JP5077585B2 - エンジン回転停止制御装置 - Google Patents

エンジン回転停止制御装置 Download PDF

Info

Publication number
JP5077585B2
JP5077585B2 JP2009063311A JP2009063311A JP5077585B2 JP 5077585 B2 JP5077585 B2 JP 5077585B2 JP 2009063311 A JP2009063311 A JP 2009063311A JP 2009063311 A JP2009063311 A JP 2009063311A JP 5077585 B2 JP5077585 B2 JP 5077585B2
Authority
JP
Japan
Prior art keywords
engine
target
speed
engine rotation
target trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009063311A
Other languages
English (en)
Other versions
JP2010216350A (ja
Inventor
節 柴田
研司 河原
紘治 岡村
正朝 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009063311A priority Critical patent/JP5077585B2/ja
Publication of JP2010216350A publication Critical patent/JP2010216350A/ja
Application granted granted Critical
Publication of JP5077585B2 publication Critical patent/JP5077585B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、エンジン回転停止クランク角を制御する機能を備えたエンジン回転停止制御装置に関する発明である。
近年、特許文献1(特開2008−215182号公報)や特許文献2(特開2008−215230号公報)に記載されているように、エンジン自動停止・始動システム(アイドルストップシステム)を搭載した車両では、再始動性を向上させるために、エンジン停止時(アイドルストップ時)にエンジン回転停止クランク角を始動に適したクランク角範囲に制御することを目的として、エンジン回転が目標停止クランク角で停止するまでの回転挙動を目標軌道として算出し、エンジン回転を停止させる際に実エンジン回転挙動を目標軌道に合わせるように発電機(オルタネータ)の負荷トルクを制御するエンジン回転停止制御を行うようにしたものがある。具体的には、所定タイミング毎に目標軌道のデータに基づいて目標エンジン回転速度(目標軌道上のエンジン回転速度)を設定し、この目標エンジン回転速度と実エンジン回転速度との偏差を小さくするように発電機の要求負荷トルクを算出し、発電機の負荷トルク特性(発電指令値とエンジン回転速度と負荷トルクとの関係)を用いて、現在のエンジン回転速度と要求負荷トルクに応じた発電指令値を算出し、この発電指令値で発電機の発電制御電流(フィールド電流)を制御して発電機の負荷トルクを制御するようにしている。
特開2008−215182号公報 特開2008−215230号公報
ところで、図9に示すように、エンジン回転停止制御の実行中に所定タイミング毎(例えばTDC毎)に目標軌道のデータに基づいて目標エンジン回転速度を設定する際には、現在の実エンジン回転速度よりも低回転側の目標エンジン回転速度か又は高回転側の目標エンジン回転速度を選択することができる。この際、低回転側の目標エンジン回転速度を選択すれば、現在のクランク角で低回転側の目標エンジン回転速度を通過する進角側の目標軌道を選択することになり、一方、高回転側の目標エンジン回転速度を選択すれば、現在のクランク角で高回転側の目標エンジン回転速度を通過する遅角側の目標軌道(進角側の目標軌道よりも所定クランク角間隔だけ遅れた目標軌道)を選択することになる。
そこで、本発明者は、エンジン回転停止制御の制御性を向上させるために、所定タイミング毎に目標軌道のデータに基づいて目標エンジン回転速度を設定する際に、低回転側の目標エンジン回転速度と高回転側の目標エンジン回転速度のうち実エンジン回転速度との偏差が小さい方の目標エンジン回転速度を選択することで、進角側の目標軌道と遅角側の目標軌道のうち実エンジン回転速度との偏差が小さい方の目標軌道を選択するシステムを研究しているが、この研究過程で次のような新たな課題が判明した。
制御システムの通信仕様等によっては、エンジン回転停止制御の際に、制御回路で発電機の発電指令値が算出されてから該発電指令値が送信されて実際に発電機が応答する(発電指令値に応じて動作する)までに遅れ時間(以下「指令遅れ時間」という)が生じることがある。
図10に示すように、エンジン回転停止制御の実行中に目標軌道が切り替わると、発電機の要求負荷トルク(要求発電電流)が大きく変化して、発電指令値が大きく変化するため、発電指令値が算出されてから実際に発電機が応答するまでの指令遅れ時間の影響を受け易く、指令遅れ時間が長いと、発電機の要求負荷トルクに対する実負荷トルクの応答遅れ(要求発電電流に対する実発電電流の応答遅れ)が大きくなって、目標軌道に対する実エンジン回転挙動の応答遅れが大きくなり、目標軌道と実エンジン回転挙動との偏差(目標エンジン回転速度と実エンジン回転速度との偏差)を速やかに小さくすることができず、エンジン回転停止制御の精度が低下する可能性がある。
更に、実エンジン回転挙動の応答遅れによって、エンジン回転停止制御の目標軌道が進角側の目標軌道と遅角側の目標軌道との間で頻繁に切り替わる可能性があり、それに伴って発電機の発電指令値が増減を繰り返すハンチング現象が発生して、エンジン回転停止制御の精度が更に低下する可能性もある。
そこで、本発明が解決しようとする課題は、エンジン回転停止制御の目標軌道の切り替えによるエンジン回転停止制御精度の低下を防止することができるエンジン回転停止制御装置を提供することにある。
上記課題を解決するために、請求項1に係る発明は、エンジン停止要求が発生したときに燃焼を停止させてエンジン回転を停止させるエンジン回転停止制御装置において、エンジンで駆動される発電機と、エンジン回転が目標停止クランク角で停止するまでの回転挙動(以下「目標軌道」という)を算出する目標軌道算出手段と、エンジン回転を停止させる際に実エンジン回転挙動を前記目標軌道に合わせるように前記発電機の負荷を制御するエンジン回転停止制御を実行する停止制御手段とを備え、停止制御手段は、所定タイミング毎に目標軌道のデータに基づいて実エンジン回転速度よりも低回転側の目標エンジン回転速度と実エンジン回転速度よりも高回転側の目標エンジン回転速度のうちの一方を選択することで該低回転側の目標エンジン回転速度に対応する進角側の目標軌道と該高回転側の目標エンジン回転速度に対応する遅角側の目標軌道のうちの一方を選択する選択手段と、この選択手段で選択した目標エンジン回転速度と実エンジン回転速度との偏差を小さくするように発電機の発電指令値を算出する発電指令値算出手段と、発電機の発電指令値が算出されてから該発電機が応答するまでの指令遅れ時間が所定値以上の場合に、エンジン回転停止制御の目標軌道を選択手段で最初に選択した目標軌道に固定して選択手段により所定タイミング毎に目標軌道を選択することを禁止する禁止手段とを備えた構成としたものである。
この構成では、指令遅れ時間が所定値よりも短い場合には、指令遅れ時間の影響が小さいか又はほとんど無いと判断して、所定タイミング毎に低回転側の目標エンジン回転速度と高回転側の目標エンジン回転速度のうちの一方を選択することで進角側の目標軌道と遅角側の目標軌道のうちの一方を選択することができ、エンジン回転制御の制御性を向上させることができる。
一方、指令遅れ時間が所定値以上の場合には、指令遅れ時間の影響が大きいと判断して、エンジン回転停止制御の目標軌道を最初に選択した目標軌道に固定して所定タイミング毎に目標軌道を選択することを禁止することができる。これにより、指令遅れ時間が所定値以上の場合には、エンジン回転停止制御の実行中に目標軌道が切り替わることを防止できるため、目標軌道の切り替えによって発生する実エンジン回転挙動の応答遅れや発電機の発電指令値が増減を繰り返すハンチング現象を未然に防止することができて、エンジン回転停止制御精度の低下を防止することができ、エンジン停止クランク角を精度良く目標のクランク角範囲内に制御することができる。
この場合、請求項2のように、選択手段は、前記所定タイミング毎に前記低回転側の目標エンジン回転速度と前記高回転側の目標エンジン回転速度のうち、実エンジン回転速度との偏差もしくはエンジン回転速度をエネルギ量に変換したパラメータの偏差が小さい方の目標エンジン回転速度を選択することで前記進角側の目標軌道と前記遅角側の目標軌道のうち実エンジン回転速度との偏差が小さい方の目標軌道を選択するようにしても良い。このようにすれば、指令遅れ時間が所定値よりも短い場合には、常に実エンジン回転速度との偏差が小さい方の目標エンジン回転速度を選択して、実エンジン回転速度を速やかに目標エンジン回転速度に制御することができ、エンジン回転停止制御の制御性を向上させることができる。
また、請求項3のように、禁止手段は、エンジン停止要求に伴って燃焼を停止させた気筒が最初に膨張行程となるタイミングにおいて選択手段で選択した目標軌道にエンジン回転停止制御の目標軌道を固定して、その後、エンジン回転が停止するまで選択手段により所定タイミング毎に目標軌道を選択することを禁止するようにすると良い。このようにすれば、エンジン回転停止制御の実行中に目標軌道が切り替わることを確実に防止することができる。
図1は本発明の一実施例におけるエンジン制御システム全体の概略構成図である。 図2は目標軌道の算出方法を説明する図である。 図3はオルタネータ負荷特性を説明する図である。 図4はエンジン回転停止制御時の見掛上のオルタネータ負荷特性を説明する図である。 図5(a)は基準負荷トルクTref(Ne(i))=0に設定してエンジン回転停止制御を行った比較例を説明するタイムチャートであり、図5(b)は基準負荷トルクTref(Ne(i))を最大負荷の半分に設定してエンジン回転停止制御を行った実施例を説明するタイムチャートである。 図6はエンジンECUのエンジン回転停止制御機能を説明するブロック図である。 図7はオルタネータ負荷特性モデルの構成を説明するブロック図である。 図8は負荷トルク特性のマップの一例を概略的に示す図である。 図9は目標エンジン回転速度の設定方法を説明する図である。 図10は指令遅れ時間が長い場合の目標軌道の切り替えによる不具合を説明するタイムチャートである。 図11は目標軌道算出ルーチンの処理の流れを説明するフローチャートである。 図12は指令遅れ時間算出ルーチンの処理の流れを説明するフローチャートである。 図13はエンジン回転停止制御ルーチンの処理の流れを説明するフローチャート(その1)である。 図14はエンジン回転停止制御ルーチンの処理の流れを説明するフローチャート(その2)である。 図15は目標エンジン回転速度設定ルーチンの処理の流れを説明するフローチャートである。
以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の構成を概略的に説明する。
エンジン11の吸気ポート12に接続された吸気管13の途中には、スロットルバルブ14が設けられ、このスロットルバルブ14の開度(スロットル開度)がスロットル開度センサ15によって検出される。また、スロットルバルブ14の下流側には、吸気管圧力を検出する吸気管圧力センサ18が設けられ、各気筒の吸気ポート12の近傍には、それぞれ吸気ポート12に向けて燃料を噴射する燃料噴射弁19が取り付けられている。
一方、エンジン11の排気ポート20に接続された排気管21の途中には、排気ガス浄化用の触媒22が設置されている。エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ23が設けられている。エンジン11のクランク軸24に取り付けられたシグナルロータ25の外周に対向してクランク角センサ26が設置され、このクランク角センサ26からシグナルロータ25の回転に同期して所定クランク角毎(例えば30℃A毎)にクランクパルス信号が出力される。また、エンジン11のカム軸27に取り付けられたシグナルロータ28の外周に対向してカム角センサ29が設置され、このカム角センサ29からシグナルロータ28の回転に同期して所定のカム角でカムパルス信号が出力される。
また、オルタネータ33(発電機)には、クランク軸24に連結されたクランクプーリ34の回転がベルト35を介して伝達される。これにより、エンジン11の動力でオルタネータ33が回転駆動されて発電するようになっている。このオルタネータ33の発電制御電流(フィールド電流)をデューティ制御することで、オルタネータ33の負荷を制御することができる。
上述した各種センサの出力は、エンジン制御回路(以下「エンジンECU」と表記する)30に入力される。このエンジンECU30は、マイクロコンピュータを主体として構成され、各種センサで検出したエンジン運転状態に応じて、燃料噴射弁19の燃料噴射量や燃料噴射時期、点火プラグ31の点火時期を制御すると共に、エンジン運転中に所定の自動停止条件(例えばアクセル全閉、ブレーキ操作中、アイドル運転中等の条件)が成立してエンジン停止要求が発生したときに、燃焼(点火及び/又は燃料噴射)を停止させてエンジン回転を停止させるアイドルストップを実行し、このアイドルストップによるエンジン回転停止中(アイドルストップ中)に運転者が車両発進のための準備操作(ブレーキ解除、シフトレバーのドライブレンジへの操作等)や発進操作(アクセル踏み込み等)が行われたとき、或は車載機器の制御システムからの始動要求が発生したときに、所定の自動始動条件が成立してスタータ(図示せず)に通電してエンジン11をクランキングして再始動させる。
更に、エンジンECU30は、後述する図11乃至図15の各ルーチンを実行することで、エンジン回転が目標停止クランク角で停止するまでの回転挙動(以下「目標軌道」という)を算出する目標軌道算出手段として機能すると共に、エンジン回転を停止させる際に実エンジン回転挙動を目標軌道に合わせるようにオルタネータ33の負荷を制御するエンジン回転停止制御を実行する停止制御手段として機能する。
ここで、目標軌道は、目標停止クランク角に至るまでのクランク角と目標エンジン回転速度との関係を所定クランク角間隔で算出してテーブル(図示せず)に割り付けたものである。この目標軌道は、例えば、ロストルクを考慮したエネルギ保存則の関係式を用いて、目標停止クランク角を初期値としてクランク角を溯る方向に算出される(図2参照)。
エネルギ保存則の関係式は次式で表される。
Ne(i+1)2 =Ne(i)2 −2/J×{Tloss( θ(i) ) −Tref(Ne(i))}
ここで、Ne(i+1)は、現時点(i) よりも所定クランク角前の時点(i+1) のエンジン回転速度、Ne(i)は現時点(i) のエンジン回転速度、Jはエンジン11の慣性モーメントである。Tloss( θ(i) )は、現時点(i) のクランク角θ(i) におけるポンピングロスとフリクションロスを合計したロストルクであり、予め設定されたマップ等を用いて現時点(i) のクランク角θ(i) に応じたロストルクTloss( θ(i) )が算出される。Tref(Ne(i))は現時点(i) のエンジン回転速度Ne(i)におけるオルタネータ33の基準負荷トルクである。 上記エネルギ保存則の関係式において、「Tloss( θ(i) )−Tref(Ne(i))」は、ポンピングロスとフリクションロスとオルタネータ33の基準負荷トルクTref(Ne(i))を合計したロストルクに相当する。
本実施例では、オルタネータ33の基準負荷トルクTref(Ne(i))は、図3に示すようにオルタネータ33の制御可能な最大負荷の半分(1/2)に設定されている。このようにすれば、オルタネータ33は、モータジェネレータとは異なり、アシストトルクを出力できないという事情があっても、仮想的にオルタネータ33の負荷トルクを正負両方向に制御することが可能となり(基準負荷Tref 以下の負荷トルクを仮想的に負の負荷トルクとし、基準負荷Tref 以上の負荷トルクを正の負荷トルクとしてオルタネータ33の負荷トルクを制御することが可能となり)、目標軌道へのエンジン回転挙動の追従性を向上することができる。
尚、オルタネータ33の基準負荷トルクTref(Ne(i))は、最大負荷の半分(1/2)に限定されず、例えば、最大負荷の1/3、1/4、2/3、3/4等であっても良く、要は、オルタネータ33の制御可能な最大負荷よりも小さく、0よりも大きい適宜の負荷を基準負荷トルクTref(Ne(i))に設定すれば良い。
0<Tref(Ne(i))<最大負荷
図5(a)は、基準負荷トルクTref(Ne(i))=0に設定してエンジン回転停止制御を行った比較例を示している。この比較例では、オルタネータ33の負荷トルクを正方向にしか制御できないため、実エンジン回転挙動がオーバーシュートした場合は、実エンジン回転挙動を目標軌道に一致させることができなくなる。
これに対して、本実施例のように、オルタネータ33の基準負荷トルクTref(Ne(i))を最大負荷よりも小さい適宜の負荷に設定すれば、図4に示すように、仮想的にオルタネータ33の負荷トルクを正負両方向に制御することが可能となるため、図5(b)に示すように、実回転挙動がオーバーシュートした場合でも、実回転挙動を目標軌道に一致させることができる。
更に、本実施例では、図6に示すように、目標軌道を算出する際に、オルタネータ33の基準負荷トルクTref(Ne(i))に応じた目標軌道を算出し、エンジン回転停止制御中は、エンジン回転速度Ne(i)に応じた基準負荷トルクTref(Ne(i))を算出すると共に、現時点(i) のクランク角θ(i) における目標エンジン回転速度と実エンジン回転速度との偏差を小さくするようにベース負荷トルクを算出して、このベース負荷トルクに基準負荷トルクTref(Ne(i))を加算して要求負荷トルクTalt を求める(実際には、この要求負荷トルクTalt にプーリ比Ratioを乗算して要求軸トルクTalt.final に変換する)。
この後、図7に示すように、発電指令値算出部38(発電指令値算出手段)で、オルタネータ33の負荷トルク特性(図8参照)を用いて、オルタネータ33の要求負荷トルクTalt (要求軸トルクTalt.final )と、エンジン回転速度Ne (又はエンジン回転速度Ne にプーリ比Ratioを乗算して求めたオルタネータ33の回転速度Nalt )に応じた発電指令値(デューティDuty )を算出する。
尚、図8に示す負荷トルク特性は、オルタネータ33の出力電圧が13.5Vで一定の場合の特性であり、出力電圧毎に同様の特性が設定されている。この発電指令値(デューティDuty )に基づいてオルタネータ33の発電制御電流(フィールド電流)を制御してオルタネータ33の負荷トルクを制御する。
このようなオルタネータ33の負荷トルクの制御を、エンジン回転速度がオルタネータ33の発電限界回転速度Nelow(図3参照)以下に低下するまで所定クランク間隔で周期的に実行することで、実エンジン回転挙動を目標軌道に合わせるようにオルタネータ33の負荷トルクをフィードバック制御するエンジン回転停止制御を行う。
エンジン回転停止制御の際に、エンジンECU30は、所定クランク角周期で発電指令値を演算し、この発電指令値をCAN(Controller Area Network )通信により所定時間周期で電源系ECU36(図1参照)に送信する。更に、電源系ECU36は、受信した発電指令値をLIN(Local Interconnect Network)通信により所定時間周期でオルタネータ33に送信する。
これらの発電指令値の演算周期とCAN通信の送信周期とのずれや、CAN通信の送信周期とLIN通信の送信周期とのずれ等によって、エンジン回転停止制御の際に、エンジンECU30でオルタネータ33の発電指令値が算出されてから該発電指令値が送信されて実際にオルタネータ33が応答する(発電指令値に応じて動作する)までに遅れ時間が生じて、この遅れ時間の間にエンジン回転速度が低下することがある。
そこで、本実施例では、エンジン回転停止制御の際に、オルタネータ33の発電指令値が算出されてから実際にオルタネータ33が応答するまでの指令遅れ時間を算出して、この指令遅れ時間中のエンジン回転速度の変化量を推定し、現在のエンジン回転速度から指令遅れ時間中のエンジン回転速度の変化量を差し引いて指令遅れ時間経過後のエンジン回転速度を求め、この指令遅れ時間経過後のエンジン回転速度と要求負荷トルクに応じて発電指令値を算出する。
具体的には、図7に示すように、まず、指令遅れ時間算出部39で、エンジン停止要求の発生に伴ってエンジン回転停止制御が開始される際にオルタネータ33の要求負荷トルクTalt が初期値(例えば基準負荷トルクTref(Ne) )に設定されたときに、この要求負荷トルクTalt に応じた発電指令値が算出された時点から実際にオルタネータ33が応答する時点(例えば発電指令値の変化に応じて発電電流が変化し始めた時点)までの時間をカウントして指令遅れ時間dtを求める。
そして、エンジン回転速度変化量推定部40で、エンジン回転停止制御中に、指令遅れ時間中のエンジン回転速度変化量dNe を推定する。この際、例えば、オルタネータ33の基準負荷トルクTref(Ne) に応じて算出された目標軌道の傾きKt(例えば目標軌道のうち現在のエンジン回転速度付近における単位時間当りのエンジン回転速度の変化量)を算出し、この目標軌道の傾きKtに指令遅れ時間dtを乗算して、指令遅れ時間中のエンジン回転速度変化量dNe を求める。
dNe =Kt×dt
或は、実エンジン回転挙動の傾きKr(例えば実エンジン回転挙動のうち現在のエンジン回転速度付近における単位時間当りのエンジン回転速度の変化量)を算出し、この実エンジン回転挙動の傾きKrに指令遅れ時間dtを乗算して、指令遅れ時間中のエンジン回転速度変化量dNe を求めるようにしても良い。
dNe =Kr×dt
この後、現在のエンジン回転速度Ne から指令遅れ時間中のエンジン回転速度変化量dNe を差し引いて指令遅れ時間経過後のエンジン回転速度Ne.hosei を求める。
Ne.hosei =Ne −dNe
更に、指令遅れ時間経過後のエンジン回転速度Ne.hosei にプーリ比Ratioを乗算して、指令遅れ時間経過後のオルタネータ33の回転速度Nalt.hosei に変換しても良い。
Nalt.hosei =Ne.hosei ×Ratio
この後、発電指令値算出部38で、オルタネータ33の負荷トルク特性(図8参照)を用いて、オルタネータ33の要求負荷トルクTalt (要求軸トルクTalt.final )と、指令遅れ時間経過後のエンジン回転速度Ne.hosei (又は指令遅れ時間経過後のオルタネータ33の回転速度Nalt.hosei )に応じた発電指令値(デューティDuty )を算出する。
この際、要求負荷トルクTalt とエンジン回転速度Ne.hosei (又はオルタネータ33の回転速度Nalt.hosei )から発電指令値(デューティDuty )を直接算出するようにしても良いが、要求負荷トルクTalt とエンジン回転速度Ne.hosei (又はオルタネータ33の回転速度Nalt.hosei )から要求フィールド電流(要求励磁電流)を算出し、この要求フィールド電流から発電指令値(デューティDuty )を算出するようにしても良い。
ところで、図9に示すように、エンジン回転停止制御の実行中に所定タイミング毎(例えばTDC毎)に目標軌道のテーブル(目標軌道のデータ)に基づいて目標エンジン回転速度を設定する際には、現在の実エンジン回転速度よりも低回転側の目標エンジン回転速度か又は高回転側の目標エンジン回転速度を選択することができる。この際、低回転側の目標エンジン回転速度を選択すれば、現在のクランク角で低回転側の目標エンジン回転速度を通過する進角側の目標軌道を選択することになり、一方、高回転側の目標エンジン回転速度を選択すれば、現在のクランク角で高回転側の目標エンジン回転速度を通過する遅角側の目標軌道(進角側の目標軌道よりも所定クランク角間隔だけ遅れた目標軌道)を選択することになる。
そこで、本実施例では、エンジン回転停止制御の制御性を向上させるために、所定タイミング毎に目標軌道のテーブルに基づいて目標エンジン回転速度を設定する際に、低回転側の目標エンジン回転速度と高回転側の目標エンジン回転速度のうち実エンジン回転速度との偏差が小さい方の目標エンジン回転速度を選択することで、進角側の目標軌道と遅角側の目標軌道のうち実エンジン回転速度との偏差が小さい方の目標軌道を選択するようにしている。
しかし、図10に示すように、エンジン回転停止制御の実行中に目標軌道が切り替わると、オルタネータ33の要求負荷トルク(要求発電電流)が大きく変化して、発電指令値が大きく変化するため、発電指令値が算出されてから実際にオルタネータ33が応答するまでの指令遅れ時間の影響を受け易く、指令遅れ時間が長いと、オルタネータ33の要求負荷トルクに対する実負荷トルクの応答遅れ(要求発電電流に対する実発電電流の応答遅れ)が大きくなって、目標軌道に対する実エンジン回転挙動の応答遅れが大きくなり、目標軌道と実エンジン回転挙動との偏差(目標エンジン回転速度と実エンジン回転速度との偏差)を速やかに小さくすることができず、エンジン回転停止制御の精度が低下する可能性がある。更に、実エンジン回転挙動の応答遅れによって、エンジン回転停止制御の目標軌道が進角側の目標軌道と遅角側の目標軌道との間で頻繁に切り替わる可能性があり、それに伴ってオルタネータ33の発電指令値が増減を繰り返すハンチング現象が発生して、エンジン回転停止制御の精度が更に低下する可能性もある。
この対策として、本実施例では、指令遅れ時間が所定値以上の場合には、指令遅れ時間の影響が大きいと判断して、最初に選択した目標軌道(エンジン停止要求に伴って燃焼を停止させた気筒が最初に膨張行程となるタイミングにおいて選択した目標軌道)にエンジン回転停止制御の目標軌道を固定して、その後、エンジン回転が停止するまで所定タイミング毎(例えばTDC毎)に目標軌道を選択することを禁止することで、エンジン回転停止制御の実行中に目標軌道が切り替わることを防止するようにしている。
以上説明したエンジン回転停止制御は、エンジンECU30によって図11乃至図15の各ルーチンに従って実行される。以下、これら各ルーチンの処理内容を説明する。
[目標軌道算出ルーチン]
図11に示す目標軌道算出ルーチンは、エンジンECU30の電源オン中に所定周期(所定クランク角周期)で繰り返し実行される。本ルーチンが起動されると、まず、ステップ101で、目標軌道算出完了フラグが目標軌道の算出前を意味する「0」にセットされているか否かを判定し、この目標軌道算出完了フラグが目標軌道算出完了を意味する「1」にセットされていれば、以降の処理を行うことなく、本ルーチンを終了する。
一方、このステップ101で、目標軌道算出完了フラグ=0(目標軌道の算出前)と判定されれば、ステップ102に進み、ロストルクTloss( θ(i) )とオルタネータ33の基準負荷トルクTref(Ne(i))を用いて、次式で表されるエネルギ保存則の関係式を用いて次の時点(i+1) の目標エンジン回転速度Ne(i+1)の二乗を算出する。
Ne(i+1)2 =Ne(i)2 −2/J×{Tloss( θ(i) )−Tref(Ne(i))}
ここで、Jはエンジン11の慣性モーメント、Tloss( θ(i) )は、ポンピングロスとフリクションロスを合計したロストルクであり、予め設定されたマップ等を用いて、現時点(i) のクランク角θ(i) に応じたロストルクTloss( θ(i) )を算出する。
上記エネルギ保存則の関係式において、「Tloss( θ(i) )−Tref(Ne(i))」は、ポンピングロスとフリクションロスとオルタネータ33の基準負荷トルクTref(Ne(i))を合計したロストルクに相当する。
初期値は、i=0、θ(0) =目標停止クランク角、Ne(0)=0rpm(停止時のエンジン回転速度)である。目標軌道は、目標停止クランク角θ(0) を初期値としてクランク角を溯る方向に所定クランク角毎(例えばTDC毎)に算出する。
この後、ステップ103に進み、目標エンジン回転速度Ne(i+1)の二乗がエンジン回転停止制御を実行可能な最大エンジン回転速度Nemaxの二乗を越えたか否かを判定し、まだ最大エンジン回転速度Nemaxの二乗を越えていなければ、ステップ104に進み、目標軌道算出完了フラグを「0」に維持する(セットし直す)。
この後、ステップ106に進み、目標エンジン回転速度Ne(i+1)の二乗の平方根を算出して目標エンジン回転速度Ne(i+1)を求め、これを目標軌道のテーブル(図示せず)に割り付けて、本ルーチンを終了する。尚、エンジンECU30の演算負荷を低減するため、エンジン回転速度の二乗をそのままテーブルに割り付けても良い。目標軌道のテーブルは、エンジンECU30のメモリに記憶される。
以上のような処理を繰り返して、目標停止クランク角θ(0) を初期値としてクランク角を溯る方向に所定クランク角毎(例えばTDC毎)に目標エンジン回転速度Ne(i+1)の二乗を算出して目標軌道のテーブルに目標エンジン回転速度Ne(i+1)を割り付ける処理を繰り返す。そして、上記ステップ103で、目標エンジン回転速度Ne(i+1)の二乗がエンジン回転停止制御を実行可能な最大エンジン回転速度Nemaxの二乗を越えたと判定された時点で、ステップ105に進み、目標軌道算出完了フラグを目標軌道算出完了を意味する「1」にセットして、ステップ106に進み、最後の目標エンジン回転速度Ne(i+1)の二乗の平方根を算出して目標エンジン回転速度Ne(i+1)を求め、これを目標軌道のテーブルに割り付けて、本ルーチンを終了する。
[指令遅れ時間算出ルーチン]
図12に示す指令遅れ時間算出ルーチンは、エンジンECU30の電源オン中に所定周期(所定クランク角周期)で繰り返し実行される。本ルーチンが起動されると、まず、ステップ201で、エンジン停止要求(アイドルストップ信号)が発生したか否かを判定し、エンジン停止要求が発生していなければ、以降の処理を行うことなく、本ルーチンを終了する。
その後、ステップ201で、エンジン停止要求が発生したと判定された時点で、ステップ202に進み、エンジン停止要求の発生に伴ってエンジン回転停止制御が開始される際にオルタネータ33の要求負荷トルクTalt が初期値(例えば基準負荷トルクTref(Ne) )に設定されたときに、この要求負荷トルクTalt に応じた発電指令値が算出された時点から実際にオルタネータ33が応答する時点(例えば発電指令値の変化に応じて発電電流が変化し始めた時点)までの時間をカウントして指令遅れ時間dtを求める。
[エンジン回転停止制御ルーチン]
図13及び図14に示すエンジン回転停止制御ルーチンは、エンジンECU30の電源オン中に所定周期(所定クランク角周期)で繰り返し実行される。本ルーチンが起動されると、まず、ステップ301で、エンジン停止要求(アイドルストップ信号)が発生したか否かを判定し、エンジン停止要求が発生していなければ、以降の処理を行うことなく、本ルーチンを終了して、エンジン運転(燃料噴射制御及び点火制御)を継続する。
その後、上記ステップ301で、エンジン停止要求が発生したと判定された時点で、ステップ302に進み、現在のクランク角θとエンジン回転速度Ne を算出する。この後、ステップ303に進み、現在のクランク角θがオルタネータ33の負荷トルクの制御タイミング(例えばTDC)であるか否かを判定し、オルタネータ33の負荷トルクの制御タイミングでなければ、以降の処理を行うことなく、本ルーチンを終了する。
上記ステップ303で、現在のクランク角θがオルタネータ33の負荷トルクの制御タイミングであると判定されれば、ステップ304に進み、現在のエンジン回転速度Ne がエンジン回転停止制御を実行可能な最大エンジン回転速度Nemaxよりも低いか否かを判定し、現在のエンジン回転速度Ne が最大エンジン回転速度Nemax以上であれば、以降の処理を行うことなく、本ルーチンを終了する。
これに対して、上記ステップ304で、現在のエンジン回転速度Ne が最大エンジン回転速度Nemaxよりも低いと判定されれば、ステップ305に進み、エンジン11が燃焼中であるか否かを判定する。このステップ305で、エンジン停止要求が発生した直後でエンジン11がまだ燃焼中であると判定された場合には、ステップ306に進み、エンジン回転停止制御を開始する際のオルタネータ33の要求負荷トルクTalt を初期値(例えば基準負荷トルクTref(Ne) )に設定する。
Talt =Tref(Ne)
その後、上記ステップ305で、エンジン11の燃焼が停止したと判定された場合には、ステップ307に進み、後述する図15の目標エンジン回転速度設定ルーチンを実行して、所定タイミング毎(例えばTDC毎)に目標軌道のテーブルを参照して、今回の制御タイミングに対応した目標エンジン回転速度Netg を求める。ここで、車両がMT車(マニュアルミッション車)の場合は、クラッチが開放状態かどうか判断し、クラッチ開放・継合状態に応じた目標軌道を選択するようにしても良い。
この後、ステップ308に進み、現在のエンジン回転速度Ne と目標エンジン回転速度Netg とオルタネータ33の基準負荷トルクTref(Ne) を用いて、次式により要求負荷トルクTalt を算出する。
Figure 0005077585
ここで、Jはエンジン11の慣性モーメント、Kはフィードバックゲイン、Δθはクランク角変化量である。
この後、ステップ309に進み、要求負荷トルクTalt にプーリ比Ratioを乗算して、オルタネータ33の要求軸トルクTalt.final に変換する。
この後、図14のステップ310に進み、前述した図12の指令遅れ時間算出ルーチンによりエンジン回転停止制御が開始される際に算出された指令遅れ時間dtを読み込んだ後、ステップ311に進み、オルタネータ33の基準負荷トルクTref(Ne) に応じて算出された目標軌道の傾きKt(例えば目標軌道のうち現在のエンジン回転速度付近における単位時間当りのエンジン回転速度の変化量)を算出し、この目標軌道の傾きKtに指令遅れ時間dtを乗算して、指令遅れ時間中のエンジン回転速度変化量dNe を求める。
dNe =Kt×dt
或は、実エンジン回転挙動の傾きKr(例えば実エンジン回転挙動のうち現在のエンジン回転速度付近における単位時間当りのエンジン回転速度の変化量)を算出し、この実エンジン回転挙動の傾きKrに指令遅れ時間dtを乗算して、指令遅れ時間中のエンジン回転速度変化量dNe を求めるようにしても良い。
dNe =Kr×dt
この後、ステップ312に進み、現在のエンジン回転速度Ne から指令遅れ時間中のエンジン回転速度変化量dNe を差し引いて指令遅れ時間経過後のエンジン回転速度Ne.hosei を求める。
Ne.hosei =Ne −dNe
次のステップ313で、指令遅れ時間経過後のエンジン回転速度Ne.hosei にプーリ比Ratioを乗算して、指令遅れ時間経過後のオルタネータ33の回転速度Nalt.hosei に変換する。
Nalt.hosei =Ne.hosei ×Ratio
この後、ステップ314に進み、バッテリ電圧を検出した後、ステップ315に進み、バッテリ電圧毎に作成された複数の負荷トルク特性マップ(図8参照)の中から、現在のバッテリ電圧に対応する負荷トルク特性マップを選択して、現在の要求負荷トルクTalt (要求軸トルクTalt.final )と、指令遅れ時間経過後のエンジン回転速度Ne.hosei (又は指令遅れ時間経過後のオルタネータ33の回転速度Nalt.hosei )に応じた発電指令値(デューティDuty )を算出する。
[目標エンジン回転速度設定ルーチン]
図15に示す目標エンジン回転速度設定ルーチンは、前記図13のエンジン回転停止制御ルーチンのステップ307で実行されるサブルーチンであり、特許請求の範囲でいう選択手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ501で、指令遅れ時間dtが所定値以上であるか否かを判定する。
このステップ501で、指令遅れ時間dtが所定値以上であると判定された場合には、指令遅れ時間dtの影響が大きいと判断して、ステップ502に進み、目標軌道切替禁止フラグを目標軌道の切替禁止を意味する「1」にセットする。
一方、上記ステップ501で、指令遅れ時間dtが所定値よりも短いと判定された場合には、指令遅れ時間dtの影響が小さいか又はほとんど無いと判断して、ステップ503に進み、目標軌道切替禁止フラグを目標軌道の切替許可を意味する「0」に維持する(又はリセットする)。
この後、ステップ504に進み、目標軌道のテーブルを参照して、目標停止クランク角から溯ってi番目の目標エンジン回転速度Ne(i)と、(i+1)番目の目標エンジン回転速度Ne(i+1)を読み込むことで、低回転側の目標エンジン回転速度Ne(i)と、高回転側の目標エンジン回転速度Ne(i+1)を求める。初期値は、i=0、Ne(0)=0rpm(停止時のエンジン回転速度)である。
尚、本実施例では、前述した図11の目標軌道算出ルーチンでエネルギ保存則の関係式を用いて目標エンジン回転速度を算出して目標軌道のテーブルに割り付けるようにしたが、図11の目標軌道算出ルーチンを省略して、このステップ504で、エネルギ保存則の関係式を用いて目標エンジン回転速度を算出するようにしても良い。
この後、ステップ505に進み、目標軌道切替禁止フラグ=1(目標軌道の切替禁止)であるか否かを判定し、このステップ505で、目標軌道切替禁止フラグ=0(目標軌道の切替許可)と判定された場合には、ステップ507に進み、現在の実エンジン回転速度Ne が高回転側の目標エンジン回転速度Ne(i+1)よりも低いか否かを判定する。
このステップ507で、現在の実エンジン回転速度Ne が高回転側の目標エンジン回転速度Ne(i+1)以上であると判定されれば、ステップ508に進み、次に目標軌道のテーブルから読み込む目標エンジン回転速度Ne(i),Ne(i+1)の番号iを「1」だけ増やした後、上記ステップ504に戻る。
その後、上記ステップ507で、現在の実エンジン回転速度Ne が高回転側の目標エンジン回転速度Ne(i+1)よりも低いと判定されたときに、ステップ509に進み、高回転側の目標エンジン回転速度Ne(i+1)と実エンジン回転速度Ne との偏差(Ne(i+1)−Ne )が、実エンジン回転速度Ne と低回転側の目標エンジン回転速度Ne(i)との偏差(Ne −Ne(i))よりも大きいか否かを判定する。
このステップ509で、高回転側の目標エンジン回転速度Ne(i+1)と実エンジン回転速度Ne との偏差(Ne(i+1)−Ne )が、実エンジン回転速度Ne と低回転側の目標エンジン回転速度Ne(i)との偏差(Ne −Ne(i))よりも大きいと判定された場合には、低回転側の目標エンジン回転速度Ne(i)の方が実エンジン回転速度Ne に対する偏差が小さいため、ステップ510に進み、低回転側の目標エンジン回転速度Ne(i)を、今回の制御タイミングに対応した目標エンジン回転速度Netg として選択することで、低回転側の目標エンジン回転速度Ne(i)に対応した進角側の目標軌道を選択する。この後、ステップ511に進み、次回の制御タイミングで目標軌道のテーブルから読み込む目標エンジン回転速度Ne(i),Ne(i+1)の番号iを「1」だけ減らした後、ステップ514に進み、目標軌道選択完了フラグを「1」にセットする。
これに対して、上記ステップ509で、高回転側の目標エンジン回転速度Ne(i+1)と実エンジン回転速度Ne との偏差(Ne(i+1)−Ne )が、実エンジン回転速度Ne と低回転側の目標エンジン回転速度Ne(i)との偏差(Ne −Ne(i))以下であると判定された場合には、高回転側の目標エンジン回転速度Ne(i+1)の方が実エンジン回転速度Ne に対する偏差が小さいため、ステップ512に進み、高回転側の目標エンジン回転速度Ne(i+1)を、今回の制御タイミングに対応した目標エンジン回転速度Netg として選択することで、高回転側の目標エンジン回転速度Ne(i+1)に対応した遅角側の目標軌道を選択する。この後、ステップ513に進み、次回の制御タイミングで目標軌道のテーブルから読み込む目標エンジン回転速度Ne(i),Ne(i+1)の番号iを現状維持したまま、ステップ514に進み、目標軌道選択完了フラグを「1」にセットする。
以上のようにして、指令遅れ時間dtが所定値よりも短い場合(目標軌道切替禁止フラグ=0の場合)には、指令遅れ時間の影響が小さいか又はほとんど無いと判断して、所定タイミング毎(例えばTDC毎)に低回転側の目標エンジン回転速度と高回転側の目標エンジン回転速度のうち実エンジン回転速度との偏差が小さい方を、今回の制御タイミングに対応した目標エンジン回転速度Netg として選択することで、進角側の目標軌道と遅角側の目標軌道のうち実エンジン回転速度との偏差が小さい方の目標軌道を選択する。
これに対して、上記ステップ505で、目標軌道切替禁止フラグ=1(目標軌道の切替禁止)と判定された場合には、まず、ステップ506で、目標軌道選択完了フラグ=1であるか否かを判定し、目標軌道選択完了フラグ=0であると判定されれば、ステップ507〜514の処理を実行して、低回転側の目標エンジン回転速度と高回転側の目標エンジン回転速度のうち実エンジン回転速度との偏差が小さい方を、今回の制御タイミングに対応した目標エンジン回転速度Netg として選択することで、進角側の目標軌道と遅角側の目標軌道のうち実エンジン回転速度との偏差が小さい方の目標軌道を選択して、目標軌道選択完了フラグを「1」にセットする。
最初に目標軌道を選択した後は、上記ステップ506で、目標軌道選択完了フラグ=1と判定されて、ステップ515に進み、今回の制御タイミングで目標軌道のテーブルから読み込んだ目標エンジン回転速度Ne(i)を、今回の制御タイミングに対応した目標エンジン回転速度Netg として設定した後、ステップ516に進み、次回の制御タイミングで目標軌道のテーブルから読み込む目標エンジン回転速度Ne(i),Ne(i+1)の番号iを「1」だけ減らす処理を繰り返して、エンジン回転停止制御の目標軌道を最初に選択した目標軌道に固定する。
以上のようにして、指令遅れ時間dtが所定値以上の場合(目標軌道切替禁止フラグ=1の場合)には、指令遅れ時間の影響が大きいと判断して、最初に選択した目標軌道(エンジン停止要求に伴って燃焼を停止させた気筒が最初に膨張行程となるタイミングにおいて選択した目標軌道)にエンジン回転停止制御の目標軌道を固定して、その後、エンジン回転が停止するまで所定タイミング毎(例えばTDC毎)に目標軌道を選択することを禁止する。この機能が特許請求の範囲でいう禁止手段としての役割を果たす。
以上説明した本実施例では、指令遅れ時間dtが所定値よりも短い場合には、指令遅れ時間の影響が小さいか又はほとんど無いと判断して、所定タイミング毎(例えばTDC毎)に低回転側の目標エンジン回転速度と高回転側の目標エンジン回転速度のうち実エンジン回転速度との偏差が小さい方の目標エンジン回転速度を選択することで、進角側の目標軌道と遅角側の目標軌道のうち実エンジン回転速度との偏差が小さい方の目標軌道を選択するようにしたので、常に実エンジン回転速度との偏差が小さい方の目標エンジン回転速度を選択して、実エンジン回転速度を速やかに目標エンジン回転速度に制御することができ、エンジン回転停止制御の制御性を向上させることができる。
尚、所定タイミング毎(例えばTDC毎)に低回転側の目標エンジン回転速度と高回転側の目標エンジン回転速度のうち実エンジン回転速度との偏差が小さい方の目標エンジン回転速度を選択する構成に限定されず、例えば、所定タイミング毎(例えばTDC毎)に低回転側の目標エンジン回転速度と高回転側の目標エンジン回転速度のうち、低回転側/高回転側の目標エンジン回転速度と実エンジン回転速度をそれぞれエネルギ量に変換したパラメータの偏差が小さい方の目標エンジン回転速度を選択するようにしても良い。
一方、指令遅れ時間dtが所定値以上の場合には、指令遅れ時間の影響が大きいと判断して、エンジン回転停止制御の目標軌道を最初に選択した目標軌道に固定して、その後、エンジン回転が停止するまで所定タイミング毎(例えばTDC毎)に目標軌道を選択することを禁止するようにしたので、指令遅れ時間が所定値以上の場合には、エンジン回転停止制御の実行中に目標軌道が切り替わることを防止でき、目標軌道の切り替えによって発生する実エンジン回転挙動の応答遅れやオルタネータ33の発電指令値が増減を繰り返すハンチング現象を未然に防止することができて、エンジン回転停止制御精度の低下を防止することができ、エンジン停止クランク角を精度良く目標のクランク角範囲内に制御することができる。
尚、上記実施例では、目標停止クランク角を初期値としてクランク角を溯る方向に目標軌道を求めるようにしたが、例えば、目標停止クランク角でエンジン回転が停止するように停止直前のエンジン回転速度とクランク角(例えばTDC)を初期値として設定しておき、そこからクランク角を溯る方向に目標軌道を求めるようにしても良い等、目標軌道の算出方法を適宜変更しても良い。
その他、本発明の適用範囲は、車両の動力源としてエンジンのみを備えた一般的な車両に限定されず、車両の動力源としてエンジンとモータを備えたハイブリッド車に本発明を適用しても良い。
11…エンジン、13…吸気管、14…スロットルバルブ、19…燃料噴射弁、21…排気管、26…クランク角センサ、29…カム角センサ、30…エンジンECU(目標軌道算出手段,停止制御手段,選択手段,禁止手段)、33…オルタネータ(発電機)、36…電源系ECU、38…発電指令値算出部(発電指令値算出手段)

Claims (3)

  1. エンジン停止要求が発生したときに燃焼を停止させてエンジン回転を停止させるエンジン回転停止制御装置において、
    エンジンで駆動される発電機と、
    エンジン回転が目標停止クランク角で停止するまでの回転挙動(以下「目標軌道」という)を算出する目標軌道算出手段と、
    エンジン回転を停止させる際に実エンジン回転挙動を前記目標軌道に合わせるように前記発電機の負荷を制御するエンジン回転停止制御を実行する停止制御手段とを備え、
    前記停止制御手段は、
    所定タイミング毎に前記目標軌道のデータに基づいて実エンジン回転速度よりも低回転側の目標エンジン回転速度と実エンジン回転速度よりも高回転側の目標エンジン回転速度のうちの一方を選択することで該低回転側の目標エンジン回転速度に対応する進角側の目標軌道と該高回転側の目標エンジン回転速度に対応する遅角側の目標軌道のうちの一方を選択する選択手段と、
    前記選択手段で選択した目標エンジン回転速度と実エンジン回転速度との偏差を小さくするように前記発電機の発電指令値を算出する発電指令値算出手段と、
    前記発電機の発電指令値が算出されてから該発電機が応答するまでの指令遅れ時間が所定値以上の場合に、前記エンジン回転停止制御の目標軌道を前記選択手段で最初に選択した目標軌道に固定して前記選択手段により前記所定タイミング毎に目標軌道を選択することを禁止する禁止手段と
    を備えていることを特徴とするエンジン回転停止制御装置。
  2. 前記選択手段は、前記所定タイミング毎に前記低回転側の目標エンジン回転速度と前記高回転側の目標エンジン回転速度のうち実エンジン回転速度との偏差もしくはエンジン回転速度をエネルギ量に変換したパラメータの偏差が小さい方の目標エンジン回転速度を選択することで前記進角側の目標軌道と前記遅角側の目標軌道のうち実エンジン回転速度との偏差が小さい方の目標軌道を選択する手段を有することを特徴とする請求項1に記載のエンジン回転停止制御装置。
  3. 前記禁止手段は、前記エンジン停止要求に伴って燃焼を停止させた気筒が最初に膨張行程となるタイミングにおいて前記選択手段で選択した目標軌道に前記エンジン回転停止制御の目標軌道を固定して、その後、エンジン回転が停止するまで前記選択手段により前記所定タイミング毎に目標軌道を選択することを禁止する手段を有することを特徴とする請求項1又は2に記載のエンジン回転停止制御装置。
JP2009063311A 2009-03-16 2009-03-16 エンジン回転停止制御装置 Expired - Fee Related JP5077585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063311A JP5077585B2 (ja) 2009-03-16 2009-03-16 エンジン回転停止制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063311A JP5077585B2 (ja) 2009-03-16 2009-03-16 エンジン回転停止制御装置

Publications (2)

Publication Number Publication Date
JP2010216350A JP2010216350A (ja) 2010-09-30
JP5077585B2 true JP5077585B2 (ja) 2012-11-21

Family

ID=42975446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063311A Expired - Fee Related JP5077585B2 (ja) 2009-03-16 2009-03-16 エンジン回転停止制御装置

Country Status (1)

Country Link
JP (1) JP5077585B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412525B2 (ja) * 1998-07-13 2003-06-03 トヨタ自動車株式会社 動力出力装置及びその制御方法並びにハイブリッド車両
JP2004060547A (ja) * 2002-07-30 2004-02-26 Nissan Motor Co Ltd 車両の発電制御装置
JP3945473B2 (ja) * 2003-11-27 2007-07-18 マツダ株式会社 エンジンの始動装置
JP4120614B2 (ja) * 2004-04-20 2008-07-16 トヨタ自動車株式会社 内燃機関の始動制御装置
JP2006057524A (ja) * 2004-08-19 2006-03-02 Denso Corp エンジン回転停止制御装置
JP2006342706A (ja) * 2005-06-08 2006-12-21 Fujitsu Ten Ltd エンジンのアイドル回転数制御装置及びアイドル回転数制御方法
JP2008215182A (ja) * 2007-03-05 2008-09-18 Denso Corp エンジン回転停止制御装置
JP4666286B2 (ja) * 2007-03-05 2011-04-06 株式会社デンソー エンジン回転停止制御装置

Also Published As

Publication number Publication date
JP2010216350A (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
EP2309110B1 (en) Engine stoppage control device
US8972150B2 (en) Selective cylinder disablement control systems and methods
US8000885B2 (en) Engine stop control device
US8347855B2 (en) Control system and method for improving engine stop-start response time
JP4666286B2 (ja) エンジン回転停止制御装置
US8855896B2 (en) Intake manifold refill and holding control systems and methods
JP2010043533A (ja) エンジン停止制御装置
JP2011190768A (ja) ハイブリッド車両における可変動弁制御装置
US8635987B2 (en) Engine speed control systems and methods
US8694231B2 (en) Vehicle rollback control systems and methods
CN107489550B (zh) 发动机停止位置控制系统和方法
JP2009215887A (ja) エンジン回転停止制御装置
JP5273547B2 (ja) エンジン制御装置
JP5075145B2 (ja) 内燃機関の制御装置
US10513995B2 (en) Control apparatus and control method for internal combustion engine
JP2010220358A (ja) エンジン回転停止制御装置
EP2581286A2 (en) Engine Start-Up Controller
JP2010053794A (ja) 内燃機関の制御装置
JP5077585B2 (ja) エンジン回転停止制御装置
JP2009144671A (ja) エンジン回転停止制御装置
JP5146839B2 (ja) エンジン回転停止制御装置
JP5255003B2 (ja) エンジン回転停止制御装置
JP5374471B2 (ja) エンジン回転停止制御装置
JP2008223733A (ja) 内燃機関の始動時制御装置
JP2010065640A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111012

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5077585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees