JP5097824B2 - 電磁流量計の動作条件のノイズ診断 - Google Patents

電磁流量計の動作条件のノイズ診断 Download PDF

Info

Publication number
JP5097824B2
JP5097824B2 JP2010516026A JP2010516026A JP5097824B2 JP 5097824 B2 JP5097824 B2 JP 5097824B2 JP 2010516026 A JP2010516026 A JP 2010516026A JP 2010516026 A JP2010516026 A JP 2010516026A JP 5097824 B2 JP5097824 B2 JP 5097824B2
Authority
JP
Japan
Prior art keywords
diagnostic
frequency
operating conditions
coil
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010516026A
Other languages
English (en)
Other versions
JP2010533295A (ja
Inventor
フォス,スコット,アール.
シュルツ,ロバート,ケイ.
Original Assignee
ローズマウント インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローズマウント インコーポレイテッド filed Critical ローズマウント インコーポレイテッド
Publication of JP2010533295A publication Critical patent/JP2010533295A/ja
Application granted granted Critical
Publication of JP5097824B2 publication Critical patent/JP5097824B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、電磁流量計に関するものである。
電磁流量計の利用の多くにおいて、流量計の電極に生じる流量起電力の測定を阻害する1/fノイズが相当量存在する。このノイズは低周波数において大きく、周波数が高くなるにつれ減少する。電極に生じる起電力測定における信号対雑音比(SN比)を改善する方法の一つとしてコイルの駆動電流の周波数を高くすることが挙げられる。例えばコイル駆動電流の周波数を5Hzから37Hzに上げることで、測定周波数における1/fノイズのレベルは減少し、かつ電極に生じる起電力レベルは一定のままである。SN比が上昇し、より正確な流量測定を行うことが可能となる。5Hzにおけるノイズフロアは37.5Hzにおけるノイズフロアの何倍も大きいことがありえる。典型的にはノイズフロアは37.5Hzの場合よりも5Hzの場合の方が3〜5倍大きい。ノイズはおおよそ1/周波数に比例する形で大きくなる。動作周波数を倍にするとSN比が3~5倍もしくはそれ以上に改善される。
流管は広範囲の管のサイズに渡って製造される。直径24インチの流管といったような大きい流管は高インダクタンスのため、高周波数でコイル駆動するのが困難となる。大きいコイルはその高いインダクタンスと抵抗のため、コイル内の電流方向の変化に対して反応するのが遅い。
産業における流量測定環境で直面する広範囲に渡る流管サイズおよび電極ノイズレベルに対応できる方法および電磁流量計が必要となっている。
電磁流量計の流管および送信機に用いる解析回路および方法が開示される。
前記解析回路は前記流管のコイルにおけるコイル電流の振幅および周波数を含む診断動作条件を提供する制御部を備える。
前記解析回路はさらに、前記コイル電流がサンプル区間において一定となるような前記診断動作条件の一つもしくは一つより多数を特定する特定回路を備える。
前記解析回路はノイズフロア測定回路を含む。該ノイズフロア測定回路は前記特定された診断動作条件において流管電極電圧のノイズフロアを測定する。
前記解析回路はさらに選択回路を備える。該選択回路は前記ノイズフロア測定に基づいて、前記診断動作条件の少なくとも一つを測定動作条件として選択する。
産業プロセス制御環境を示す図である。 流管に接続される電磁流量計送信機の回路ブロック図である。 時間の関数としてのコイル駆動電流の典型的なグラフを示す図である。 コイル駆動電流に対する診断動作条件を示す図である。 図4における診断動作条件の選択グループに対するノイズフロア測定値を示す図である。 電極電圧解析回路の動作を示すフロー図である。 電磁流量計送信機の解析回路を示す図である。
以下に述べる実施形態において、解析回路は一連の診断動作条件を提供し、サンプル区間でコイル電流が安定する一つもしくはそれより多数の診断動作条件を決定する。診断動作条件のうちの一つが、電極電圧のノイズフロア測定に基づいて測定動作条件に選出される。
コイル駆動電流は例えば0.5アンペアに設定してよい。流管のインダクタンスおよび抵抗によって消えることなく、コイル電流を0.5アンペアの安定した値で駆動するために、コイルにはブースト電圧が加えられる。加えられるブースト電圧は、必要となる0.5アンペアの電流を維持するのに要求される電圧よりもはるかに大きい。ブースト電圧は初期電流の立上り時間を短く済ませるため、一時的にのみ加えられる。種々の理由により、ブースト電圧は大きさと印加時間に制限がある。
所与のブースト電圧に対して、コイル電流をより低く設定すれば大きめのコイルはより高い駆動周波数で機能することができる。例えば、コイル電流は0.5アンペアから0.25アンペアに減らすことができる。コイル電流の設定条件点を2倍で下げると、コイル電流は約2倍の速さで定常値に達する。大きめの流管サイズにおけるこの変更により送信機はより高いコイル周波数で駆動して3〜5倍に改善されたSN比を達成することができ、その結果出力信号が3〜5倍改善される。
診断動作条件におけるコイル電流とコイル周波数は最高の信号対雑音比(SN比)を得るように調整される。これは自動処理であってもよいし、操作者により命令を与えることにより行ってもよい。動作設定点はまた、各種のラインのサイズについての既知の特性や想定される流体の典型的なノイズ特徴に基づいて工場出荷時にあらかじめ設定しておいてもよい。
第1のステップでは、異なるコイル電流値に対して可能な最大コイル周波数がテストされる。この別実施形態としては各種のラインのサイズから経験的に算出されたデータを用いて最大のコイル周波数を手動で計算してもよい。利用可能なコイル周波数は固定しておき、ラインの周波数(例えば5Hz, 18.75Hz, 37.5Hz)から容易に計測できるようにしておいてもよいし、もしくは43.5Hzや86Hzといったように任意のコイル周波数であってもよい。一例では、コイル周波数はラインの周波数の偶数倍とする。こうすると測定区間内の正方向と負方向のサイクルで等量のエネルギーとなり、雑音除去の効果が得られる。
第2のステップでは、注目する全ての周波数値および電流値の組み合わせ(診断動作条件)に対してノイズフロア(noise floor)を測定する。一実施形態ではノイズフロアは電極電圧を高速フーリエ変換(FFT)またはその他のスペクトル解析を用いて計測する。ノイズフロアは一般にはコイル電流とは独立であるので、一実施形態ではノイズフロアは各周波数につき一度のみ測定する。
流体が流れている状態で測定を行うとまた、雑音を含む実際の流量電圧測定結果を信号対雑音比の計算に用いることができるという利点がある。信号対雑音比(SN比)は式1により計算することができる:
Figure 0005097824
図1に産業プロセス制御環境を示す。産業プロセス制御環境は電磁流量管102、104、106を備える。電磁流量管102、104、106は公称の管内径(直径)D1,D2,D3を有し、これら直径は図示するように互いに異なる。
流管102は電磁流量送信機108に、流管104は電磁流量送信機110に、および流管106は電磁流量送信機112に接続している。電磁流量送信機108、110、112は共通の電気的特性を持つ共通の設計である。以下に詳細に述べるように、流量送信機108、110、112は適応的な電気的特性を有し、この特性により流量送信機108、110、112が異なる管径や、流管102、104、106を通過する異なる性質の流体や、変化する産業プロセス作動環境への対応動作に適応させることが可能となる。適応作業は複数の診断動作条件でのノイズ測定と最適動作条件の選択によって行われる。
以下に詳述するように、流量送信機108、110、112は流管の誘導コイルにエネルギーを与えて流管を流れる流体内に磁場を発生させる駆動電流を供給する。流量送信機108、110、112は、磁場で誘導される流量起電力が発生する流管の電極に接続されている。流量送信機108、110、112は磁場で発生した起電力を流量を表す信号に変換し、この信号は制御システム120に接続される。
産業プロセス制御システム120は好ましくはケーブル114,116,118により流量送信機108,110,112に接続される。制御システム120は流量送信機108,110,112に通電する。流量送信機108,110,112は産業プロセス制御環境を制御できるように、制御システム120へ流量を表す信号を送信する。一実施形態においては、ケーブルは流管を流れる流量を表すアナログ4〜20mA電流信号を伝える制御ループを備え、またHART(登録商標)式のデジタル信号処理を利用してもよい。その他の周知の産業プロセス制御通信プロトコルを用いてもよい。
流管の直径は多数の相反する設計上の検討事項を踏まえて選択される。流管が挿入されるパイプラインの直径に合うよう、大きめの直径を選択することができる。より大きい直径の選択によって設置が容易となり(パイプフランジ同士の大きさが同じであるので)、また流管における圧力損失を減少させる傾向となる。より小さい直径の選択により流体の流速を増加させることができる。流速が増加すれば電極における流れによる起電力が増加し、また流管内の望ましくない固形物の堆積を避けるのに役立つ。典型的には、流管はラインのサイズとは関係なく、コイルの電流値が±0.5アンペアのときに同一値の出力信号(単位:μV/ft/sec)を得るように設計される。フランジのサイズが小さくなればまた流速が増加することとなる。
直径が異なる流管102,104,106内の誘導コイルは抵抗およびインダクタンスが異なる。圧力送信機108,110,112は、異なる抵抗およびインダクタンスに対応した、さらにまた流管の電極における異なるノイズフロアレベルに対応したコイル電流駆動回路を有する。
図2に、(図1の流管102,104,106のような)流管202に接続される(図1の送信機108,110,112のような)電磁流量送信機200の回路ブロック図を示す。流管202は誘導コイル204を備える。誘導コイル204を流れる駆動電流206は磁場Bを発生させる。磁場Bは絶縁されたパイプ210内の流体208と相互作用して流量起電力212を電極214,216に発生させる。流量起電力212は流体208の流速および磁場Bに比例する。
誘導コイル(複数であってもよい)204はパイプ210の外側直径に合うような大きさおよび形を有する。駆動電流206は複数のラインのサイズに対して調整された定常電流のピークピーク値を有するよう調節され、各ラインのサイズに対して誘導コイルは、ラインのサイズが複数に変化しても流体速度が同一であれば流れによる起電力212が実質同一となるように、巻数を調整される。一実施形態においては、駆動電流206は定常値で1アンペアのピークピーク値(つまり電流値は+/−0.5アンペア)を有し、流体速度が秒速9mに対して流れによる起電力は定常状態で大きさ2mVを有する。本願において用いる「定常状態」という用語は、スイッチング過渡状態が消えた後のサンプル区間で実質的な定常値となったものを指す。
各誘導コイル(複数であってもよい)204は等価直列抵抗Rと等価直列インダクタンスLとを有する。RおよびLの大きさは各ラインサイズごとに異なる。パイプ210を流れる流体208はその種類毎に(電極214,216間の)等価抵抗およびノイズ特性を有する。等価抵抗およびノイズ特性は各流体208ごとに異なり、さらに温度といったような環境パラメータの関数としての変数となることもありうる。
流量送信機200に最初の電力供給を行うと、電流振幅設定条件回路218は自動的に初期設定条件の値に設定される。一実施形態においては、初期設定条件の値はコイル電流が0.5アンペアとなる値となる。また別の一実施形態においては、初期設定条件の値は最後に流量送信機200に電源を入れたときに選択された値となる。コイル電流206は電流検知抵抗220を流れる。電流検知抵抗は導線222に電圧Vsenseを発生させる。
加算接合部224は導線222の電圧Vsenseと導線226の設定条件による電圧を受け取る。加算接合部224は導線228に誤差電圧を発生させる。誤差電圧228は調整電流ドライバ230に入力される。調整電流ドライバ230は調整された電流出力232を発生させる。
調整された電流出力232は電流制限をかけられた出力である。調整された電流出力は、(図3と関連して以下で詳述するように)電流振幅設定条件回路218によって設定される最大調整電流値Iregmax内に制限された調整された電流Iregを発生させる。調整された電流出力232は最大(コンプライアンス)電圧Vregmax(図3と関連して以下で詳述)を有する。
流量送信機200は好ましくは電圧ブースト源234を備える。電圧ブースト源はブースト電圧Vboostを導線236に発生させる。ブースト電圧は電圧制限された出力であり、最大電圧Vboostmax(図3に関連して以下で詳述)を有する。最大電圧Vboostmaxは最大制限電圧Vregmaxよりも大きい。電圧ブースト源はブースト電流Iboostを発生させる。
調整された電流Iregおよびブースト電流Iboostは節点238で足し合わされてコイル駆動電流206を形成する。コイル駆動電流206はスイッチブリッジ240、コイル204および電流検知抵抗220を流れる。スイッチブリッジ240は4つの固体素子スイッチ242,244,246,248を備える。スイッチブリッジ240は、コイル駆動電流206がコイル204を流れるときにコイル駆動電流206の方向(極性)を変える。コイル204は、(図3に関連して以下で詳述するように)値が+Iregmaxと−Iregmaxとで交互に入れ替わるコイル駆動電流206を受け取る。
スイッチブリッジ240のスイッチ242,244,246,248はブリッジ駆動回路250によって制御される。ブリッジ駆動回路250は矩形波駆動によりスイッチ242,244,246,248を駆動し、これによってコイル204を流れる電流の向きが変わる。ブリッジ駆動回路250は周波数選択入力252を有する。周波数選択入力252は矩形波駆動の周波数を設定する。
流量送信機200は好ましくは電極電圧解析回路254を備える。電極214,216はそれぞれ導線256,258で電極電圧解析回路254に接続する。電極電圧解析回路254は周波数選択出力260を周波数選択入力252に入力する。電極電圧解析回路254は、導線262上の電流設定条件選択を電流振幅設定条件回路218に入力する。電極電圧解析回路254はマニュアル選択入力264を受け取る。技術者は自動設定された周波数をマニュアルで無効化して、電極電圧解析回路254による条件選択を、図4と関連して以下に詳述するように電磁流量計の測定性能を最適化するよう設定することができる。電極電圧解析回路254は導線272から電圧Vsenseを受け取る。電極電圧解析回路254の動作は図6に示すフローチャートと関連して以下で詳述する。
電極214,216はそれぞれ導線256,258を介して電圧を流量計算回路266へ伝える。流量計算回路266は電極の電圧を受け取り、パイプ210を流れる流体208の流速を表す流量出力268を生成する。流量計算回路266の機能は電極電圧解析回路254で選択された所定のコイル駆動周波数およびコイル駆動電流に対して校正することである。
図3に、コイル駆動電流を時間の関数として描いたグラフの例を示す。縦軸302はコイルの電流を表し、横軸304は時間を表す。コイル駆動電流の波形は周期T1=1/F1の反復波形であり、ここでTは秒単位の時間であり、F1はヘルツ単位の周波数である。コイル駆動電流206が正の方向へスイッチングONとなっている状態は線分A-B-C-Dで示される。
第一の点線横線306はコイル電流レベルI=(Vboostmax)/Rtでの漸近線であり、ここでRtはコイル駆動電流における直列抵抗である。Rtはコイル204の抵抗Rと実質的に等しいが、抵抗220の抵抗値Rsenceとスイッチブリッジ204のスイッチの抵抗と導線の抵抗とによってわずかに増加する。点線指数曲線308は漸近線306に近づいていく。指数曲線308は約L/Rtの時定数を有する。最初のブースト時間の間、コイル駆動電流は線分A-Bに沿って漸近線306へ向けて急激に立ち上がる。線分A-Bは近似的に点線の指数曲線308をたどる。
第二の点線横線310はコイル電流レベルI=(Vregmax)/Rtでの漸近線であり、ここでRtはコイル駆動電流における直列抵抗である。点線の指数曲線312は漸近線310に近づいていく。指数曲線312は約L/Rtの時定数を有する。最初のブースト時間の後、コイル駆動電流は線分A-Bよりは緩やかに、線分B-Cに沿って漸近線310へ向けて立ち上がる。線分B-Cは近似的に点線の指数曲線312をたどる。
第三の点線横線314はコイル電流レベルI=Iregmaxでの漸近線である。線分C-Dは定常状態の電流Iregmaxを表し、ここでコイル駆動電流は一定値を取る。コイル駆動電流206が線分C-D間で一定値を取っている間に、導線256,258(図2)の電極電圧を流量計算回路266(図2)がサンプリングする。流量計算回路266は電極電圧の複数回サンプリング結果に基づいて流量出力268(図2)を算出する。
指数曲線308,312の時定数はコイル駆動電流におけるインダクタンスと抵抗によって決まる。図3に示す曲線308等は一般的には次式(式2)で表される:
Figure 0005097824
ここで、
Iはコイル電流、
はスイッチング時における電流Iの値、
Vは印加駆動電圧、
Rは抵抗、
tは時間、
Lはインダクタンス、
(L/R)は指数関数の時定数を表す。
図3をよく見ればわかるように、コイルの抵抗とインダクタンスが変化すると電流波形の形が変わり、その結果同じサンプル区間のままではその間の電流値が一定にならないこともありえる。また図3からわかるように、周波数を変えるとサンプル区間の時間位置が曲線A-B-Cに関して変動し、サンプル区間での安定性に影響を及ぼす。また図3からわかるように、Iregmaxを変更するとサンプル区間での電流の安定性に影響をおよぼす。コイル電流の振幅および周波数という動作条件を変更するとサンプル区間でコイル電流が安定するか否かの結果が変わることになる。所望の電流値を用いてよいことは注目に値する。
図4にコイル駆動電流(図2)の診断動作条件を示す。診断動作条件は点430、432といったような黒点で表される。垂直軸402はコイル電流206のピーク振幅を表す。電極電圧解析回路254(図2)は電流振幅設定条件回路(図2の218)を制御して複数の電流振幅設定条件404、406,408の中から一つを決定する。
水平軸410はコイル駆動電流206の周波数を表す。電極電圧解析回路254(図2)は周波数選択出力(図2の260)を制御して複数の周波数設定条件412、414、416、418、420、422から一つを決定する。
図4に示す例において、3つの電流振幅設定条件と6つの周波数選択条件が与えられ、その結果、電流振幅と周波数との組み合わせで診断動作には18通りの可能性がある。電流振幅または周波数の条件数は他の数であってもよい。
図4に示す例においては、大きなサイズの流管が送信機に接続され、L/R比が大きく、また図示する全ての組み合せにおいてサンプル区間内で安定電流値が得られるわけではない。コイルは異なる電流振幅および周波数の組み合わせ条件で順次駆動され、(図2の導線272で検知される)コイル電流が測定され、サンプル区間においてコイル電流が一定となるか評価される。電流が一定となる組み合せのグループ440が特定される。電流が一定とはならない組み合せのグループ442は除外される。サンプル区間において電流が一定となる組み合せのグループ440に対しては図5に関連して後述するように、電極(図2の214、216)における信号対雑音比を評価するために追加評価が行われる。
図5に、図4の条件グループ440内の動作設定点グループに対して測定したノイズフロアを示す。電極電圧解析回路254(図2)は図4の各動作設定点においてノイズフロアを測定する。図示する例では、電極214、216での振幅および電流周波数の各組み合わせ条件における流量信号に対してノイズフロアをデシベル(dB)で表している。図示する例においては、一般的な1/fノイズのパターンが見られ、高周波側で一般的にノイズフロアが小さくなっている。図5の周波数軸は対数軸である。電流値が大きくなると、SN比は特定の周波数で増加することに注目されたい。例えば、最善のSN比は小さい駆動電流と高い動作周波数の条件で得られる。これはコイル駆動電流を例えば50%減らすと、磁場は一定になるのに2倍の長い期間を要するようになるからである。動作周波数を倍にするとノイズフロアを3〜5倍減らすことができ、その結果より高いSN比の動作点とより安定した出力を得ることができる。
402で示す特定の1周波数では、その周波数における3つの動作条件に対してノイズフロアを多少大きくする干渉源が存在する。動作条件を自動選択すると、流量信号に対してノイズフロアが最小となる動作条件404が選択される。しかし操作者は、操作者の経験に基づいて動作条件406のような別の動作条件をマニュアル設定することもできる。動作条件の選択は図6に関連して以下で詳述する。
図6に図2の電極電圧解析回路254の動作フロー図を示す。動作は開始502で始まる。開始502は流量送信機200への最初の電力供給開始を含んでよい。開始502は別実施形態として、操作者もしくはソフトウェアによる中断による、最初の電源投入後で動作中であった電極電圧解析のやり直しを含んでもよい。流管が過度にノイズがある出力を出している場合等にソフトウェアによる中断を行わせることができる。図5の周波数軸は対数スケールの軸である。
開始502から処理は線504に沿い動作ブロック506に続く。動作ブロック506では、サンプル区間(図3)におけるコイル電流が一定となる駆動装置の動作条件をテストする。一実施形態においては、可能な駆動装置の動作条件を全てテストする。別の一実施形態では、駆動装置の動作条件は振幅軸の各条件で周波数を上げていき電流が一定にならない周波数になるまでの条件だけテストする。またさらに別の一実施形態では、周波数軸の各条件で振幅を大きくしていき電流が一定にならない振幅が見つかるまでの条件だけテストする。電流が一定でない動作条件の上側および右側の動作条件はテストしなくとも電流は一定にならないと認定することができる。用いるテスト方法がどのようであれ、サンプル区間でコイル電流が一定となる動作条件のグループ(図4のグループ440)がテストにより特定される。
動作ブロック506を終えると、処理は線508に沿って動作ブロック510に続く。動作ブロック510では、特定された動作条件のグループ(グループ440)の各動作条件に対してノイズフロアが測定される。一実施形態においては、特定されたグループにおける各ノイズフロア測定結果と各動作条件はテーブルに入力され、テーブルはノイズフロア測定結果に基づいてソートされる。
ブロック510を終えると、処理は線512に沿って判断ブロック514に続く。判断ブロック514では、操作者がマニュアルオーバーライドしたのであれば処理は線516に沿って動作ブロック518に続く。動作ブロック518では操作者に対して動作条件と動作条件に関連づけられたノイズフロアを表示する。
動作ブロック518を終えると、処理は線520に沿って動作ブロック522に続く。動作ブロック522では、操作者が動作条件のマニュアル選択を入力するのを待つ処理がなされる。操作者がマニュアル選択を入力すると、処理は線524、526に沿って動作ブロック528に続く。
判断ブロック514にて、操作者がマニュアルオーバーライドしなかった場合、処理は線530に沿って動作ブロック532に続く。動作ブロック532では、電流調整が損なわれることなく最大電流の設定条件点となる、高い側の周波数の設定条件点を特定する。
動作ブロック532を終えると、処理は線534に沿って動作ブロック536に続く。動作ブロック536では、電流調整が損なわれることなく最大から2番目の電流の設定条件点となる、最高の周波数の設定条件点が特定される。動作ブロック536を終えると、処理は線535に沿って動作ブロック537へ続く。動作ブロック537では、SN比が最善となる動作点が(動作ブロック532、536で特定された2つの動作点のうちから)選択される。動作ブロック537を終えると、処理は線538、526に沿って動作ブロック528に続く。
動作ブロック528では、運用使用での動作条件が、選択された動作条件に設定される。選択動作条件はマニュアルまたは自動のいずれかで与えられる。動作ブロック528を終えると、処理は線540に沿って動作ブロック542に続く。動作ブロック542では、流量送信機は運用動作モードに切り替わり、流量計算回路266が流量出力268(図2)を計算する。
図7に、電磁流量計の流管および送信機に用いる、例えば図2に関して上述した流管および送信機に用いる解析回路700を示す。
解析回路700は制御部702を備える。制御部702は、流管のコイルにおけるコイル電流の振幅704や周波数706の一連の診断動作条件を出力する。一実施形態においては、制御部702はまた、選択された動作条件に対して流量計算回路の校正の調整を行う校正出力708を出力する。
解析回路700は特定回路710を備える。特定回路710はサンプル区間において電流が一定となる一つもしくは一つより多数の診断動作条件を特定する。特定回路710は安定性指標712を検知する。一実施形態においては安定性指標712は(図2の線272に示すような)検知したコイル電流を含む。別の一実施形態では、安定性指標712は(図2の線256、258に示すように)電極電圧の流量電圧要素を含む。
解析回路700はさらにノイズフロア測定回路714を含む。ノイズフロア測定回路714は特定の診断動作条件に対して流管の電極電圧(図2の線256、258)のノイズフロアを測定する。
解析回路700はさらに選択回路716を備える。選択回路716はノイズフロア測定に基づいて測定動作条件として、診断動作条件を一つ選択する。選択回路716は線718で特定された動作条件のリストを受け取る。選択回路は線720でノイズフロア測定結果のリストを受け取る。大きな流管を用いた特にノイズの大きい応用の場合には、該リストは単一の動作条件とその条件におけるノイズフロアのみからなることもある。測定動作条件の選択は電極電圧の流量電圧要素の大きさに基づいてなされる。一実施形態においては信号対雑音比は特定された各動作条件に対する流量電圧要素とノイズフロアとから計算される。一実施形態においては選択回路716は自動動作で最適なノイズ特性を有する動作条件の選択結果726を制御部702に出力する。また別の一実施形態では、解析回路700は表示部722を含み、表示部722は特定された動作条件の電流値と周波数を表示し、また各動作条件の信号対雑音比とノイズフロアを表示する。表示部722を見てから、熟練した操作者は、操作者の知識と経験に基づいて最適な動作条件をマニュアル選択724で入力できる。
一実施形態においては、制御部702は第一の動作条件診断シーケンスとして電流値を固定して低い側の周波数の条件から始めて高い側の周波数の条件へ上げていき、サンプル区間においてコイル電流が一定でなくなる診断動作条件が見つかるまで上げる、というシーケンスを用いることができる。別の一実施形態においては、制御部702は第二の動作条件診断シーケンスとして周波数を固定して振幅の小さい側の条件から始めて大きい側の条件へ上げていき、サンプル区間においてコイル電流が一定でなくなる診断動作条件が見つかるまで上げる、というシーケンスを用いることができる。
一実施形態においては、ノイズフロア測定回路は複数のコイル電流値および周波数値に対して流量の標準偏差を測定し、最も安定な測定を選ぶ。別の実施形態においては、選択された動作条件は流速の変化に対して自動的に調節する。
一実施形態においては、解析回路は電磁流量送信機に組み込まれたマイクロプロセッサを含む。別の一実施形態においては、マイクロプロセッサは一連の動作点を制御する制御器として機能する。マイクロプロセッサはソフトウェアによりプログラムされる。
本願発明は好ましい実施形態に係り説明してきたが、当業者には本願の精神および範囲から逸脱することなく形式や詳細に変更を加えうることが理解できるであろう。
700…解析回路、702…制御部、710…特定回路、714…ノイズフロア測定回路、716…選択回路

Claims (25)

  1. 電磁流量計の流管および送信機に用いる解析回路であって、
    前記流管のコイルにおけるコイル電流の振幅および周波数を含む診断動作条件を出力する制御部と、
    前記コイル電流がサンプル区間において一定となるような前記診断動作条件の一つまたは一つより多数を特定する特定回路と、
    前記特定された診断動作条件において流管電極電圧のノイズフロアを測定するノイズフロア測定回路と、
    前記ノイズフロア測定に基づいて、前記診断動作条件の少なくとも一つを測定動作条件として選択する選択回路とを備え、
    前記制御部が、固定振幅を用いて低い側の周波数から始め、前記サンプル区間において前記コイル電流が一定でなくなる診断動作条件が見つかるまで、高い側の周波数へ周波数を上げていく第1の動作条件診断シーケンスを提供することを特徴とする解析回路。
  2. 電磁流量計の流管および送信機に用いる解析回路であって、
    前記流管のコイルにおけるコイル電流の振幅および周波数を含む診断動作条件を出力する制御部と、
    前記コイル電流がサンプル区間において一定となるような前記診断動作条件の一つまたは一つより多数を特定する特定回路と、
    前記特定された診断動作条件において流管電極電圧のノイズフロアを測定するノイズフロア測定回路と、
    前記ノイズフロア測定に基づいて、前記診断動作条件の少なくとも一つを測定動作条件として選択する選択回路とを備え、
    前記制御部が、固定周波数を用いて小さい側の振幅から始め、前記サンプル区間において前記コイル電流が一定でなくなる診断動作条件が見つかるまで、大きい側の振幅へ振幅を増していく第2の動作条件診断シーケンスを提供することを特徴とする解析回路。
  3. 電磁流量計の流管および送信機に用いる解析回路であって、
    前記流管のコイルにおけるコイル電流の振幅および周波数を含む診断動作条件を出力する制御部と、
    前記流管のコイルが有する等価直列抵抗及び等価直列インダクタンスにより定まる指数関数の時定数のもとで駆動される前記コイル電流が、当該駆動された後に前記振幅の値に到達して一定となるようなサンプル区間を有するように前記診断動作条件の一つ又は一つより多数を特定する特定回路と、
    前記特定された診断動作条件において流管電極電圧のノイズフロアを測定するノイズフロア測定回路と、
    前記ノイズフロア測定に基づいて、前記診断動作条件の少なくとも一つを測定動作条件として選択する選択回路とを備えることを特徴とする解析回路。
  4. 前記測定動作条件の前記選択が、前記電極電圧の流量電圧要素の大きさに基づいてなされることを特徴とする請求項1ないし3のいずれかに記載の解析回路。
  5. 前記特定回路が安定性指標を受け取ることを特徴とする請求項1ないし4のいずれかに記載の解析回路。
  6. 前記安定性指標が検知したコイル電流を含むことを特徴とする請求項5に記載の解析回路。
  7. 前記安定性指標が前記電極電圧の流量電圧要素を含むことを特徴とする請求項5に記載の解析回路。
  8. 特定された動作条件における振幅および周波数と、前記特定された動作条件におけるノイズフロア測定と、の表示部をさらに備えることを特徴する請求項1ないし7のいずれかに記載の解析回路。
  9. 特定された動作条件における振幅および周波数と、前記特定された動作条件における信号対雑音比測定値と、の表示部をさらに備えることを特徴とする請求項1ないし8のいずれかに記載の解析回路。
  10. 前記選択回路がさらに、信号対雑音比の測定値が最高となるように、前記診断動作条件の中から一つを選択するように構成されることを特徴とする請求項1ないし9のいずれかに記載の解析回路。
  11. 電磁流量計の動作条件の解析方法であって、
    前記電磁流量計の流管のコイルにおけるコイル電流の振幅および周波数を含む診断動作条件を提供する工程と、
    サンプル区間において前記コイル電流が一定となるような前記診断動作条件の一つまたは一つより多数を特定する工程と、
    前記特定された診断動作条件において流管電極電圧のノイズフロアを測定する工程と、
    前記ノイズフロア測定に基づいて、前記診断動作条件の少なくとも一つを測定動作条件として選択する工程と、
    固定振幅を用いて低い側の周波数から始め、前記サンプル区間において前記コイル電流が一定でなくなる診断動作条件が見つかるまで、高い側の周波数へ周波数を上げていく第1の動作条件診断シーケンスを提供する工程を備えることを特徴とする解析方法。
  12. 電磁流量計の動作条件の解析方法であって、
    前記電磁流量計の流管のコイルにおけるコイル電流の振幅および周波数を含む診断動作条件を提供する工程と、
    サンプル区間において前記コイル電流が一定となるような前記診断動作条件の一つまたは一つより多数を特定する工程と、
    前記特定された診断動作条件において流管電極電圧のノイズフロアを測定する工程と、
    前記ノイズフロア測定に基づいて、前記診断動作条件の少なくとも一つを測定動作条件として選択する工程と、
    固定周波数を用いて小さい側の振幅から始め、前記サンプル区間において前記コイル電流が一定でなくなる診断動作条件が見つかるまで、大きい側の振幅へ振幅を増していく第2の動作条件診断シーケンスを提供する工程を備えることを特徴とする解析方法。
  13. 電磁流量計の動作条件の解析方法であって、
    前記電磁流量計の流管のコイルにおけるコイル電流の振幅および周波数を含む診断動作条件を提供する工程と、
    前記流管のコイルが有する等価直列抵抗及び等価直列インダクタンスにより定まる指数関数の時定数のもとで駆動される前記コイル電流が該駆動された後に前記振幅の値に到達して一定となるようなサンプル区間を有するように前記診断動作条件の一つまたは一つより多数を特定する工程と、
    前記特定された診断動作条件において流管電極電圧のノイズフロアを測定する工程と、
    前記ノイズフロア測定に基づいて、前記診断動作条件の少なくとも一つを測定動作条件として選択する工程とを備えることを特徴とする解析方法。
  14. 前記電極電圧の流量電圧要素の振幅に基づいて、前記測定動作条件を選択する工程を備えることを特徴とする請求項11ないし13のいずれかに記載の方法。
  15. 安定性指標を受け取る工程を備えることを特徴とする請求項11ないし14のいずれかに記載の方法。
  16. 前記安定性指標としてコイル電流を検知する工程を備えることを特徴とする請求項15に記載の方法。
  17. 前記安定性指標として前記電極電圧の流量電圧要素を検知する工程を備える請求項15または16に記載の方法。
  18. 特定された動作条件における振幅および周波数と、前記特定された動作条件におけるノイズフロア測定値と、を表示する工程を備えることを特徴する請求項11ないし17のいずれかに記載の方法。
  19. 特定された動作条件における振幅および周波数と、前記特定された動作条件における信号対雑音比測定値と、の表示部をさらに備えることを特徴とする請求項11ないし18のいずれかに記載の方法。
  20. 電磁流量計であって、
    コイル電流を出力し電極電圧を測定する電磁流量計送信機と、
    前記コイル電流を受け取るコイルと、電極電圧を出力する電極と、を有する電磁流量計流管と、
    コイル電流の振幅および周波数を含む診断動作条件を出力する解析回路であって、前記コイルが有する等価直列抵抗及び等価直列インダクタンスにより定まる指数関数の時定数のもとで駆動される前記コイル電流が当該駆動された後に前記振幅の値に到達して一定となるようなサンプル区間を有するように一つまたは一つより多数の前記診断動作条件を特定し、前記電極電圧のノイズフロア測定に基づいて、前記診断動作条件の少なくとも一つを測定動作条件として選択する解析回路と、を備えることを特徴とする電磁流量計。
  21. ブースト回路を備えることを特徴とする請求項20に記載の電磁流量計。
  22. 複数のコイル電流値および周波数値に対して流量の標準偏差を測定し、最も安定な測定結果を選択することを特徴とする請求項20または21に記載の電磁流量計。
  23. 前記解析回路が前記電磁流量送信機に組み込まれたマイクロプロセッサを備えることを特徴とする請求項20ないし22のいずれかに記載の電磁流量計。
  24. 前記マイクロプロセッサが前記一連の動作条件を制御する制御部として機能することを特徴とする請求項23に記載の電磁流量計。
  25. 前記解析回路がさらに、信号対雑音比の最高測定値が得られるように前記診断動作条件の一つを選択するよう構成されることを特徴とする請求項20ないし24のいずれかに記載の電磁流量計。
JP2010516026A 2007-07-10 2008-07-01 電磁流量計の動作条件のノイズ診断 Expired - Fee Related JP5097824B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/825,866 2007-07-10
US11/825,866 US7688057B2 (en) 2007-07-10 2007-07-10 Noise diagnosis of operating conditions for an electromagnetic flowmeter
PCT/US2008/008172 WO2009008974A1 (en) 2007-07-10 2008-07-01 Noise diagnosis of operating conditions for an electromagnetic flowmeter

Publications (2)

Publication Number Publication Date
JP2010533295A JP2010533295A (ja) 2010-10-21
JP5097824B2 true JP5097824B2 (ja) 2012-12-12

Family

ID=39816684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010516026A Expired - Fee Related JP5097824B2 (ja) 2007-07-10 2008-07-01 電磁流量計の動作条件のノイズ診断

Country Status (5)

Country Link
US (1) US7688057B2 (ja)
EP (1) EP2167922B1 (ja)
JP (1) JP5097824B2 (ja)
CN (1) CN101784870B (ja)
WO (1) WO2009008974A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536416A (ja) * 2010-08-11 2013-09-19 ローズマウント インコーポレイテッド ノイズ検出及びその回避

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051995A1 (en) * 2007-10-19 2009-04-23 Medrad, Inc. Methods for capicitance volume correction in fluid delivery systems
US9182258B2 (en) 2011-06-28 2015-11-10 Rosemount Inc. Variable frequency magnetic flowmeter
JP5574191B2 (ja) * 2012-06-26 2014-08-20 横河電機株式会社 電磁流量計動作検証システム
US9555379B2 (en) 2013-03-13 2017-01-31 Bayer Healthcare Llc Fluid path set with turbulent mixing chamber, backflow compensator
US9696188B2 (en) 2013-03-14 2017-07-04 Rosemount Inc. Magnetic flowmeter with automatic adjustment based on sensed complex impedance
US10663331B2 (en) * 2013-09-26 2020-05-26 Rosemount Inc. Magnetic flowmeter with power limit and over-current detection
JP2015105929A (ja) * 2013-12-02 2015-06-08 株式会社東芝 電磁流量計
US10641627B2 (en) * 2013-12-20 2020-05-05 Rosemount Inc. Magnetic flowmeter with automatic operating setpoint selection
DE102014004122B3 (de) 2014-03-24 2015-08-06 Krohne Messtechnik Gmbh Magnetisch-Induktives Durchflussmessgerät und Verfahren zum Betreiben eines magnetisch-induktiven Durchflussmessgeräts
JP6183309B2 (ja) * 2014-07-11 2017-08-23 横河電機株式会社 流量計及び絶縁劣化診断システム
JP2016095206A (ja) * 2014-11-13 2016-05-26 株式会社東芝 電磁流量計
WO2017152036A1 (en) 2016-03-03 2017-09-08 Bayer Healthcare Llc System and method for improved fluid delivery in multi-fluid injector systems
JP6485407B2 (ja) * 2016-06-01 2019-03-20 横河電機株式会社 電磁流量計および誤配線検出方法
WO2019046282A1 (en) 2017-08-31 2019-03-07 Bayer Healthcare Llc SYSTEM AND METHOD FOR INJECTOR PRESSURE CALIBRATION
CN110809482B (zh) 2017-08-31 2023-03-07 拜耳医药保健有限公司 流体注入器系统体积补偿系统和方法
EP3675929A1 (en) 2017-08-31 2020-07-08 Bayer Healthcare LLC Method for dynamic pressure control in a fluid injector system
EP3676854A1 (en) 2017-08-31 2020-07-08 Bayer Healthcare LLC Fluid path impedance assessment for improving fluid delivery performance
WO2019046261A1 (en) 2017-08-31 2019-03-07 Bayer Healthcare Llc SYSTEM AND METHOD FOR MECHANICAL CALIBRATION OF FLUID INJECTOR SYSTEM AND DRIVE ELEMENT POSITION
CN108764088A (zh) * 2018-05-18 2018-11-06 南京瑞松信息科技有限公司 一种基于证据k-nn分类器的设备状态检测及预警方法
DE102018115628B4 (de) * 2018-06-28 2020-02-13 Endress+Hauser Flowtec Ag Verfahren zur Inbetriebnahme eines magnetisch-induktiven Durchflussmessgerätes und ein magnetisch-induktives Durchflussmessgerät
CN109489775B (zh) * 2018-10-29 2020-08-04 平阴鲁西装备科技有限公司 一种抗振动抗电磁干扰流量计的校验装置和校验方法
USD899954S1 (en) * 2019-01-03 2020-10-27 Dwyer Instruments, Inc. Sensor
US11181404B2 (en) 2019-09-05 2021-11-23 Micro Motion, Inc. Magnetic flowmeter with a current sampling circuit sampling coil current pulses at a sampling frequency
US11204268B2 (en) 2019-09-05 2021-12-21 Micro Motion, Inc. Magnetic flowmeter having a programmable bi-directional current generator
US11333537B2 (en) 2019-09-05 2022-05-17 Micro Motion, Inc. Load leveling boost supply for magnetic flowmeter
US11204267B2 (en) 2019-09-05 2021-12-21 Micro Motion, Inc. Continuously adaptive digital coil driver for magnetic flowmeter

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204240A (en) 1978-10-26 1980-05-20 Fischer & Porter Co. High-voltage impulse driver for electromagnetic flowmeter
JPS59195125A (ja) * 1983-04-21 1984-11-06 Yokogawa Hokushin Electric Corp 電磁流量計変換器
JPS6055230A (ja) * 1983-09-06 1985-03-30 Yokogawa Hokushin Electric Corp 電磁流量計
JPS6056221A (ja) * 1983-09-07 1985-04-01 Yokogawa Hokushin Electric Corp 電磁流量計
DE3401377C2 (de) 1984-01-17 1986-11-13 Danfoss A/S, Nordborg Elektromagnetischer Durchflußmesser
DE3501768A1 (de) 1985-01-21 1986-07-24 Danfoss A/S, Nordborg Elektromagnetischer durchflussmesser
GB2183343B (en) 1985-11-25 1989-11-01 Danfoss As Electromagnetic flowmeters
DE3541974A1 (de) 1985-11-28 1987-06-04 Danfoss As Schutzschaltung fuer die induktionsspule eines magnetisch-induktiven durchflussmessers
GB2186373B (en) 1986-02-06 1990-06-06 Danfoss As Electromagnetic flowmeters and flowmetering methods
US4916381A (en) 1988-05-12 1990-04-10 Rosemount Inc. Current source for a variable load with an inductive component
JP2605374B2 (ja) * 1988-08-24 1997-04-30 株式会社島津製作所 電磁流量計
DE3829063C3 (de) 1988-08-26 1998-01-29 Danfoss As Verfahren zur Drift-Erkennung eines Meßwertumformers bei magnetisch-induktiver Durchflußmessung und magnetisch-induktiver Durchflußmesser
JPH0394121A (ja) 1989-09-07 1991-04-18 Toshiba Corp 電磁流量計
JP2727694B2 (ja) * 1989-10-20 1998-03-11 株式会社島津製作所 電磁流量計
JPH0466818A (ja) 1990-07-06 1992-03-03 Yokogawa Electric Corp 電磁流量計
JPH06258113A (ja) 1993-03-08 1994-09-16 Yamatake Honeywell Co Ltd 電磁流量計
JP3020772B2 (ja) 1993-07-09 2000-03-15 株式会社東芝 電磁流量計
US5639970A (en) 1995-07-17 1997-06-17 Rosemount Inc. Current selection circuitry for magnetic flowmeter
GB2324606B (en) * 1997-04-25 2002-01-16 Kent Meters Ltd Electromagnetic flowmeter
JP3351730B2 (ja) * 1998-02-06 2002-12-03 株式会社山武 電磁流量計
US6615149B1 (en) * 1998-12-10 2003-09-02 Rosemount Inc. Spectral diagnostics in a magnetic flow meter
US6594613B1 (en) 1998-12-10 2003-07-15 Rosemount Inc. Adjustable bandwidth filter for process variable transmitter
DE19917268B4 (de) 1999-04-16 2005-07-14 Siemens Flow Instruments A/S Verfahren zum Überprüfen eines elektromagnetischen Durchflußmessers und elektromagnetische Durchflußmesseranordnung
DE19917261C5 (de) 1999-04-16 2010-09-09 Siemens Flow Instruments A/S Elektromagnetische Durchflußmesseranordnung
US6246220B1 (en) * 1999-09-01 2001-06-12 Intersil Corporation Synchronous-rectified DC to DC converter with improved current sensing
EP1464930B1 (en) 2003-04-02 2016-06-08 ABB Limited Electromagnetic flow meter
DE10329540A1 (de) * 2003-06-30 2005-02-24 Endress + Hauser Flowtec Ag, Reinach Verfahren zum Betrieb eines magnetisch-induktiven Durchflußmessers
DE102005018179A1 (de) 2005-04-19 2006-10-26 Krohne Messtechnik Gmbh & Co. Kg Verfahren zum Betrieb eines Meßgeräts
EP1926972B1 (de) 2005-09-21 2010-06-30 Siemens Aktiengesellschaft Verfahren zum betreiben eines elektromagnetischen durchflussmessers sowie elektromagnetischer durchflussmesser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536416A (ja) * 2010-08-11 2013-09-19 ローズマウント インコーポレイテッド ノイズ検出及びその回避

Also Published As

Publication number Publication date
CN101784870A (zh) 2010-07-21
US20090015236A1 (en) 2009-01-15
WO2009008974A1 (en) 2009-01-15
US7688057B2 (en) 2010-03-30
JP2010533295A (ja) 2010-10-21
CN101784870B (zh) 2012-12-26
EP2167922B1 (en) 2019-09-04
EP2167922A1 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP5097824B2 (ja) 電磁流量計の動作条件のノイズ診断
KR101272130B1 (ko) 절연 모니터링 방법 및 장치
JP6457531B2 (ja) 動作設定値自動選定機能を有する電磁式流量計
JP5341064B2 (ja) 磁気流量計出力の検証装置
EP2074385B2 (en) Magnetic flowmeter with verification
CN103674131A (zh) 具有多个线圈的磁流量计
JP2000002721A (ja) デジタル・マルチメ―タ、電子測定装置、及び自動レンジ機能制御方法
JP2012519849A (ja) コイル接地経路検出機能付き磁気流量計
JP5372906B2 (ja) 動的往復運動ボブ流量測定
RU2584384C2 (ru) Способ измерения расхода электропроводных жидкостей
US9147546B2 (en) Self-calibrating current switch with display
CN105258741B (zh) 流量计、绝缘劣化诊断系统以及绝缘劣化诊断方法
US20140074303A1 (en) Two-wire transmitter terminal power diagnostics
US20190383653A1 (en) Method for operating a magneto-inductive flow meter and such a flow meter
CN204462232U (zh) 比例电磁阀控制信号检测装置及比例电磁阀性能测试系统
JP2011185625A (ja) 検査装置
JPH08210888A (ja) 電磁流量計
CN105203824A (zh) 比例电磁阀控制信号检测方法和装置、及性能测试系统
CN109899312B (zh) 一种风机降压性能测试方法
JP4092718B2 (ja) 耐電圧試験装置
JP2017072377A (ja) 接触判定装置および測定装置
CN114755489A (zh) 长距离受控电动机功率的检测方法
KR20030053383A (ko) 모터의 연속 전류를 이용한 모터이상 감지방법
CN115053140A (zh) 用于测量流过电导体的电流的电流变送器,以及在电流变送器中输出测量值,包括输出交流电流中的能量流方向的方法
CN113687281A (zh) 用于确定磁芯损耗的测试和测量仪器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Ref document number: 5097824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees