電池を発電させない低負荷領域においてはバッテリから負荷へ電力を供給している。また、バッテリのSOC(State Of Charge:残容量:請求項における蓄電量)が所定の値より低下したときには、燃料電池の発電電力を充電することによってバッテリのSOCの確保を図っている。このようにして、燃料電池からの電力供給とバッテリからの電力供給との電力配分を適正に行うことにより、燃料電池システムとしての電力効率(以下、システム効率という)を高い状態に維持して燃料電池の運転を行うことができる。
また、燃料電池とバッテリとを併用して負荷(例えば、モータ)に電力を供給するとき、燃料電池からの出力系統とバッテリからの出力系統とを独立して(つまり、燃料電池とバッテリとを並列接続しないで)、1つの負荷(モータ)へ電力を供給する燃料電池システムも開示されている。この燃料電池システムの場合も、発電効率の高い領域で燃料電池を定常運転し、発電効率の低い領域ではバッテリから負荷(モータ)へ電力を供給することにより、燃料電池システムのシステム効率を高い状態に維持することができる(例えば、特許文献1参照)。また、特許文献1には、燃料電池を効率よく運転可能であるような出力範囲の上限値及び下限値を設定する旨の記載がある。
特開平08−331705号公報
しかしながら、負荷であるモータに電力を供給する燃料電池システムの場合、回転中のモータに制動力が加わったときにはそのモータに回生電力が発生する。例えば、燃料電池システムで走行する電気自動車(EV(Electric Vehicle))やハイブリッド車(HEV(Hybrid Electric Vehicle))がブレーキをかけながら下り坂を走行するようなとき(以下、降坂中という)や、減速時などにはモータに回生電力が発生する。そのとき、モータの回生電力のエネルギは、通常はバッテリへ回収(充電)される。ところが、従来の燃料電池システムでは、燃料電池の発電を停止させる下限リミットの点を、予め取得した燃料電池システムの発電効率において、この発電効率が低下し始める領域(例えば、発電効率が最大となる燃料電池のFC出力)において設定している。このとき、燃料電池もまたバッテリに充電を行っていることになる。したがって、このときは降坂中などのモータから回生電力をバッテリへ充電することはできない。つまり、降坂中などにおいてモータの回生電力をバッテリへ回収することができないため、燃料電池は無駄な発電を行っていることになり、結果的に、燃料電池システムのシステム効率が悪化する状態となる。
本発明は、このような事情に鑑みてなされたものであり、燃料電池とバッテリとを併用してモータへ電力を供給する電力系統において、モータからの回生電力を効率的に回収することができるような燃料電池システムを提供することを目的とする。
前記課題を解決するため、請求項1に係る発明の燃料電池システムは、燃料電池と、この燃料電池から供給される電力により駆動する走行モータと、燃料電池の出力電力及び走行モータの回生電力により充電される蓄電装置と、走行モータの回生電力を算出する回生電力算出手段と、燃料電池の出力可能範囲の元となる下限値を算出する下限値算出手段と、回生電力算出手段によって算出された回生電力が高くなるにつれて燃料電池の出力可能範囲の下限値を低下させることで、出力可能範囲を補正する下限補正手段と、を備え、下限補正手段で補正された出力可能範囲内で燃料電池の出力電力を制御する構成を採っている。
請求項1に記載の燃料電池システムによれば、走行モータに制動力が加わって回生電力が発生する場合、燃料電池の下限発電電力が下がり、その結果、燃料電池の出力電力が低下するために燃料電池から蓄電装置への充電電力が低下する。これによって、走行モータから蓄電装置への回生電力の受け入れ量(充電量)を増加させることができる。したがって、燃料電池の無駄な発電を抑制し、走行モータの回生電力を有効に回収することができるため、燃料電池システムのシステム効率が向上する。また、回生電力を受け入れることができるので、ブレーキ操作に違和感を生じさせない。
また、請求項2に係る発明の燃料電池システムは、請求項1の発明の構成に加えて、さらに、走行モータの回生トルクを算出する回生トルク算出手段を有し、この回生電力算出手段は、回生トルク算出手段が算出した回生トルクにより回生電力を算出する構成を採っている。
請求項2に記載の燃料電池システムによれば、降坂時や、減速時などにおける走行モータの回転速度の減速勾配から回生トルクを算出し、さらに、回転速度と回生トルクから降坂時などの回生軸出力を算出してPDU(Power Drive Unit)の変換効率をかければ、一義的に走行モータの回生電力を算出することができる。これによって、走行モータから得られる回生電力を精度よく算定することが可能となる。
また、請求項3に係る発明の燃料電池システムは、請求項1又は2の発明の構成に加えて、さらに、蓄電装置の蓄電量を検出する蓄電量検出手段を有し、下限補正手段は、蓄電量検出手段の検出した蓄電量が所定の値より低い場合は、燃料電池の出力可能範囲の補正を制限する構成を採っている。
請求項3に記載の燃料電池システムによれば、蓄電装置の蓄電量が所定の値より少ない場合は、下限補正手段が燃料電池の下限発電電力の補正を制限して、燃料電池の出力可能範囲の下限値がさらに低下しないようにしている。そのため、蓄電装置の蓄電量がさらに低下することを防止することができる。
また、請求項4に係る発明の燃料電池システムは、前記各発明の構成に加えて、下限補正手段は、出力可能範囲の下限値が燃料電池の劣化が生じはじめる燃料電池の出力電力である劣化下限値を下回らない範囲で該燃料電池を発電させるように、燃料電池の出力可能範囲の下限値を補正する構成を採っている。
請求項4に記載の燃料電池システムによれば、燃料電池の劣化下限値より下限発電電力が下回らないように、発電電力の下限値を補正しているので、燃料電池の劣化を助長させてしまうことを防止することができる。
また、請求項5に係る発明の燃料電池システムは、前記各発明の構成に加えて、下限補正手段は、燃料電池の下限発電電力補正量を算出し、下限値算出手段により算出された下限値から下限発電電力補正量を減算する構成を採っている。
請求項5に記載の燃料電池システムによれば、走行モータの回生軸出力や蓄電装置の蓄電量に基づいて燃料電池の下限発電電力補正量を算出し、あらかじめ設定されている燃料電池の出力可能範囲における下限発電電力値からこの下限発電電力補正量を減算することにより、燃料電池の出力可能範囲の下限値を容易に変更することができる。
また、請求項6に係る発明の燃料電池システムは、前記発明の構成において、下限発電電力補正量はローパスフィルタを通過させる構成を採っている。
請求項6に記載の燃料電池システムによれば、ローパスフィルタの平滑作用によって、燃料電池の下限発電電力が急激に変化しないようにしている。これによって、燃料電池の発電電力が急峻に変動するおそれがないので、燃料電池が劣化することを防止することができる。
また、請求項7に係る発明の燃料電池システムは、前記発明の構成において、下限発電電力補正量は電力により表され、この下限発電電力補正量は回生電力算出手段で算出された回生電力より大きくなるように構成されている。
請求項7に記載の燃料電池システムによれば、燃料電池の下限発電電力補正量の電力値を回生電力より大きくすることにより、燃料電池の下限発電電力を変化させるまでの応答性能を向上させることができる。
また、請求項8に係る発明の燃料電池システムによれば、下限値算出手段によって算出される下限値は、燃料電池の発電効率が最大となる発電電力に基づいて決定されるか、燃料電池に劣化を発生させない発電電力と、蓄電装置の蓄電量に基づいて決定されるか、のいずれかであることを特徴としている。
請求項8に記載の燃料電池システムによれば、下限値算出手段が、燃料電池の発電効率が最大となる発電電力を下限値として決定し、下限補正手段が、この下限値を基に下限値の補正を行う方法と、下限値算出手段が、燃料電池の劣化を発生させない発電電力と、蓄電装置の蓄電量とに基づいて、下限値を決定し、下限補正手段が、この下限値を基に下限値の補正を行う方法との2通りの方法があり、これら2通りの方法を適宜に使い分けることにより、回生電力を効果的に回収することができる。
本発明の燃料電池システムによれば、燃料電池の下限発電電力を降坂中などの走行モータの回生電力に基づいて下げることにより、蓄電装置への回生電力の受け入れ量(充電量)を増加させることができる。これによって、降坂中などに走行モータで発生した回生電力を廃棄することなく、その走行モータからの回生電力を効率的に回収することができる。その結果、燃料電池システムのシステム効率を向上させることが可能となる。
本実施形態の燃料電池システムは、燃料電池の下限発電電力を発電効率の最大点に固定しないで、降坂中などにおける走行モータの回生電力に基づいて、発電効率が最大点より低くなる点に下限発電電力を補正している。つまり、降坂中などの走行モータの回生電力の変化に応じて燃料電池の下限発電電力を補正している。これによって、降坂中などにおいて高圧バッテリ(蓄電装置)への回生電力の受け入れ量(充電量)を増加させることができるので、燃料電池システムのシステム効率を向上させることが可能となる。以下、本発明の燃料電池システムにおける技術的手法について実施形態で詳細に説明する。
《実施形態》
図1は、本実施形態に係る燃料電池システムの構成を示すブロック図である。この燃料電池システムは、例えば、燃料電池とバッテリを電源とする電気自動車や船舶や航空機などに利用される。
図1に示すように、燃料電池システム20は、燃料電池1、蓄電装置としての高圧バッテリ2、電力分配装置3、インバータなどで構成されるPDU(Power Drive Unit)4、電気負荷としての走行モータ5、走行モータ5の駆動力をタイヤ7に伝達するトランスミッション6、燃料電池システム20全体の制御を行うECU(Electronic Control Unit)8、燃料電池1へ燃料ガスや、酸化剤ガスを供給するガス供給装置9、ダウンコンバータ10、エアコンディショナ(A/C)11、低圧バッテリ12、アクセサリ13などを有してなる。
この燃料電池システム20の主要な電力系統は、燃料電池1と高圧バッテリ2とが電力分配装置3を介して並列に接続され、電力分配装置3から出力された直流電圧がPDU4によって三相交流電圧に変換されて走行モータ5を駆動するように構成されている。そして、走行モータ5の駆動力がトランスミッション6を介して駆動輪であるタイヤ7に伝達され、車両を走行させるように構成されている。なお、高圧バッテリ2は、リチウム−イオン電池やニッケル水素電池などの単位セルが組み合わされた組電池によって高圧電圧を発生する。
また、高圧バッテリ2の出力側にはダウンコンバータ10、及びA/C11が接続されていて、ガス供給装置9の駆動によって燃料電池1は、燃料ガスを供給され、ダウンコンバータ10によって高圧バッテリ2の高圧電圧(例えば、250V)を低圧電圧(例えば、12V)に降圧して低圧バッテリ12を充電すると共に、カーラジオやカーナビゲーションなどのアクセサリ13に低圧電力を供給するように構成されている。なお、上記の主要な電力系統以外の、これらの構成要素(ガス供給装置9、ダウンコンバータ10、A/C11、低圧バッテリ12、及びアクセサリ13)については、本実施形態とは直接的には関係ないのでこれ以上の説明は省略する。
燃料電池1は、ガス供給装置9を構成するアノードガス供給装置から供給される燃料ガス(水素ガス)と、同様にガス供給装置9を構成するエアコンプレッサから供給される酸化剤ガス(酸素)との化学反応によって発電し、走行モータ5等の電気負荷に対し電力供給可能なものである。高圧バッテリ2は、燃料電池1と並列に接続され、電力分配装置3を介して、燃料電池1から発電電力(FC出力)を受けることによって充電可能であると共に、走行モータ5等の電気負荷に対して電力供給可能なものである。
電力分配装置3は、ECU8による出力電力の配分指令に基づいて、走行モータ5へ供給する燃料電池1と高圧バッテリ2との出力電力の配分を行う。また、走行モータ5は、トランスミッション6を介して、タイヤ7を回転駆動させて車両を走行させる駆動力を発生させるものである。
また、車両の降坂中などにおいてはタイヤ7にブレーキがかかるので、トランスミッション6を介して走行モータ5に制動力が働きその走行モータ5に回生電力が発生する。この回生電力はPDU4によって直流電圧に変換され、電力分配装置3を介して高圧バッテリ2に充電されるように構成されている。
ECU8は、高圧バッテリ2から電流I、電圧V、温度Tempを検出して高圧バッテリ2のSOC(残容量:請求項における蓄電量)を計算し、そのSOCの値に基づいて、電力分配装置3に対して燃料電池1の出力電力と高圧バッテリ2の出力電力の配分指令を行う。さらに、ECU8は、走行モータ5の回転速度を検出してその走行モータ5の回生トルクを計算し、その回生トルクに対応した回生電力に基づいて、燃料電池1の下限発電電力の補正値(下限発電電力補正量)を求め、この補正値に基づいて燃料電池1の下限発電電力の値を補正する。すなわち、燃料電池1は、ECU8からの補正値に基づいて下限発電電力の値を低下させる。
次に、図1を参照しつつ、図2に沿って本実施形態の概要を説明する。
図2は、燃料電池の発電出力と発電効率との関係を示す発電効率特性図であり、横軸に燃料電池の発電出力(FC出力)を表わし、縦軸に発電効率を表わしている。図2に示すように、燃料電池は所定のFC出力P2のときに最大発電効率となり、FC出力が増加するにしたがって発電効率が徐々に低下してゆく。また、最大の発電効率となるFC出力P2よりFC出力の値を減少させてゆくと急激に発電効率が低下して行く。通常は、最大発電効率となるFC出力P2を下限発電電力とし、FC出力を増加させて行き発電効率が所定の値まで低下したときのFC出力P3をFC出力上限値(上限発電電力)としている。そして、燃料電池はFC出力P2(下限発電電力)からFC出力P3(上限発電電力)までの範囲で発電電力を発生させ、その範囲外の領域(つまり、FC出力P2以下の領域とFC出力P3以上の領域)では運転を停止している。FC出力P2’,P2’’については、後記して説明する。
ところが、本実施形態の燃料電池システムにおいては、降坂中などにおける走行モータ5の回生電力の大きさに応じた補正値αだけ、燃料電池1の下限発電電力をFC出力P2より減少させている。すなわち、走行モータ5の回生電力の大きさに応じて補正値αだけ下限発電電力を低下させ、例えば、FC出力P1を下限発電電力としている。このことは、走行モータ5に回生電力が発生したとき、ECU8は、最大発電効率となるFC出力P2から発電効率の低いFC出力P1まで下限発電電力を低下させることにより、燃料電池1から高圧バッテリ2への出力を落とし、走行モータ5からの回生電力を高圧バッテリ2に充電しやすくしていることを意味している。したがって、走行モータ5の回生電力が大きいほど補正値αの値を大きくして、下限発電電力であるFC出力P1を小さくする必要がある。このようにして、本実施形態の燃料電池システムでは、FC出力P1からFC出力P3までの範囲で燃料電池の発電電力を発生させ、その範囲外の領域では燃料電池の運転を停止させている。
次に、図1を参照しつつ、図3に沿って本実施形態に係るECU8の機能構成を説明する。図3は、図2に示す燃料電池システムにおけるECUの機能構成を示すブロック図である。図3において、車両が降坂するときに、走行モータ5から回生制御部21へ減速時のモータ回転速度が入力されると、回生制御部21は、減速勾配を推定して、制動力に対応した目標減速度となるように、走行モータ5の回生電力量を増加させる制御を行う。以下、このような制御を回生制御という。さらに、回生制御部21は、回生制御によって増加した回生電力量から回生トルクTを算出して出力すると共に、モータ回転速度Nを出力する。
次に、回生トルクTとモータ回転速度Nは第1の乗算器22で乗算され、さらに、第2の乗算器23によってT×Nの値に所定の係数βが乗算されて回生軸出力Qが求められ、この回生軸出力Qが下限発電電力補正量算出部24へ入力される。すなわち、第1の乗算器22及び第2の乗算器23によって回生軸出力Qが計算されて下限発電電力補正量算出部24へ入力される。
一方、SOC算出部25は、高圧バッテリ2に設置されている各センサから電流I、電圧V、及び温度Tempを入力し、入力された電流I、電圧V、及び温度Tempを基に高圧バッテリ2のSOCを算出する。そして、SOC算出部25は、算出したSOCを下限発電電力補正量算出部24へ出力すると共に下限基準値算出部28へ出力する。
下限発電電力補正量算出部24は、燃料電池1の下限発電電力を補正するための補正量(下限発電電力補正量)αを算出するために図4及び図5に示すようような特性図(補正量MAP)を備えている。すなわち、図4は、図3に示す下限発電電力補正量算出部24が格納する回生軸出力Qに対する補正量α1(第1の補正量)の変化を示す特性図であり、横軸に回生軸出力Qを表わし、縦軸に補正量α1を表わしている。また、図5は、図3に示す下限発電電力補正量算出部24が格納する高圧バッテリ2のSOCに対する補正量α2(第2の補正量)の変化を示す特性図であり、横軸にSOCを表わし、縦軸に補正量α2を表わしている。
下限発電電力補正量算出部24は、入力された回生軸出力Qに基づいて図4の特性図(補正量MAP)から下限発電電力の補正量α1を求め、さらに、入力されたSOCに基づいて図5の特性図(補正量MAP)から下限発電電力の補正量α2を求める。すなわち、図4に示すように、走行モータ5の回生軸出力Qが大きいほど(言い換えると、走行モータ5の回生電力量が大きいほど)、下限発電電力の補正量α1を大きくして下限発電電力の値を低下させる。また、図5に示すように、高圧バッテリ2のSOCが高いほど(言い換えると、高圧バッテリ2の充電状態が良いほど)、下限発電電力の補正量α2を大きくして下限発電電力の値を低下させる。
再び図3に戻り、次に、下限発電電力補正量算出部24で求められた下限発電電力の補正量α1及び補正量α2は、LPF(Low Pass Filter)26によって平滑化される。さらに、レートリミット処理部27が、回生電力等の過渡的な変動に対して下限発電電力が急激に変化しないように、補正量α1及び補正量α2を遅延させている。
一方、下限基準値算出部28が、図2に示す発電効率を基に発電電力下限基準値を算出する(第1の方法)。下限基準値算出部28は、まず発電効率が最大となるFC出力(図2のFC出力P2)を発電電力下限基準値とする。そして、下限基準値算出部28は、入力されたSOCを基に、この発電電力下限基準値をさらに補正する。つまり、下限基準値算出部28は、SOCが高い値を示しているときは、発電電力下限基準値をSOCに応じて低くし(FC出力P2’)、SOCが低い値を示しているときは、発電電力下限基準値をSOCに応じて高くする(FC出力P2’’)。この処理は、SOCが高いときは、下限発電電力を低くすることにより、無駄な発電を抑え、SOCが低いときは、下限発電電力を高くすることにより積極的に充電することを目的とするものである。
そして、加算器29が、下限基準値算出手段28から入力された発電電力下限基準値(+の値)とレートリミット処理部27から入力された下限発電電力の補正量α1及び補正量α2(何れも−の値)とを加算して下限発電電力を求める。さらに、リミッタ30は、求めた下限発電電力が、燃料電池1の劣化が生じはじめる出力電力値である劣化下限値以下であれば、燃料電池1を停止させるか、燃料電池1の出力を劣化下限値の値にするリミット処理を行う。すなわち、図2に対応して説明すると、加算器29が、FC出力P2(発電電力下限基準値)から補正値α(補正量α1及び補正量α2)を減算し、下限発電電力P1を求める。ここでは、発電電力下限基準値をFC出力P2としたが、発電電力下限基準値が図2のFC出力P2’や、FC出力P2’’に補正されている場合、加算器29は、これら補正された発電電力下限基準値から補正値αを減算する。そして、リミッタ30は、下限発電電力P1が、燃料電池1の劣化を促進させる値である劣化下限値以下であれば、燃料電池1の出力を停止させるか、燃料電池1の出力を劣化下限値の値にすることにより最終的な下限発電電力を出力する。
これによって、車両の降坂中などにおいて走行モータ5に回生電力が発生したとき、下限発電電力は発電電力下限基準値(図2のFC出力P2,P2’,P2’’)から、補正後の下限発電電力(図2のFC出力P1など)となるので、燃料電池1(図1)の出力電力が低下して、燃料電池1から高圧バッテリ2(図1)への充電電力も低下する。これにより、走行モータ5(図1)の回生電力の高圧バッテリ2への受け入れ量(充電量)が増加することとなる。その結果、燃料電池システム20のシステム効率を向上させることができる。すなわち、燃料電池の発電効率低下を無視してでも、回生電力を高圧バッテリ2へ回収した方が燃料電池システム全体の発電効率を向上させることができる。
なお、本実施形態から分かるように、請求項1に記載の回生電力算出手段は、回生制御部21、第1の乗算器22、及び第2の乗算器23によって実現される。また、請求項1に記載の下限値算出手段は、下限基準値算出手段28によって実現される。また、請求項1に記載の下限補正手段は下限発電電力補正量算出部24及び加算器29によって実現される。また、請求項1に記載の燃料電池の出力制御の実行は、電力分配装置3によって実現される。また、請求項2に記載の回生トルク算出手段は回生制御部21によって実現される。また、請求項3に記載の蓄電量検出手段はSOC算出部25によって実現される。
図6は、ECUが回生電力に基づいて下限発電電力を求める処理の流れを示すフローチャートである。図1に示す燃料電池システム20及び図3に示すECU8の機能構成図を参照しながら図6のフローチャートを説明する。ECU8の回生制御部21は、降坂中などにおいて、モータ回転速度Nを検出して回生トルクTを算出し(ステップS1)、さらに、加算器22,23は、この回生トルクTとモータ回転速度Nとに基づいて回生軸出力Qを算出する(ステップS2)。
次に、下限発電電力補正量算出部24が、走行モータ5の回生軸出力Q又は高圧バッテリ2のSOCに基づいて図4又は図5に示すような補正量MAPを検索し、下限発電電力補正量(補正量α1及び補正量α2)を求める(ステップS3)。そして、LPF26が、この下限発電電力補正量(補正量α1及び補正量α2)を平滑処理して(ステップS4)有効成分のみを抽出し、レートリミット処理部27が、下限発電電力補正量(補正量α1及び補正量α2)に対し、回生電力等の過渡的な変動に対して下限発電電力が急激に変化しないように、下限発電電力補正量(補正量α1及び補正量α2)を遅延させるレートリミット処理を行う(ステップS5)。
次に、下限基準値算出手段28が、基準値補正MAPを検索して発電電力下限基準値を求める(ステップS6)。このときの発電電力下限基準値の求め方には、燃料電池1の発電出力(FC出力)に基づいて求める方法(前記した第1の方法)と、高圧バッテリ2のSOCに基づいて求める方法(後記する第2の方法)の2通りの方法がある。
図7は、高圧バッテリのSOCに基づいて発電電力下限基準値(第2の基準値)を求める(第2の方法)基準値補正MAPの特性図であり、横軸にSOCを表わし、縦軸に発電電力下限基準補正値を表わしている。この発電電力下限基準値を求める第2の方法において、下限基準値算出部28は、SOC算出部25によって算出されたSOCに対応する発電電力下限基準補正値を、図7に示す特性図(MAP)を検索することによって取得する。そして、取得した発電電力下限基準補正値をFC劣化基準値に加算して発電電力下限基準値を算出する。ここで、FC劣化基準値は、燃料電池毎に定まる値であり、燃料電池が、これより低い電力を出力しようとすると、燃料電池を構成する部品から電子を供給しはじめることにより、燃料電池の劣化が生じはじめる出力電力である。つまり、SOCがZの値を示したとき、発電電力下限基準補正値は、0であるので発電電力下限基準値は、FC劣化基準値と一致する。SOCがZより小さい値を示したとき、下限基準値算出部28は、対応する発電電力下限基準補正値(+の値)を加算して発電電力下限基準値を算出する。また、SOCがZより大きい値を示したとき、下限基準値算出部28は、対応する発電電力下限基準補正値(−の値)を加算して発電電力下限基準値を算出する。なお、図7に示す基準値補正MAPは、ECU8に設けられているROM(Read Only Memory)等に記憶されている。
発電電力下限基準値を求める他の方法である燃料電池1の発電電力(FC出力)に基づいて発電電力下限基準値を求める方法(第1の方法)は、前記した方法であり、図2に示した燃料電池のFC出力と発電効率との関係を示す発電効率特性図のように、発電効率が最大となるFC出力の値(P2)を基に発電電力下限基準値(第1の基準値)を算出する方法である(P2’,P2’’)。
以上のような2通りの方法のいずれかによって発電電力下限基準値を求めたら、再び図6に戻って、発電電力下限基準値(+の値)に対して、前述のステップS5までで求められた下限発電電力補正量(−の値)を加算して補正後の下限発電電力を算出する(ステップS7)。この後、リミッタ30が、求めた下限発電電力が、燃料電池1の劣化が生じはじめる値である劣化下限値以下であれば、燃料電池1を停止させるか、燃料電池1の出力を劣化下限値の値にするリミット処理を行い、最終的な下限発電電力を出力する。
すなわち、第2の方法として、SOCに基づいて発電電力下限基準値を求めた場合は、ステップS5までで求められた第1の方法による下限発電電力補正量として補正量α(補正量α1及び補正量α2)を加算して下限発電電力を求め、これを燃料電池1の下限発電電力とする。また、第1の方法として、燃料電池1の発電出力(FC出力)に基づいて発電電力下限基準値を求めた場合は、やはりステップS5までで求められた第2の方法による下限発電電力補正量として補正量α(補正量α1及び補正量α2)を加算して下限発電電力を求め、これを燃料電池1の下限発電電力とする。
以上述べたように、本発明の実施形態に係る燃料電池システムにおいては、燃料電池の下限発電電力を降坂中などの走行モータの回生電力に基づいて下げることにより、高圧バッテリへの回生電力の受け入れ量を増加させることができるので、降坂中などに走行モータで発生した回生電力を廃棄することなく有効に回収することが可能となる。その結果、燃料電池システムのシステム効率を向上させることができる。
《実験結果》
図8は、本発明の実施形態に係る燃料電池システムの実験結果による各種特性図であり、横軸に経過時間を表わし、縦軸に各種特性のデータ値を表わしている。すなわち、図8は、実施形態に係る燃料電池システムを搭載している車両が降坂しているときの各種特性を示す実験データである。
図8に示すように、車両がスタートしてから経過時間A1〜A2の間のときに降坂し、降坂中において車速(モータ回転速度)(a)が減速し、これによって、走行モータには負の値を有する回生トルク(c)が発生している。なお、全走行中において燃料電池から高圧バッテリへ充電が行われているので、バッテリSOC(b)は緩やかに上昇している。また、太い実線で示す燃料電池の下限発電電力(d)は、降坂時において0に補正されている。すなわち、燃料電池の下限発電電力(d)は0まで許容されている(燃料電池は、停止させられる)。
このような状態の降坂中において、走行モータの回生軸出力(e)は負の値の電力が発生している。この回生軸出力(e)に基づいて下限発電電力補正量(f)は、回生軸出力(e)より小さな値となり、ローパスフィルタを通過して、平滑された後の下限発電電力補正量(フィルタ後の補正量)(g)も下限発電電力補正量(f)とほぼ同様の値となっている。このとき、下限発電電力は、補正前の発電電力と、下限発電電力補正量とを足し合わせた値となるが、この値は負の値となっとおり、このような燃料電池の出力は、あり得ず、また燃料電池の劣化も促進させるので、リミッタによって下限発電電力は0Wに調整される(電力のグラフにおける太い実線参照)。燃料電池の出力が低下(ここでは、停止)しているため、燃料電池から高圧バッテリへの充電がなくなり、走行モータからの回生電力を高圧バッテリへまわすことができる。これにより、燃料電池システムのシステム効率が向上することになる。また、回生制動によりブレーキの効き方に関する違和感を生じさせない。
本発明の実施形態に係る燃料電池システムの構成を示すブロック図である。 燃料電池の発電出力と発電効率との関係を示す発電効率特性図である。 図2に示す燃料電池システムにおけるECUの機能構成を示すブロック図である。 図3に示す下限発電電力補正量算出部が格納する回生軸出力Qに対する補正量α1の変化を示す特性図である。 図3に示す下限発電電力補正量算出部が格納する高圧バッテリ2のSOCに対する補正量α2の変化を示す特性図である。 ECUが回生電力に基づいて下限発電電力を求める処理の流れを示すフローチャートである。 高圧バッテリのSOCに基づいて発電電力下限基準値の求める基準値補正MAPの特性図である。 本発明の実施形態に係る燃料電池システムの実験結果による各種特性図である。
符号の説明
1 燃料電池
2 高圧バッテリ(蓄電装置)
3 電力分配装置
4 PDU(Power Drive Unit)
5 走行モータ
6 トランスミッション
7 タイヤ
8 ECU(Electronic Control Unit)
9 ガス供給装置
10 ダウンコンバータ
11 A/C
12 低圧バッテリ
13 アクセサリ
20 燃料電池システム
21 回生制御部(回生電力算出手段)
22 第1の乗算器(回生電力算出手段)
23 第2の乗算器(回生電力算出手段)
24 下限発電電力補正量算出部(下限補正手段)
25 SOC算出部
26 LPF(Low Pass Filter)
27 レートリミット処理部
28 下限基準値算出手段(下限値算出手段)
29 加算器(下限補正手段)
30 リミッタ

Claims (8)

  1. 燃料電池と、
    前記燃料電池から供給される電力により駆動する走行モータと、
    前記燃料電池の出力電力及び前記走行モータの回生電力により充電される蓄電装置と、
    前記走行モータの回生電力を算出する回生電力算出手段と、
    前記燃料電池の出力可能範囲の元となる下限値を算出する下限値算出手段と、
    前記回生電力算出手段によって算出された回生電力が高くなるにつれて前記燃料電池の出力可能範囲の下限値を低下させることで、前記出力可能範囲を補正する下限補正手段と、
    を備え、
    前記下限補正手段で補正された出力可能範囲内で前記燃料電池の出力電力を制御すること
    を特徴とする燃料電池システム。
  2. 前記走行モータの回生トルクを算出する回生トルク算出手段を有し、
    前記回生電力算出手段は、前記回生トルク算出手段が算出した回生トルクにより前記回生電力を算出することを特徴とする請求項1に記載の燃料電池システム。
  3. 前記蓄電装置の蓄電量を検出する蓄電量検出手段を有し、
    前記下限補正手段は、前記蓄電量検出手段の検出した蓄電量が所定の値より低い場合は、前記燃料電池の出力可能範囲の補正を制限することを特徴とする請求項1又は請求項2に記載の燃料電池システム。
  4. 前記下限補正手段は、前記出力可能範囲の下限値が前記燃料電池の劣化が生じはじめる燃料電池の出力電力である劣化下限値を下回らない範囲で該燃料電池を発電させるように、前記燃料電池の出力可能範囲の下限値を補正することを特徴とする請求項2又は請求項3に記載の燃料電池システム。
  5. 前記下限補正手段は、前記燃料電池の下限発電電力補正量を算出し、前記下限値算出手段により算出された下限値から前記下限発電電力補正量を減算することを特徴とする請求項1から請求項4のいずれか1項に記載の燃料電池システム。
  6. 前記下限発電電力補正量はローパスフィルタを通過させることを特徴とする請求項5に記載の燃料電池システム。
  7. 前記下限発電電力補正量は電力により表され、該下限発電電力補正量は前記回生電力算出手段で算出された回生電力より大きいことを特徴とする請求項6に記載の燃料電池システム。
  8. 前記下限値算出手段によって算出される下限値は
    前記燃料電池の発電効率が最大となる発電電力に基づいて決定されるか、前記燃料電池に劣化を発生させない発電電力と、前記蓄電装置の蓄電量とに基づいて決定されるか、のいずれかであることを特徴とする請求項5から請求項7のいずれか1項に記載の燃料電池システム。
JP2008149843A 2008-06-06 2008-06-06 燃料電池システム Active JP5113635B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149843A JP5113635B2 (ja) 2008-06-06 2008-06-06 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149843A JP5113635B2 (ja) 2008-06-06 2008-06-06 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2009295516A JP2009295516A (ja) 2009-12-17
JP5113635B2 true JP5113635B2 (ja) 2013-01-09

Family

ID=41543510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149843A Active JP5113635B2 (ja) 2008-06-06 2008-06-06 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5113635B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622693B2 (ja) 2011-09-09 2014-11-12 本田技研工業株式会社 燃料電池車両
JP5335047B2 (ja) 2011-09-09 2013-11-06 本田技研工業株式会社 燃料電池システム
JP2017225310A (ja) * 2016-06-17 2017-12-21 三菱自動車工業株式会社 車両用燃料電池の電力制御装置
JP2020025426A (ja) * 2018-08-08 2020-02-13 三菱自動車工業株式会社 電動車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141073A (ja) * 2000-10-31 2002-05-17 Nissan Motor Co Ltd 移動体用燃料電池システム
JP3770087B2 (ja) * 2001-01-19 2006-04-26 日産自動車株式会社 移動体用電力管理装置
JP2007109469A (ja) * 2005-10-12 2007-04-26 Nissan Motor Co Ltd 燃料電池発電システム

Also Published As

Publication number Publication date
JP2009295516A (ja) 2009-12-17

Similar Documents

Publication Publication Date Title
JP6493992B2 (ja) 電動車両の制御装置及び電動車両
KR101742392B1 (ko) 연료 전지 탑재 차량의 외부 급전 시스템의 제어 방법 및 외부 급전 시스템
US9007028B2 (en) Control device for electric power storage device and vehicle equipped with the same
US8600599B2 (en) Fuel cell vehicle
US10099557B2 (en) Vehicle driven by motor and control method of charging and discharging of secondary battery provided in vehicle
JP5505024B2 (ja) 燃料電池自動車及びその制御方法
JP7010069B2 (ja) 燃料電池システム、燃料電池システムを備える車両、および、燃料電池システムの制御方法
JP6444889B2 (ja) ハイブリッド車の加速をブーストさせるトルクのエネルギーを削減するための方法
JP2007212298A (ja) 二次電池の残存容量推定装置
KR101805986B1 (ko) 연료 전지 시스템, 연료 전지 차량 및, 연료 전지 시스템의 제어 방법
JP4380676B2 (ja) 移動体
US20190283624A1 (en) Hybrid vehicle and method for controlling same
JP5412719B2 (ja) 燃料電池搭載車両制御装置
JP2018085185A (ja) 燃料電池システム
JP5113635B2 (ja) 燃料電池システム
JP2020089084A (ja) 燃料電池車両
JP2005304179A (ja) 駆動システムおよびこれを搭載する移動体
CN111791712B (zh) 燃料电池车辆
JP5081068B2 (ja) 燃料電池システム
JP6690376B2 (ja) 燃料電池車両の制御装置
JP6048163B2 (ja) 電動車両用の燃料電池システム
JP5961558B2 (ja) 車両の走行制御装置
EP1953857B1 (en) Fuel cell system
JP4852481B2 (ja) 燃料電池システムおよび発電機システム
JP3824896B2 (ja) 燃料電池自動車

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250