JP5052712B2 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP5052712B2
JP5052712B2 JP2000403456A JP2000403456A JP5052712B2 JP 5052712 B2 JP5052712 B2 JP 5052712B2 JP 2000403456 A JP2000403456 A JP 2000403456A JP 2000403456 A JP2000403456 A JP 2000403456A JP 5052712 B2 JP5052712 B2 JP 5052712B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
mixture layer
total thickness
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000403456A
Other languages
English (en)
Other versions
JP2002203606A (ja
Inventor
健彦 田中
佳克 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000403456A priority Critical patent/JP5052712B2/ja
Publication of JP2002203606A publication Critical patent/JP2002203606A/ja
Application granted granted Critical
Publication of JP5052712B2 publication Critical patent/JP5052712B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム・ニッケル複合酸化物とリチウム・マンガン複合酸化物との混合材料を正極活物質として使用する非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、種々の電子機器の飛躍的進歩とともに、長時間便利に、かつ経済的に使用できる電源として、繰り返して充放電が可能な二次電池の研究が進められている。代表的な二次電池としては、鉛蓄電池やアルカリ蓄電池、非水電解質二次電池等が知られている。
【0003】
上述したような二次電池の中でも特に、非水電解質二次電池であるリチウムイオン二次電池は、高出力、高エネルギー密度等の利点を有している。
【0004】
リチウムイオン二次電池は、少なくともリチウムイオンを可逆的に脱挿入可能な活物質を有する正極及び負極と、非水電解質とから構成されており、その充電反応は、正極においてリチウムイオンが電解液中にデインターカレーションし、負極では負極活物質中にリチウムイオンがインターカレーションすることによって進行する。逆に、放電する場合には、上記の逆反応が進行し、正極においては、リチウムイオンがインターカレーションする。すなわち、正極からのリチウムイオンが負極活物質に出入りする反応を繰り返すことによって充放電を繰り返すことができる。
【0005】
現在、リチウムイオン二次電池の正極活物質としては、高エネルギー密度、高電圧を有すること等から、LiCoO、LiNiO、LiMn等が用いられ、負極活物質としては、炭素質材料が用いられている。
【0006】
【発明が解決しようとする課題】
上述した正極活物質のうちLiCoO等のリチウム・コバルト複合酸化物は、電池容量、製造コスト及び熱的安定性等の各面でのバランスに最も優れているが、LiMn等のリチウム・マンガン複合酸化物は電池容量が低く高温保存特性が若干悪い等の欠点があり、またLiNiO等のリチウム・ニッケル複合酸化物は、電池容量は高いものの熱的安定性が若干低い等の欠点がある。しかしながら、これらリチウム・マンガン複合酸化物及びリチウム・ニッケル複合酸化物は、原料の価格及び安定供給の面で優れており、今後の活用に向けて研究が進められている。
【0007】
そこで、本発明は、上述した問題点に鑑みてなされたものであり、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを活用する新規な正極活物質とともに、この正極活物質を使用する際の新規な電池素子構造を提案し、低温負荷特性やサイクル特性等種々の電池特性に優れた非水電解質二次電池を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上述した目的を達成する本発明に係る非水電解質二次電池は、正極活物質として一般式LixMn2-yM'y4(但し、xの値は0.9≦x、yの値は0.01≦y≦0.5の範囲とし、M'はFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si、Geの内一つ又は複数とする。)で表されるリチウム・マンガン複合酸化物と、一般式LiNi1-zM''z2(但し、zの値は0.01≦z≦0.5の範囲とし、M''はFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si、Geの内一つ又は複数とする。)で表されるリチウム・ニッケル複合酸化物とを、質量比がリチウム・マンガン複合酸化物10wt%乃至80wt%に対してリチウム・ニッケル複合酸化物90wt%乃至20wt%となるように混合した混合材料と、導電剤と、結着剤とを含む正極合剤が正極集電体の両面に塗布形成された正極合剤層を備える正極と、負極活物質としてMg 2 Siと炭素材料とを、Mg 2 Siと炭素材料との混合比が重量比で45:45〜55:35の範囲で混合してなる材料と、結着材とを含む負極合剤が負極集電体の両面に塗布形成された負極合剤層を備える負極と、セパレータと、非水電解液とを備えるとともに、正極及び負極がセパレータを介して積層され、かつ正極と負極のうち負極が最外周に位置するように巻回され、正極集電体の両面に形成された正極合剤層の厚みの合計である総厚A及び負極集電体の両面に形成された負極合剤層の厚みの合計である総厚Bがそれぞれ80μm乃至250μmの範囲であり、総厚Aと総厚Bとの比率A/Bが0.4≦A/B≦2.5の範囲で、かつ正極合剤層の総厚Aと負極合剤層の総厚Bとの和A+Bが230μm≦A+B≦450μmの範囲で正極合剤層と負極合剤層とが形成されることを特徴とする。
【0010】
上述した構成を有する本発明に係る非水電解質二次電池によれば、該正極合剤層に含有される正極活物質としてリチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との混合材料を使用する非水電解質電池において、正極合剤層と負極合剤層とを所定範囲の厚さに形成し、正極合剤層の負極合剤層に対する厚さの比率、及び正極合剤層と負極合剤層との厚さの総和を一定範囲、具体的には正極合剤層の負極合剤層に対する厚さの比率を0.4乃至2.5の範囲に、正極合剤層と負極合剤層との厚さの総和を230μm乃至450μmの範囲に規制することで、初期容量、低温負荷特性及び高温重負荷でのサイクル特性の向上が実現される。
【0012】
【発明の実施の形態】
以下、本発明に係る非水電解質二次電池の実施の形態について図面を参照して説明する。
【0013】
非水電解質二次電池1は、図1に示すように、帯状を呈する正極材2と負極材3とがセパレータ4を介して積層されかつ渦巻き状に複数回巻回された電池素子5を、非水電解液とともに筒形の電池缶6内に封入してなる、いわゆる円筒型電池といわれるものである。
【0014】
正極材2は、アルミニウム箔等の金属箔からなる正極集電体7の両面に、リチウムを電気的に放出することが可能であり、かつ吸蔵することも可逆的に可能である正極活物質を含有する正極合剤層8が形成されている。また、正極材2には、その長手方向の一端近傍に正極リード9が取り付けられている。
【0015】
正極合剤層8に含有される正極活物質としては、一般式LiMn2−yM'(但し、xの値は0.9≦x、yの値は0.01≦y≦0.5の範囲とし、M'はFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si、Geのうち一つ又は複数)で表されるリチウム・マンガン複合酸化物と、一般式LiNi1−zM''(但し、zの値は0.01≦z≦0.5の範囲とし、M''はFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si、Geのうち一つ又は複数)で表されるリチウム・ニッケル複合酸化物との混合材料が使用される。リチウム・マンガン複合酸化物は、例えばスピネル構造を有しており、M'はマンガン原子のサイトの一部にマンガン原子と置換されて存在している。また、リチウム・ニッケル複合酸化物は、例えば層状構造を有しており、M''はニッケル原子のサイトの一部に置換されて存在している。これらリチウム・マンガン複合酸化物及びリチウム・ニッケル複合酸化物は、マンガン又はニッケルの一部を上述したように他の元素で置換することにより結晶構造が安定する考えられ、これにより電池の高温保存特性を向上させることができる。
【0016】
なお、リチウム・マンガン複合酸化物におけるマンガンと元素M'との組成比、及びリチウム・ニッケル複合酸化物におけるニッケルと元素M''との組成比、すなわちx、y及びzの値を上述した範囲内としたのは、これよりも置換量が少ないと充分な効果を得ることができず、またこれよりも置換量が多いと高温保存後の高負荷放電容量が低下してしまうからである。また、マンガン原子やニッケル原子と置換される元素を上述したものとしたのは、これらの元素がマンガン又はニッケルの一部に置換されたリチウム・マンガン複合酸化物やリチウム・ニッケル複合酸化物物質は比較的容易に得ることができ、また化学的にも安定だからである。
【0017】
上述したように正極活物質には、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との混合材料を使用するが、これらは質量比でリチウム・マンガン複合酸化物10wt%乃至80wt%に対してリチウム・ニッケル複合酸化物90wt%乃至20wt%で混合される。リチウム・マンガン複合酸化物は、充電時に収縮するという特徴を持ち、充放電時に生じる体積変化を緩和することができる。なお、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを上述した範囲内で混合することとしたのは、リチウム・マンガン複合酸化物が20wt%より少ないと電極の膨張を緩和させる効果が少なくなってしまうからであり、80wt%を越えると電池容量が低くなってしまうからである。
【0018】
これらリチウム・マンガン複合酸化物及びリチウム・ニッケル複合酸化物は、例えばリチウム化合物、マンガン化合物又はニッケル化合物、及び元素M'を含む化合物又は元素M''を含む化合物をそれぞれ用意し、それらを所望の比で混合したのち、酸素存在雰囲気中において600℃乃至1000℃の温度で加熱焼成することにより得ることができる。その際、原料の化合物としては、炭素塩、水酸化物、酸化物、硝酸塩、或いは有機酸塩などがそれぞれ用いられる。
【0019】
また、正極合剤層8には、上述した正極活物質のほか、必要に応じて更に、黒鉛等の導電材やポリビニリデンフルオロライド等の結着剤が含有される。
【0020】
負極材3は、銅箔やニッケル箔、ステンレス箔等の金属箔からなる負極集電体10の両面に負極活物質を含有する負極合剤層11が形成されている。負極材3には、その長手方向の一端近傍に負極リード12が取り付けられている。
【0021】
負極合剤層11に含有される負極活物質としては、リチウム金属、リチウム合金、又はリチウム金属電位を基準として例えば2V以下の電位でリチウムを吸蔵及び脱離することが可能な材料のいずれか1種類、又はこれら2種類以上混合された混合材料が使用される。
【0022】
リチウムを吸蔵及び脱離可能な材料としては、リチウム金属、リチウム合金化合物が挙げられる。ここでいうリチウム合金化合物とは、例えば化学式DLiで表されるものである。この化学式において、Dはリチウムと合金或いは化合物を形成可能な金属元素及び半導体元素のうち少なくとも1種を表し、Eはリチウム及びD以外の金属元素及び半導体元素のうち少なくとも1種を表す。また、s、t及びuの値は、それぞれ0<s、0≦t、0≦uである。ここで、リチウムと合金或いは化合物を形成可能な金属元素或いは半導体元素としては、4B族の金属元素或いは半導体元素が好ましく、特に好ましくはSiまたはSnであり、最も好ましくはSiである。リチウムと合金或いは化合物を形成可能な金属元素或いは半導体元素としては、Mg、B、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Bi、Cd、Ag、Zn、Hf、Zr、Yの各金属とそれらの合金化合物、例えばLi−Al、Li−Al−M(Mは2A、3B、4B遷移金属元素のうち1つ以上からなる。)、AlSb、CuMgSb等を挙げることができる。さらに、本発明では、半導体元素であるB、Si、As等の元素を金属元素に含めることとする。
【0023】
また、これらの合金或いは化合物も好ましく、例えばMSi(MはSiを除く1つ以上の金属元素であり、xは0<xである。)やMSn(MはSnを除く1つ以上の金属元素であり、xは0<xである。)が挙げられる。具体的にはSiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi或いはZnSi等が挙げられる。
【0024】
さらに、リチウムを吸蔵及び脱離可能な材料としては、上記に示した、リチウムと合金化又は化合物化し得る元素、又は化合物も用いることができる。すなわち、本材料中には、1種類以上の4B族元素が含まれていても良く、リチウムを含む4B族以外の金属元素が含まれていても良い。このような材料としては、SiC、Si、SiO、GeO、SiO(0<x≦2)、SnO(0<x≦2)、LiSiO、LiSnO等を例示することができる。
【0025】
また、上述した以外にリチウムを吸蔵・脱離可能な材料としては、炭素材料、金属酸化物、或いは高分子材料等も挙げられる。炭素材料としては、難黒鉛化性炭素、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭、或いはカーボンブラック類等が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークス、或いは石油コークス等があり、有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものをいう。また、金属酸化物としては、酸化鉄、酸化ルテニウム、酸化モリブデン、或いは酸化スズ等が挙げられ、高分子材料としては、ポリアセチレン或いはポリピロール等が挙げられる。
【0026】
なお、負極合剤層11には、上述した負極活物質のほか、必要に応じて更にポリビニリデンフルオロライド等の結着剤が含有される。
【0027】
上述した正極材2と負極材3とは、セパレータ4を介して積層、巻回して作製される、いわゆるジェリーロールタイプの電池素子5を構成する。このジェリーロールタイプの電池素子を工程上不具合無く安定的に作製するためには、正極合剤層8及び負極合剤層11のそれぞれの総厚、具体的には集電体の両面に形成された合剤層の膜厚和が80μm乃至250μmの範囲とされることが好適である。すなわち、合剤層の総厚が80μm未満であると、片面塗布部分の厚さとして40μm未満となるが、現在一般的に使用されている電極材料が、粒度分布上、40μm程度の最大粒子径を有することから、大粒子が存在する部分において塗布のかすれ等の問題が発生するからである。また、合剤層の総厚が250μmを超えると活物質が集電体から剥離したり、クラックが生じたりする不具合が発生するからである。
【0028】
そして、正極材2及び負極材3は、上述した正極合剤層8と負極合剤層11の総厚の範囲において、正極合剤層8の総厚Aの負極合剤層11の総厚Bに対する比率A/Bが0.320乃至3.125となるが、この範囲の中でも比率A/Bが0.4乃至2.5で、かつ正極合剤層8の総厚Aと負極合剤層11の総厚Bの総和(A+B)が230μm乃至450μmとすることで、非水電解質二次電池1の低温負荷特性、高温重負荷のサイクル特性、及び初期容量が向上する。これは、正極合剤層8の総厚Aと負極合剤層11の総厚Bの総和(A+B)が450μmを超えると合剤層の増加によるイオン拡散性の低下に伴って低温負荷特性が低下するからであり、230μm未満だと相対的な活物質充填量が少なくなるため、現在実用化されている電池と同等かそれ以下に容量が低下してしてしまうからである。また、正極合剤層8の総厚Aの負極合剤層11の総厚Bに対する比率A/Bが0.4未満や、2.5を超える場合には、正極合剤層8と負極合剤層11との厚さの差が大きくなり、巻回したときにそれぞれの曲率の差が大きくなって、比率A/Bが0.4未満の場合には負極材3に、比率A/Bが2.5を超える場合には正極材2に大きな負荷が加わる。このため、高温重負荷の充放電サイクルを繰り返すことによって、集電体から合剤層が剥離してしまい、高温重負荷のサイクル特性が低下するからである。
【0029】
したがって、上述した理由により、正極合剤層8の総厚Aの負極合剤層11の総厚Bに対する比率A/Bが0.4乃至2.5となり、かつ正極合剤層8の総厚Aと負極合剤層11の総厚Bの総和(A+B)が230μm乃至450μmとなるように、これら正極合剤層8及び負極合剤層11がそれぞれ厚さ80μm乃至250μmの範囲で形成される。
【0030】
セパレータ4は、正極材2の正極活物質層8と、負極材3の負極活物質層11とを離間させるものであり、この種の非水電解液電池のセパレータとして通常用いられている公知の材料を用いることができ、例えばポリプロピレン、或いはポリエチレン等のポリオレフィン系の材料よりなる多孔質膜、又はセラミック製の不織布等の無機材料よりなる多孔質膜が用いられる。また、セパレータ4は、リチウムイオン伝導度とエネルギー密度との関係から、その厚みができるだけ薄いことが必要である。具体的には、セパレータの厚みは例えば50μm以下が適当である。
【0031】
このセパレータ4には、後述するように電池缶6内に注入される非水電解液が含浸される。
【0032】
非水電解液としては、非プロトン性非水溶媒に電解質を溶解させた溶液が用いられる。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ−ブチルラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、2−メチルテトラヒドロフラン、4−メチル−1,3−ジオキソラン、プロピオン酸メチル、酪酸メチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等を使用することができる。特に、電圧安定性の点からは、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類を使用することが好ましい。また、このような非水溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
【0033】
また、非水溶媒に溶解させる電解質としては、例えば、LiPF、LiClO、LiAsF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を1種類、又は2種類以上を混合して使用することができる。これらのリチウム塩の中でも特に、LiPF、LiBFを使用することが好ましい。
【0034】
電池素子5は、図1に示すように、上述した正極材2と負極材3とをセパレータ4を間に介在させて積層し、例えばセンターピン13を中心として巻回されている。
【0035】
このとき、非水電解質二次電池1では、電池素子5において正極材2と負極材3とが対向する部分、具体的には電池缶6と対向する電池素子5の最外周に位置する負極材3の片面部分、及び電池素子5の最内周に臨み負極材3同士が対向している部分を除いた正極材2の負極材3に対する容量比(正極/負極)が0.8乃至1.03となるように電池素子5が作製される。非水電解質二次電池1は、正極材2の負極材3に対する容量比を上述した範囲とすることで、サイクル特性及び保存特性が向上する。なお、非水電解質二次電池1においては、正極材2と負極材3との容量が同じ、すなわち容量比が1.0となるように電池素子5が作製されることが最も好ましいが、上述した範囲の容量比としても、容量比が1.0の時と同等のサイクル特性及び保存特性を得ることができる。
【0036】
電池缶6は、一端が開放されかつ他端が閉鎖された有底筒状を呈し、内面にニッケルメッキが施されている。電池缶6の開放端部には、蓋体14と、この蓋体の内側に設けられた安全弁機構15、及び熱感抵抗素子(Positive Temperature Coefficient:PTC素子)16とが、ガスケット17を介してかしめ付けられており、電池缶6内部が密閉されている。蓋体14は、電池缶6と同様の材料により構成されている。安全弁機構15は、PTC素子16を介して蓋体14と電気的に接続されており、内部短絡或いは外部からの加熱等により電池の内圧が一定以上となった場合にディスク板が反転して蓋体14と電池素子5との電気的接続を切断するようになっている。PTC素子16は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものであり、例えばチタン酸バリウム系半導体セラミックスにより構成されている。ガスケット17は、例えば絶縁材料により構成されており、表面にはアスファルトが塗布されている。また、この電池缶6の内部には、一対の絶縁板18a,18bが、該電池素子5を挟むように配設されている。
【0037】
上述した非水電解質二次電池1は、以下のようにして作製される。
【0038】
まず、正極活物質となるリチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との混合材料、及び必要に応じて導電材、結着剤を添加して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドン等の溶剤に分散させてペースト状の正極合剤スラリーとする。そして、この正極合剤スラリーを正極集電体7の両面に塗布して乾燥させた後、ローラプレス機等により正極合剤層8を圧縮成型して、正極材2を作製する。
【0039】
次に、負極活物質、及び必要に応じて結着剤を添加して負極合剤を調製し、この負極合剤をN−メチル−2−ピロリドン等の溶剤に分散させてペースト状の負極合剤スラリーとする。そして、この負極合剤スラリーを負極集電体10の両面に塗布して乾燥させた後、ローラプレス機等により負極合剤層11を圧縮成型して負極材3を作製する。
【0040】
このとき、正極材2の正極合剤層8と負極材3の負極合剤層11とは、正極合剤層8の総厚Aの負極合剤層11の総厚Bに対する比率A/Bが0.4乃至2.5となり、かつ正極合剤層8の総厚Aと負極合剤層11の総厚Bの総和(A+B)が230μm乃至450μmとなるように、それぞれ厚さ80μm乃至250μmの範囲で形成される。
【0041】
続いて、正極材2に正極リード9を、負極材3に負極リード12を溶接等の方法により取り付け、間にセパレータ4を介在させて積層、巻回して電池素子5を作製する。
【0042】
このとき、セパレータ4を挟んで相対向している正極材2の負極材3に対する容量比は、0.8乃至1.03の範囲内となるように電池素子5が作製される。
【0043】
そして、正極リード9の先端部分を安全弁機構15に溶接するとともに、負極リード12の先端部分を電池缶6に溶接し、電池素子5を一対の絶縁板18a,18bで挟み電池缶6の内部に収納する。この様に電池素子5を電池缶6内部に収納した後、非水電解液を電池缶6内部に注入してセパレータ4に含浸させる。
その後、電池缶6の開放端部を、蓋体14、安全弁機構15及びPTC素子16をガスケット17を介してかしめ付けて固定し閉鎖することにより、非水電解質二次電池1が作製される。
【0044】
上述した非水電解質二次電池1は、以下のように作用する。
【0045】
この非水電解質二次電池1では、充電には、正極材2からリチウムイオンが脱離し、セパレータ4に含浸させた電解液を介して負極材3に吸蔵される。また、放電時には、負極材3からリチウムイオンが脱離し、セパレータ4に含浸された電解液を介して正極材2に吸蔵される。この様な正極材2からのリチウムイオンが負極合剤層11中の負極活物質に出入りする反応を繰り返すことによって充放電が繰り返される。
【0046】
なお、非水電解質二次電池1においては、上述した合剤層の厚さの比率と総和、又は対向する電極材の容量比の条件のいずれかを満たしていれば良い。このとき、正極合剤層8と負極合剤層11の厚さの比率及び正極合剤層8と負極合剤層11との厚さの総和を上述した範囲内とすることで、電池の初期容量、低温負荷特性、及び高温重負荷でのサイクル特性が向上し、正極材2の容量の負極材3の容量に対する比率を上述した範囲内とすることで、サイクル特性及び保存特性が向上する。
【0047】
また、上述した実施の形態では、非水電解液を用いた非水電解質二次電池1を例に挙げて説明したが、本発明はこれに限定されるものではなく、導電性高分子化合物の単体あるいは混合物を含有する高分子固体電解質を用いた固体電解質電池や、膨潤溶媒を含有するゲル状の固体電解質を用いたゲル状電解質電池についても適用可能である。
【0048】
上記の高分子固体電解質やゲル状電解質に含有される導電性高分子化合物として具体的には、シリコン、アクリル、アクリロニトリル、ポリフォスファゼン変性ポリマ、ポリエチレンオキサイド、ポリプロピレンオキサイド、フッ素系ポリマ又はこれらの化合物の複合ポリマや架橋ポリマ、変性ポリマ等が挙げられる。上記フッ素系ポリマとしては、ポリ(ビニリデンフルオライド)、ポリ(ビニリデンフルオライド−co−ヘキサフルオロプロピレン)、ポリ(ビニリデンフルオライド−co−テトラフルオロエチレン)、ポリ(ビニリデンフルオライド−co−トリフルオリエチレン)等が挙げられる。
【0049】
さらに、本発明は、上述した円筒型電池の他、角型、コイン型、ボタン型等、その形状については特に限定されることはなく、また、薄型、大型等の種々の大きさにすることができる。さらに、上述した実施の形態では、外装材として鉄製の電池缶6を用いたが、これに限らずアルミラミネート材等のフレキシブルなフィルム状の外装材を用いてもよい。
【0050】
【実施例】
以下、本発明につき、具体的な実験結果に基づいて説明する。
【0051】
まず、実験を行うにあたり実施例及び比較例の試験用電池を以下のようにして作製した。
【0052】
実施例1
まず、正極材を以下のようにして作製した。
【0053】
最初に、正極活物質を91重量部、導電材としてグラファイトを6重量部、そして結着剤としてポリビニリデンフルオロライド(PVdF)を3重量部混合して正極合剤を調製した。このとき、正極活物質には、水酸化リチウム(LiOH)と一酸化ニッケル(NiO)、及び一酸化コバルト(CoO)を混合し空気中において750℃で5時間焼成して得たLiNi0.8Co0.2(以下、正極1と称する。)を50wt%、炭酸リチウム(LiCO)と二酸化マンガン(MnO)、及び三酸化二クロム(Cr)を混合し空気中において850℃で5時間焼成して得たLiMn1.9Cr0.1(以下、正極2と称する。)を50wt%の割合で混合した混合材料を使用した。
【0054】
そして、正極合剤を、N−メチル−2−ピロリドンに分散させてペースト状の正極合剤スラリーとし、この正極合剤スラリーを正極集電体となる帯状のアルミニウム箔の両面に均一に塗布し、乾燥させて正極合剤層を形成した。その後、ロールプレス機によってプレス処理を施して正極材を作製した。このとき、正極集電体の両面に形成された正極合剤層の総厚Aが80μmとなるように、正極合剤スラリーの塗布、プレス処理を行った。
【0055】
次に、負極材を以下のようにして作製した。
【0056】
最初に、負極活物質を90重量部、結着剤であるPVdFを10重量部混合して負極合剤を調製した。このとき、負極活物質には、MgSi粉末と人造黒鉛をそれぞれ45重量部混合した混合材料を使用した。
【0057】
そして、負極合剤を、N−メチル−2−ピロリドンに分散させてスラリー状にし、このスラリーを負極集電体となるの帯状の銅箔の両面に均一に塗布、乾燥して負極合剤層を形成した。その後、ロールプレス機によってプレス処理を施して負極材を作製した。このとき、負極集電体の両面に形成された負極合剤層の総厚Bが150μmとなるように、負極合剤スラリーの塗布、プレス処理を行った。
【0058】
以上のようにして得られる正極材と、負極材とを、微孔性ポリプロピレンフィルムからなるセパレータを介して密着させ、渦巻型に多数回巻回することにより電池素子を作製した。
【0059】
次に、内側にニッケルメッキを施した鉄製の電池缶の底部に絶縁板を挿入し、さらに電池素子を収納した。そして負極の集電をとるために、ニッケル製の負極リードの一端を負極に圧着させ、他端を電池缶に溶接した。また、正極の集電をとるために、アルミニウム製の正極リードの一端を正極に取り付け、他端を電流遮断用薄板を介して蓋体と電気的に接続した。
【0060】
そして、この電池缶の中に非水電解液を注入し、上述したセパレータに含浸させた。この非水電解液は、炭酸エチレンを50容量%と、炭酸ジエチルを50容量%との混合溶媒中に、電解質としてLiPFを1.0mol/lの濃度で溶解させて調製した。
【0061】
最後に、アスファルトを塗布したガスケットを介して電池缶をかしめることにより蓋体を固定して円筒型の試験用電池を作製した。
【0062】
実施例2
正極合剤層の総厚Aが80μm、負極合剤層の総厚Bが200μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0063】
実施例3
正極合剤層の総厚Aが150μm、負極合剤層の総厚Bが80μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0064】
実施例4
正極合剤層の総厚Aが150μm、負極合剤層の総厚Bが150μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0065】
実施例5
正極合剤層の総厚Aが150μm、負極合剤層の総厚Bが250μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0066】
実施例6
正極合剤層の総厚Aが250μm、負極合剤層の総厚Bが100μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0067】
実施例7
正極合剤層の総厚Aが250μm、負極合剤層の総厚Bが150μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0068】
実施例8
正極合剤層の総厚Aが250μm、負極合剤層の総厚Bが200μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0069】
比較例1
正極合剤層の総厚Aが80μm、負極合剤層の総厚Bが80μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0070】
比較例2
正極合剤層の総厚Aが80μm、負極合剤層の総厚Bが250μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0071】
比較例3
正極合剤層の総厚Aが250μm、負極合剤層の総厚Bが80μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0072】
比較例4
正極合剤層の総厚Aが250μm、負極合剤層の総厚Bが250μmとなるように正極合剤層及び負極合剤層を塗布、形成して正極材と負極材とを作製した以外は実施例1と同様にして円筒型の試験用電池を作製した。
【0073】
以上のようにして作製した実施例1乃至実施例8及び比較例1乃至比較例4の各試験用電池の初期容量を測定し、低温負荷特性及び高温重負荷でのサイクル特性を評価した。なお、初期容量は、上限電圧4.2Vの定電圧定電流(0.2C)で充電した後、放電終止電圧3.0Vまでの定電流放電を行い測定した。また、低温負荷特性の評価は、各試験用電池について−20℃の温度条件の下、上限電圧4.2Vの定電圧定電流(0.2C)で充電した後、放電終止電圧3.0Vまでの定電流放電を行った。その後、同じ試験用電池について今度は電流2Cの条件で定電流充電を行い、放電終止電圧3.0Vまでの定電流放電を行った。そして、電流0.2Cの条件で充放電を行ったときの容量に対する電流2Cの条件で充放電を行った時の容量の割合を算出して低温保存特性を評価した。さらに、高温重負荷でのサイクル特性は、各試験用電池について50℃の温度条件の下、上限電圧4.2Vの定電圧定電流(1C)で充電した後、放電終止電圧3.0Vまでの定電流放電を行った。この充放電サイクルを100サイクル行い、2サイクル目の電池容量に対する100サイクル目の電池容量の割合(容量維持率)を求めて評価した。この結果を表1、図2、図3及び図4に示す。
【0074】
【表1】
Figure 0005052712
【0075】
表1、図2、図3及び図4に示すように、正極合剤層の総厚Aと負極合剤層の総厚Bとの和(A+B)が230μm乃至450μmの範囲内で、かつ正極合剤層の総厚Aの負極合剤層の総厚Bに対する比率A/Bが0.4乃至2.5の範囲内で正極合剤層と負極合剤層とが形成された実施例1乃至実施例8の電池は、低温負荷特性、高温重負荷でのサイクル特性及び初期容量の全てにおいて良好な結果が得られている。
【0076】
これに対して、正極合剤層の総厚Aと負極合剤層の総厚Bとの和(A+B)が160μmである比較例1の電池は、表1及び図2に示すように、各実施例の電池に比して初期容量が著しく低くなっている。これは、正極合剤層と負極合剤層との厚さがともに薄過ぎることにより、相対的な活物質の充填量が少なくなっているためと考えられる。
【0077】
また、正極合剤層の総厚Aと負極合剤層の総厚Bとの和(A+B)が500μmである比較例4の電池は、表1及び図3に示すように、各実施例に電池に比して低温負荷特性が著しく低下している。これは、正極合剤層と負極合剤層との厚さが厚すぎることによって、イオン拡散性が低下したためと考えられる。
【0078】
さらに、正極合剤層の総厚Aの負極合剤層の総厚Bに対する比率A/Bがそれぞれ0.32、3.13とされた比較例2と比較例3の電池は、表1及び図4に示すように、各実施例の電池に比して高温重負荷でのサイクル特性が著しく低下している。これは、正極合剤層と負極合剤層との厚さの差が大きくなり過ぎ、電池素子を作製する際に巻回したときに正極材と負極材との曲率の差が大きくなって、比率A/Bが0.32と0.4未満である比較例2では負極材に、比率A/Bが3.13と2.5を超える比較例3では正極材に大きな負荷が加わり、高温重負荷の充放電サイクルを繰り返すことによって、集電体から合剤層が剥離してしまったためと考えられる。
【0079】
この結果から、従来工程上の不具合から規定される80μm乃至250μmの範囲で正極合剤層と負極合剤層とを形成する際に、正極合剤層の総厚Aと負極合剤層の総厚Bとの和(A+B)が230μm乃至450μmの範囲内で、かつ正極合剤層の総厚Aの負極合剤層の総厚Bに対する比率A/Bが0.4乃至2.5の範囲内で正極合剤層と負極合剤層とが形成することで、低温負荷特性、高温重負荷でのサイクル特性及び初期容量が向上することがわかる。
【0080】
次に、以下のようにして実施例9乃至実施例16、及び比較例5乃至比較例8の試験用電池を以下のようにして作製した。
【0081】
実施例9
まず、正極材を以下のようにして作製した。
【0082】
最初に、正極活物質を91重量部、導電材としてグラファイトを6重量部、そして結着剤としてポリビニリデンフルオロライド(PVdF)を3重量部混合して正極合剤を調製した。このとき、正極活物質には、水酸化リチウム(LiOH)と一酸化ニッケル(NiO)、及び一酸化コバルト(CoO)を混合し空気中において750℃で5時間焼成して得たLiNi0.8Co0.2(以下、正極1と称する。)を70wt%、炭酸リチウム(LiCO)と二酸化マンガン(MnO)、及び三酸化二クロム(Cr)を混合し空気中において850℃で5時間焼成して得たLiMn1.9Cr0.1(以下、正極2と称する。)を30wt%の割合で混合した混合材料を使用した。
【0083】
そして、正極合剤を、N−メチル−2−ピロリドンに分散させてペースト状の正極合剤スラリーとし、この正極合剤スラリーを正極集電体となるアルミニウム箔の両面に均一に塗布し、乾燥させて正極合剤層を形成した。その後、ロールプレス機によってプレス処理を施して正極材を作製した。
【0084】
次に、負極材を以下のようにして作製した。
【0085】
最初に、負極活物質として人造黒鉛を90重量部、結着剤としてPVdFを10重量部混合して負極合剤を調製した。そして、負極合剤を、N−メチル−2−ピロリドンに分散させてスラリー状にし、このスラリーを負極集電体となる銅箔の両面に均一に塗布、乾燥して負極合剤層を形成した。その後、ロールプレス機によってプレス処理を施して負極材を作製した。
【0086】
以上のようにして得られる正極材と、負極材とを、微孔性ポリプロピレンフィルムからなるセパレータを介して積層して電池素子を作製した。
【0087】
次に、内側にニッケルメッキを施した鉄製の浅皿状を呈する正極缶内部に電池素子を収納するとともに、この正極缶の中に非水電解液を注入して上述したセパレータに含浸させた。この非水電解液は、炭酸エチレンを50容量%と、炭酸ジエチルを50容量%との混合溶媒中に、電解質としてLiPFを1.0mol/lの濃度で溶解させて調製した。最後に、正極缶をかしめてアスファルトを塗布したガスケットを介して負極カップ固定することにより、正極缶を封口してコイン型の試験用電池を作製した。
【0088】
そして、正極材と負極材の充電容量を測定したところ、ともに11.2mAhであった。なお、正極材の容量の測定は上限電圧4.2Vの定電圧定電流(0.2C)で充電して測定し、負極材の充電容量は上限電圧5mVの定電圧定電流(0.05C)で充電して測定した。
【0089】
実施例10
正極活物質として使用する混合材料の質量比を、正極1を90wt%、正極2を10wt%とした以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、ともに11.7mAhであった。
【0090】
実施例11
正極活物質として使用する混合材料の質量比を、正極1を20wt%、正極2を80wt%とした以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、ともに11.6mAhであった。
【0091】
実施例12
正極活物質として使用する混合材料の質量比を、正極1を70wt%、正極2を30wt%とした以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、正極材は11.5mAh、負極材は14.3mAhであった。
【0092】
実施例13
正極活物質として使用する混合材料の質量比を、正極1を70wt%、正極2を30wt%とした以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、正極材は11.6mAh、負極材は11.2mAhであった。
【0093】
実施例14
正極活物質として使用する混合材料の質量比を、正極1を70wt%、正極2を30wt%とし、負極活物質にMgSi粉末を55重量部と人造黒鉛を35重量部混合した混合材料を使用した以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、ともに14.0mAhであった。
【0094】
実施例15
正極活物質として使用する混合材料の質量比を、正極1を70wt%、正極2を30wt%とし、負極活物質にMgSi粉末を55重量部と人造黒鉛を35重量部混合した混合材料を使用した以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、正極材は14.0mAh、負極材は13.6mAhであった。
【0095】
比較例5
正極活物質として正極1のみを使用した以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、ともに11.5mAhであった。
【0096】
比較例6
正極活物質として正極2のみを使用した以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、ともに11.7mAhであった。
【0097】
比較例7
正極活物質として使用する混合材料の質量比を、正極1を70wt%、正極2を30wt%とした以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、正極材は11.6mAh、負極材は15.3mAhであった。
【0098】
比較例8
正極活物質として使用する混合材料の質量比を、正極1を70wt%、正極2を30wt%とした以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、正極材は11.5mAh、負極材は11.0mAhであった。
【0099】
比較例9
正極活物質として使用する混合材料の質量比を、正極1を70wt%、正極2を30wt%とし、負極活物質にMgSi粉末を55重量部と人造黒鉛を35重量部混合した混合材料を使用した以外は実施例1と同様にして試験用電池を作製した。そして、正極材と負極材の充電容量を測定したところ、正極材は14.0mAh、負極材は13.4mAhであった。
【0100】
以上のようにして作製した実施例9乃至実施例15、及び比較例5乃至比較例9の各試験用電池のサイクル特性及び保存特性の評価を行った。この結果を表2に示す。
【0101】
なお、サイクル特性の評価は、各試験用電池について上限電圧4.2Vの定電圧定電流(0.2C)で充電した後、放電終止電圧3.0Vまでの定電流放電を行った。そして、この充放電サイクルを100サイクル行い、2サイクル目の電池容量に対する100サイクル目の電池容量の割合(容量維持率)を求めて評価した。また、保存特性の評価は、各試験用電池について23℃恒温槽中で上限電圧4.2V、電流0.2Cの条件で定電流定電圧充電を行った後、0.2Cの定電流放電を終止電圧3.2Vまで行い初期放電容量とした。その後再び同条件で充電し、60℃のオーブン中で2週間保存した。そして、保存後の各サイクル放電容量の最高値を保存後の容量とし、初期放電容量に対する割合(容量回復率)を求めて評価した。
【0102】
【表2】
Figure 0005052712
【0103】
表2に示すように、正極活物質である混合材料の質量比が正極1、すなわちリチウム・ニッケル複合酸化物を90wt%乃至20wt%、正極2、すなわちリチウム・マンガン複合酸化物を10wt%乃至80wt%となるように混合され、さらに正極材の負極材に対する容量比が0.8乃至1.03の範囲内とされた実施例9乃至実施例15の各試験用電池は、負極活物質に人造黒鉛又は人造黒鉛とMgSiの混合材料のいずれを使用した場合にも、サイクル特性及び保存特性の双方について良好な結果が得られている。
【0104】
これに対し、容量比が実施例9乃至実施例11と同じではあるが、正極1又は正極2のみを正極活物質として使用した比較例5及び比較例6の電池は、保存特性が低下している。
【0105】
また、正極1と正極2の質量比が実施例9、実施例12乃至実施例15と同じではあるが、容量比が0.76と低い比較例7の電池は保存特性が低下し、容量比が1.05と高い比較例8及び比較例9の電池は、サイクル特性が低下している。
【0106】
この結果から、正極活物質にリチウム・ニッケル複合酸化物を90wt%乃至20wt%、リチウム・マンガン複合酸化物を10wt%乃至80wt%で混合した混合材料を使用し、さらに正極材の負極材に対する容量比が0.8乃至1.03の範囲とすることで、サイクル特性及び保存特性が向上することがわかる。
【0107】
【発明の効果】
以上、詳細に説明したように本発明によれば、所定範囲の厚さに形成される正極合剤層と負極合剤層において、該正極合剤層に含有される正極活物質としてリチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との混合材料を使用し、正極合剤層の負極合剤層に対する厚さの比率、及び正極合剤層と負極合剤層との厚さの総和を一定範囲、具体的には正極合剤層の負極合剤層に対する厚さの比率を0.4乃至2.5の範囲に、正極合剤層と負極合剤層との厚さの総和を230μm乃至450μmの範囲に規制することで、初期容量、低温負荷特性及び高温重負荷でのサイクル特性を向上させることができる。
【0108】
また、本発明によれば、正極活物質にリチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との混合材料を使用し、相対向して配設される正極の負極に対する容量比を一定範囲に、具体的には、0.8乃至1.03の範囲とすることで、サイクル特性及び保存特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る非水電解質二次電池の断面図である。
【図2】正極合剤層と負極合剤層との厚さの総和と初期容量の関係を示す特性図である。
【図3】正極合剤層の負極合剤層に対する厚さの比率と低温条件での容量維持率との関係を示す特性図である。
【図4】正極合剤層の負極合剤層に対する厚さの比率と高温重負荷での容量維持率との関係を示す特性図である。
【符号の説明】
1 非水電解質二次電池,2 正極材,3 負極材,4 セパレータ,5 電池素子,6 電池缶,7 正極集電体,8 正極合剤層,10 負極集電体,11 負極合剤層

Claims (1)

  1. 正極活物質として一般式LixMn2-yM'y4(但し、xの値は0.9≦x、yの値は0.01≦y≦0.5の範囲とし、M'はFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si、Geの内一つ又は複数とする。)で表されるリチウム・マンガン複合酸化物と、一般式LiNi1-zM''z2(但し、zの値は0.01≦z≦0.5の範囲とし、M''はFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si、Geの内一つ又は複数とする。)で表されるリチウム・ニッケル複合酸化物とを、質量比が上記リチウム・マンガン複合酸化物10wt%乃至80wt%に対して上記リチウム・ニッケル複合酸化物90wt%乃至20wt%となるように混合した混合材料と、導電剤と、結着剤とを含む正極合剤が正極集電体の両面に塗布形成された正極合剤層を備える正極と、
    負極活物質としてMg 2 Siと炭素材料とを、該Mg 2 Siと該炭素材料との混合比が重量比で45:45〜55:35の範囲で混合してなる材料と、結着材とを含む負極合剤が負極集電体の両面に塗布形成された負極合剤層を備える負極と、
    セパレータと、
    非水電解液とを備えるとともに、
    上記正極及び上記負極が上記セパレータを介して積層され、かつ該正極と該負極のうち該負極が最外周に位置するように巻回され、
    上記正極集電体の両面に形成された上記正極合剤層の厚みの合計である総厚A及び上記負極集電体の両面に形成された上記負極合剤層の厚みの合計である総厚Bがそれぞれ80μm乃至250μmの範囲であり、総厚Aと総厚Bとの比率A/Bが0.4≦A/B≦2.5の範囲で、かつ上記正極合剤層の総厚Aと上記負極合剤層の総厚Bとの和A+Bが230μm≦A+B≦450μmの範囲で上記正極合剤層と上記負極合剤層とが形成される
    非水電解質二次電池。
JP2000403456A 2000-12-28 2000-12-28 非水電解質二次電池 Expired - Fee Related JP5052712B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000403456A JP5052712B2 (ja) 2000-12-28 2000-12-28 非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000403456A JP5052712B2 (ja) 2000-12-28 2000-12-28 非水電解質二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010235857A Division JP2011040410A (ja) 2010-10-20 2010-10-20 非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2002203606A JP2002203606A (ja) 2002-07-19
JP5052712B2 true JP5052712B2 (ja) 2012-10-17

Family

ID=18867576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000403456A Expired - Fee Related JP5052712B2 (ja) 2000-12-28 2000-12-28 非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP5052712B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4192477B2 (ja) * 2002-03-08 2008-12-10 日本電気株式会社 二次電池用正極活物質およびそれを用いた二次電池用正極および二次電池
KR100680650B1 (ko) 2002-11-29 2007-02-08 미츠이 마이닝 & 스멜팅 콤파니 리미티드 비수전해액 이차전지용 부극 및 그 제조방법 및 비수전해액이차전지
KR101095345B1 (ko) 2005-08-19 2011-12-16 주식회사 엘지화학 고에너지 밀도의 이차전지
JP2007103130A (ja) * 2005-10-03 2007-04-19 Geomatec Co Ltd 薄膜固体二次電池および薄膜固体二次電池の製造方法
JP5036174B2 (ja) * 2005-11-24 2012-09-26 Necエナジーデバイス株式会社 非水電解液二次電池
JP6109603B2 (ja) * 2013-02-28 2017-04-05 株式会社東芝 電池
JP2016184521A (ja) * 2015-03-26 2016-10-20 オートモーティブエナジーサプライ株式会社 非水電解質二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562712A (ja) * 1991-08-30 1993-03-12 Sanyo Electric Co Ltd 非水電解液二次電池
JPH0845498A (ja) * 1994-05-26 1996-02-16 Sony Corp 非水電解液二次電池
JPH0888024A (ja) * 1994-09-14 1996-04-02 Hitachi Maxell Ltd リチウム二次電池
JPH09266011A (ja) * 1996-03-28 1997-10-07 Toray Ind Inc 非水溶媒系二次電池
JPH09293536A (ja) * 1996-04-25 1997-11-11 Seiko Instr Kk 非水電解質二次電池
JP3643447B2 (ja) * 1996-08-12 2005-04-27 株式会社東芝 シート状極板の製造方法および非水電解質電池
JPH11288704A (ja) * 1998-03-31 1999-10-19 Sanyo Electric Co Ltd リチウム二次電池
JP4085473B2 (ja) * 1998-06-18 2008-05-14 宇部興産株式会社 非水二次電池の充電方法
JP3869605B2 (ja) * 1999-03-01 2007-01-17 三洋電機株式会社 非水電解質二次電池
JP2000251892A (ja) * 1999-03-02 2000-09-14 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質およびこれを用いたリチウム二次電池
JP2000299108A (ja) * 1999-04-14 2000-10-24 Sony Corp 非水電解質電池
JP3541723B2 (ja) * 1999-04-28 2004-07-14 新神戸電機株式会社 円筒形リチウムイオン電池
JP2001357837A (ja) * 2000-06-15 2001-12-26 Japan Storage Battery Co Ltd 非水電解質二次電池

Also Published As

Publication number Publication date
JP2002203606A (ja) 2002-07-19

Similar Documents

Publication Publication Date Title
JP3959929B2 (ja) 正極及び非水電解質電池
US8828606B2 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP4920475B2 (ja) 正極活物質、正極および非水電解質電池
US8586246B2 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JPH0935715A (ja) 正極活物質の製造方法及び非水電解液二次電池
JP2002042889A (ja) 非水電解質二次電池
JP3436600B2 (ja) 二次電池
JP2009117159A (ja) 正極及びリチウムイオン二次電池
JP5412843B2 (ja) 電池
JP4210892B2 (ja) 二次電池
JP2011171150A (ja) 正極活物質、正極および非水電解質二次電池
KR100742111B1 (ko) 양극 재료와 이차 배터리
JP2003203631A (ja) 正極活物質及びこれを用いた非水電解質二次電池
JP4591674B2 (ja) リチウムイオン二次電池
JP2003123767A (ja) 集電体,電極および電池
JP2002367602A (ja) 非水電解質二次電池
EP2157639B1 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP5052712B2 (ja) 非水電解質二次電池
JP2002203556A (ja) 非水電解質二次電池
JP2007172878A (ja) 電池およびその製造方法
JP2002203555A (ja) 非水電解質二次電池
JP4224987B2 (ja) 非水電解質電池
JP4222292B2 (ja) 二次電池
JPH08180878A (ja) リチウム二次電池
JP4221932B2 (ja) 非水電解質電池

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101228

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees