JP5104357B2 - ラマン増幅装置ならびに分布ラマン増幅システムおよびその立ち上げ方法 - Google Patents

ラマン増幅装置ならびに分布ラマン増幅システムおよびその立ち上げ方法 Download PDF

Info

Publication number
JP5104357B2
JP5104357B2 JP2008024365A JP2008024365A JP5104357B2 JP 5104357 B2 JP5104357 B2 JP 5104357B2 JP 2008024365 A JP2008024365 A JP 2008024365A JP 2008024365 A JP2008024365 A JP 2008024365A JP 5104357 B2 JP5104357 B2 JP 5104357B2
Authority
JP
Japan
Prior art keywords
optical
monitoring signal
light
optical transmission
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008024365A
Other languages
English (en)
Other versions
JP2009186615A (ja
Inventor
清敏 野辺地
雅則 近藤
美紀 尾中
到吾 福士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008024365A priority Critical patent/JP5104357B2/ja
Priority to US12/365,212 priority patent/US8054538B2/en
Publication of JP2009186615A publication Critical patent/JP2009186615A/ja
Application granted granted Critical
Publication of JP5104357B2 publication Critical patent/JP5104357B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光通信システムにおいて用いて好適の、ラマン増幅装置ならびに分布ラマン増幅システムおよびその立ち上げ方法に関するものである。
近年の通信トラフィック増加を背景として、光通信伝送装置への需要が高まっている。基幹網で導入されてきた光中継ノードのみならず、最近では地域網についても光通信伝送装置の導入が活発に行われており、さらには加入者系へも光ネットワークが形成されている。このように光通信システムは世界の情報網に対して重要な役割を担っている。光ネットワークにおいては、伝送路ごとにEDFA(Erbium Doped Fiber Amplifier)等の波長多重用光増幅器を備え、低コスト/高信頼で大容量化/長距離伝送を実現する光増幅中継が主流である。
光増幅中継システムにおいて、伝送路長が長いなどの要因により中継損失が大きい条件では、光増幅器への信号光の入力レベルが小さくなるため、SN(信号光パワーと雑音光パワーの比)が劣化し、伝送特性が劣化する可能性がある。これを回避する手段としては、伝送路に励起光(ポンプ光)を注入し、誘導ラマン散乱の効果を用いた増幅作用を利用する、伝送路分布ラマン増幅を適用することが有効である。
分布ラマン光増幅器(DRA;Distributed Raman Amplification)は、伝送路分布ラマン増幅を行なう有効な実現手段として既に実用化に至っている。この分布ラマン光増幅器を適用することにより、EDFA等の光増幅器への入力レベルが増加することでSNが増加し、伝送特性が改善され、伝送できるスパン数が増えることになる。又、ラマン増幅においては、ダイナミックな波長数変動に対応するためには光出力一定制御(ALC:Automatic Level Control)ではなく、波長情報をノード間で転送する必要がない利得一定制御を行なう必要がある。
ラマン増幅の利得は、励起パワーの増減によって制御することができる。下記の特許文献1には、DRAの利得一定制御に関する従来技術が記載されている。この特許文献1においては、伝送路をなす光ファイバの利得効率や接続経路の損失などの条件や、信号光レベルにかかわらず、伝送路分布ラマン増幅を利得一定制御で行なうことにより、ラマン増幅の出力波長特性を一定に保つ技術について記載されている。この特許文献1に記載された技術においては、ラマン増幅を受けない参照光を利用してラマン利得を求め、これが所定値になるようにポンプ光を制御することが言及されている。
なお、本願発明に関連する文献公知発明としては、下記の特許文献2〜4に記載されたものもある。
特開2004−193640号公報 特開2004−80301号公報 国際公開第2002/021204号パンフレット 特開2002−252595号公報
しかしながら、ラマン利得を求めるにあたり、光伝送路を通じて入力される光主信号レベルを、受光素子等からなるモニタ回路を用いてモニタすることが必要となるが、このモニタ結果の信号には、モニタ回路部での回路雑音のほかに、ラマン増幅によるノイズが含まれている。このようなノイズが含まれたモニタ結果信号を上述の利得導出のために用いると導出した利得値に誤差が生ずる原因となり、利得制御の高精度化に向けた支障ともなりうる。
そこで、本願の目的の一つは、ラマン利得の導出を従来技術よりも高精度化することにある。
また、伝送路分布ラマン増幅の利得一定制御を従来技術に照らして高精度化することも他の目的とすることができる。
なお、上記目的に限らず、後述する発明を実施するための最良の形態に示す各構成により導かれる効果であって、従来の技術によっては得られない効果を奏することも本発明の他の目的として位置づけることができる。
(1)このため、このラマン増幅装置は、光伝送路を伝搬する光をラマン増幅するラマン増幅装置であって、前記ラマン増幅のための励起光を前記光伝送路に供給する励起光供給部と、前記光伝送路を介して伝送される主信号波長光の送信および受信レベルに関する情報を取得する主信号波長光レベル取得部と、前記光伝送路を介して伝送される、前記主信号波長と異なる監視信号波長光の送信および受信レベルに関する情報を取得する監視信号波長光レベル取得部と、該励起光供給部で供給する励起光パワーに対する、該監視信号波長光についての前記ラマン増幅による雑音量および利得を導出する関数についての情報と、該主信号波長光についての前記ラマン増幅による雑音量を導出する関数の情報とを関数情報としてそれぞれ保持する関数情報保持部と、該関数情報保持部で保持する各関数情報に基づき、該励起光供給部で供給する励起光パワーに対応した、該監視信号波長光についての前記ラマン増幅による雑音量および利得と、該主信号波長光についての前記ラマン増幅による雑音量とを導出するとともに、前記導出した該監視信号波長光についての前記ラマン増幅による雑音量および利得に関する情報と、監視信号波長光レベル取得部で取得した情報とに基づいて、伝送特性として前記光伝送路での損失特性を導出するとともに、前記導出した該主信号波長光についての前記ラマン増幅による雑音量に関する情報と、信号波長光レベル取得部で取得した情報と、前記導出した損失特性とに基づいて、ラマン利得を導出する伝送特性導出部と、をそなえたことを要件とするものである。
(2)また、上記(1)において、該関数情報保持部で前記関数情報として保持する関数は、前記光伝送路の物理定数および該励起光供給部からの前記励起光の前記光伝送路への結合効率に応じて導出されたものとすることができる
)さらに、上記()において、該伝送特性導出部で導出したラマン利得が一定となるように該励起光供給部で供給する励起光を制御する励起光制御部をそなえたこととしてもよい
)また、上記()において、該伝送特性導出部で導出した前記損失特性の異常を判定する損失異常判定部をそなえることもできる。
)さらに、上記(1)において、該伝送特性導出部は、該関数情報保持部で保持する前記関数情報に基づき、該監視信号波長光レベル取得部で取得した前記監視信号波長光の受信レベルを補正した補正値を導出するとともに、該伝送特性導出部で導出した前記監視信号波長光の受信レベルの補正値の異常を判定する監視信号異常判定部をそなえることもできる。
)また、この分布ラマン増幅システムは、光伝送路をそなえるとともに、該光伝送路の一端側および他端側にそれぞれ接続された第1および第2光伝送装置をそなえ、該光伝送路を伝搬する光を分布ラマン増幅する分布ラマン増幅システムであって、該第1光伝送装置に、光主信号の波長帯域外に波長が設定され、前記光伝送路を介して該第2光伝送装置に伝送する光監視信号を出力する第1光監視信号源をそなえるとともに、該第1光伝送装置から送信され該光伝送路に入力する光主信号および該第1光監視信号源から出力される前記光監視信号のパワーをそれぞれモニタする第1光モニタをそなえ、該第2光伝送装置に、前記光伝送路から該第2光伝送装置に入力され受信される前記光主信号および光監視信号の光波長帯のパワーをそれぞれモニタする第2光モニタをそなえるとともに、該第1および第2光伝送装置の一方または双方に、前記分布ラマン増幅のための励起光を前記光伝送路に供給する励起光供給部をそなえ、かつ、該第1および第2光伝送装置の一方に、該第1および第2光モニタからのモニタ結果をもとに、対向装置との間で前記光伝送路を介して伝送される主信号波長光の送信および受信レベルに関する情報を取得する主信号波長光レベル取得部と、該第1および第2光モニタからのモニタ結果をもとに、前記対向装置との間で前記光伝送路を介して伝送される、前記主信号波長と異なる監視信号波長光の送信および受信レベルに関する情報を取得する監視信号波長光レベル取得部と、該励起光供給部で供給する励起光パワーに対する、該監視信号波長光についての前記ラマン増幅による雑音量および利得を導出する関数情報と、該主信号波長光についての前記ラマン増幅による雑音量を導出する関数情報とをそれぞれ保持する関数情報保持部と、該関数情報保持部で保持する各関数情報に基づき、該励起光供給部で供給する励起光パワーに対応した、該監視信号波長光についての前記ラマン増幅による雑音量および利得と、該主信号波長光についての前記ラマン増幅による雑音量とを導出するとともに、前記導出した該監視信号波長光についての前記ラマン増幅による雑音量および利得に関する情報と、監視信号波長光レベル取得部で取得した情報とに基づいて、伝送特性として前記光伝送路での損失特性を導出するとともに、前記導出した該主信号波長光についての前記ラマン増幅による雑音量に関する情報と、信号波長光レベル取得部で取得した情報と、前記導出した損失特性とに基づいて、ラマン利得を導出する伝送特性導出部と、をそなえたことを要件とするものである。
)さらに、上記()において、該第2光伝送装置に、光主信号の波長帯域外に波長が設定されて該第1光伝送装置に伝送すべき光監視信号を出力する第2光監視信号源をそなえるとともに、該第1光モニタの入力側に、入力される光主信号を増幅する光アンプがそなえられ、該光アンプは、該第2光監視信号源からの光監視信号を通じてオンオフ制御可能に構成されたこととしてもよい。
)また、この分布ラマン増幅システムの立ち上げ方法は、()の分布ラマン増幅システムの立ち上げ方法であって、該励起光供給部からの前記励起光の供給とともに該第1光伝送装置から該光伝送路への光主信号の伝搬をオフとしつつ、該監視信号波長光レベル取得部において、該第1光監視信号源が出力する前記光監視信号の前記送信および受信レベルに関する情報を取得し、該励起光供給部からの前記励起光の供給をオンとして、該監視信号波長光レベル取得部において、該第1光監視信号源が出力する前記光監視信号の前記送信および受信レベルに関する情報を取得し、該第1光監視信号源からの前記光監視信号の出力を一定時間オフする一方、前記オフとしている一定時間において、該励起光供給部からの前記励起光の供給によるラマン励起で生じた前記光伝送路からの雑音量について、前記監視信号波長成分を該監視信号波長光レベル取得部で取得し、該第2光監視信号源からの光監視信号を通じて該光アンプがオフ制御されるとともに、該励起光供給部からの前記励起光の供給によるラマン励起により生じた前記光伝送路からの雑音量について、前記主信号波長成分を該主信号波長光レベル取得部で取得し、前記取得した前記光監視信号の前記送信および受信レベルに関する情報および前記監視信号波長成分の雑音量に基づいて、該励起光供給部で供給する励起光パワーに対する、監視信号波長帯における前記ラマン増幅による雑音量および利得を導出する関数をそれぞれ定立するとともに、当該各関数を定義するパラメータを前記関数情報として該関数情報記憶部に記憶し、前記取得した前記主信号波長成分の雑音量に基づいて、該励起光供給部で供給する励起光パワーに対する、主信号波長帯における前記ラマン増幅による雑音量を導出する関数を定立するとともに、当該関数を定義するパラメータを前記関数情報として該関数情報記憶部に記憶することを要件としている。
このように、励起パワーが起動中または利得可変中のいかなる場合でも、光伝送路の伝送特性として、励起光パワーに応じた雑音量を算出することができ、又、算出した雑音量に応じて補正された監視信号入力モニタ(監視信号光の受信レベル)の値を求めることができ、更には、求めた監視信号入力モニタの値を元に主信号波長帯のラマン利得を精度良く求める事が可能となる。即ち、ラマン利得の導出を従来技術よりも高精度することができ、又、伝送路分布ラマン増幅の利得一定制御を従来技術に照らして高精度化することが可能となる。
以下、図面を参照することにより実施の形態を説明する。
〔A〕第1実施形態の説明
・概略構成
図1は第1実施形態にかかる分布ラマン増幅システムを示す図である。この図1に示す分布ラマン増幅システムは、光伝送路3をそなえるとともに、光伝送路3の一端側および他端側にそれぞれ接続された第1および第2光伝送装置1,2をそなえ、光伝送路3を伝搬する光を分布ラマン増幅するようになっている。
また第1および第2光伝送装置1,2は、光通信システムをなす中継装置又は送受信装置として構成しうる。図1中においては、光主信号は第1光伝送装置1から光伝送路3を介して第2光伝送装置2に伝送されるようになっており、第1光伝送装置1は送信側伝送装置として、第2光伝送装置2は受信側伝送装置としてそれぞれ構成される。尚、第1光伝送装置1においても、第2光伝送装置2と同様の受信側装置としての構成をそなえるとともに、第2光伝送装置2においては、第1光伝送装置1と同様の送信側装置としての構成をそなえることができる。
ここで、光伝送装置1は、EDFA11,光主信号出力モニタ12,光監視信号源13および光監視信号出力モニタ14をそなえている。EDFA(Erbium Doped Fiber Amplifier)11は、入力される光主信号について増幅する光アンプであり、この光アンプ11は、対向装置としての光伝送装置2からの光監視信号に応じてオンオフ制御される構成を有している。尚、図1中においては、光伝送装置2からの光監視信号を送受信する構成については図示を省略している。
光主信号出力モニタ(PD;Photo Diode)12は、EDFA11を通じて増幅された
光主信号の一部について分岐器15を介して入力されて、その光パワーPsigoをモニタするものである。又、光監視信号源(OS)13は、光伝送路3を介して第2光伝送装置2に伝送する光監視信号を出力する第1光監視信号源である。合波器16は、光監視信号源13からの光監視信号を分岐器15からの光主信号に合波して、光伝送路に出力する。
たとえば、図1のAに示すように、光監視信号A2は、光主信号A1の波長帯域外に波長が設定されるようになっているので、光監視信号送受信のために主信号用に準備されたチャンネルを使用する必要はなく、光主信号の通信のための資源に対して浪費を生じさせないようにしている。
また、光監視信号出力モニタ14は、光監視信号源13から出力される光監視信号の一部について分岐器17を介して入力されて、そのパワーPscoをモニタするものである。
従って、上述の光主信号出力モニタ12および光監視信号出力モニタ14が協働することにより、第1光伝送装置1から送信され光伝送路に出力される光主信号および第1光監視信号源13から出力される光監視信号のパワーをそれぞれモニタする第1光モニタとしての機能を有している。
なお、光主信号出力モニタ12および光監視信号出力モニタ14でのモニタ結果については、上述の光監視信号源13にて出力する光監視信号に、光変調により含めることができ、これにより、上述の各モニタ結果については第2光伝送装置2に出力することができるようになる。
また、第2光伝送装置2は、光伝送路を伝搬する光を分布ラマン増幅するラマン増幅装置2Aとしての構成をそなえるとともにEDFA2Bをそなえている。又、分布ラマン増幅装置2Aは、励起光供給部21,光主信号入力モニタ22,光監視信号入力モニタ23,光監視信号受信部24,演算処理部25および制御部26をそなえている。尚、27a,27bは合分波器、28a,28bは分岐器である。
ここで、励起光供給部21は、光伝送路3を伝搬する光の分布ラマン増幅のための励起光を光伝送路3に供給するものであり、ラマン励起光源21aおよび合分波器27aをそなえている。ラマン励起光源21aは、後述する制御部26からの制御に基づくパワーのラマン励起光を出力するものであり、ラマン励起光源21aから出力されたラマン励起光については合分波器27aを通じて光伝送路3に出力されて、第1光伝送装置1からの光主信号を後方励起するようになっている。尚、図1中においては、励起光供給部21としての構成を光伝送装置2にそなえているが、前方励起のために第1光伝送装置1にそなえることとしてもよく、又は第1,第2光伝送装置1,2の双方にそなえることとしてもよい。
また、光主信号入力モニタ(PD)22は、光伝送路3から入力された光主信号波長帯の光の一部について合分波器27a,27bおよび分岐器28aを介して入力されて、その光のパワーPsigiをモニタするものである。更に、光監視信号入力モニタ23は、第1光伝送装置1の光監視信号源13から出力され光伝送路3を伝送された光監視信号について、合分波器27a,27bおよび分岐器28bを通じて入力されて、その光パワーPsciをモニタするものである。尚、合分波器27bは、合分波器27aから入力される光のうちで、光主信号波長帯の光については分岐器28a側に出力する一方、光監視信号波長帯の光については分岐器28b側に出力する。
したがって、上述の光主信号入力モニタ22および光監視信号入力モニタ24が協働することにより、光伝送路3から第2光伝送装置2に入力され受信される光主信号および光監視信号の光波長帯のパワーをそれぞれモニタする第2光モニタとしての機能を有している。尚、図1中においては、光監視信号入力モニタ23を光監視信号受信部24の外部にそなえた構成としているが、光監視信号入力モニタ23としての機能については、光監視信号受信部24内にそなえることとしてもよい。
また、光監視信号受信部24は、上述の光監視信号源13から出力され光伝送路3を伝送された光監視信号について受信するものであり、当該光監視信号に変調された監視情報等について復調することができるようになっている。例えば、第1光伝送装置1の光主信号出力モニタ12および光監視信号出力モニタ14でのモニタ結果を、光監視信号源13からの光監視信号を復調することにより受け取ることができるようになっている。尚、光監視信号受信部24において上述のごとく受け取ったモニタ結果については、演算部25に出力されるようになっている。
また、演算処理部25は、光主信号入力モニタ22および光監視信号入力モニタ24からのモニタ結果とともに、光監視信号受信部24から、光主信号出力モニタ12および光監視信号出力モニタ14でのモニタ結果を受け取り、励起光供給部21で供給している励起光パワーに対応した光主信号波長帯でのラマン利得について演算するものであり、演算結果については制御部26に出力するようになっている。
すなわち、上述の演算処理部25は、第1および第2光モニタ12,14,22,23からのモニタ結果をもとに、対向装置としての光伝送装置1との間で光伝送路3を介して伝送される主信号波長光の送信および受信レベルに関する情報を取得する主信号波長光レベル取得部として機能するとともに、光伝送装置1との間で光伝送路3を介して伝送される、主信号波長と異なる監視信号波長光の送信および受信レベルに関する情報を取得する監視信号波長光レベル取得部として機能する。尚、演算処理部25におけるラマン利得の演算の態様については後述する。
制御部26においては、演算処理部25で導出するラマン利得が一定となるように励起光供給部21で供給する励起光を制御するものである。光伝送装置1からの光主信号の波長数が変動した場合には、ラマン増幅の利得特性が変動することになる。制御部26においては、このように光主信号の波長数が変動した場合においても、演算処理部25で演算されたラマン利得をフィードバック要素として実質的に一定となるように励起光パワーを制御することができるので、励起光制御の高精度化を実現することができるようになる。
・演算処理部25でのラマン利得導出の具体的態様について
ところで、前述したように、ラマン増幅の利得制御は、ダイナミックな波長数変動に対応する為には光出力一定制御(ALC)では無く、波長情報を転送する必要が無い利得一定制御(AGC)を行なう必要がある。この利得は励起パワーの増減によって制御を行なう。この利得を常に最適に制御するために、入出力光主信号レベル(Psigo/Psigi)を測定する他に、伝送路損失(loss)の測定の為に入出力光監視信号レベル(Psco/Psci)の計4つを測定することが行なわれる。
これにより、演算処理部25で演算すべき利得の導出式として、上述のごとく測定した4つの値を用いることにより、式(1)を想定できる。尚、式(1)中におけるlossは補正された伝送路損失であり、式(2)に示すように、監視信号光の送信レベルに対する受信レベルの差として求めることができる。
Gain=loss−(Psigo−Psigi) …(1)
Loss=Psco−Psci …(2)
なお、ラマン増幅を受ける光主信号の入出力レベル(Psigo/Psigi)のみを用いても伝送路損失は求めることはできないが、ラマン利得を得にくい波長に配置した光監視信号の光送受信レベルを用いることで伝送路損失(loss)を測定することができる。従って、この式(1)に示すように、伝送路損失lossの値を用いることにより、光主信号のラマン利得として導出することが想定できるのである。
しかしながら、演算処理部25にて取得する入力光主信号のレベル(Psigi)には、光主信号に由来する信号のラマン増幅装置2A内の経路(ラマン増幅装置2Aの光伝送路3との接続箇所から光主信号入力モニタ22までの光経路、および光主信号入力モニタ22から演算処理部25までの電気経路)で生じる回路雑音や、光伝送路3でのラマン増幅で生じる雑音成分が含まれている。例えば、図1のBに示すように、第2光伝送装置に到達する光監視信号B2および光主信号B1は、光伝送路3でのラマン増幅により雑音成分を含む光信号となっている。
図2は、光主信号の波長数に応じた入力光主信号レベルPsigiについて、光主信号パワーと雑音パワーとの相対的関係とともに説明するための図である。演算処理部25にて取得する入力光主信号レベルPsigiの値としては、光主信号パワーと雑音パワーとの合計値となる。この図2に示すように、光主信号の波長数の増減によらず、雑音パワーについては実質的に同等のパワーである。従って、特に光主信号の波長数が少ない状態においては光主信号パワーの小さいため、相対的に雑音パワーによる誤差の影響が大きい。このような入力光主信号レベルPsigiをそのまま利得演算に用いることとすると、演算された値に大きな利得誤差が生じやすい。
また、光監視信号についても、光主信号波長帯とは異なる波長帯を選択することとしても、例えば図3に示すラマン利得波長特性に示すように、実際にはある程度のラマン利得を受けることが考えられる。この場合には、入出力光監視信号レベルのモニタ値の差Psco−Psciとして求められる伝送路損失の値についても真の値からずれるため、求められる利得値に誤差が生じる原因となりうる。
これらの誤差原因により、式(1)に従って測定される利得値においては誤差が生じやすいため、利得制御の高精度化に支障をきたすことになる。
そこで、第1実施形態における演算処理部25においては、利得値を求める際に、上述の誤差原因を解消するための補正量を加入することによって、導出される利得値の高精度化を図っている。上述の補正量を加入して利得値を導出するため、演算処理部25は、例えば図4に示すように、記憶部25aおよび演算部25bをそなえている。
ここで、記憶部25は、励起光供給部21で供給する励起光パワーに対する、光監視信号の波長を有する光(監視信号波長光)についてのラマン増幅による雑音量および利得を導出する関数情報と、励起光パワーに対する主信号波長光の波長を有する光についてのラマン増幅による雑音量を導出する関数情報と、をそれぞれ保持する関数情報保持部として機能するものである。尚、記憶部25としては、上述の関数情報のほかに、当該関数情報を導出するために用いられる光伝送路の物理定数等の情報についても記憶しておく。
図5(a)は、光伝送路3に供給する励起光のパワーに対する、ラマン励起により主信号波長光又は監視信号波長光に生じる雑音発生量の関係の一例を示す図である。この図5(a)に示すように、主信号波長帯又は監視信号波長帯について発生する雑音量は、励起光パワーについて比例関係にあると実質的に見立てることができる。尚、以下においては、励起光のパワーから主信号波長帯について発生する雑音量を導出する関数を第1関数とし、監視信号波長帯について発生する雑音量を導出する関数を第2関数とする。
又、監視信号光波長については、主信号波長とは異なり比較的狭い波長帯を固定的に利用することを想定しており監視信号波長光の利得波長特性も変動がないということができる。従って、監視信号波長光の利得特性についても、例えば図5(b)に示すように、励起光パワーについて比例関係にあると見立てることができる。尚、以下においては、励起光パワーから監視信号波長光の利得特性を導出する関数を第3関数とする。
このとき、励起光パワーを変数とした雑音量および利得を求めるための第1〜第3関数をそれぞれ特定する傾き等のパラメータは、光伝送路3をなす光ファイバの物理定数(ファイバコアの実効断面積、波長特性等)や、ラマン励起光源21a(図1参照)で発光する励起光の光伝送路3への結合ロス等に支配的に依存する。
したがって、演算部25bにおいては、光伝送装置2として光伝送路3に接続、設置するにあたって、接続されることとなる当該光伝送路3の種別から導かれる物理定数を記憶部25aから取り出すとともに、上述した結合ロスに関する情報についても記憶部25aから取り出す。そして、取り出した情報を用いて、上述の第1〜第3関数を特定するパラメータをそれぞれ導出しておき、記憶部25aに蓄積しておくようにする。
ここで、演算部25bは、上述のごとく記憶部25aに蓄積された関数情報を用いて、補正されたラマン利得値を演算するため、補正量導出部251および補正演算部252をそなえている。補正量導出部251は、励起光供給部21で供給している励起光パワーに関する情報を励起光供給部21から受け取り、記憶部25aに記憶されている第1〜第3関数の情報を参照しながら、補正量として、当該励起光パワーに対応する主信号波長光の雑音量Psignoise,監視信号波長光の雑音量Pscnoiseおよび利得Gainscを演算する。
補正演算部252は、前述のモニタ情報として取得した値(主信号波長光および監視信号波長光の送受信レベルのモニタ値Psigo,Psigi,PscoおよびPsci)と、補正量導出部251で導出された補正量と、を用いて、例えば式(3)に示すように、主信号波長帯における補正されたラマン利得値Gain_aを演算によって導出する。尚、式(3)中におけるloss_aは補正された伝送路損失であり、式(4)に示すように求めることができる。
Gain_a=loss_a−{Psigo−(Psigi−Psignoise)} …(3)
Loss_a=Psco−(Psci−Gainsc−Pscnoise) …(4)
すなわち、前述の式(1),(2)と式(3),(4)とを比較すると、伝送路損失を導出する際には、ラマン励起により生じている監視信号光の雑音量Psignoiseおよび監視信号光の利得による増分Gainscを式(2)から導かれる結果から除去することができる。又、利得値を導出する差異には、上述のPsignoiseおよびGainscのほか、主信号光波長帯における雑音量Psignoiseについても、式(1)から導かれる結果から除去することができる。このようにして、第1実施形態によれば、式(1),(2)の場合よりも導出される伝送路損失やラマン利得の精度を高める(誤差を少なくする)ことができる。
したがって、上述の演算部25bは、主信号波長光レベル取得部および監視信号波長光レベル取得部としての機能を有するとともに、主信号波長光レベル取得部および監視信号波長光レベル取得部として取得した情報と記憶部25bが保持する各関数情報とに基づいて、光伝送路3での伝送特性を導出する伝送特性導出部として機能することになる。
なお、演算部25bで求められた利得値については、制御部26に出力される。これにより、制御部26においては、演算部25bからの利得値に基づいて、ラマン利得値が安定化するように、励起光供給部21に対する励起光パワーを制御することができる。従って、制御部26は、伝送特性導出部をなす演算処理部25で導出したラマン利得が一定となるように励起光供給部21で供給する励起光を制御する励起光制御部として機能する。
・作用効果
上述の構成により、第1実施形態においては、光伝送路3を介して第1光伝送装置1から第2光伝送装置2に対して光主信号を伝送する場合においては、第2光伝送装置2をなすラマン増幅装置2Aにおいて光伝送路3をラマン励起することにより、光主信号のSNを改善させている。このとき、ラマン増幅装置2Aにおいては、演算処理部25および制御部26により、波長数変動によっても安定的なラマン増幅を実現するため、ラマン利得が目標値に安定するように励起光パワーを制御している。
すなわち、演算処理部25では、装置立ち上げ時等のように、励起光パワーを変動させている状態においても、供給している励起光パワーに応じた光監視信号波長帯の雑音量、ラマン利得を上述の第2,第3関数を用いて導出することができるほか、主信号波長帯の雑音量についても第1関数を用いて導出することができるので、励起光パワー変動時の主信号波長帯のラマン利得又は主信号波長帯の損失についても、式(3),(4)に従って導出することができる。これにより、目標ゲインに向けて精度高くラマン励起パワーを変更しゲイン設定することができるようになる。
このように、第1実施形態によれば、演算処理部25および制御部26により、第2光伝送装置2において励起パワーが起動中または利得可変中のいかなる場合でも、光伝送路3の伝送特性として、励起光パワーに応じた雑音量を算出することができ、又、算出した雑音量に応じて補正された監視信号入力モニタ(監視信号光の受信レベル)の値を求めることができ、更には、求めた監視信号入力モニタの値を元に主信号波長帯のラマン利得を精度良く求める事が可能となる。即ち、ラマン利得の導出を従来技術よりも高精度することができ、又、伝送路分布ラマン増幅の利得一定制御を従来技術に照らして高精度化することが可能となる。
〔A1〕第1実施形態の変形例の説明
前述の第1実施形態においては、演算部25bにおいては、光伝送装置2として光伝送路3に接続、設置するにあたって、接続されることとなる当該光伝送路3の種別から導かれる物理定数を記憶部25aから取り出して、第1〜第3関数を特定する傾き等のパラメータをそれぞれ導出するようになっている。
これに対し、第1実施形態の第1変形例においては、図6に示すように、第1〜第3関数を特定するためのパラメータを導出するにあたって支配的な、伝送路ファイバの物理定数(ファイバコアの実行断面積、波長特性等)や励起光と光伝送路3との結合ロスの値について、取りうる範囲の中心(各パラメータにおける分布の標準から算出した関数)と定義する。これにより、ファイバ種等の物理定数を特定する情報が不明である場合や、結合ロス等の値が不明である場合においても、一意に第1〜第3関数を定義しつつも、偏差を最大でも1/2以下に抑えることができるので、励起光パワーに対する各関数値を精度良く導出することができる。
また、第1実施形態の第2変形例においては、記憶部25aで記憶する第1,第2関数を特定するパラメータを、ラマン励起パワーと発生する雑音量の関係が、図7(a)に示すように、想定しうる範囲の一番係数の低い傾きの一次関数と定義する。これにより、例えば入力監視信号光レベルPsciについての補正(Psci−Gainsc−Pscnoise)に用いるPscnoiseの値は小さくなる。この状態においても、例えば図7(b)に示すように、第
3関数をラマン励起パワーとGainscの関係を係数が高い関数と定義する事で、入力監視
信号光レベルについての補正値についての誤差は、GainscとPscnoiseとの間で相殺され、精度高いラマン利得値として導出することができるので、結果的はラマン利得を正常に制御する事が出来る。
このとき、伝送路損失の増加が発生した場合、励起パワーはその送信増加分を保障するように制御するが、ここで入力監視回線レベルはやはり先の通り通常より大きく見える。この動作から入力監視回線レベルを検出するモニタ回路演算誤差が信号レベルより少なく見えるので、結果伝送路損失変動が精度良く検出する事が可能となる。
〔B〕第2実施形態の説明
図8は第2実施形態にかかる分布ラマン増幅システムを示す図である。図8に示す分布ラマン増幅システムは、前述の第1実施形態におけるもの(図1参照)に比して、制御部26Bに、演算処理部25で演算された伝送路損失の値に基づいてアラームを出力する損失異常出力部26aをそなえている点が異なっている。尚、これ以外の構成については前述の第1実施形態の場合と同様であり、図8中、図1と同一の符号はほぼ同様の部分を示している。尚、第1実施形態の場合と同様の励起光制御を行なうこととしてもよい。
損失異常出力部26aは、比較部261および閾値保持部262をそなえている。比較部261は、演算処理部25で演算された伝送路損失の値について、閾値保持部262で保持されている閾値との大小を比較し、閾値よりも大きい場合には伝送路損失の異常としてアラームを出力することができるようになっている。従って、制御部26Bがそなえる損失異常出力部26aは、伝送特性導出部をなす演算処理部25で導出した損失特性の異常を判定する損失異常判定部として機能する。
これにより、前述の第1実施形態の場合と同様の利点があるほか、伝送路損失の異常を検出することができ、装置性能を向上させることができる。
〔C〕第3実施形態の説明
図9は第3実施形態にかかる分布ラマン増幅システムを示す図である。図9に示す分布ラマン増幅システムは、第1実施形態におけるものに比して、制御部26Cに、演算処理部25からの光監視信号の受信レベルの補正値の値に基づいて、光監視信号の異常としてアラームを出力する監視信号異常出力部26bをそなえている点が異なっている。尚、これ以外の構成については前述の第1実施形態の場合と同様であり、図9中、図1と同一の符号はほぼ同様の部分を示している。尚、第1実施形態の場合と同様の励起光制御を行なうこととしてもよい。
監視信号異常出力部26bは、比較部263および閾値保持部264をそなえている。比較部263は、演算処理部25で演算された光監視信号の受信レベルの補正値であるPsci−Gainsc−Pscnoiseの値について、閾値保持部264で保持されている閾値との大小を比較し、閾値よりも大きい場合には光監視信号回線の異常としてアラームを出力することができるようになっている。従って、制御部26Cがそなえる監視信号異常出力部26bは、伝送特性導出部をなす演算処理部25で導出した監視信号波長光の受信レベルの補正値の異常を判定する監視信号異常判定部として機能する。
これにより、前述の第1実施形態の場合と同様の利点があるほか、監視信号波長光の受信レベルの補正値の異常、ひいては監視信号回線の異常を検出することができ、装置性能を向上させることができる。
〔D〕第4実施形態の説明
図10は第4実施形態にかかる分布ラマン増幅システムを示す図である。図10に示す分布ラマン増幅システムは、第1,第2光伝送装置4,5間において、双方向に光主信号および光監視信号を伝搬させるための構成をそなえている。このため、第1光伝送装置4から第2光伝送装置5へ光主信号および光監視信号を伝搬させるための光伝送路3Aとともに、反対方向、即ち第2光伝送装置5から第1光伝送装置4へ光主信号および光監視信号を伝搬させるための光伝送路3Bをそなえている。
ここで、第1光伝送装置4は、ラマン増幅装置1Cの構成として、前述の第1実施形態における光伝送装置1と同様、光伝送路3Aへ光を出力するための構成(符号11〜17参照)をそなえるとともに、反対方向の光伝送路3Bから入力される光主信号および光監視信号を受信するための構成として、第1実施形態における光伝送装置2が有しているものに相当する構成(符号21−1〜26−1,27a−1,27b−1,28a−1および28b−1)をそなえている。尚、図10中、枝符号(−1)を取った残りの符号は、図1に示す第2光伝送装置2が有する対応構成を示すものである。
同様に、第2光伝送装置5においては、ラマン増幅装置2Cの構成として、前述の第1実施形態における光伝送装置2と同様、光伝送路3Aから入力される光を受信処理するための構成(符号21〜26,27a,27b,28aおよび28b参照)をそなえるとともに、反対方向の光伝送路3Bに光主信号および光監視信号を出力するための構成として、第1実施形態における光伝送装置1が有しているものに相当する構成(符号11−2〜17−2)をそなえている。
ここで、各光伝送装置4,5における制御部26−1,26はそれぞれ、対向装置からの光監視信号を制御情報として、自身の装置内における光アンプ11,11−2の動作をシャットダウン制御する機能をそなえている。尚、光伝送装置4,5において、29はそれぞれ光伝送路3B,3Aを通じて伝搬した光主信号について、図示しない外部光伝送路へ送出するために光増幅を行なう光アンプである。
また、第4実施形態における分布ラマン増幅システムにおいては、前述の第1実施形態の場合と異なり、演算処理部25においてラマン利得を導出する際に用いる第1〜第3関数の情報については、システム運用前(光主信号導通前)における測定を通じて求め、求められた関数情報を記憶部25bで記憶しておくようになっている。
図11は図10に示す分布ラマン増幅システムの立ち上げの際に、上述の第1〜第3関数を特定するパラメータを測定により導出する処理を説明するためのフローチャートである。
分布ラマン増幅システムにおける光伝送装置4から光伝送装置5への光伝搬方路の立ち上げ(起動)の際には、この図11に示すように、励起光供給部21からの励起光の供給とともに第1光伝送装置4から光伝送路3Aへの光主信号の伝搬をオフとしつつ、第1光伝送装置4から第2光伝送装置5への光監視信号の疎通を確認する(ステップA1)。
ついで、ラマン励起を行なわないときの光監視信号レベルを測定する。即ち、第2光伝送装置5における演算処理部25において、第1光監視信号源13が出力する光監視信号の(第1光伝送装置4からの)送信レベルPscoに関する情報とともに、(第2光伝送装置5での)受信レベルPsci_pumpoffに関する情報を取得する(ステップA2)。
ここで、上述の送信レベルについては第1光伝送装置4における監視信号出力モニタ14でモニタし、モニタ結果を当該第1監視信号源13から出力される光監視信号に変調し、光伝送路3Aを介し第2光伝送装置5に出力する。第2光伝送装置5における光監視信号受信部24において、受信した光監視信号から送信レベルを復調する。これにより、演算処理部25においては、光監視信号受信部24にて復調した送信レベルに関する情報Psci_pumpoffを取得する。又、演算処理部25においては、上述の受信レベルに関する情報Pscoについては、光監視信号入力モニタ23からのモニタ結果を受け取ることにより取得する。
ついで、制御部26からの励起光制御に基づいて、励起光供給部21からの励起光Pumpinitの供給をオンとして(ステップA3)、演算処理部25において、第1光監視信号源13が出力する光監視信号の送信および受信レベルPsco,Psci_pumponに関する情報を取得する(ステップA4)。尚、受信レベルPsci_pumponについては、光監視信号入力モニタ23からのモニタ結果から取得するが、送信レベルについては、励起光供給前のレベル情報Pscoから変動しない場合には、その値を取得したレベル値とすればよい。
つぎに、第1光監視信号源13からの光監視信号の出力を一定時間オフする一方、この光監視信号をオフとしている一定時間において、励起光供給部21からの励起光の供給によるラマン励起により生じた光伝送路3Aからの雑音量について、監視信号波長成分を演算処理部25で取得する。具体的には、制御部26からの制御により、第2光伝送装置5の第2監視信号源13−2から出力される光監視信号を通じて、第1光伝送装置4に宛てて光監視信号の出力を遮断する要求を出力する(ステップA5)。この第2監視信号源13−2からの光監視信号は、光伝送路3Bを通じて伝搬するとともに、第1光伝送装置4の光監視信号受信部24−1で受信される。そして、上述の遮断要求が制御部26−1に到達することにより、制御部26−1では第1監視信号源13を遮断制御する。
制御部26−1では、第1監視信号源13についての遮断要求を受け取ると、一定時間遮断制御するが、その一定時間が経過すると再び復旧させるようにする(ステップB1,B2)。このように、第1監視信号源13からの光監視信号の出力が遮断されたことを光監視信号受信部24での出力から確認すると、この光監視信号の遮断している間に、演算処理部25において、ラマン励起されているときの雑音光の光監視信号波長成分Psci_noiseinitを、監視信号入力モニタ23でのモニタ値から取得する(ステップA6〜A8)
つぎに、演算処理部25においては、上述のごとくレベル情報として取得した値Psci_pumpoff,Psci_pumpon,Psci_noiseinitを用いることにより、光監視信号波長帯におけるラマン利得Gain_scpumpinitを求める(ステップA9)。尚、このラマン利得Gain_scpumpinitについては、式(5)に示すように表すことができる。
Gain_scpumpinit=Psci_pumpon−Psci_noiseinit−Psci_pumpoff …(5)
さらに、第2光監視信号源13−2からの光監視信号を通じて、光伝送装置4の光アンプ11がオフ制御されるとともに、励起光供給部21からの励起光の供給によるラマン励起により生じた光伝送路3Aからの雑音量について、主信号波長成分を演算処理部25で取得する。
具体的には、第2光監視信号源13−2では、制御部26からの要求を受けて、光アンプ11をシャットダウンさせる旨の要求情報を含んだ光監視信号を出力する(ステップA10)。尚、出力された光監視信号は光伝送路3Bを通じて第1光伝送装置4の光監視信号受信部24−1で受信されて、制御部26−1に当該要求情報が到達する。これにより、制御部26−1においては、光アンプ11をシャットダウン制御して、入力される光主信号の光伝送路3への出力をオフとしている(ステップB3)。
第1光監視信号源13−1からの光監視信号等を通じて、光アンプ11がシャットダウンされたことを確認すると(ステップA11)、第2光伝送装置5の演算処理部25においては、励起光供給部21からの励起光によるラマン励起により生じた光伝送路3Aからの雑音量について、主信号波長成分Psignoise_initを光主信号入力モニタ22からのモニタ値により取得する(ステップA12)。
そして、演算処理部25をなす演算部25b(図4参照)においては、上述のごとく取得した光監視信号の送信および受信レベルに関する情報Psco,Pscii_pumpon,Psci_pumpoffおよび監視信号波長成分の雑音量Psci_noiseinitに基づいて、励起光供給部21で供給する励起光パワーに対する、監視信号波長帯におけるラマン増幅による雑音量および利得を導出する関数をそれぞれ定立するとともに、当該各関数を定義するパラメータを関数情報として関数情報記憶部25aに記憶する(ステップA13)。
図12に示すように、監視信号波長成分の雑音量は、励起光供給部21で供給する励起光パワーに正比例すると見ることができるので、励起光パワーに対する監視信号波長成分の雑音量を導出する第2関数は原点を通過する一次関数として特定することができる。そこで、演算部25bにおいては、励起光供給部21において初期値として与えられた励起光パワーに対する雑音量Psci_noiseinitを用いて、第2関数を特定するパラメータとしての傾きを求め、求めた傾きについて関数情報記憶部25aに記憶しておくのである。
同様に、監視信号光波長成分のラマン利得についても、励起光パワーに正比例すると見ることができる。従って、演算部25bにおいては、励起光パワーに対する監視信号波長成分のラマン利得を導出する第3関数についても、原点を通過する一次関数として特定できる。そこで、第3関数を特定するパラメータとしての傾きについても、所期値としての励起光パワーに対して計算したラマン利得Gain_scpumpinitを用いることにより求め、求めた傾き情報を関数情報記憶部25aに記憶する。
さらに、図12に示すように、主信号波長成分の雑音量についても、励起光供給部21で供給する励起光パワーに正比例すると見ることができるので、励起光パワーに対する主信号波長成分の雑音量を導出する第1関数についても原点を通過する一次関数として特定できる。そこで、演算部25bにおいては、第1関数を特定するパラメータとしての傾きについて、励起光供給部21において初期値として与えられた励起光パワーに対する雑音量Psci_noiseinit(式(5)参照)を用いて求め、求めた傾きについて関数情報記憶部25aに記憶しておく。
このようにして、第1〜第3関数を特定するパラメータが記憶部25aに記憶されると、制御部26では、光監視信号源13−2,光伝送路3Bおよび監視信号受信部24−1からなる光監視信号ラインを通じて、光アンプ11のシャットダウンの解除要求を出力する(ステップA14)。第1光伝送装置4の制御部26−1において、この解除要求に応じた光アンプ11の制御が行なわれて(ステップB4)、第2光伝送装置5の制御部26においてその確認が完了すると(ステップA15)、光主信号の開通にそなえ、光伝送路3Aでのラマン利得の一定制御に移行し(ステップA16)、光伝送装置4から光伝送装置5への光伝搬方路の起動が完了する。
上述の構成により、第4実施形態においては、光伝送路3Aを介して第1光伝送装置4から第2光伝送装置5に対して光主信号を伝送する場合においては、第2光伝送装置5をなすラマン増幅装置2Cにおいて光伝送路3Aをラマン励起することにより、光主信号のSNを改善させている。このとき、ラマン増幅装置2Cにおいては、演算処理部25および制御部26により、波長数変動によっても安定的なラマン増幅を実現するため、ラマン利得が目標値に安定するように励起光パワーを制御している。
すなわち、演算処理部25では、装置立ち上げ時等のように、励起光パワーを変動させている状態においても、供給している励起光パワーに応じた光監視信号波長帯の雑音量、ラマン利得を、上述のごとき立ち上げ時の演算により得られた上述の第2,第3関数を用いて導出することができるほか、主信号波長帯の雑音量についても上述のごとく立ち上げ時の演算により得られた第1関数を用いて導出することができる。従って、励起光パワー変動時の主信号波長帯のラマン利得又は主信号波長帯の損失についても、式(3),(4)に従って導出することができる。これにより、目標ゲインに向けて精度高くラマン励起パワーを変更しゲイン設定することができるようになる。
このように、第4実施形態においても、前述の第1実施形態の場合と同様の利点を得ることができる。
〔E〕その他
上述した各実施形態にかかわらず、請求項記載の本発明の趣旨を逸脱しない範囲において種々変形して実施することが可能である。
また、上述した実施形態の開示により、当業者であれば本装置を製造することは可能である。
第1実施形態にかかる分布ラマン増幅システムを示す図である。 光主信号の波長数に応じた入力光主信号レベルについて、光主信号パワーと雑音パワーとの相対的関係とともに説明するための図である。 ラマン利得波長特性を示す図である。 第1実施形態における演算処理部を示す図である。 (a)は、励起光のパワーに対する主信号波長光又は監視信号波長光に生じる雑音発生量の関係の一例を示す図であり、(b)は励起光のパワーに対する監視信号波長光のラマン利得特性の一例を示す図である。 第1実施形態の第1変形例を説明するための図である。 (a),(b)はともに第1実施形態の第2変形例を説明するための図である。 第2実施形態にかかる分布ラマン増幅システムを示す図である。 第3実施形態にかかる分布ラマン増幅システムを示す図である。 第4実施形態にかかる分布ラマン増幅システムを示す図である。 図10に示す分布ラマン増幅システムの立ち上げの際に、第1〜第3関数を特定するパラメータを測定により導出する処理を説明するためのフローチャートである。 図10に示す分布ラマン増幅システムの立ち上げの際に、第1,第2関数を特定するパラメータを測定により導出する処理を説明するための図である。
符号の説明
1,4 第1光伝送装置
2,5 第2光伝送装置
2A,1C,2C ラマン増幅装置
3,3A,3B 光伝送路
11,2B,29 光アンプ
12,12−2 光主信号出力モニタ
13,13−2 監視信号源
14 監視信号出力モニタ
15,17,28a,28b,28a−1,28b−1 分岐器
16,27a,27b,27a−1,27b−1 合波器
21,21−1 励起光供給部
21a ラマン励起光源
22,22−1 光主信号入力モニタ
23,23−1 監視信号入力モニタ
24,24−1 監視信号受信部
25,25−1 演算処理部
25a 記憶部
25b 演算部
251 補正量導出部
252 補正演算部
26,26B,26C,26−1 制御部
26a 損失異常出力部
26b 監視信号異常出力部
261,263 比較部
262,264 閾値保持部

Claims (8)

  1. 光伝送路を伝搬する光をラマン増幅するラマン増幅装置であって、
    前記ラマン増幅のための励起光を前記光伝送路に供給する励起光供給部と、
    前記光伝送路を介して伝送される主信号波長光の送信および受信レベルに関する情報を取得する主信号波長光レベル取得部と、
    前記光伝送路を介して伝送される、前記主信号波長と異なる監視信号波長光の送信および受信レベルに関する情報を取得する監視信号波長光レベル取得部と、
    該励起光供給部で供給する励起光パワーに対する、該監視信号波長光についての前記ラマン増幅による雑音量および利得を導出する関数についての情報と、該主信号波長光についての前記ラマン増幅による雑音量を導出する関数の情報とを関数情報としてそれぞれ保持する関数情報保持部と、
    該関数情報保持部で保持する各関数情報に基づき、該励起光供給部で供給する励起光パワーに対応した、該監視信号波長光についての前記ラマン増幅による雑音量および利得と、該主信号波長光についての前記ラマン増幅による雑音量とを導出するとともに、前記導出した該監視信号波長光についての前記ラマン増幅による雑音量および利得に関する情報と、監視信号波長光レベル取得部で取得した情報とに基づいて、伝送特性として前記光伝送路での損失特性を導出するとともに、前記導出した該主信号波長光についての前記ラマン増幅による雑音量に関する情報と、信号波長光レベル取得部で取得した情報と、前記導出した損失特性とに基づいて、ラマン利得を導出する伝送特性導出部と、をそなえたことを特徴とする、ラマン増幅装置。
  2. 該関数情報保持部で前記関数情報として保持する関数は、前記光伝送路の物理定数および該励起光供給部からの前記励起光の前記光伝送路への結合効率に応じて導出されたものであることを特徴とする、請求項1記載のラマン増幅装置
  3. 該伝送特性導出部で導出したラマン利得が一定となるように該励起光供給部で供給する励起光を制御する励起光制御部をそなえたことを特徴とする、請求項記載のラマン増幅装置
  4. 該伝送特性導出部で導出した前記損失特性の異常を判定する損失異常判定部をそなえたことを特徴とする、請求項記載のラマン増幅装置。
  5. 該伝送特性導出部は、該関数情報保持部で保持する前記関数情報に基づき、該監視信号波長光レベル取得部で取得した前記監視信号波長光の受信レベルを補正した補正値を導出するとともに、
    該伝送特性導出部で導出した前記監視信号波長光の受信レベルの補正値の異常を判定する監視信号異常判定部をそなえたことを特徴とする、請求項1記載のラマン増幅装置。
  6. 光伝送路をそなえるとともに、該光伝送路の一端側および他端側にそれぞれ接続された第1および第2光伝送装置をそなえ、該光伝送路を伝搬する光を分布ラマン増幅する分布ラマン増幅システムであって、
    該第1光伝送装置に、
    光主信号の波長帯域外に波長が設定され、前記光伝送路を介して該第2光伝送装置に伝送する光監視信号を出力する第1光監視信号源をそなえるとともに、
    該第1光伝送装置から送信され該光伝送路に入力する光主信号および該第1光監視信号源から出力される前記光監視信号のパワーをそれぞれモニタする第1光モニタをそなえ、
    該第2光伝送装置に、前記光伝送路から該第2光伝送装置に入力され受信される前記光主信号および光監視信号の光波長帯のパワーをそれぞれモニタする第2光モニタをそなえるとともに、
    該第1および第2光伝送装置の一方または双方に、前記分布ラマン増幅のための励起光を前記光伝送路に供給する励起光供給部をそなえ、
    かつ、該第1および第2光伝送装置の一方に、
    該第1および第2光モニタからのモニタ結果をもとに、対向装置との間で前記光伝送路を介して伝送される主信号波長光の送信および受信レベルに関する情報を取得する主信号波長光レベル取得部と、
    該第1および第2光モニタからのモニタ結果をもとに、前記対向装置との間で前記光伝送路を介して伝送される、前記主信号波長と異なる監視信号波長光の送信および受信レベルに関する情報を取得する監視信号波長光レベル取得部と、
    該励起光供給部で供給する励起光パワーに対する、該監視信号波長光についての前記ラマン増幅による雑音量および利得を導出する関数情報と、該主信号波長光についての前記ラマン増幅による雑音量を導出する関数情報とをそれぞれ保持する関数情報保持部と、
    該関数情報保持部で保持する各関数情報に基づき、該励起光供給部で供給する励起光パワーに対応した、該監視信号波長光についての前記ラマン増幅による雑音量および利得と、該主信号波長光についての前記ラマン増幅による雑音量とを導出するとともに、前記導出した該監視信号波長光についての前記ラマン増幅による雑音量および利得に関する情報と、監視信号波長光レベル取得部で取得した情報とに基づいて、伝送特性として前記光伝送路での損失特性を導出するとともに、前記導出した該主信号波長光についての前記ラマン増幅による雑音量に関する情報と、信号波長光レベル取得部で取得した情報と、前記導出した損失特性とに基づいて、ラマン利得を導出する伝送特性導出部と、をそなえたことを特徴とする、分布ラマン増幅システム。
  7. 該第2光伝送装置に、光主信号の波長帯域外に波長が設定されて該第1光伝送装置に伝送すべき光監視信号を出力する第2光監視信号源をそなえるとともに、
    該第1光モニタの入力側に、入力される光主信号を増幅する光アンプがそなえられ、該光アンプは、該第2光監視信号源からの光監視信号を通じてオンオフ制御可能に構成されたことを特徴とする、請求項記載の分布ラマン増幅システム。
  8. 請求項記載の分布ラマン増幅システムの立ち上げ方法であって、
    該励起光供給部からの前記励起光の供給とともに該第1光伝送装置から該光伝送路への光主信号の伝搬をオフとしつつ、該監視信号波長光レベル取得部において、該第1光監視信号源が出力する前記光監視信号の前記送信および受信レベルに関する情報を取得し、
    該励起光供給部からの前記励起光の供給をオンとして、該監視信号波長光レベル取得部において、該第1光監視信号源が出力する前記光監視信号の前記送信および受信レベルに関する情報を取得し、
    該第1光監視信号源からの前記光監視信号の出力を一定時間オフする一方、前記オフとしている一定時間において、該励起光供給部からの前記励起光の供給によるラマン励起で生じた前記光伝送路からの雑音量について、前記監視信号波長成分を該監視信号波長光レベル取得部で取得し、
    該第2光監視信号源からの光監視信号を通じて該光アンプがオフ制御されるとともに、該励起光供給部からの前記励起光の供給によるラマン励起により生じた前記光伝送路からの雑音量について、前記主信号波長成分を該主信号波長光レベル取得部で取得し、
    前記取得した前記光監視信号の前記送信および受信レベルに関する情報および前記監視信号波長成分の雑音量に基づいて、該励起光供給部で供給する励起光パワーに対する、監視信号波長帯における前記ラマン増幅による雑音量および利得を導出する関数をそれぞれ定立するとともに、当該各関数を定義するパラメータを前記関数情報として該関数情報記憶部に記憶し、
    前記取得した前記主信号波長成分の雑音量に基づいて、該励起光供給部で供給する励起光パワーに対する、主信号波長帯における前記ラマン増幅による雑音量を導出する関数を定立するとともに、当該関数を定義するパラメータを前記関数情報として該関数情報記憶部に記憶することを特徴とする、分布ラマン増幅システムの立ち上げ方法。
JP2008024365A 2008-02-04 2008-02-04 ラマン増幅装置ならびに分布ラマン増幅システムおよびその立ち上げ方法 Expired - Fee Related JP5104357B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008024365A JP5104357B2 (ja) 2008-02-04 2008-02-04 ラマン増幅装置ならびに分布ラマン増幅システムおよびその立ち上げ方法
US12/365,212 US8054538B2 (en) 2008-02-04 2009-02-04 Raman amplification apparatus and distributed raman amplification system as well as starting up method for distributed raman amplification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024365A JP5104357B2 (ja) 2008-02-04 2008-02-04 ラマン増幅装置ならびに分布ラマン増幅システムおよびその立ち上げ方法

Publications (2)

Publication Number Publication Date
JP2009186615A JP2009186615A (ja) 2009-08-20
JP5104357B2 true JP5104357B2 (ja) 2012-12-19

Family

ID=40998032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024365A Expired - Fee Related JP5104357B2 (ja) 2008-02-04 2008-02-04 ラマン増幅装置ならびに分布ラマン増幅システムおよびその立ち上げ方法

Country Status (2)

Country Link
US (1) US8054538B2 (ja)
JP (1) JP5104357B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011023220A1 (en) * 2009-08-25 2011-03-03 Nokia Siemens Networks Oy Method and arrangement for in service raman gain measurement and monitoring
JP2013074456A (ja) * 2011-09-28 2013-04-22 Hitachi Ltd 光ラマンアンプを導入した光中継システム及び光中継方法
WO2013077434A1 (ja) * 2011-11-25 2013-05-30 古河電気工業株式会社 光増幅器および光増幅器の制御方法
JP6075035B2 (ja) * 2012-11-29 2017-02-08 富士通株式会社 ラマン増幅器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3655508B2 (ja) * 1999-10-05 2005-06-02 日本電信電話株式会社 ラマン増幅器及び光通信システム
JP4057214B2 (ja) * 2000-03-06 2008-03-05 富士通株式会社 分布型光増幅装置および該方法ならびに光通信システム
JP4509451B2 (ja) * 2000-09-07 2010-07-21 富士通株式会社 ラマン増幅を利用した光増幅装置
JP3768110B2 (ja) 2001-02-22 2006-04-19 富士通株式会社 光増幅器
US6433922B1 (en) * 2001-02-26 2002-08-13 Redc Optical Networks Ltd. Apparatus and method for a self adjusting Raman amplifier
JP2003298162A (ja) * 2002-04-05 2003-10-17 Hitachi Ltd 光増幅装置
US7440164B2 (en) * 2002-06-04 2008-10-21 Pivotal Decisions Llc Apparatus and method for Raman gain spectral control
JP2004080301A (ja) 2002-08-15 2004-03-11 Kddi Submarine Cable Systems Inc 分布ラマン光伝送線路の監視方法及びシステム
JP4046602B2 (ja) * 2002-12-06 2008-02-13 三菱電機株式会社 ラマン増幅器および光中継伝送システム

Also Published As

Publication number Publication date
US8054538B2 (en) 2011-11-08
US20090213454A1 (en) 2009-08-27
JP2009186615A (ja) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4565794B2 (ja) 光増幅装置および光通信システム
JP4393741B2 (ja) ラマン増幅を利用した光増幅装置およびその制御方法
JP4806407B2 (ja) ラマン光増幅器
US8275269B2 (en) Distributed Raman amplifier and optical communication system
JP4601676B2 (ja) 分布ラマン増幅を用いた波長多重光通信システム
US20050024712A1 (en) Raman amplifier and raman amplifier adjustment method
US7657187B2 (en) Optical transmission apparatus and optical transmission control method for wavelength-division-multiplexed optical signal
JP4644571B2 (ja) 光伝送装置、光レベル制御方法および光レベル制御プログラム
JP4459277B2 (ja) ラマン増幅による雑音光のモニタ方法および装置、並びに、それを用いた光通信システム
JP4431179B2 (ja) 分布ラマン増幅システムおよびその立ち上げ方法ならびに光装置
JP4046602B2 (ja) ラマン増幅器および光中継伝送システム
JP4478489B2 (ja) ラマン光増幅器およびラマン光増幅器の調整方法
US20170005727A1 (en) Transmission loss measurement device, transmission loss measurement method, and optical transmission system
JP3583309B2 (ja) 多波長光アンプの制御方法及びその装置
JP5104357B2 (ja) ラマン増幅装置ならびに分布ラマン増幅システムおよびその立ち上げ方法
JP4714692B2 (ja) 光信号のゲインを決定する方法及びシステム
US8767285B2 (en) Method and apparatus for channel power depletion compensation for hybrid distributed Raman amplifier-Erbium doped fiber amplifier
JP3878641B2 (ja) ラマン増幅による雑音光の補正機能を備えた光伝送システム
US8768165B2 (en) Method and arrangement for in service Raman gain measurement and monitoring
JP6083220B2 (ja) 光増幅器および故障検出方法
JP6602404B2 (ja) 励起光源装置及び光伝送システム
JP2013074456A (ja) 光ラマンアンプを導入した光中継システム及び光中継方法
JP6132595B2 (ja) ラマン増幅器、光中継装置、光通信システム、ラマン増幅制御方法及びプログラム
JPH11225115A (ja) 波長多重光伝送システム
JP2006202854A (ja) 光増幅器および光ネットワークシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5104357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees