JP5047447B2 - 心血管性反射制御のための装置および方法 - Google Patents

心血管性反射制御のための装置および方法 Download PDF

Info

Publication number
JP5047447B2
JP5047447B2 JP2002530143A JP2002530143A JP5047447B2 JP 5047447 B2 JP5047447 B2 JP 5047447B2 JP 2002530143 A JP2002530143 A JP 2002530143A JP 2002530143 A JP2002530143 A JP 2002530143A JP 5047447 B2 JP5047447 B2 JP 5047447B2
Authority
JP
Japan
Prior art keywords
baroreceptor
electrode
activation device
control system
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002530143A
Other languages
English (en)
Other versions
JP2004526471A5 (ja
JP2004526471A (ja
Inventor
ロバート エス. キーヴァル,
ブルース ジェイ. パーソン,
デビッド ジェイ. セーダー,
ピーター ティー. キース,
エリック ディー. アーウィン,
トーマス アール. ヘクトナー,
マシュー エム. バーンス,
ジーナ エル. ハンセン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CVRX Inc
Original Assignee
CVRX Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/671,850 external-priority patent/US6522926B1/en
Priority claimed from US09/963,777 external-priority patent/US7158832B2/en
Priority claimed from US09/963,991 external-priority patent/US6850801B2/en
Application filed by CVRX Inc filed Critical CVRX Inc
Publication of JP2004526471A publication Critical patent/JP2004526471A/ja
Publication of JP2004526471A5 publication Critical patent/JP2004526471A5/ja
Application granted granted Critical
Publication of JP5047447B2 publication Critical patent/JP5047447B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0558Anchoring or fixation means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • A61N1/36117Cardiac control, e.g. by vagal stimulation for treating hypertension

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Neurosurgery (AREA)
  • Electrotherapy Devices (AREA)
  • External Artificial Organs (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

【0001】
(発明の分野)
本発明は、包括的には心臓血管障害および腎障害の治療および/または管理のための医療装置およびその使用方法に関する。特に、本発明は、心臓血管障害および腎障害、ならびにそれらの根本的原因および症状を処置および/または管理する圧反射系を制御するための装置および方法に関する。
【0002】
(発明の背景)
心臓血管疾患は、患者の疾病および死亡の主要な誘因である。心臓血管疾患はまた、保健医療支出を助長する主な要因でもあり、米国ではその額は毎年3,260億ドルを超える。高血圧症、すなわち高血圧は、米国だけで5,000万人を超える人々を襲うと推定される主要な心臓血管障害である。高血圧症の人のうち、自分の血圧を制御できる人は30%未満であると報告されている。高血圧症は心不全および心臓発作の主要原因である。高血圧症は、年間42,000人を超える患者の主な死因であり、米国において年間20万人を超える患者の主要なまたは誘因となる死因として挙げられる。したがって、高血圧症は、その治療のためにかなりの研究および開発が望まれる深刻な健康問題である。
【0003】
高血圧症は、身体の小さな血管(細動脈)が収縮して血圧の上昇を引き起こすと発生し得る。血管が収縮するため、心臓はより高圧の血流を維持するためにより激しく働かねばならない。身体は短期間の血圧の上昇には耐えることができるが、高血圧症が持続すると、最終的には腎臓、脳、目および他の組織を含む複数の身体器官が損傷を受け、それに伴い種々の疾患が生じ得る。血圧の上昇はまた、血管の内膜に損傷を与え、粥状動脈硬化症プロセスを促進し、血餅が発生し得る可能性を高める。これは心臓麻痺および/または心臓発作に至る可能性がある。高血圧の持続により、最終的に心臓の拡大および損傷(肥大)が生じ、心不全に至る場合がある。
【0004】
心不全は、虚血性心疾患を含む種々の心臓血管障害の結果最終的に発症することがよくある。心不全は、身体の要求を満たすのに十分な血液を心臓が送ることができないことを特徴とし、疲労、運動能力の低下、および低い生存率がもたらされる。米国では約500万人が心不全を患い、心不全は年間39,000人の直接の死因となり、さらに年間22万5,000人の死亡の誘因となっていると推定される。また、新たに40万件を超える心不全が毎年診断されていると推定される。心不全は、年間90万件を超える入院の原因となっており、65歳を超える患者の最も多い退院診断(discharge diagnosis)である。米国における心不全の治療費は、年間200億ドルを超えると報告されている。したがって、心不全は、その治療および/または管理のためにかなりの研究および開発が望まれる深刻な健康問題でもある。
【0005】
心不全は、多数の身体系を活性化し、十分な血液を送ることができない心臓の能力を補償する。これらの反応の多くは、交感神経系の活性化レベルの上昇と、複数の他の神経ホルモン反応の活性化とによって媒介される。概して、この交感神経系の活性化は、心拍数と収縮力を増大させ、心拍出量を増加させるよう心臓に伝え、ナトリウムおよび水を貯留することによって血液量を増加させるよう腎臓に伝え、収縮して血圧を上昇させるよう細動脈に伝える。心臓、腎臓、および血管の応答は、心臓の作業負荷を増大させ、心筋損傷をさらに促進させ、心不全状態を悪化させる。したがって、この悪循環を阻止するか、または少なくとも最低限に抑え、それによって心不全を処置または管理するために、交感神経系の活性化レベルを低減することが望ましい。
【0006】
高血圧症、心不全、および他の心臓血管障害の管理のために、いくつかの薬物治療が提案されている。これらには、血圧を下げて心臓の作業負荷を軽減する血管拡張剤、流体過負荷を低減する利尿薬、身体の神経ホルモン反応の阻害剤および遮断薬、ならびに他の薬剤が含まれる。
【0007】
これらの疾患に関する種々の外科的処置もまた提案されている。例えば、心臓移植が、重篤な難治性心不全を患う患者に対して提案されている。あるいは、補助人工心臓(VAD)などの移植可能な医療装置が、心臓のポンプ作用を増強するために胸部に移植され得る。あるいは、大動脈内バルーンポンプ(IABP)が、心臓機能を短期間維持するために用いられ得るが、通常は1ヶ月未満である。他の外科的処置も同様に利用可能である。
【0008】
総頚動脈の分岐部における構造である頚動脈洞の壁は、血圧に反応しやすい伸張受容器(圧受容器)を含むことがこの数十年で知られるようになった。これらの受容器は、頚動脈洞神経を介して脳に信号を送り、次に脳は、心臓血管系を調節して、ある程度は交感神経系の活性化によって、正常な血圧を維持する(圧反射)。頚動脈洞神経の電気刺激(バロペーシング(baropacing))は、高血圧およびアンギナの処置において血圧および心臓の作業負荷を低減するために従来提案されている。例えば、Kieval等に付与された米国特許第6,073,048号は、種々の心臓血管および肺パラメータに基づいて圧反射弓を刺激する圧反射調節システムおよびその方法を開示している。
【0009】
これら代替的な手法のそれぞれはある点では有益であるが、その治療のそれぞれは、各自の欠点を有している。例えば、薬物療法の効力は不完全であることが多い。ある患者は、薬物療法に対して反応しない(難治性である)場合がある。薬物は望ましくない副作用を有することが多く、複雑な投薬計画で与えられる必要があり得る。これらおよび他の要因は、薬物療法に対する患者のコンプライアンスの低さに寄与する。薬物療法はまた、高価であり得、これらの障害に関連する保健医療の費用を増加させる。同様に、外科的手法には非常に費用がかかり、有意な患者の罹患率および死亡率に関連し得、疾患の自然歴を変えない場合がある。バロペーシングもまた容認されてこなかった。電気頚動脈洞神経刺激に伴ういくつかの問題が、医学文献において報告されている。これらには、神経電極を移植する外科的処置の侵襲性、ならびに刺激中の顎、喉、顔、および頭の術後疼痛が含まれる。さらに、神経刺激に必要とされることのある高電圧は、頚動脈洞神経に損傷を与える場合があることが留意されてきた。したがって、高血圧、心不全、ならびにそれに関連する心臓血管障害および神経系障害を処置および/または管理する新たな装置および方法が、長い間かなり必要とされ続けている。
【0010】
患者の血圧を上昇させることが有益であるような状況もまた起こり得る。例えば、患者がある期間、血圧の低下、すなわち低血圧症になる場合がある。症候性低血圧症に関連する状態には、血管迷走神経反応、立起性低血圧症、および自律神経障害が含まれる。あるいは、血圧が正常または略正常であり得る、例えば跛行症候群(claudication syndromes)であり得る患者の血圧を上昇させることが有利である場合がある。したがって、患者の血圧を急激に上昇させることができる療法への必要性も存在する。
【0011】
(発明の要旨)
高血圧症、心不全、ならびにそれらに関連する心臓血管障害および神経系障害に対処するために、本発明は、圧受容器を活性化することによって血圧、神経系活性、および神経ホルモン活性を選択的かつ制御可能に調節することができる、多数の装置、システム、および方法を提供する。選択的かつ制御可能に圧受容器を活性化することにより、本発明は、過剰な血圧、交感神経系活性化、および神経ホルモン活性化を低減し、それによって心臓、血管系、ならびに他の器官および組織に対する悪影響を最小限に抑える。
【0012】
本発明は、圧受容器の信号を誘起して圧反射系の変化に作用する(例えば心拍数の低下、血圧の低下など)ことにより患者を処置するシステムおよび方法を提供する。圧受容器信号は、活性化されるか、または圧受容器を選択的に活性化することにより調節される。これを達成するために、本発明のシステムおよび方法は、頚動脈洞、大動脈弓、心臓、総頚動脈、鎖骨下動脈、および/または腕頭動脈における圧受容器の近くに配置される圧受容器活性化装置を利用する。好ましくは、圧受容器活性化装置は、右頚動脈洞および/または左頚動脈洞(総頚動脈の分岐部付近)および/または大動脈弓に位置付けられる。限定ではなく一例として、本発明は、頚動脈洞の位置に関連して説明する。
【0013】
概して、圧受容器活性化装置を起動、停止、または調節して、1つ以上の圧受容器を活性化し、圧受容器信号または圧受容器信号の変化を誘起し、それによって圧反射系の変化に作用することができる。圧受容器活性化装置は、継続的、周期的、または散発的に起動、停止、または調節され得る。圧受容器活性化装置は、機械的、電気的、熱的、化学的、生物学的、または他の手段を利用して圧受容器を活性化する多種多様な装置を含み得る。圧受容器は、隣接の血管組織を介して直接活性化され得るか、または間接的に活性化され得る。圧受容器活性化装置は、血管内腔の内部(すなわち血管内)か、血管壁の外部(すなわち血管外)か、または血管壁内(すなわち壁内)に配置され得る。治療有効性を最大にするために、マッピング方法を用いて、圧受容器活性化装置を正確に位置付けすなわち配置することができる。
【0014】
電気的手段を用いて圧受容器を活性化する実施形態では、種々の電極設計が提供される。電極設計は、頚動脈洞かまたはその近くで頚動脈に接続するのに特に適している場合があり、外部組織の刺激を最低限に抑えるように設計され得る。
【0015】
制御システムは、圧受容器活性化装置を起動、停止、または調節する制御信号を発生するために用いられ得る。制御システムは、開ループモードまたは閉ループモードで動作し得る。例えば、開ループモードでは、患者および/または医師が直接、または遠隔から制御システムとインタフェースし、制御信号を指示する。閉ループモードでは、制御信号は、センサからのフィードバックに応答することができ、応答は刺激方式(regimen)を定義するプリセットまたはプログラム可能なアルゴリズムにより指示される。
【0016】
刺激方式は、長期有効性を促進するため、および所要電力を最低限に抑えるために選択されることが好ましい。理論上は、圧受容器の連続的活性化の結果として圧受容器および/または圧反射系の反応は徐々に低下し、それによって治療の効力が消え得る。したがって、刺激方式は、例えば、圧受容器がその反応性を経時的に維持するように圧受容器活性化装置を調節するように選択され得る。長期有効性を促進する刺激方式の具体的な例をより詳細に後述する。
【0017】
低血圧および血圧の上昇が必要な他の状態に対処するために、本発明は、圧受容器信号を阻害または抑制することにより血圧を選択的かつ制御可能に調節することができる、多数の装置、システム、および方法を提供する。選択的かつ制御可能に圧受容器信号を阻害または抑制することにより、本発明は低血圧に関連する状態を低減する。
【0018】
(発明の詳細な説明)
以下の詳細な説明は、図面を参照して読むべきであり、異なる図面中の同様の要素には同様の番号が付してある。図面は、必ずしも一定の縮尺ではなく、例示的な実施形態を描写しており、本発明の範囲を制限することは意図されない。
【0019】
本発明をよりよく理解するために、心臓血管系に関連する基礎的血管解剖学をいくらか説明することが有用であり得る。人体10の胴体上部の概略図であり、心臓血管系の主な動脈および静脈のいくつかを示す図1を参照されたい。心臓11の左心室は、大動脈弓12内に酸素が供給された血液を送る。右鎖骨下動脈13、右総頚動脈14、左総頚動脈15、および左鎖骨下動脈16は、胸部下行大動脈17の近位の大動脈弓12から分岐する。比較的短いが、腕頭動脈22と呼ばれる異なる血管部分が右鎖骨下動脈13および右総頚動脈14を大動脈弓12に接続する。右頚動脈14は、右頚動脈洞20において右外頚動脈18と右内頚動脈19とに分岐する。単に明瞭にするために図示しないが、左頚動脈15は同様に、左頚動脈洞において左外頚動脈と左内頚動脈とに分岐する。
【0020】
大動脈弓12から、酸素を供給された血液が頚動脈18/19と鎖骨下動脈13/16とに流れる。頚動脈18/19から、酸素を供給された血液が頭部および大脳血管系を循環し、酸素を使い果たした血液は、頚静脈を通って心臓11に戻るが、明瞭にするために頚静脈のうち右内頚静脈21のみを図示する。鎖骨下動脈13/16から、酸素を供給された血液が上部末梢血管系(upper peripheral vasculature)を循環し、酸素を使い果たした血液は、鎖骨下静脈によって心臓に戻るが、同様に明瞭にするために鎖骨下動脈のうち右鎖骨下静脈23のみを図示する。心臓11は、肺系を通って酸素を使い果たした血液を送り、肺系では血液に酸素が再供給される。酸素を再供給された血液は心臓11に戻り、心臓11は上述のように、酸素を再供給された血液を大動脈弓に送り、サイクルが繰り返される。
【0021】
大動脈弓12、総頚動脈14/15(右頚動脈洞20および左頚動脈洞付近)、鎖骨下動脈13/16、および腕頭動脈22の動脈壁内には、圧受容器30がある。例えば、図2Aにおいて最良に見られるように、圧受容器30は頚動脈洞20の血管壁内に存在する。圧受容器30は、血圧を感知するために身体が用いる一種の伸張受容器である。血圧の上昇により動脈壁が伸張し、血圧の低下により動脈壁がその元の大きさに戻る。かかるサイクルは、心臓の各拍動ごとに繰り返される。圧受容器30は動脈壁内に位置しているため、それらは血圧の変化を示す隣接組織の変形を感知することができる。右頚動脈洞20、左頚動脈洞、および大動脈弓12に位置する圧受容器30は、圧反射系50に作用する血圧の感知に最も重要な役割を果たし、圧反射系50は図2Bを参照してより詳細に説明する。
【0022】
次に、一般的な血管壁40に配置される圧受容器30の概略図と、圧反射系50の概略的フローチャートを示す図2Bを参照されたい。圧受容器30は、上述の主な動脈の動脈壁40内に豊富に分散しており、全体的に樹32を形成している。圧受容器の樹32は、複数の圧受容器30を含み、そのそれぞれは圧受容器信号を神経38を介して脳52に送る。圧受容器30は、血管壁40内に非常に豊富に分散して樹枝状になっているため、個々の圧受容器の樹32は容易に識別することができない。このために、図2Bに示す圧受容器30が例示および論考の目的で主に概略的になっていることは、当業者には理解されよう。
【0023】
圧受容器信号は、集合的に圧反射系50と呼ばれ得るいくつかの身体系を活性化するために用いられる。圧受容器30は、神経系51を介して脳52と接続される。したがって、脳52は、心拍出量を示す血圧の変化を検知することができる。心拍出量が要求を満たすのに十分でない(すなわち、心臓11が十分な血液を送ることができない)場合、圧反射系50は、心臓11、腎臓53、血管54、および他の器官/組織を含むいくつかの身体系を活性化する。圧反射系50のかかる活性化は、概して、神経ホルモン活性の増加に対応する。特に、圧反射系50は神経ホルモン連鎖を開始させ、神経ホルモン連鎖は、心拍出量を増加させるために心拍数および収縮力を増大させるよう心臓11に信号を伝え、ナトリウムおよび水を貯留することによって血液量を増大するよう腎臓53に信号を伝え、収縮して血圧を上昇させるよう血管54に信号を伝える。心臓、腎臓、及び血管の応答が血圧および心拍出量55を上昇させるので、心臓11の作業負荷が増大する。心不全を患う患者では、これはさらに心筋損傷を促進させ、心不全状態を悪化させる。
【0024】
高血圧症、心不全、他の心臓血管障害、および腎障害の問題に対処するために、本発明は基本的に、圧反射系50を活性化して過剰な血圧、自律神経系活性、および神経ホルモン活性化を低減するために用いるいくつかの装置、システム、および方法を提供する。特に、本発明は、圧受容器30を活性化し、それによって血圧の上昇を示し、かつ、身体の血圧と交感神経系および神経ホルモン活性化のレベルとを低減して、副交感神経系の活性化を増大させるように脳52に信号を伝え、そのため心臓血管系および他の身体系に有益な影響を及ぼすことができる、いくつかの装置、システム、および方法を提供する。
【0025】
図3を参照すると、本発明は概して、制御システム60、圧受容器活性化装置70、およびセンサ80(オプション)を含むシステムを提供し、これは全体的に以下のように動作する。センサ80は、圧反射系を調節する必要を示すパラメータ(例えば心臓血管機能)を感知および/または監視し、そのパラメータを示す信号を発生する。制御システム60は、受信したセンサ信号の関数として制御信号を発生する。制御信号は、圧受容器活性化装置70を起動、停止、または他に調節する。通常、装置70の起動により圧受容器30が活性化される。あるいは、圧受容器活性化装置70の停止または調節により、圧受容器30の活性化が起こるかまたは調節され得る。圧受容器活性化装置70は、機械的、電気的、熱的、化学的、生物学的、または他の手段を利用して圧受容器30を活性化する多種多様な装置を含み得る。したがって、圧反射系の活性を調節する必要を示すパラメータ(例えば過剰な血圧)をセンサ80が検知すると、制御システム60は制御信号を発生して圧受容器活性化装置70を調節(例えば起動)し、それによって、見かけ上過剰な血圧であると脳52が認める圧受容器30信号を誘起する。センサ80が正常な身体機能を示すパラメータ(例えば正常な血圧)を検知すると、制御システム60は制御信号を発生して圧受容器活性化装置70を調節(例えば停止)する。
【0026】
上述のように、圧受容器活性化装置70は、機械的、電気的、熱的、化学的、生物学的、または他の手段を利用して圧受容器30を活性化する多種多様な装置を含み得る。一般的な圧受容器活性化装置70の具体的な実施形態は、図4〜図21を参照して論考される。ほとんどの場合、特に機械的活性化の実施形態では、圧受容器活性化装置70は、1つ以上の圧受容器30を包囲する血管壁40を伸張または他に変形させることにより、その圧受容器30を間接的に活性化する。他のいくつかの場合、特に機械的ではない活性化の実施形態では、圧受容器活性化装置70は、1つ以上の圧受容器30にわたる電気的、熱的、または化学的環境、あるいは電位を変更することにより、その圧受容器30を直接活性化し得る。圧受容器30を包囲する組織にわたる電気的、熱的、または化学的電位を変更することにより、周囲組織が伸張または他に変形することができ、それにより圧受容器30を機械的に活性化することも可能である。他の場合、特に生物学的活性化の実施形態では、圧受容器30の機能または感受性の変化は、圧受容器30の生物活性の変化ならびにその細胞内構造および機能の変更によって誘起され得る。
【0027】
圧受容器活性化装置70の具体的な実施形態の全てが移植に適しており、装置70が血管内、血管外、または血管壁40内のいずれに配置されるかに応じて、最小侵襲経皮経管手法および/または最小侵襲外科手術手法を用いて移植することが好ましい。圧受容器活性化装置70は、圧反射系50に作用する圧受容器30の数が多い任意の場所、例えば、心臓11、大動脈弓12、総頚動脈18/19の頚動脈洞20付近、鎖骨下動脈13/16、または腕頭動脈22に配置され得る。圧受容器活性化装置70は、装置70が圧受容器30のすぐ近くに配置されるように移植され得る。あるいは、圧受容器活性化装置70は、装置70が圧受容器30から少し離れてはいるが近位に配置されるように体外に置かれ得る。好ましくは、圧受容器活性化装置70は、圧受容器30が圧反射系50にかなりの衝撃を与える、右頚動脈洞20および/または左頚動脈洞(総頚動脈の分岐部付近)および/または大動脈弓12の近くに移植される。例示のためのみに、本発明は頚動脈洞20付近に配置された圧受容器活性化装置70を参照して説明される。
【0028】
オプションのセンサ80は、電気センサケーブルまたはリード線82によって制御システム60に動作可能に連結される。センサ80は、圧反射系の活性を調節する必要を示すパラメータを測定または監視する、任意の好適な装置を含み得る。例えば、センサ80は、ECG、血圧(収縮期血圧、拡張期血圧、平均血圧、または脈圧)、血液容積流量(blood volumetric flow rate)、血流速度、血液のpH、OまたはCOの含量、混合静脈血酸素飽和度(SVO)、血管活性、神経活性、組織活性、あるいは組成を測定する生理学的トランスデューサまたはゲージを含み得る。センサ80に適したトランスデューサまたはゲージの例としては、ECG電極、圧電型圧力トランスデューサ、超音波流速トランスデューサ、超音波容積流量トランスデューサ、熱希釈流速トランスデューサ、容量型圧力トランスデューサ、膜pH電極、光学検出器(SVO)、またはひずみゲージが挙げられる。センサ80は1つしか図示しないが、同じ位置または異なる位置に同じタイプまたは異なるタイプの複数のセンサ80を利用することができる。
【0029】
センサ80は、所定のパラメータを容易に確認できるように、心臓11の心室内、あるいは大動脈弓12、総頚動脈14/15、鎖骨下動脈13/16、または腕頭動脈22などの主な動脈内または動脈上に配置されることが好ましい。センサ80は、利用されるトランスデューサまたはゲージのタイプに応じて、動脈、静脈、または神経(例えば迷走神経)の中または上などの体内か、あるいは体外に配置され得る。センサ80は、圧受容器活性化装置70と別個であっても、または一体であってもよい。例示のためのみに、センサ80は右鎖骨下動脈13上に配置して図示される。
【0030】
一例として、制御システム60は、プロセッサ63およびメモリ62を含む制御ブロック61を備える。制御システム60は、センサケーブル82によってセンサ80に接続される。制御システム60は、電気制御ケーブル72によって圧受容器活性化装置70にも接続される。したがって、制御システム60は、センサケーブル82によってセンサ80からセンサ信号を受け取り、制御ケーブル72によって圧受容器活性化装置70へ制御信号を送信する。
【0031】
メモリ62は、センサ信号、制御信号、ならびに/または入力装置64が供給する値およびコマンドに関連するデータを含み得る。メモリ62はまた、制御信号とセンサ信号との間の1つ以上の機能または関係を定義する1つ以上のアルゴリズムを含むソフトウェアを含み得る。アルゴリズムは、センサ信号またはその数学的導関数に応じて、起動または停止の制御信号を指示し得る。アルゴリズムは、センサ信号が所定の下限閾値を下回るか、所定の上限閾値を上回る場合か、またはセンサ信号が特定の生理学的事象を示す場合に起動または停止の制御信号を指示することができる。
【0032】
上述のように、圧受容器活性化装置70は、機械的、電気的、熱的、化学的、生物学的、または他の方法で圧受容器30を活性化し得る。場合によっては、制御システム60はドライバ66を含み、圧受容器活性化装置70に望ましい電源モードを提供する。例えば、圧受容器活性化装置70が空気圧式または液圧式の作動を利用する場合、ドライバ66は圧力/真空源を備えることができ、ケーブル72は流体ライン(fluid line)(複数可)を備えることができる。圧受容器活性化装置70が電気的または熱的作動を利用する場合、ドライバ66は電力増幅器などを備えることができ、ケーブル72は電気リード線(複数可)を備えることができる。圧受容器活性化装置70が化学的または生物学的作動を利用する場合、ドライバ66は流体槽および圧力/真空源を備えることができ、ケーブル72は流体ライン(複数可)を備えることができる。他の場合では、特に圧受容器活性化装置70の低レベルの電気的または熱的作動に十分な強度の電気信号をプロセッサ63が生成する場合、ドライバ66は必要ない場合がある。
【0033】
制御システム60は、センサ80からのフィードバックを利用した閉ループとして、または入力装置64が受信するコマンドを利用した開ループとして動作し得る。制御システム60の開ループ動作は、トランスデューサ80からの何らかのフィードバックを利用することが好ましいが、フィードバックなしでも動作することができる。入力装置64が受信するコマンドは、制御信号に直接影響を及ぼしてもよく、またはメモリ62に含まれるソフトウェアおよび関連アルゴリズムを変更してもよい。患者および/または治療する医師は、入力装置64にコマンドを供給することができる。ディスプレイ65を用いて、センサ信号、制御信号、および/またはメモリ62に含まれるソフトウェア/データを見ることができる。
【0034】
制御システム60が発生する制御信号は、メモリ62に含まれるアルゴリズムにより指示されるように、連続的、周期的、散発的、またはそれらの組合せであり得る。メモリ62に含まれるアルゴリズムは、時間関数として制御信号の特性を指示し、したがって時間関数として圧受容器の刺激を指示する刺激方式を定義する。連続的制御信号は、パルス、パルス列、トリガパルス、およびトリガパルス列を含み、これら全ては連続的に発生する。周期的制御信号の例としては、指定開始時刻(例えば、分、時、または日それぞれの開始)および指定持続時間(例えば、1秒、1分、1時間)を有する上述の連続的制御信号のそれぞれが挙げられる。散発的制御信号の例としては、エピソード(例えば、患者/医師による起動、特定の閾値を上回る血圧の上昇など)によりトリガされる上述の連続的制御信号のそれぞれが挙げられる。
【0035】
制御システム60により制御される刺激方式は、長期有効性を促進するために選択され得る。理論上は、圧受容器30の連続的または不変の活性化の結果として圧受容器および/または圧反射系の反応は徐々に低下し得、それによって治療の長期的効力が消える。したがって、刺激方式は、治療有効性が長期間維持されるように圧受容器活性化装置70を起動、停止、または調節するために選択され得る。
【0036】
治療有効性を経時的に維持することに加えて、本発明の刺激方式は、システム60の所要/消費電力を低減するために選択され得る。本明細書中以下でより詳細に説明するように、刺激方式は、圧受容器活性化装置70が最初に比較的高いエネルギーおよび/または電力レベルで起動され、その後比較的低いエネルギーおよび/または電力レベルで起動されるように指示することができる。第1のレベルでは所望の初期治療効果を達成し、第2の(より低い)レベルでは所望の治療効果を長期間持続させる。所望の治療効果が最初に達成された後にエネルギーおよび/または電力レベルを低下させることにより、活性化装置70が必要とするかまたは消費する電力も長期間低減される。これに関連して、システムの寿命がより長くなり、かつ/または(電源および関連構成部品のサイズの低減により)サイズが小さくなり得る。
【0037】
本発明の刺激方式の別の利点は、望ましくない副行組織刺激の低減である。上述のように、刺激方式は、圧受容器活性化装置70が最初に比較的高いエネルギーおよび/または電力レベルで起動されて所望の効果を達成し、その後比較的低いエネルギーおよび/または電力レベルで起動されて所望の効果を維持するように指示し得る。出力エネルギーおよび/または電力レベルの低下により、刺激は標的部位から離れた部位に伝わることがなく、それによって、首および頭の筋肉などの隣接組織を不注意に刺激する可能性を低減し得る。
【0038】
かかる刺激方式は、本明細書に記載する全ての圧受容器活性化実施形態に適用することができる。圧受容器活性化装置70に加えて、かかる刺激方式は頚動脈洞神経または圧反射系に作用する他の神経の刺激に適用することができる。特に、本明細書中に記載の刺激方式は、高血圧およびアンギナの治療において血圧および心臓の作業負荷を低減するために提案されたバロペーシング(すなわち、頚動脈洞神経の電気刺激)に適用することができる。例えば、本発明の刺激方式は、Kievalらに付与された米国特許第6,073,048号に開示されるバロペーシングシステムに適用することができ、当該特許の全開示は参照により本明細書に援用される。
【0039】
刺激方式は、圧受容器活性化装置70の制御信号および/または出力信号に関して説明され得る。概して、制御信号の変化の結果として、圧受容器30の対応する変化に作用する圧受容器活性化装置70の出力が対応して変化する。制御信号の変化と圧受容器活性化装置70の変化との間の相互関係は、比例(proportional:均衡)または反比例(disproportional:不均衡)か、直接(direct:正)または間接(indirect:逆)か、あるいは他の任意の既知のまたは予測可能な数学的関係であり得る。例示のためのみに、刺激方式は、圧受容器活性化装置70の出力が制御信号に正比例すると想定するような方法で本明細書に記載され得る。
【0040】
長期有効性を促進し、所要/消費電力を低減する刺激方式の第1の一般的手法は、制御信号を発生して、圧受容器活性化装置70が第1の出力レベルの比較的高いエネルギーおよび/または電力を有するようにし、その後制御信号を変更して、圧受容器活性化装置70が第2の出力レベルの比較的低いエネルギーおよび/または電力を有するようにすることを含む。第1の出力レベルは、所望の初期効果(例えば、心拍数および/または血圧の低下)を達成するために選択され得、それに十分な時間維持することができ、その後、所望の効果を所望の期間持続させるのに十分な時間、出力レベルを第2のレベルに低下させることができる。
【0041】
例えば、第1の出力レベルがXの電力および/またはエネルギー値を有する場合、第2の出力レベルはXの電力および/またはエネルギー値を有し得る(ただし、XはXより小さい)。場合によって、第1のレベルが「オン」となり第2のレベルが「オフ」となるように、Xはゼロに等しくてよい。電力およびエネルギーは2つの異なるパラメータを指すが、少なくともいくつかの状況では、交換可能に用いられ得ることが分かる。概して、電力はエネルギーの時間導関数である。したがって、場合によっては、パラメータ(電力またはエネルギー)のうちの1つの変化は、他のパラメータの同一または類似の変化に相関することができない。本発明では、パラメータの1つまたは両方の変化は、長期有効性を促進するという所望の結果を得るのに適し得ることが意図される。
【0042】
3つ以上のレベルを用い得ることも意図される。さらなるレベルのそれぞれは、出力エネルギーまたは電力を増加させて所望の効果を達成するか、または出力エネルギーまたは電力を減少させて所望の効果を保持することができる。例えば、場合によっては、所望の効果を低い電力またはエネルギーレベルで持続することができる場合、出力レベルをさらに低下させることが望ましい場合がある。他の場合では、特に、所望の効果が消えるかまたは他に持続されない場合、所望の効果が回復するまで出力レベルを増加させ、その後出力レベルを低下させて効果を持続させることが望ましい場合がある。
【0043】
各レベルからの移行は、ステップ関数(例えば、単一のステップまたは一連のステップ)、一定期間にわたる漸進的移行、またはそれらの組み合わせであり得る。さらに、信号レベルは、上述のように連続的、周期的、または散発的であり得る。
【0044】
圧受容器活性化装置70の出力(電力またはエネルギー)レベルは、利用する起動モードに応じていくつかの異なる方法で変更することができる。例えば、本明細書に記載の機械的活性化の実施形態では、圧受容器活性化装置70の出力レベルは、出力する力/圧力、組織変位距離、および/または組織変位速度の変更によって変更することができる。本明細書に記載の熱的活性化の実施形態では、圧受容器活性化装置70の出力レベルは、温度、温度上昇速度、または温度低下速度(放散速度)の変更によって変更することができる。本明細書に記載の化学的および生物学的活性化の実施形態では、圧受容器活性化装置70の出力レベルは、送達される用量の容量/濃度ならびに/または用量送達速度の変更によって変更することができる。
【0045】
非変調信号を用いる電気的活性化の実施形態では、圧受容器活性化装置70の出力(電力またはエネルギー)レベルは、電圧、電流、および/または信号持続時間の変更によって変更することができる。圧受容器活性化装置70の出力信号は、例えば、定電流または定電圧であり得る。変調信号を用いる電気的活性化の実施形態では、出力信号が例えば一連のパルスを含み、いくつかのパルス特性が個別または一緒に変更されて、出力信号の電力またはエネルギーレベルを変更する。かかるパルス特性としては、限定されないが、パルス振幅(PA)、パルス周波数(PF)、パルス幅すなわちパルス持続時間(PW)、パルス波形(方形、三角、正弦など)、パルス極性(双極電極の場合)、およびパルス位相(単相、二相)が挙げられる。
【0046】
出力信号がパルス列を含む電気的活性化の実施形態では、上述のパルス特性に加えて他のいくつかの信号特性が変更され得る。図38に示すように、制御または出力信号410は、突発的に発生する(416)一連のパルス414を通常含むパルス列412を含み得る。変更され得るパルス列412特性は、限定はされないが、バースト振幅(バーストパケット416内で一定である場合パルス振幅に等しい)、バースト波形(すなわち、バーストパケット416内のパルス振幅の変動)、バースト周波数(BF)、およびバースト幅または持続時間(BW)を含む。信号410またはその一部(例えば、パルス列412内のバースト416)は、上述の任意の事象により、あるいは動脈圧信号450またはECG信号460の特定の一部(例えば、図38に示すR波)か、または別の生理学的タイミングインジケータによりトリガされ得る。信号410またはその一部がトリガされると、トリガとなる事象が変更され得、かつ/またはトリガとなる事象からの遅延が変更され得る。
【0047】
長期有効性を促進し、所要/消費電力を低減する刺激方式の第2の一般的手法は、複数の出力手段(例えば電極)を有する1つの圧受容器活性化装置70の使用、またはそれぞれが単一または複数の出力手段を有する複数の圧受容器活性化装置70の使用を含む。基本的に、この手法による刺激方式は、解剖学上の種々の位置に配置された2つまたはそれ以上の装置70または出力手段を交互に起動することを求める。交互起動は、装置または出力手段の間で制御信号をやりとりすることにより達成され得る。この状況で用いる場合、切り換えまたは交互起動は、個別の出力手段の間での切り換え、出力手段のセットと個別の出力手段との間の切り換え、および出力手段の異なるセット間の切り換えを含む。解剖学上の2つまたはそれ以上の異なる位置の間の交互起動により、解剖学上のいかなる位置も、出力信号を受けることが少なくなる。
【0048】
より具体的には、第1の装置70または出力手段は第1の圧受容器の位置に接続することができ、第2の装置70または出力手段は第2の圧受容器の位置に接続することができ、第1の位置は第2の位置とは異なり、制御信号が第1および第2の装置または出力手段を交互に起動する。2つ(第1および第2)の装置70または出力手段を参照して説明するが、2つより多くを利用することもできる。限定ではなく一例として、第1の装置70または出力手段は右頚動脈洞に接続することができ、第2の装置70または出力手段は左頚動脈洞に接続することができる。あるいは、第1の装置70または出力手段は左内頚動脈に接続することができ、第2の装置70または出力手段は右内頚動脈に接続することもできる。さらに別の代案として、第1および第2の装置70または出力手段は、互いの隣に、しかしわずかに離れて配置してもよい(例えば、複数の接触点を有する電極)。いずれの場合においても、制御信号が第1および第2の装置または出力手段を交互に起動し、解剖学上の各位置が信号を受けることを少なくする。この手法の範囲内で、多くの可能な解剖学上の組み合わせがあるが、単に簡単のために本明細書では具体的に記載しないことは、関連分野の当業者であれば理解されよう。
【0049】
長期有効性を促進し、所要/消費電力を低減する刺激方式の第3の一般的手法は、時間領域特性の変更および/または治療のトリガとなる事象特性の誘発を含む。例えば、指定開始時刻(例えば、分、時、または日のそれぞれの開始、特定の日時)および指定持続時間(例えば、1秒、1分、1時間)を有する周期的制御信号は、指定開始時間および/または指定持続時間が変化し得る。あるいは、エピソード(例えば、患者/医師による起動、ECG信号の特定の一部、特定の閾値を上回る血圧の上昇、特定の日時など)によってトリガされる散発的制御信号は、トリガとなる事象からの遅延、またはトリガとなる事象自体が変化し得る。この後者の代替に関して、トリガとなる事象は、センサ80を利用したフィードバック制御により提供され得る。さらなる代替として、制御信号は非同期であってよく、その場合、基礎となる事象(base line event)の開始時刻、持続時間、またはそれからの遅延は非同期(例えばランダム)である。
【0050】
上述の手法のいかなるものも、単独で、または組み合わせて利用することができる。手法の組み合わせの使用は、長期有効性をさらに促進することができ、所要/消費電力をさらに低減することができる。
【0051】
上述の第1の手法の効力を実証するために、頚動脈洞20の両側(左右)に適用される血管外電気活性化装置の形態の圧受容器活性化装置70を利用して、動物実験を行った。この実験の結果を図39に示し、ここでは制御信号(ボルト)410、心拍数(1分間の拍動)420、平均動脈圧(mmHg)430、および動脈圧(mmHg)440を時間関数としてプロットして示す。制御信号410は、約4分間の第1の期間401に印加される、2.5ボルトのパルス振幅、1.0ミリ秒の初期パルス幅すなわち持続時間、および100Hzのパルス周波数を有するパルス列を含んでいた。この第1の期間401の間、血圧430/440および心拍数420は著しく低下した。続いて、パルス持続時間を0.25ミリ秒に変更し、約2分間の第2の期間402の間に印加したが、他のパラメータは変更しなかった。この第2の期間402の間、血圧430/440および心拍数420の低下が持続した。第2の期間402の後、第3の期間403の間パルス列をオフにした。この第3の期間403の間、血圧430/440および心拍数420は、その試験前の値まで徐々に上昇し始めた。この刺激方式により、刺激装置のパルス幅を低減した後も所望の治療効果が持続し得ることが実証された。
【0052】
第1の手法の効力の別の実例を図40に示し、これは、頚動脈洞20の両側(左右)に適用される血管外電気活性化装置の形態の圧受容器活性化装置70を利用した動物実験の結果を示す。図40は、制御/出力信号(ボルト)410、心拍数(1分間の拍動)420、平均動脈圧(mmHg)430、および動脈圧(mmHg)440を時間関数としてプロットして示す。制御信号410は、約1分間の第1の期間401に印加される、2.5ボルトのパルス振幅、1.0ミリ秒のパルス持続時間、および100Hzの初期パルス周波数を有するパルス列を含んでいた。この第1の期間401の間、心拍数420および血圧430/440は著しく低下した。約4分間の第2の期間402の間、制御信号410を10Hzのパルス周波数に変更したが、パルス振幅および持続時間は変更しなかった。この第2の期間402の間、心拍数および血圧の低下は実質的に持続した。約40秒間の第3の期間403の間、制御信号410を100Hzのパルス周波数に戻したが、パルス振幅および持続時間は変更しなかった。この第3の期間403の間、心拍数420および血圧430/440はさらに低下した。約1.5分間の第4の期間404の間、制御信号410を10Hzのパルス周波数に再度変更したが、パルス振幅および持続時間は変更しなかった。この第4の期間404の間、心拍数420および血圧430/440の低下は実質的に持続した。第4の期間404の後、第5の機関405の間パルス列をオフにした。この第5の期間405の間、血圧430/440および心拍数420はその試験前の値まで徐々に上昇し始めた。
【0053】
第2の手法の効力の実例を図41に示し、これは、2つの電極を有する血管外活性化装置の形態の圧受容器活性化装置70を利用した動物実験の結果を示す。第1の電極は右頚動脈洞に接続し、第2の電極は左頚動脈洞に接続した。図41は、制御信号(ボルト)410、心拍数(1分間の拍動)420、平均動脈圧(mmHg)430、および動脈圧(mmHg)440を時間関数としてプロットして示す。制御/出力信号410は、60秒間の期間406に左側に印加された、4.0ボルトのパルス振幅、1.0ミリ秒のパルス持続時間、および100Hzのパルス周波数を有するパルス列を含んでいた。この期間406の間、心拍数420および血圧430/440は著しく低下した。60秒間の期間408に制御信号410を右側に切り換えたが、心拍数および血圧の低下は持続した。合計10.5分間の期間に制御信号410を左側と右側とに切り換えたが、この間心拍数および血圧の低下は実質的に持続した。
【0054】
これらの実験は上述の一般的手法の効力を実証し、それら手法のそれぞれは、長期有効性を促進するための刺激方式を含む。これらの刺激方式は、概して、所望の初期効果が確立された後に圧受容器活性化装置の出力レベルを低下させること(第1の手法)、解剖学上の種々の位置に配置された2つもしくはそれ以上の装置または出力手段の間で交互に起動すること(第2の手法)、および/または治療の時間領域特性および/またはトリガとなる事象の特性を変更すること(第3の手法)を含む。これらの手法の全ては、圧反射反応性を維持することにより長期有効性を促進するという共通の目的を有する。
【0055】
制御システム60は、全体的または部分的に移植され得る。例えば、制御システム60全体が、センサリード線82および制御リード線72への経皮接続を利用して患者により体外で持ち運ばれ得る。あるいは、制御ブロック61およびドライバ66が移植され、入力装置64およびディスプレイ65がそれらとの経皮接続を利用して患者により体外で持ち運ばれ得る。さらなる代案として、経皮接続を協働する送信器/受信器で置き換えて、制御システム60および/またはセンサ80の構成要素と圧受容器活性化装置70とを遠隔通信させることができる。
【0056】
図4〜図21を全体的に参照すると、圧受容器活性化装置70の特定の実施形態の概略図を示す。これら特定の実施形態のデザイン、機能、および使用は、制御システム60およびセンサ80(図示せず)に加えて、特記されるかまたは説明から明示されない限り図3を参照して説明したものと同じである。さらに、図4〜図20に示す解剖学上の特徴は、特記しない限りは図1、図2A、および図2Bを参照して論考したものと同じである。各実施形態において、構成要素60/70/80間の接続は物理的(例えば、ワイヤ、管、ケーブルなど)であり得るか、または遠隔(例えば、送信器/受信器、誘導的、磁気的など)であり得る。物理的接続の場合、接続は動脈内、静脈内、皮下、または他の天然の組織経路を介して行なわれ得る。
【0057】
次に、血管内膨張式バルーンの形態の圧受容器活性化装置100の概略図を示す図4Aおよび図4Bを参照されたい。膨張式バルーン装置100は、流体ライン104に接続される螺旋状バルーン102を含む。同様の螺旋状バルーンの例は、Shturmanに付与された米国特許第5,181,911号に開示され、その全開示が参照により本明細書に援用される。バルーン102は、螺旋形状またはこのバルーンを通じて血液の灌流が可能な任意の他の形状を有することが好ましい。流体ライン104は、制御システム60のドライバ66に接続される。この実施形態では、ドライバ66は、螺旋状バルーン102を選択的に膨張および収縮させる圧力/真空源(すなわち膨張装置)を備える。膨張時には、螺旋状バルーン102は拡張して、好ましくは外径のみを増大させ、圧受容器30および/または血管壁40を伸張または変形させることにより圧受容器30を機械的に活性化する。収縮時には、螺旋状バルーン102は、血管壁40がその公称状態(nominal state)に戻るように弛緩形状に戻る。したがって、螺旋状バルーン102を選択的に膨張させることにより、それに隣接する圧受容器30が選択的に活性化され得る。
【0058】
バルーンを利用した空気圧式または液圧式の拡張の代案として、機械的拡張装置(図示せず)を用いて血管壁40を拡張すなわち膨張させ、それによって圧受容器30を機械的に活性化することができる。例えば、機械的拡張装置は、長手軸方向に圧縮されると直径が拡張する管状ワイヤブレード構造を備えることができ、これはWillard等に付与された米国特許第5,222,971号に開示され、その全開示が参照により本明細書に援用される。管状ブレードは血管内に配置されて、ワイヤの網目を通って血液を灌流させることができる。この実施形態では、ドライバ66は、作動ケーブルによってブレードの両端に接続されたリニアアクチュエータを含み得る。管状ブレードの両端がケーブルの作動により互いに接近すると、このブレードの直径は増大し、血管壁40を拡張させて圧受容器30を活性化する。
【0059】
次に、血管外圧力カフの形態の圧受容器活性化装置120の概略図を示す図5Aおよび図5Bを参照されたい。圧力カフ装置120は、流体ライン124に接続される膨張式カフ122を含む。類似のカフ122の例は、Kapp等に付与された米国特許第4,256,094号、およびNewmanに付与された米国特許第4,881,939号に開示され、それらの全開示が参照により本明細書に援用される。流体ライン124は、制御システム60のドライバ66に接続される。この実施形態において、ドライバ66は、カフ122を選択的に膨張および収縮させる圧力/真空源(すなわち膨張装置)を備える。膨張時には、カフ122は拡張し、好ましくは内径のみを増大させ、圧受容器30および/または血管壁40を伸張または変形させることにより圧受容器30を機械的に活性化する。収縮時には、カフ122は、血管壁40がその公称状態に戻るように弛緩形状に戻る。したがって、膨張式カフ122を選択的に膨張させることにより、それに隣接する圧受容器30を選択的に活性化することができる。
【0060】
ドライバ66は、上述のように制御システム60によって自動的に作動することができるか、または手動で作動することができる。体外で手動で作動する圧力/真空源の一例は、Haberに付与された米国特許第4,709,690号に開示され、その全開示が参照により本明細書に援用される。経皮的に手動で作動する圧力/真空源の例は、Claracqに付与された米国特許第4,586,501号、Lane等に付与された米国特許第4,828,544号、およびGrundei等に付与された米国特許第5,634,878号に開示され、それらの全開示が参照により本明細書に援用される。
【0061】
膨張式カフ装置120に代わって他の外部圧縮装置を用いることができることは当業者には認識されよう。例えば、ソレノイドにより作動するピストンは、血管壁に圧縮を施すことができる。ソレノイド作動ピストン装置の一例は、Dokum等に付与された米国特許第4,014,318号に開示され、液圧または空気圧作動ピストン装置の一例は、Claracqに付与された米国特許第4,586,501号に開示され、それらの全開示が参照により本明細書に援用される。他の例としては、Haberに付与された米国特許第4,551,862号に開示される回転リング圧縮装置、およびMillerに付与された米国特許第5,509,888号に開示される電磁作動圧縮リング装置が挙げられ、それらの全開示が参照により本明細書に援用される。
【0062】
次に、血管内で変形可能な構造の形態の圧受容器活性化装置140の概略図を示す図6Aおよび図6Bを参照されたい。変形可能構造装置140は、血管内腔に配置されたコイル、ブレード、または他のステント状の構造142を含む。変形可能構造142は、電気リード線144に接続された1つ以上の個別構造部材を含む。変形可能構造142を形成する構造部材のそれぞれは、図6Cに示すような形状記憶材料146(例えばニッケルチタン合金)、または図6Dに示すようなバイメタル材料148を含み得る。電気リード線144は、制御システム60のドライバ66に接続される。この実施形態では、ドライバ66は、構造部材146/148を抵抗加熱する構造142に選択的に電流を送達する発電器または電力増幅器を備える。構造142は、周囲の組織を接地として用いる、図示するような単極であってもよく、または構造142のいずれかの端部に接続されたリード線を用いる二極または多極であってもよい。電力はまた、図14〜図16を参照して以下で説明するように、構造142に誘導的に送達され得る。
【0063】
形状記憶材料146に電流を印加すると、形状記憶材料146は抵抗加熱され、相変化とそれに対応する形状の変化とが生じる。バイメタル材料148に電流を印加すると、バイメタル材料148は抵抗加熱され、熱膨張の差とそれに対応する形状の変化とが生じる。いずれの場合も、材料146/148は、形状の変化が構造142の拡張を生じさせ、圧受容器30および/または血管壁40を伸張または変形させることにより圧受容器30を機械的に活性化するようにデザインされる。電流を除去すると、材料146/148は冷め、構造142は、圧受容器30および/または血管壁40がその公称状態に戻るように弛緩形状に戻る。したがって、構造142を選択的に拡張させることにより、それに隣接する圧受容器30が選択的に活性化され得る。
【0064】
次に、血管外で変形可能な構造の形態の圧受容器活性化装置160の概略図を示す図7Aおよび図7Bを参照されたい。血管外変形可能構造装置160は、図6Aおよび図6Bを参照して説明した血管内変形可能構造装置140と実質的に同一であるが、血管外装置160は血管壁の周囲に配置され、それによって血管壁40を拡張するのではなく圧縮するという点が異なる。変形可能構造装置160は、電気リード線164に接続された1つ以上の個別構造部材を備えるコイル、ブレード、または他のステント状の構造162を含む。構造部材のそれぞれは、図7Cに示すような形状記憶材料166(例えばニッケルチタン合金)、または図7Dに示すようなバイメタル材料168を含み得る。構造162は、周囲の組織を接地として用いる、図示するような単極であってもよく、または構造162のいずれかの端部に接続されたリード線を用いる二極または多極であってもよい。電力はまた、図14〜図16を参照して以下で説明するように、構造162に誘導的に送達され得る。
【0065】
形状記憶材料166に電流を印加すると、形状記憶材料166は抵抗加熱され、相変化とそれに対応する形状の変化とが生じる。バイメタル材料168に電流を印加すると、バイメタル材料168は抵抗加熱され、熱膨張の差とそれに対応する形状の変化とが生じる。いずれの場合も、材料166/168は、形状の変化が構造162の収縮を生じさせ、圧受容器30および/または血管壁40を圧縮または変形させることにより圧受容器30を機械的に活性化するようにデザインされる。電流を除去すると、材料166/168は冷め、構造162は、圧受容器30および/または血管壁40がその公称状態に戻るように弛緩形状に戻る。したがって、構造162を選択的に圧縮することにより、それに隣接する圧受容器30が選択的に活性化され得る。
【0066】
次に、圧受容器30付近に人工的に背圧を生成する、血管外流量調節器の形態の圧受容器活性化装置180の概略図を示す図8Aおよび図8Bを参照されたい。流量調節装置180は外部圧縮装置182を備え、これは図5Aおよび図5Bを参照して説明した任意の外部圧縮装置を含み得る。外部圧縮装置182は、このケーブル184によって制御システム60のドライバ66に動作可能に接続され、ケーブル184は、利用する外部圧縮装置182のタイプに応じて、流体ラインまたは電気リード線を含み得る。外部圧縮装置182は、圧受容器30の遠位にある血管壁の周囲に配置される。例えば、外部圧縮装置182は、外頚動脈または内頚動脈18/19の遠位部に位置付けられ、頚動脈洞領域20の圧受容器30付近に背圧を生成し得る。あるいは、外部圧縮装置182は、右鎖骨下動脈13、右総頚動脈14、左総頚動脈15、左鎖骨下動脈16、または腕頭動脈22に位置付けられ、大動脈弓12の圧受容器30付近に背圧を生成し得る。
【0067】
外部圧縮装置182を起動すると、血管壁が収縮し、それによってその中の血管内腔の大きさが縮小する。血管内腔の大きさの縮小により、外部圧縮装置182の近位の血圧が上昇し、それによって血管壁が拡張する。したがって、外部圧縮装置182を選択的に起動して血管内腔を収縮させ、かつ背圧を生成することにより、圧受容器30が選択的に活性化され得る。
【0068】
次に、圧受容器30付近に人工的に背圧を生成する、血管内流量調節器の形態の圧受容器活性化装置200の概略図を示す図9Aおよび図9Bを参照されたい。血管内流量調節装置200の機能および使用は、図8Aおよび図8Bを参照して説明した血管外流量調節器180と実質的に同様であるが、血管内流量調節装置200が血管内腔に配置されるという点で異なる。
【0069】
血管内流量調節器200は、圧受容器30の遠位にある血管内腔を少なくとも部分的に閉塞する内部弁202を備える。圧受容器30の遠位にある血管内腔を少なくとも部分的に閉塞することにより、血管壁が拡張して圧受容器30を活性化するように、内部弁202の近位に背圧が生成される。内部弁202は、血管内腔内に配置されることを除いて、外部圧縮装置182を参照して説明したいかなる位置にも配置することができる。特に、内部圧縮装置202は、外頚動脈または内頚動脈18/19の遠位部に位置付けられ、頚動脈洞領域20の圧受容器30付近に背圧を生成し得る。あるいは、内部圧縮装置202は、右鎖骨下動脈13、右総頚動脈14、左総頚動脈15、左鎖骨下動脈16、または腕頭動脈22に位置付けられ、大動脈弓12の圧受容器30付近に背圧を生成し得る。
【0070】
内部弁202は、電気リード線204によって制御システム60のドライバ66に動作可能に連結される。制御システム60は、以下でより詳細に説明するように、弁202の流動抵抗を選択的に開閉または変更することができる。内部弁202は、ハウジング208内部で軸を中心に開位置と閉位置との間で回転する弁尖206(2尖弁または3尖弁)を備え得る。閉位置は、生成される所望の背圧量に応じて、完全に閉塞されてもよく、または部分的に閉塞されてもよい。内部弁202の開閉は、弁尖206の回転の抵抗を変更することにより、または弁尖206が開く力を変更することにより、選択的に制御され得る。弁尖206の回転の抵抗は、ハウジング208が有する電磁的に作動する金属ベアリングを利用して変更され得る。弁尖206が開く力は、各弁尖にある電磁コイルを利用して、弁尖が互いに反発または吸引するように弁尖を選択的に磁化することにより変更され、それによって弁の開閉それぞれが容易になる。
【0071】
多種多様な血管内流量調節器が、内部弁202の代わりに用いられ得る。例えば、Burton等に付与された米国特許第4,682,583号、およびGrundei等に付与された米国特許第5,634,878号に開示されるような内部膨張式バルーン装置(それらの全開示が参照により本明細書に援用される)が、弁202の代わりの使用に適合し得る。かかる膨張式バルーン装置は、図5を参照して説明した膨張式カフ122と同様の様式で動作し得る。特に、この実施形態では、ドライバ66は、内部バルーンを選択的に膨張および収縮させる圧力/真空源(すなわち膨張装置)を含み得る。膨張時には、バルーンは拡張して血流を部分的に遮断し、背圧を生成して圧受容器30および/または血管壁40を伸張または変形させることにより圧受容器30を機械的に活性化する。収縮時には、内部バルーンは、血流が妨げられず背圧が除去されるように、その正常な外径に戻る。したがって、内部バルーンを選択的に膨張させることにより、その近位の圧受容器30は、背圧を生成することによって選択的に活性化され得る。
【0072】
次に、血管壁40に配置された磁性粒子222の形態の圧受容器活性化装置220の概略図を示す図10Aおよび図10Bを参照されたい。磁性粒子222は、磁気反応性材料(すなわち鉄ベースの材料)を含むことができ、磁気的に中性または磁気的に活性であり得る。好ましくは、磁性粒子222は、N極およびS極を有して磁界に強く応答する細長円柱形の永久磁石を含む。磁性粒子222は電磁コイル224によって作動され、電磁コイル224は、電気ケーブル226によって制御システム60のドライバ66に動作可能に連結される。電磁コイル224は、図示のように移植されるか、または体外に位置付けることができ、体外の場合、制御システム60のドライバ66および残りの部分もまた体外に位置付けることができる。電磁コイル224を選択的に起動して磁界を形成することにより、磁性粒子222は反発、吸引、または回転し得る。あるいは、電磁コイル224により形成される磁界は、磁性粒子222が血管壁40内で振動するように交番し得る。電磁コイル224により形成される磁界によって、磁性粒子が反発、吸引、回転、振動、または移動すると、圧受容器30が機械的に活性化される。
【0073】
電磁コイル224は、血管壁40の磁性粒子222にできる限り接近して配置されることが好ましく、血管内、血管外、または図14〜図16に示すインダクタを参照して論考した任意の代替位置に配置することができる。磁性粒子222は、圧受容器30付近の血管壁に強磁性流体または強磁性粒子の懸濁液を注入することによって血管壁40に移植され得る。生体適合性を増大させるために、粒子222はセラミック、ポリマー、または他の不活性材料で被覆され得る。磁性粒子222を有する流体の注入は、経皮的に実行されることが好ましい。
【0074】
次に、1つ以上のトランスデューサ242の形態の圧受容器活性化装置240の概略図を示す図11Aおよび図11Bを参照されたい。好ましくは、トランスデューサ242は、血管壁を包囲するアレイを含む。トランスデューサ242は、圧受容器30付近の血管内または血管外に配置され得る。この実施形態では、トランスデューサ242は、機械的振動または音波などの何らかの物理現象に電気信号を変換する装置を含む。電気信号は、制御システム60のドライバ66に接続された電気ケーブル244によってトランスデューサ242に提供される。トランスデューサ242を選択的に起動して物理現象を生成することにより、圧受容器30が機械的に活性化され得る。
【0075】
トランスデューサ242は、音波または超音波を血管壁40に送信して圧受容器30を活性化する音響送信器を含み得る。あるいは、トランスデューサ242は、血管壁を振動させて圧受容器30を活性化する圧電材料を含み得る。さらなる代案として、トランスデューサ242は、電気信号を印加すると屈折する人工筋肉を含み得る。人工筋肉トランスデューサの一例は、導電性ポリマーであるポリピロールのシートの間に配置された過塩素酸リチウム電解質を含浸したプラスチックを含む。かかるプラスチック筋肉は、電気的に起動され、印加される電流の極性に応じて種々の方向に屈折を生じ得る。
【0076】
次に、化学的または生物学的な流体作用物質を圧受容器30付近の血管壁に送達するのに適した、局所流体送達装置262の形態の圧受容器活性化装置260の概略図を示す、図12Aおよび図12Bを参照されたい。局所流体送達装置262は、血管内、血管外、または壁内に位置付けられ得る。例示のためにのみ、局所流体送達装置262を血管外に配置する。
【0077】
局所流体送達装置262は、近位シールおよび遠位シール266を含むことができ、これらは血管壁に隣接する内腔すなわち腔268に配置された流体作用物質を保持する。好ましくは、局所流体送達装置262は、血管壁40を完全に包囲して効果的なシールを維持する。局所流体送達装置262が当該技術分野において公知の多種多様な植込み型薬剤送達装置またはポンプを含み得ることは、当業者には理解されよう。
【0078】
局所流体送達装置260は流体ライン264に接続され、流体ライン264は制御システム60のドライバ66に接続される。この実施形態では、ドライバ66は、圧力/真空源と、所望の化学的または生物学的な流体作用物質を含む流体槽とを含む。化学的または生物学的な流体作用物質は、多種多様な刺激物質を含み得る。例としては、ベラトリジン、ブラジキニン、プロスタグランジン、およびそれらの関連物質が挙げられる。かかる刺激物質は、圧受容器30を直接活性化するか、または他の刺激に対する圧受容器30の感受性を高めるため、本明細書に記載の他の圧受容器活性化装置と組み合わせて使用することができる。他の例としては、圧受容器30または圧受容器30を包囲する血管組織の細胞の機能を調節して、圧受容器30を活性化するか、または他の刺激に対する圧受容器30の反応性または活性化パターンを変更する成長因子および他の作用物質が挙げられる。米国特許第6,061,596号(参照により本明細書に援用される)に記載されるような、遠隔で誘導される注入可能刺激物質を、本発明とともに用い得ることも意図される。
【0079】
代案として、流体送達装置260を用いて、光により活性化されて上述のような刺激作用を持つまでは本質的に不活性である光化学物質を送達し得る。この実施形態では、流体送達装置260は発光ダイオード(LED)などの光源を含み、制御システム60のドライバ66は、上述の圧力/真空源および流体槽と組み合わせたLEDのためのパルス発生器を含み得る。光化学物質は、上述のような流体送達装置260により送達され、光化学物質は、LEDを起動、停止、または調節することにより活性化、不活性化、または調節され得る。
【0080】
さらなる代案として、流体送達装置260を用いて温流体または熱流体(warm or hot fluid)(例えば生理食塩水)を送達し、圧受容器30を熱的に活性化し得る。この実施形態では、制御システム60のドライバ66は、流体を加熱する発熱器を、上述の圧力/真空源および流体槽と組み合わせて含み得る。熱流体または温流体は、上述のような流体送達装置260で送達され、好ましくは循環され得、流体の温度はドライバ66によって制御され得る。
【0081】
次に、血管内導電構造すなわち電極282の形態の圧受容器活性化装置280の概略図を示す図13Aおよび図13Bを参照されたい。電極構造282は、血管内腔に配置された自己拡張型またはバルーン拡張型コイル、ブレード、あるいは他のステント状構造を備え得る。電極構造282は、内腔の開存性を維持し、かつ電気刺激も送達するという2つの目的を果たし得る。このために、電極構造282は、従来の血管内ステントおよびフィルタ送達技法を利用して移植され得る。好ましくは、電極構造282は、血液を灌流させ得る形状を備える。電極構造282は、選択的に絶縁されて所望の位置で血管壁40の内面と接触を確立し、血管および他の組織を流れる血液との外部からの電気接触を制限し得る導電性材料を含む。
【0082】
電極構造282は電気リード線284と接続され、電気リード線284は制御システム60のドライバ66に接続される。この実施形態では、ドライバ66は、電力増幅器、パルス発生器などを含み、構造282に電気制御信号を選択的に送達し得る。上述のように、ドライバ66により発生される電気制御信号は、制御システム60のメモリ62に含まれるアルゴリズムにより指示されるように、連続的、周期的、散発的、またはそれらの組み合わせであり得る。連続的制御信号は、一定のパルス、一定のパルス列、トリガとなるパルス、およびトリガとなるパルス列を含む。周期的制御信号は、上述の連続的制御信号のそれぞれを含み、指定開始時刻および指定持続時間を有する。散発的制御信号は、上述の連続的制御信号のそれぞれを含み、エピソードによりトリガされる。
【0083】
電極構造282に送信される電気制御信号を選択的に起動、停止、または調節することにより、電気エネルギーが血管壁に送達され、圧受容器30を活性化することができる。上述のように、圧受容器30の活性化は直接的または間接的に生じ得る。特に、電極構造282により血管壁40に送達される電気信号により、血管壁が伸張または変形し、それによってそこにある圧受容器30が間接的に活性化される。あるいは、電極構造282により血管壁に送達される電気信号は、圧受容器30にわたる電位を変更することによって圧受容器30を直接活性化し得る。いずれの場合も、電気信号は、圧受容器30のすぐ近くの血管壁40に送達される。電気エネルギーを印加すると電極構造282が抵抗発熱するように、高抵抗の半導体材料を利用して電極構造282が熱エネルギーを送達し得ることも意図される。
【0084】
デザイン、移植位置、および電気的活性化の方法を含んだ、電極構造282の様々な代替実施形態が意図される。例えば、電極構造282は、周囲の組織を接地として用いる、図13Aおよび図13Bに示すような単極であってもよく、または図18Aおよび図18Bに示すように構造282のいずれかの端部に接続されたリード線を用いる二極であってもよい。図18Aおよび図18Bの実施形態では、電極構造282は2つまたはそれ以上の個別の導電部材283/285を含み、これらは絶縁材料を利用してそれぞれの交差点で電気的に絶縁される。部材283/285のそれぞれは、電気リード線284内に含まれる別個の導体に接続される。あるいは、双極電極のアレイが、図21を参照してより詳細に説明するように用いられ得る。さらなる代案として、3つまたはそれ以上の導電部材が構造282に含まれる多極構成が用いられ得る。例えば、反対の極性を有する2つの導電部材の間に、ある極性を有する1つの導電部材を配置することにより、三極構成が提供され得る。
【0085】
電気的活性化に関しては、電気信号は、図13Aおよび図13Bを参照して説明したように電極構造282に直接送達され得るか、または図14〜図16、および図21に示すようにインダクタを利用して間接的に送達され得る。図14〜図16、および図21の実施形態は、電気リード線284によって制御システム60のドライバ66に動作可能に接続されるインダクタ286を利用する。インダクタ286は、電極構造282の周囲に磁界287を形成する(図21に見られるように)電気巻線を備える。磁界287は、インダクタ286を通る電流の流れの方向を交互にすることにより交番し得る。したがって、インダクタ286を利用して電極構造282に電流の流れを生成し、それによって、血管壁40に電気信号を送達して圧受容器30を直接的または間接的に活性化し得る。全ての実施形態において、インダクタ286は電気絶縁材料で覆われ、インダクタ286を包囲する組織が直接電気刺激を受けないようにする。誘導的に起動された電極構造282の好ましい実施形態を、図21A〜図21Cを参照してより詳細に説明する。
【0086】
図13〜図16の実施形態は、変更されてカソード/アノード構成を形成し得る。特に、電気インダクタ286は、図14〜図16に示すようにドライバ66に接続され、電極構造282は、図13に示すようにドライバ66に接続され得る。この構成では、電極構造282およびインダクタ286は任意の好適な形状であってよく、誘導のためにコイル状になっている必要はない。電極構造282およびインダクタ286は、カソード/アノード対またはアノード/カソード対を備え得る。例えば、起動時には、カソード282は電子の一次流を生成することができ、これが電極間の空間(すなわち、血管組織および圧受容器30)を通ってアノード286に移動する。カソードは、電子放出中は熱カソードではなく冷カソードであることが好ましい。上述のように、電子は、圧受容器30を電子的または熱的に活性化するために用いられ得る。
【0087】
電気インダクタ286は、電極構造282にできる限り接近して配置されることが好ましい。例えば、電気インダクタ286は、図14Aおよび図14Bに示すように、血管壁に隣接して配置され得る。あるいは、インダクタ286は、図15Aおよび図15Bに示すように、隣接する血管内に配置され得る。例えば、電極構造282が頚動脈洞20内に配置される場合、インダクタ286は、図15Aおよび図15Bに示すように、内頚静脈21内に配置され得る。図15Aおよび図15Bの実施形態では、電気インダクタ286は電極構造282と類似の構造を含み得る。さらなる代案として、電気インダクタ286は、患者の体外ではあるが電極構造282にできる限り接近して配置され得る。例えば、電極構造282が頚動脈洞20内に配置される場合、電気インダクタ286は、図16Aおよび図16Bに示すように、患者の首の右側または左側に配置され得る。電気インダクタ286が患者の体外に配置される図16Aおよび図16Bの実施形態では、制御システム60もまた患者の体外に配置され得る。
【0088】
移植位置に関しては、電極構造282は、図13Aおよび図13Bを参照して説明したように血管内に配置され得るか、または図17Aおよび図17Bを参照して説明するように血管外に配置され得、図17Aおよび図17Bは、血管外導電構造すなわち電極302の形態の圧受容器活性化装置300の概略図を示す。本明細書に記載がない限り、血管外電極構造302のデザイン、機能、および使用は、血管内電極構造282と同一である。電極構造302は、コイル、ブレード、または血管壁を包囲することができる他の構造を含み得る。あるいは、電極構造302は、血管壁の外面の周囲に分布される1つ以上の電極パッチを含み得る。電極構造302は血管壁の外面上に配置されるため、血管内送達技法は実用的ではない場合があり、低侵襲外科手術技法で十分であろう。血管外電極構造302は、電気リード線304によって制御システム60のドライバ66から直接、または図14〜図16を参照して説明したようなインダクタ(図示せず)を利用して間接的に、電気信号を受信し得る。
【0089】
次に、血管壁に配置される導電粒子322の形態の圧受容器活性化装置320の概略図を示す、図19Aおよび図19Bを参照されたい。この実施形態は、図13〜図18を参照して説明した実施形態と実質的に同一であるが、血管壁のいずれかの側に配置される導電構造282/302とは対照的に、導電粒子322は血管壁内に配置される点で異なる。さらに、この実施形態は、図10を参照して説明した実施形態と同様であるが、導電粒子322は必ずしも磁性粒子222と同様に磁性ではなく、導電粒子322は磁界によってではなく電磁界によって駆動されるという点で異なる。
【0090】
この実施形態では、制御システム60のドライバ66は、無線周波数またはマイクロ波送信器などの電磁送信器を備える。電磁放射線は、電気リード線326によってアンテナ324に動作可能に連結される送信器66により生成される。電磁波は、アンテナ324により放出され、血管壁40に配置された導電粒子322により受け取られる。電磁エネルギーは、導電粒子322内に振動電流の流れを生成し、電磁放射線の強度および導電粒子322の抵抗率に応じて、導電粒子322に熱を発生させる。導電粒子322により生成された電気または熱エネルギーは、周囲の血管壁組織によって、圧受容器30を直接活性化するか、または間接的に活性化し得る。
【0091】
電磁放射線送信器66およびアンテナ324は患者の体内に配置することができ、アンテナ324は、図19Aおよび図19Bに示すように、血管壁40に導電粒子に隣接して配置される。あるいは、アンテナ324は、図14〜図16に示す電気インダクタを参照して説明した任意の場所に配置され得る。電磁放射線送信器66およびアンテナ324を、図13〜図18を参照して説明した血管内および血管外導電構造282/302と組み合わせて利用して、血管壁のいずれかの側に熱エネルギーを生成することも意図される。
【0092】
代案として、電磁放射線送信器66およびアンテナ324は、導電粒子322なしで用いることができる。特に、電磁放射線送信器66およびアンテナ324を用いて、電磁放射線(例えば、RF、マイクロ波)を圧受容器30またはそれに隣接する組織に直接送達して局部加熱を生じさせ、それによって圧受容器30の信号を熱的に誘起することができる。
【0093】
次に、ペルチエ効果装置342の形態の圧受容器活性化装置340の概略図を示す、図20Aおよび図20Bを参照されたい。ペルチエ効果装置342は、図示のように血管外に配置され得るか、または血管内ステントまたはフィルタと同様に血管内に配置され得る。ペルチエ効果装置342は、電気リード線344によって制御システム60のドライバ66に動作可能に接続される。ペルチエ効果装置342は、熱伝達接合部(thermal transfer junction)347により分離された2つの異種金属または半導体343/345を含む。この特定の実施形態では、ドライバ66は電源を含み、これが異種金属または半導体343/345に電気エネルギーを送達して、熱接合部347にわたって電流の流れを生成する。
【0094】
電流が適当な方向に送達されると、熱接合部347に冷却効果が生成される。異種金属または半導体343/345に接続された個々のリード線344間の接合部において、加熱効果も生成される。冷却効果に比例するこの加熱効果を利用して、電気リード線344と異種金属または半導体343/345との間の接合部を血管壁40に隣接して配置することにより、圧受容器30を活性化し得る。
【0095】
次に、図14〜図16を参照して説明した実施形態とともに用いるための、誘導的に起動された電極構造282の好ましい実施形態の概略図を示す、図21A〜図21Cを参照されたい。この実施形態では、電極構造282の電流の流れは、インダクタ286により形成される磁界287によって誘導され、インダクタ286は、電気ケーブル284によって制御システム60のドライバ66に動作可能に連結される。電極構造282は、複数の個別部材282a、282b、282c、および282dを含む自己拡張型多糸ブレード構造(multi−filar self−expanding braid structure)を含むことが好ましい。しかしながら、電極構造282は、この実施形態のためには単に単一のコイルを備え得る。
【0096】
電極構造282を構成する個別のコイル部材282a〜282dはそれぞれ、図21Bおよび図21Cに示すように端と端を接続した複数の個別のコイルターン281からなる。図21Cは、図21Bに示す隣接コイルターン281間の接続の詳細な図である。各コイルターン281は電気的に絶縁されたワイヤすなわち受信器を含み、インダクタ286により磁界287の変化が生じると、その中で電流の流れが生じる。インダクタ286は、電気絶縁材料で覆われ、インダクタ286を包囲する組織が直接電気刺激を受けないようにすることが好ましい。各コイルターン281を通る電流の流れは、コイルターン281の各端部間で電位降下288をもたらす。隣接するコイルターン281間の各接合部において決まる電位降下により、各接合部に隣接する血管壁に局所的な電流の流れのセル(localized current flow cell)が生成される。したがって、双極(bipole)のアレイまたは複数の双極が電極構造282により生成され、血管壁にわたって均一に分布される。各コイルターン281は、電気絶縁材料292により包囲される導電ワイヤ材料290を含む。各コイルターン281の端部は、各コイルターン281が電気的に絶縁されたままとなるように、電気絶縁材料294により接続される。絶縁材料294は、隣接するコイルターン281を機械的に結合するが、電気的に絶縁し、その結果、インダクタ286の磁界287の変化により電流が誘導されると、各ターン281が同様の電位降下288で反応する。各コイルターン281の各端部には露出部分296が設けられ、血管壁組織との接触を容易にする。各露出部分296は、血管壁と接触している絶縁電極を含む。インダクタ286の磁界287の変化により、各コイルターン281に電位降下が生じ、それによって、隣接する露出領域296に対応する血管壁に小さな電流の流れのセルが生成される。血管の内壁に沿って複数の小さな電流のセルを生成することは、圧受容器30が活性化されるように比較的高い電流密度の円柱ゾーンを形成するのに役立つ。しかしながら、円柱状の電流密度の場は、血管壁の外壁付近でごくわずかな電流密度まで急速に低下し、これは外部からの電流の漏れを制限し、神経または筋肉などの血管外組織および構造の望ましくない活性化を最小限に抑えるかまたはなくすのに役立つ。
【0097】
次に、図22A〜図22Fを参照されたい。これらは、図17Aおよび図17Bを参照して説明した圧受容器活性化装置300などの、血管外電気活性化の実施形態のための、頚動脈洞20の周囲の種々の可能な電極構成の概略図を示す。以下に図示および説明する電極デザインは、頚動脈洞かまたはその付近での頚動脈との接続に特に適しており、外部組織の刺激を最小限に抑えるように設計され得る。
【0098】
図22A〜図22Fには、総頚動脈14、外頚動脈18、および内頚動脈19を含む頚動脈を示す。頚動脈洞20の位置は、目印となる隆起(bulge)21により識別することができ、これは通常、分岐部のすぐ遠位にある内頚動脈19上に位置するか、または分岐部を越えて総頚動脈14から内頚動脈19まで延在する。
【0099】
頚動脈洞20、特に頚動脈洞の隆起21は、血管壁に比較的高密度の圧受容器30(図示せず)を含み得る。そのため、活性化装置300の電極302を洞の隆起21上および/または周囲に配置して、圧受容器の反応性を最大にし、かつ外部組織の刺激を最小限に抑えることが望ましいであろう。
【0100】
頚動脈洞20および洞の隆起21の上および/または周囲の電極302の種々の場所を例示するために、装置300および電極302は単に概略的であり、その一部のみが示され得ることを理解すべきである。本明細書に記載の実施形態のそれぞれにおいて、電極302は単極(電極はカソードであり、周囲組織はアノードまたは接地である)、二極(カソード−アノード対)、または三極(アノード−カソード−アノードのセット)であり得る。特定の血管外電極デザインを、以下でより詳細に説明する。
【0101】
図22Aにおいて、血管外電気活性化装置300の電極302は、洞20の一部または全周を囲んで環状に延在する。図22Bにおいて、血管外電気活性化装置300の電極302は、洞20の一部または全周を囲んで螺旋状に延在する。図22Bに示す螺旋状構成では、電極302は洞20に何度も巻きつき、電極302の所望の接触および被覆を確立する。図22Aに示す環状構成では、単一の電極対302が洞20に巻きつくか、または図22Cに示すように複数の電極対302が洞20に巻きついて、電極302のさらなる接触および被覆を確立することができる。
【0102】
複数の電極対302は、洞20または隆起21の近位の地点から洞20または隆起21の遠位の地点まで延在し、洞20領域全体の圧受容器30の活性化を確実にする。電極302は、以下でより詳細に論考するように、単一のチャネルまたは複数のチャネルに接続され得る。複数の電極対302は、洞20の特定領域を標的として圧受容器の反応性を増大させるために、または活性化への組織領域の曝露を低減して圧受容器の反応性を長期間維持するために、選択的に起動され得る。
【0103】
図22Dにおいて、電極302は洞20の全周を囲んで交差状に延在する。電極302の交差状構成は、頚動脈洞20を囲んで内頚動脈19および外頚動脈18の両方との接触を確立する。同様に、図22Eにおいて、電極302は、分岐部における内頚動脈19および外頚動脈18を含み、場合によっては総頚動脈14を含む、洞20の外周の全部または一部を囲んで延在する。図22Fにおいて、電極302は、分岐部の遠位の内頚動脈19および外頚動脈18を含む洞20の外周の全部または一部を囲んで延在する。図22Eおよび図22Fにおいて、血管外電気活性化装置300は、支持体すなわちベース構造306を含んで図示され、支持体すなわちベース構造306は、以下でより詳細に説明するように、電極302を封入または絶縁することができ、洞20への取り付け手段を提供し得る。
【0104】
図22A〜図22Fを参照した上述の論考から、頚動脈洞20および関連する解剖学的構造に関して、活性化装置300の電極302に適したいくつかの構成があることが明白であるはずである。上述の例のそれぞれにおいて、電極302は頚動脈構造の一部に巻きつき、これにより、電極302がその弛緩形状(例えば直線)から変形する必要があり得る。かかる変形を低減または排除するために、電極302および/またはベース構造306は、取り付け点において頚動脈の解剖学的構造の形状に実質的に一致する弛緩形状を有し得る。換言すれば、電極302およびベース構造306は、実質的な弛緩状態で頚動脈の解剖学的構造に一致するように事前に成形され得る。あるいは、電極302は、電極302の歪みの量を低減させる形状および/または向きを有し得る。
【0105】
例えば、図23において、電極302は蛇行形または波形を有して示される。電極302の蛇行形は、頚動脈構造に巻きついたときに電極材料に生じる歪み量を低減する。さらに、電極の蛇行形は、頚動脈組織と電極302との接触面積を増大させる。代替として、電極302は、図24に示すように巻きつく方向に略直交して(すなわち、頚動脈の軸に略平行に)配置され得る。この代替では、電極302のそれぞれがある長さおよび幅または直径を有し、この場合、長さは幅または直径より実質的に大きい。電極302のそれぞれは、その長さに平行な長手方向軸を有し、ここでこの長手方向軸は巻きつく方向に直交し、かつ装置300が巻きつく頚動脈の長手方向軸に略平行である。上述の複数電極の実施形態と同様に、電極302は、以下でより詳細に論考するように、単一のチャネルまたは複数のチャネルに接続され得る。
【0106】
次に、血管外電気活性化装置300のための種々の多チャネル電極を概略的に示す図25〜図28を参照されたい。図25は、互いに隣接して平行に延在する6つの別個の細長い電極302を含む、6チャネル電極アセンブリを示す。電極302は、多チャネルケーブル304にそれぞれ接続される。電極302のいくつかは共通であってよく、それによって、ケーブル304に必要なチャネルの数が低減される。
【0107】
ベース構造または支持体306は、おそらくポリエステル織物などの可撓性材料で補強された、シリコーンなどの、移植に適した可撓性電気絶縁材料を含み得る。ベース306は、頚動脈洞20に隣接する1つ以上の頚動脈の外周の全部(360°)または一部(すなわち、360°未満)に巻きつくのに適した長さを有し得る。電極302は、頚動脈洞20に隣接する1つ以上の頚動脈の外周の一部(すなわち360°未満、例えば、270°、180°、または90°)を囲んで延在し得る。このために、電極302は、ベース206の長さより短い(例えば、75%、50%、または25%)長さを有し得る。電極302は通常、ベース306の長さに対して平行、直交、または傾斜をなし得、ベース306は、それが周りに配置される頚動脈の軸に略直交する。
【0108】
電極302は、白金などの導電性の放射線不透過性材料から形成される丸線ワイヤ、矩形リボン、または箔を含み得る。ベース構造306は、電極302を実質的に封入し、露出領域だけを血管外頚動脈洞組織に電気接続させる。例えば、各電極302は、ベース206の窪みに部分的に配置することができ、頚動脈組織への電気接続のために、その長さの全部または一部に沿って片側が露出され得る。頚動脈組織を通る電気経路は、細長い電極302の1つ以上の対によって規定され得る。
【0109】
図25〜図28を参照して記載される実施形態の全てにおいて、多チャネル電極302は、本明細書の他の部分で説明するように、頚動脈洞20の特定の領域をマッピングおよび標的化して、圧受容器の反応性を最大にするために起動するのに最良の電極302の組み合わせ(例えば、個々の対、または対の群)を決定するために、選択的に起動され得る。さらに、多チャネル電極302は、本明細書の他の部分で説明するように、上述のように起動に対する組織領域の曝露を低減して長期有効性を維持するために、選択的に起動され得る。これらの目的のために、3つ以上の電極チャネルを利用することが有用であり得る。あるいは、電極302は単一のチャネルに接続することができ、それによって、圧受容器は洞20領域全体で均一に活性化される。
【0110】
代替的な多チャネル電極デザインを図26に示す。この実施形態では、装置300は、4チャネルコネクタ303を介して16チャネルケーブル304に接続された16個の個別の電極パッド302を含む。この実施形態では、円形の電極パッド302は、ベース構造306により部分的に封入され、各ボタン電極302の片面を頚動脈組織への電気接続のために露出させておく。この構成により、頚動脈組織を通る電気経路は、電極パッド302の1つ以上の対(二極)または群(三極)により規定され得る。
【0111】
多チャネルパッド型電極デザインの変形例を図27に示す。この実施形態では、装置300は、16個のリング305に包囲された16個の個別の円形パッド電極302を含み、これは集合的に同心電極パッド302/305と呼ばれ得る。パッド電極302は、4チャネルコネクタ303を介して17チャネルケーブル304と接続され、リング305は一般に、単一のチャネルコネクタ307を介して17チャネルケーブル304と接続される。この実施形態では、円形電極302およびリング305は、ベース構造306に部分的に封入され、各パッド電極302の片面と各リング305の片側とを頚動脈組織への電気接続のために露出させておく。代替として、2つのリング305が各電極302を包囲することができ、これらのリング305は共通して接続される。これらの構成により、頚動脈組織を通る電気経路は、1つ以上のパッド電極302/リング305のセット間で規定され、局在的な電気経路を生成し得る。
【0112】
多チャネルパッド電極デザインの別の変形例を図28に示す。この実施形態では、装置300は3チャネルケーブル304に接続された制御ICチップ310を含む。制御チップ310は、4チャネルコネクタ303を介して16個の個別のパッド電極302にも接続される。制御チップ310により、符号化システムを利用してケーブル304のチャネルの数を低減することができる。制御システム60は符号化制御信号を送信し、それはチップ310によって受信される。チップ310は、符号を変換し、符号に従って、選択された電極302の対を有効(enable)または無効(disable)にする。
【0113】
例えば、制御信号はパルス波形を含むことができ、この場合、各パルスは異なる符号を含む。各パルスの符号により、チップ310は1つ以上の電極対を有効にし、残りの電極を無効にする。したがって、パルスは、そのパルスにより送信された符号に対応する有効な電極対(単数または複数)にのみ送信される。続くパルスのそれぞれは、先行するパルスとは異なる符号を有し、その結果、チップ310は、異なる符合に対応する異なる電極302のセットを有効または無効にする。したがって、事実上いかなる数の電極対も、各電極302に対してケーブル304の別個のチャネルを必要とせずに、制御チップ310を用いて選択的に起動することができる。ケーブル304のチャネルの数を低減することにより、その大きさおよびコストを低減することができる。
【0114】
必要に応じて、図3を参照して説明したのと同じ機能を利用して、ICチップ310をフィードバックセンサ80に接続することができる。さらに、1つ以上の電極302は、起動に有効ではない場合、フィードバックセンサとして用いることができる。例えば、かかるフィードバックセンサ電極を用いて、血管壁の導電性を測定または監視し、ECGに類似したデータを提供することができる。あるいは、かかるフィードバックセンサ電極を用いて、脈圧中の血流量の変化によるインピーダンスの変化を感知し、心拍数、血圧、または他の生理学的パラメータを示すデータを提供することができる。
【0115】
次に、支持カラーすなわちアンカー312を含む血管外電気活性化装置300を概略的に示す図29を参照されたい。この実施形態では、活性化装置300は、内頚動脈19に頚動脈洞20のところで巻きついており、支持カラー312は総頚動脈14に巻きついている。活性化装置300は、ケーブル304によって支持カラー312に接続され、ケーブル304は緩いテザーとして機能する。この構成により、カラー312は、制御システム60および/またはドライバ66の動きにより見られ得るような、支持カラーの近位のケーブル304により伝えられる動きおよび力が活性化装置に伝わらないようにする。支持カラー312の代替として、ケーブル304とベース306との間の接合点で、活性化装置300のベース構造306にひずみ取り(図示せず)を接続することができる。いずれの手法でも、頚動脈の解剖学的構造に関する装置300の位置は、システムの他の部品が動くにもかかわらずより良好に維持され得る。
【0116】
この実施形態では、活性化装置300のベース構造306は、図示のように縫合糸309を有する縫合フラップ308を利用した成形管、管状押出し品、または管状に巻いた材料のシートを含み得る。ベース構造306は、シリコーンなどの可撓性生体適合性材料から形成することができ、DACRONという商品名で入手可能なポリエステル織物などの可撓性材料で補強されて複合構造物を形成し得る。ベース構造306の内径は、頚動脈の移植位置における外径に対応し得、例えば6〜8mmである。ベース構造306の壁の厚さは、非常に薄くして柔軟性および薄型を維持することができ、例えば1mm未満である。装置300が洞の隆起21の周囲に配置される場合、それに対応する形状の隆起をベース構造に設け、位置決めの際のさらなる支持および支援を提供し得る。
【0117】
電極302(想像線で示す)は、白金または白金イリジウムなどの導電性の放射線不透過性材料から形成される丸線ワイヤ、矩形リボン、または箔を含み得る。電極は、ベース構造306に成型され得るか、またはその内径に接着接続して、電極の一部を頚動脈組織への電気接続のために露出させ得る。電極302は、ベース構造306の全内周未満(例えば300°)を包囲し、短絡を回避し得る。電極302は、上述のいかなる形状および構成を有してもよい。例えば、図29に示すように、それぞれ1.5mmの間隔を隔てて配置された幅1mmの2つの矩形リボン電極302が用いられ得る。
【0118】
支持カラー312は、ベース構造306と同様に形成され得る。例えば、支持カラーは、図示のように縫合糸313を有する縫合フラップ315を利用した成形管、管状押出し品、および管状に巻いた材料のシートを含み得る。支持カラー312は、シリコーンなどの可撓性生体適合性材料から形成することができ、補強されて複合構造物を形成し得る。ケーブル304は支持カラー312に固定され、支持カラー312と活性化装置300との間のケーブル304にあそびを残す。
【0119】
電気活性化の実施形態を含む、本明細書に記載の血管外実施形態の全てにおいて、縫合糸または他の固定手段を用いて、活性化装置を血管壁に固定することが望ましい場合がある。例えば、縫合糸311を用いて、頚動脈の解剖学的構造(または圧受容器を含む他の血管部位)に関して電気活性化装置300の場所を維持し得る。かかる縫合糸311は、ベース構造306に接続され、血管壁の全部または一部を通過し得る。例えば、縫合糸311は、ベース構造306を通り、血管壁外膜を通って結ばれる。ベース構造306がパッチを含むか、または頚動脈の解剖学的構造を部分的に包囲する場合、ベース構造の角部および/または端部は縫合され、さらなる縫合糸がその間に均等に分布し得る。ベース構造306を通る穴すなわち裂け目の広がりを最小限に抑えるために、ポリエステル織物などの補強材がシリコーン材料に埋め込まれ得る。縫合糸に加えて、例えばステープルまたは生体適合性接着剤などの他の固定手段を用いることができる。
【0120】
次に、脊椎部(spine)317に相互接続された1つ以上の電極リブ316を含む、代替的な血管外電気活性化装置300を概略的に示す図30を参照されたい。必要に応じて、1つ以上の(非電極)リブ316を有する支持カラー312を用いて、支持カラー312の近位のケーブル304により伝えられる動きおよび力が活性化装置300に伝わらないようにすることができる。
【0121】
活性化装置300のリブ316は、頚動脈洞20に隣接する内頚動脈19などの頚動脈の解剖学的構造の周囲に適合する大きさになっている。同様に、支持カラー312のリブ316は、頚動脈洞20の近位の総頚動脈14などの頚動脈の解剖学的構造の周囲に適合する大きさであり得る。リブ316は分離され、頚動脈上に配置され、頚動脈の周囲で閉じられて、頚動脈の解剖学的構造に装置300を固定し得る。
【0122】
装置300のリブ316のそれぞれは、頚動脈組織への電気接続のためにその内面に電極302を含む。リブ316は、電極302の周囲に絶縁材料を提供し、血管壁に対して内側部分のみを露出している。電極302は、脊椎部317を介して多チャネルケーブル304と連結される。脊椎部317は、支持カラー312のリブ316に対するテザーとしても機能し、リブの機能は支持を提供することであるため、リブは電極を含まない。図25〜図28を参照して論考した多チャネル電極302の機能は、この実施形態にも同様に当てはまる。
【0123】
リブ316の端部は、頚動脈の周囲に配置された後で接続(例えば縫合)され得るか、または図示のように開いたままであり得る。端部が開いたままである場合、リブ316は比較的硬い材料から形成されて、頚動脈周囲の機械的係止を確実にする。例えば、リブ316はポリエチレン、ポリプロピレン、PTFE、または他の類似の絶縁生体適合性材料から形成され得る。あるいは、リブ316は、金属材料が電極302から電気的に絶縁される限り、ステンレス鋼またはニッケルチタン合金などの金属から形成され得る。さらなる代替として、リブ316は、金属(例えば、ステンレス鋼、ニッケルチタン合金など)補強材により提供される構造の完全性を有する絶縁生体適合性ポリマー材料を含み得る。この後者の代替では、電極302は金属補強材を含み得る。
【0124】
次に、血管外電気活性化装置300の電極アセンブリの具体例を概略的に示す図31を参照されたい。この具体例では、ベース構造306は、長さ5.0インチ、厚さ0.007インチ、および幅0.312インチのシリコーンシートを含む。電極302は、長さ0.47インチ、厚さ0.0005インチ、および幅0.040インチの白金リボンを含む。電極302は、シリコーンシート306の片側に接着接続される。
【0125】
電極302は、改良型二極式心内膜ペーシングリード(modified bipolar endocardial pacing lead)に接続され、これは、CONIFIXという商品名でInnomedica(現在のBIOMEC Cardiovascular, Inc.)から型番501112で入手可能である。ケーブル304の近位端は、上述のように制御システム60またはドライバ66に接続される。ペーシングリードは、ペーシング電極を除去してケーブル本体304を形成することにより変更される。MP35ワイヤがその遠位端から引き出されて、並んで配置された直径約0.020インチの2つのコイル318を形成する。次に、コイル318は、白金電極302の一端にレーザ溶接された316型ステンレス鋼圧着端子を利用して電極に取り付けられる。ケーブル304の遠位端およびコイル318と電極302の端部との間の接続は、シリコーンにより封入される。
【0126】
図31に示すケーブル304は同軸型ケーブルを含み、これは、2つの別個のコイル318に分離されて電極302に付着する、2つの同軸上に配置されたコイルリード線を含む。代替的なケーブル304の構造を図32に示す。図32は、移植前に正弦波形状のように曲線状に形成され得る代替的ケーブル本体304を示す。曲線構造は、装置300と制御システム60またはドライバ66との間の距離の変化に容易に適応する。かかる距離の変化は、移植後の患者の首の屈曲および/または伸長の間に生じ得る。
【0127】
この代替実施形態において、ケーブル本体304は、図示のように同軸上または同一線上に整列した2本以上の導電性ワイヤ304aを含み得る。各導電性ワイヤ304aは、ステンレス鋼またはMP35Nなどの好適な導電材料のマルチフィラメント構造を含み得る。絶縁材料が、ワイヤ導体304aを個別かつ/または集合的に包囲し得る。例示のためにのみ、絶縁材料により個別に包囲された一対の導電性ワイヤ304aを示す。絶縁ワイヤ304aは、例えば絶縁材料を含むスペーサ304bにより接続され得る。好適な絶縁材料の付加的な被覆物が、導体304aのそれぞれを包囲し得る。絶縁被覆物は、絶縁ワイヤ304aと同じ曲線形状を有するように形成され、移植中にケーブル本体304の形状を維持するのに役立ち得る。
【0128】
曲線形状として正弦波形状が選択される場合、振幅(A)は1mm〜10mmの範囲、好ましくは2mm〜3mmの範囲であり得る。正弦波の波長(WL)は、2mm〜20mmの範囲、好ましくは4mm〜10mmの範囲であり得る。曲線または正弦波形状は、ケーブルを熱に曝しながらケーブル304を所望の形状に保持する取付具を利用するヒートセット手法によって形成され得る。十分な熱を用いて、導電性ワイヤ304aおよび/またはそれを包囲する絶縁材料をヒートセットする。冷却後にケーブル304を取付具から取り外すことができ、ケーブル304は所望の形状を保持している。
【0129】
低血圧および血圧の上昇を必要とする他の状態に対処するために、上述の圧受容器活性化装置のいくつかを用いて、圧受容器信号を阻害または抑制することにより血圧を選択的かつ制御可能に調節することができる。圧受容器信号を選択的かつ制御可能に阻害または抑制することにより、本発明は、上述の低血圧に関連する状態を軽減する。特に、本発明は、圧受容器の活性化を阻害または抑制することにより、血圧および交感神経系の活性レベルを上昇させるために機能し得る。
【0130】
これは、機械的、熱的、電気的、化学的、または生物学的手段を利用して達成され得る。機械的手段は、心臓の圧脈によりトリガされて、動脈壁の変形を機械的に制限し得る。例えば、上述の外部圧縮装置120/160のいずれかを用いて、動脈壁の変形を制限することができる。あるいは、外部圧縮装置は、トリガまたは制御信号を必要とせずに、圧受容器付近の血管壁の直径の拡張を単に制限することができる。
【0131】
熱的手段を用いて、圧受容器30および隣接組織を冷却し、圧受容器30の反応性を低減することにより、圧受容器信号を抑制することができる。特に、圧受容器30の信号は、圧受容器30を直接冷却してその感受性、代謝活性、および機能を低減することにより、または、周囲の血管壁組織を冷却して血圧の上昇に対する壁の反応性を低くすることにより、抑制することができる。この手法の例は、ペルチエ装置340の冷却効果を用いることである。特に、熱伝達接合部347を血管壁に隣接して配置して、冷却効果を提供することができる。冷却効果を用いて、圧受容器30が発生する信号を抑制することができる。この手法の別の例は、流体送達装置260を用いて低温水すなわち冷水(例えば生理食塩水)を送達することである。この実施形態では、ドライバ66は流体を冷却するために熱交換器を含み、制御システム60を用いて流体の温度を調節し、それによって圧受容器30の信号の抑制度を調節することができる。
【0132】
電気的手段を用いて、例えば、圧受容器30内かまたはそれに隣接する細胞を過分極することにより、圧受容器30の活性化を阻害することができる。細胞の過分極の装置および方法の例は、Kievalに付与された米国特許第5,814,079号、およびKievalに付与された米国特許第5,800,464号に開示され、それらの全開示が参照により本明細書に援用される。かかる電気的手段は、図13〜図18および図21を参照して論考した任意の実施形態を用いて実施され得る。
【0133】
化学的または生物学的手段を用いて、圧受容器30の感受性を低減することができる。例えば、圧受容器の感受性を低減する物質を、上述の流体送達装置260を用いて送達することができる。脱感受性作用物質は、例えば、テトロドトキシンまたは興奮性組織の他の阻害剤を含み得る。上述のことから、圧受容器の活性化または圧受容器信号の阻害/抑制により、血圧、神経系活性、および神経ホルモン活性が選択的かつ制御可能に調節され得る多数の装置、システム、および方法を本発明が提供することは、当業者には明白であるはずである。したがって、本発明を用いて、心臓、血管系、および他の器官および組織への有害作用を最小限に抑える必要に応じて、血圧、交感神経系活性、および神経ホルモン活性を増大または低減することができる。
【0134】
上述の圧受容器活性化装置を用いて、抗不整脈作用を提供することもできる。伝動障害および悪性心不整脈の発生に対する心筋の感受性が、心臓に対する交換神経系の刺激と副交換神経系の刺激との間のバランスの影響を受けることは既知である。すなわち、高度の交感神経系活性は、副交感神経刺激の低下と相まって、心筋の被刺激性および不整脈が起きる可能性を増大させる。したがって、交感神経系活性レベルを低減させること、および副交換神経活性レベルを高めることにより、本発明の装置、システム、および方法を用いて、心臓伝導障害の発生に対する防護効果を提供することができる。
【0135】
これらの用途のそれぞれに関して、活性化装置70の出力を頚動脈洞20のうち圧受容器30が豊富な部分に集中させて、頚動脈洞20のうち圧受容体30が少ないかまたは全くない部分に送達される出力を最小限に抑えることが望ましいであろう。出力自体を集中させることにより、圧受容器の活性化は最大になり、必要な装置出力(すなわち、圧受容器活性化装置70の所要電力またはエネルギー出力)は最小になり得る。特に、圧受容器活性化と装置出力との比(A/O)が最大になり得る。さらに、出力自体を集中させることにより、外部組織の活性化を最小限に抑えることができ、消費電力(装置70による)を最小限に抑えることができ、圧受容器の反応性の低下率を最小限に抑えることができる。
【0136】
A/O比が圧受容器活性化装置の場所の関数であることが判明している。特に、A/O比が、おそらく圧受容器の位置または密度の変動により、頚動脈洞20付近の頚動脈の外周付近では異なることが判明している。本明細書では頚動脈洞20を参照して説明したが、A/O比が上述の圧受容器を含む解剖学的位置の全てにおいて異なる可能性も高い。
【0137】
圧受容器活性化装置70を配置してA/O比を最大にするために、マッピング技法が用いられ得る。例えば、装置70は、2つ以上の異なる場所に、かつ/または2つまたはそれ以上の異なる解剖学的位置に向けられ得る。より詳細には、装置70の出力手段は、2つ以上の異なる場所/位置に配置され得る。出力手段は通常、圧受容器を包囲する組織に刺激が伝達される時に通る構造を指す。電気活性化の実施形態では、例えば、出力手段は電極を含み得る。
【0138】
各場所/位置において、装置70は指定レベルまで起動することができ、圧受容器活性化の程度が観察または測定され得る。圧受容器活性化の程度は、心拍数、血圧、および/または圧受容器活性化を示す他の生理学的パラメータの変化を測定することにより推論的に決定され得る。得られる測定値を用いて、各場所/位置のA/O比を生成することができる。各位置のA/O比は、マップを生成するためにグラフでプロットされ得る。A/O比は比較することができ、最も望ましいA/O比を有する場所/位置を装置70のために選択することができる。
【0139】
このマッピング方法を例示するために、図33〜図35を参照し得る。限定ではなく一例として、特に動脈に関してマッピング方法を説明するが、本方法は、圧受容器を含む解剖学的構造全てに等しく適用可能である。図33は、総頚動脈14、内頚動脈18、および外頚動脈19を含む右頚動脈を示す。頚動脈洞20が隆起21により強調され得、隆起21は通常、総頚動脈14から分岐部付近の内頚動脈18まで延在する。頚動脈洞20は、かなりの数の圧受容器を含み、その数および密度は、洞20の外周の周囲で、かつその長さに沿って変化し得る。したがって、外周的な場所および長手方向的な場所の両方に関して、圧受容器活性化装置70の最適な場所を決定することが望ましい。
【0140】
本明細書に記載のマッピング方法は、活性化の方法(機械的、電気的、熱的、化学的、生物学的、または他の手段)およびそのインビボでの場所(血管内、血管外、壁内)に関係なく、全ての圧受容器活性化装置70に等しく適用可能である。限定ではなく一例として、装置70を、2つの異なる位置で頚動脈洞20の外壁に接触する2つの電極520を有する血管外電気装置500として図34に示す。装置500は、成形シリコーンハウジング512を備える。このハウジング512は、2つの金属ストリップ510を有し、この金属ストリップ510は、約4mmずつ離れており、白金リボン(幅0.040インチ×厚さ0.0005インチ×長さ10mm)で形成されている。金属ストリップ510は、幅1mmの露出領域516以外はハウジング512により絶縁されている。金属ストリップ510の露出部分516は、頚動脈の外面に接触する2つの電極520を規定する。図3を参照して上述したように、リード線514は、制御システム60に接続されたケーブル502に金属ストリップ510を結合させる。
【0141】
図34に示す頚動脈付近に配置された装置500では、装置500は起動されて電極520から出力信号を生成することができ、次にこの出力信号が、心拍数および/または血圧の変化により証明されるように、圧受容器を活性化する。電極520の場所および/または位置は、出力量(例えば電力)および対応する心拍数、血圧および/または圧受容器活性化を示す他の生理学的パラメータの変化とともに記録される。この情報から、この特定の場所/位置に関してA/O比が決定され得る。
【0142】
次に、装置500の電極520は、異なる場所に向けられ(例えば回転され)、かつ/または異なる解剖学的位置に配置され、同じ測定が行なわれる。これらの工程は、所望の量のデータを収集するために繰り返され、データはグラフでプロットされてマップが生成され、最適な場所/位置が決定される。A/O比は、比較することができ、最も望ましいA/O比を有する場所/位置を、装置500のために選択することができる。装置500の代替として、電極520を組み込んだハンドヘルドプローブまたは類似の装置を用いて、より容易な操作および異なる位置/場所間の迅速な変更を可能にすることができる。
【0143】
頚動脈周囲の外周の種々の場所を追跡するために、座標系が図35に示すように用いられ得る。図35は、図34の35−35線に沿って得た概略断面図であり、左頚動脈15および右頚動脈14のマッピング座標系を示す。この座標系では、左頚動脈15および右頚動脈14は、患者の頭から足に向かって見た断面図であり、身体の前面が0°に、後面が180°になっている。左頚動脈洞20Lを特定する左の隆起21Lの中心すなわち先端は、通常110°〜160°にある。右頚動脈洞20Rを特定する右の隆起21Rの中心すなわち先端は、通常200°〜250°にある。この座標系は、他の動脈および管状器官に加えて、頚動脈の外周をマッピングするのに特に有用である。
【0144】
この方法をさらに例示するために、動物の左頚動脈および右頚動脈上の装置500を利用して、動物実験を実施した。実質的に図34に示すように、頚動脈洞20付近の頚動脈の内頚動脈18および外頚動脈19の分岐部に装置500を巻きつけた。図35を参照して説明した座標系を用いると、この動物の左頚動脈洞20Lの隆起21Lの中心は120°にあり、右頚動脈洞20Rの隆起21Rの中心は200°にあった。
【0145】
電極520を、左頚動脈の周囲で90°、120°、180°、および270°の場所に回転させた。電極520を、右頚動脈の周囲で155°、180°、200°、220°、および255°の場所に回転させた。各場所において、電極520を4ボルトの信号で起動し、平均動脈圧(MAP)および心拍数(HR)を測定した。右側からのデータを図36にグラフで示し、左側からのデータを図37にグラフで示す。
【0146】
このデータは、頚動脈の外周周囲の反応性(すなわち圧受容器活性の程度)が非均一かつ予測不可能であることを示唆する。しかしながら、このデータから、頚動脈の外周周囲のホットスポット(A/O比が大きい)およびデッドスポット(A/O比が小さい)の両方を突きとめることが可能である。例えば、右側では、155°〜180°にデッドゾーンがあり、255°付近にデッドスポットがあると思われる。また、右側では、190°〜220°にホットゾーンがあると思われる。左側では、90°〜180°にホットゾーンが、270°付近にデッドスポットがあると思われる。したがって、右側と左側との間で、おそらくは患者間で、頚動脈の外周周囲のA/O比は変動する。この変動により、本明細書に記載のマッピング方法は、最適なA/O比のために圧受容器活性化装置を位置決めするのに有益であり得る。
【0147】
本明細書の他の部分で説明したように、装置500が頚動脈洞の広い領域周辺に(例えば全周にわたって)配置された多くの個別に制御可能な電極520を有し得ることも意図される。電極520は個別に起動することができ、各電極の対応する圧受容器の応答を決定することができる。その場合、最も望ましいA/O比を有する電極520が常用のために選択され得る。この方法により、最適なA/O比を見出すために装置を再配置または再位置付けする必要がなくなる。この方法はまた、移植後に、続く臨床的手の際に装置500の場所/位置を変更する必要なく、変更すべき電極を選択することを可能にする。
【0148】
本明細書で記載および意図された特定の実施形態以外の種々の形態で本発明が明示され得ることは、当業者には認識される。従って、添付の特許請求の範囲に記載される本発明の範囲および精神から逸脱することなく、形態および詳細を発展させることができる。
【図面の簡単な説明】
【図1】 図1は、主な動脈および静脈ならびに関連する解剖学的構造を示す、人体の胴体上部の概略図である。
【図2A】 図2Aは、頚動脈洞と血管壁内の圧受容器との概略断面図である。
【図2B】 図2Bは、血管壁内の圧受容器と圧反射系との概略図である。
【図3】 図3は、本発明による圧受容器活性化システムの概略図である。
【図4】 図4Aおよび図4Bは、本発明の実施形態による、圧受容器信号を機械的に誘起する内部膨張式バルーンの形態の圧受容器活性化装置の概略図である。
【図5】 図5Aおよび図5Bは、本発明の実施形態による、圧受容器信号を機械的に誘起する外圧式カフ(external pressure cuff)の形態の圧受容器活性化装置の概略図である。
【図6A】 図6Aは、本発明の実施形態による、圧受容器信号を機械的に誘起する内部変形可能なコイル構造の形態の圧受容器活性化装置の概略図である。
【図6B】 図6Bは、本発明の実施形態による、圧受容器信号を機械的に誘起する内部変形可能なコイル構造の形態の圧受容器活性化装置の概略図である。
【図6C】 図6Cは、図6Aおよび図6Bに示すコイル部材の代替実施形態の断面図である。
【図6D】 図6Dは、図6Aおよび図6Bに示すコイル部材の代替実施形態の断面図である。
【図7A】 図7Aは、本発明の実施形態による、圧受容器信号を機械的に誘起する外部変形可能なコイル構造の形態の圧受容器活性化装置の概略図である。
【図7B】 図7Bは、本発明の実施形態による、圧受容器信号を機械的に誘起する外部変形可能なコイル構造の形態の圧受容器活性化装置の概略図である。
【図7C】 図7Cは、図7Aおよび図7Bに示すコイル部材の代替実施形態の断面図である。
【図7D】 図7Dは、図7Aおよび図7Bに示すコイル部材の代替実施形態の断面図である。
【図8】 図8Aおよび図8Bは、本発明の実施形態による、圧受容器信号を誘起するために人工的に背圧を生成する、外部流量調節器の形態の圧受容器活性化装置の概略図である。
【図9】 図9Aおよび図9Bは、本発明の実施形態による、圧受容器信号を誘起するために人工的に背圧を生成する、内部流量調節器の形態の圧受容器活性化装置の概略図である。
【図10】 図10Aおよび図10Bは、本発明の実施形態による、圧受容器信号を機械的に誘起する磁気装置の形態の圧受容器活性化装置の概略図である。
【図11】 図11Aおよび図11Bは、本発明の実施形態による、圧受容器信号を機械的に誘起するトランスデューサの形態の圧受容器活性化装置の概略図である。
【図12】 図12Aおよび図12Bは、本発明の実施形態による、圧受容器信号を化学的または生物学的に誘起する作用物質を送達するために用いられ得る、流体送達装置の形態の圧受容器活性化装置の概略図である。
【図13】 図13Aおよび図13Bは、本発明の実施形態による、圧受容器信号を電気的または熱的に誘起する内部導電構造の形態の圧受容器活性化装置の概略図である。
【図14】 図14Aおよび図14Bは、本発明の実施形態による、圧受容器信号を電気的または熱的に誘起する内部インダクタにより起動される、内部導電構造の形態の圧受容器活性化装置の概略図である。
【図15】 図15Aおよび図15Bは、本発明の実施形態による、圧受容器信号を電気的または熱的に誘起する、隣接血管に位置付けられた内部インダクタにより起動される、内部導電構造の形態の圧受容器活性化装置の概略図である。
【図16】 図16Aおよび図16Bは、本発明の実施形態による、圧受容器信号を電気的または熱的に誘起する外部インダクタにより起動される、内部導電構造の形態の圧受容器活性化装置の概略図である。
【図17】 図17Aおよび図17Bは、本発明の実施形態による、圧受容器信号を電気的または熱的に誘起する外部導電構造の形態の圧受容器活性化装置の概略図である。
【図18】 図18Aおよび図18Bは、本発明の実施形態による、圧受容器信号を電気的または熱的に誘起する内部二極導電構造の形態の圧受容器活性化装置の概略図である。
【図19】 図19Aおよび図19Bは、本発明の実施形態による、圧受容器信号を電気的または熱的に誘起する電磁界応答装置の形態の圧受容器活性化装置の概略図である。
【図20】 図20Aおよび図20Bは、本発明の実施形態による、圧受容器信号を熱的に誘起する外部ペルチエ装置の形態の圧受容器活性化装置の概略図である。
【図21】 図21A〜図21Cは、誘導的に起動された導電構造の好ましい実施形態の概略図である。
【図22】 図22A〜図22Fは、血管外電気活性化の実施形態の、頚動脈洞周囲の電極の種々の可能な配置の概略図である。
【図23】 図23は、血管外電気活性化の実施形態の、蛇行形電極の概略図である。
【図24】 図24は、血管外電気活性化の実施形態の、頚動脈洞に巻きつく方向に直交して整列した複数の電極の概略図である。
【図25】 図25は、血管外電気活性化の実施形態の、種々の多チャネル電極の概略図である。
【図26】 図26は、血管外電気活性化の実施形態の、種々の多チャネル電極の概略図である。
【図27】 図27は、血管外電気活性化の実施形態の、種々の多チャネル電極の概略図である。
【図28】 図28は、血管外電気活性化の実施形態の、種々の多チャネル電極の概略図である。
【図29】 図29は、頚動脈洞および総頚動脈の周囲に配置された、テザーおよびアンカーを含む血管外電気活性化装置の概略図である。
【図30】 図30は、複数の肋骨部(ribs)および脊椎部(spine)を含む代替的血管外電気活性化装置の概略図である。
【図31】 図31は、血管外電気活性化の実施形態の電極アセンブリの概略図である。
【図32】 図32は、図31に示すような電極アセンブリとともに用いるための、代替ケーブルの断片の概略図である。
【図33】 図33は、頚動脈洞の標識構造である血管壁の膨らみを示す、右頚動脈の概略図である。
【図34】 図34は、右頚動脈の圧受容器のマッピングに用いられ得る、右頚動脈周囲に配置された圧受容器活性化装置の概略図である。
【図35】 図35は、左右の頚動脈のマッピング座標系を示す、図34の線35−35に沿った概略断面図である。
【図36】 図36は、それぞれ右頚動脈および左頚動脈周辺の圧受容器の反応性の変動を示すグラフである。
【図37】 図37は、それぞれ右頚動脈および左頚動脈周辺の圧受容器の反応性の変動を示すグラフである。
【図38】 図38は、時間関数としての動脈圧信号、ECG信号、および制御/出力信号を示す図である。
【図39】 図39は、本発明の種々の実施形態による、種々の刺激方式の効力を示すグラフである。
【図40】 図40は、本発明の種々の実施形態による、種々の刺激方式の効力を示すグラフである。
【図41】 図41は、本発明の種々の実施形態による、種々の刺激方式の効力を示すグラフである。

Claims (15)

  1. 圧受容器活性化システムであって、
    血管壁にある圧受容器に近接して血管上若しくは血管内に配置される長期移植用に構成された電極と、
    前記電極に結合された制御システムであって、メモリに記憶された刺激方式に基づいて、刺激信号を、前記電極を介して前記圧受容器に送信し、血圧を低下させるものである、前記制御システムと
    を有するシステム。
  2. 請求項1記載のシステムにおいて、前記電極は単極電極である。
  3. 請求項1または2記載のシステムにおいて、前記電極は、血管外移植用に構成されたパッチ電極である。
  4. 請求項1または2記載のシステムにおいて、前記電極は、血管内移植用に構成されているものである。
  5. 請求項4記載のシステムにおいて、前記電極は自己拡張可能に構成されたものである。
  6. 請求項1〜5いずれか1の請求項に記載のシステムにおいて、前記電極はカソードを有するものである。
  7. 請求項1〜6いずれか1の請求項に記載のシステムにおいて、
    このシステムは、さらに、圧反射治療の必要性を示すセンサ信号を生成するように構成されたセンサを有し、
    前記制御システムは、前記センサ信号に基づいて、刺激信号を前記電極を介して前記圧受容器に送信するものである。
  8. 請求項7記載のシステムにおいて、前記センサは血圧を検出するように構成されているものである。
  9. 請求項7記載のシステムにおいて、前記センサは心不全を検出するように構成されているものである。
  10. 圧受容器活性化装置を制御する方法であって、
    前記圧受容器活性化装置は、血管壁にある圧受容器に近接して血管に若しくは血管内に長期的に移植される電極を有し、さらに前記電極に接続されメモリに格納された所定の刺激方式に基づいて前記電極に刺激信号を送信する制御システムを含むものであり、この方法は、
    コンピュータが、前記メモリに格納された前記刺激方式にアクセスする工程と、
    コンピュータが、前記刺激方式に従って、前記電極を介して圧受容器を刺激する信号を前記制御システムから前記圧受容器活性化装置に送信する工程と
    を有する方法。
  11. 請求項10記載の方法において、前記圧受容器活性化装置はさらに、前記制御システムに接続されたセンサを含み、前記方法はさらに、
    コンピュータが、前記センサで圧反射治療の必要性を示すパラメータを検出する工程と、
    コンピュータが、前記パラメータに基づいてセンサ信号を生成する工程と、
    コンピュータが、前記センサ信号に基づいて、前記電極を介して圧受容器を刺激する信号を前記制御システムから前記圧受容器活性装置に送信する工程と
    を有するものである。
  12. 請求項10記載の方法において、前記圧受容器活性化装置は、単極パッチ電極を有するものである。
  13. 請求項10記載の方法において、前記圧受容器活性化装置はさらに、血管壁にある1若しくはそれ以上の圧受容器に近接して血管に若しくは血管内に移植される複数の電極を含み、前記方法はさらに、
    コンピュータが、前記複数の電極の各々を選択的に作動させる工程と、
    コンピュータが、前記複数の電極の各々を選択的に作動させることに応じて、圧受容器活性化を示す患者パラメータを測定する工程と、
    コンピュータシステムによって、前記患者パラメータの測定に基づいて前記複数の電極の1若しくはそれ以上を選択する工程と
    を有するものである。
  14. 請求項10記載の方法において、この方法は、さらに、
    コンピュータが、前記複数の電極を2若しくはそれ以上の組み合わせで選択的に作動させる工程と、
    コンピュータが、前記複数の電極の2若しくはそれ以上の組み合わせを選択的に作動させることに応じて、圧受容器活性化を示す患者パラメータを測定する工程と、
    コンピュータが、前記患者パラメータの測定に基づいて前記複数の電極の2若しくはそれ以上の組み合わせを選択する工程と
    を有するものである。
  15. 方法であって、
    圧受容器活性化装置を提供する工程であって、この圧受容器活性化装置は
    血管壁にある1若しくはそれ以上の圧受容器に近接して患者の血管に若しくは血管内に移植されるように構成された電極と、
    前記電極に結合された、メモリを含む制御システムと、
    前記メモリに格納された刺激方式と
    を含むものである、前記提供する工程と、
    前記制御システムが、前記刺激方式に基づいて、前記圧受容器を刺する信号を前電極に送信する工程と
    を有する方法。
JP2002530143A 2000-09-27 2001-09-27 心血管性反射制御のための装置および方法 Expired - Lifetime JP5047447B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US09/671,850 2000-09-27
US09/671,850 US6522926B1 (en) 2000-09-27 2000-09-27 Devices and methods for cardiovascular reflex control
US09/963,777 US7158832B2 (en) 2000-09-27 2001-09-26 Electrode designs and methods of use for cardiovascular reflex control devices
US09/963,991 US6850801B2 (en) 2001-09-26 2001-09-26 Mapping methods for cardiovascular reflex control devices
US09/964,079 US6985774B2 (en) 2000-09-27 2001-09-26 Stimulus regimens for cardiovascular reflex control
US09/964,079 2001-09-26
US09/963,777 2001-09-26
US09/963,991 2001-09-26
PCT/US2001/030249 WO2002026314A1 (en) 2000-09-27 2001-09-27 Devices and methods for cardiovascular reflex control

Publications (3)

Publication Number Publication Date
JP2004526471A JP2004526471A (ja) 2004-09-02
JP2004526471A5 JP2004526471A5 (ja) 2011-09-22
JP5047447B2 true JP5047447B2 (ja) 2012-10-10

Family

ID=27505343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002530143A Expired - Lifetime JP5047447B2 (ja) 2000-09-27 2001-09-27 心血管性反射制御のための装置および方法

Country Status (8)

Country Link
US (1) US6985774B2 (ja)
EP (4) EP2535082B1 (ja)
JP (1) JP5047447B2 (ja)
AT (1) ATE432732T1 (ja)
AU (1) AU2001294799A1 (ja)
DE (1) DE60138902D1 (ja)
ES (1) ES2330833T3 (ja)
WO (1) WO2002026314A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use

Families Citing this family (495)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US20070129746A1 (en) * 1999-12-09 2007-06-07 Mische Hans A Methods and devices for the treatment of neurological and physiological disorders
US7499742B2 (en) * 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US20080167699A1 (en) * 2000-09-27 2008-07-10 Cvrx, Inc. Method and Apparatus for Providing Complex Tissue Stimulation Parameters
US7158832B2 (en) * 2000-09-27 2007-01-02 Cvrx, Inc. Electrode designs and methods of use for cardiovascular reflex control devices
US20080177348A1 (en) * 2000-09-27 2008-07-24 Cvrx, Inc. Electrode contact configurations for an implantable stimulator
US7623926B2 (en) 2000-09-27 2009-11-24 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US8086314B1 (en) 2000-09-27 2011-12-27 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US7616997B2 (en) * 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US20070185542A1 (en) * 2002-03-27 2007-08-09 Cvrx, Inc. Baroreflex therapy for disordered breathing
US7840271B2 (en) * 2000-09-27 2010-11-23 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US6907295B2 (en) * 2001-08-31 2005-06-14 Biocontrol Medical Ltd. Electrode assembly for nerve control
US6684105B2 (en) * 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US7778711B2 (en) * 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Reduction of heart rate variability by parasympathetic stimulation
US7904176B2 (en) * 2006-09-07 2011-03-08 Bio Control Medical (B.C.M.) Ltd. Techniques for reducing pain associated with nerve stimulation
US7734355B2 (en) * 2001-08-31 2010-06-08 Bio Control Medical (B.C.M.) Ltd. Treatment of disorders by unidirectional nerve stimulation
US8571653B2 (en) * 2001-08-31 2013-10-29 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation techniques
US7778703B2 (en) * 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Selective nerve fiber stimulation for treating heart conditions
US8615294B2 (en) * 2008-08-13 2013-12-24 Bio Control Medical (B.C.M.) Ltd. Electrode devices for nerve stimulation and cardiac sensing
US20090005845A1 (en) * 2007-06-26 2009-01-01 Tamir Ben David Intra-Atrial parasympathetic stimulation
US7885709B2 (en) * 2001-08-31 2011-02-08 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation for treating disorders
US8565896B2 (en) 2010-11-22 2013-10-22 Bio Control Medical (B.C.M.) Ltd. Electrode cuff with recesses
US7974693B2 (en) 2001-08-31 2011-07-05 Bio Control Medical (B.C.M.) Ltd. Techniques for applying, configuring, and coordinating nerve fiber stimulation
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
WO2003068047A2 (en) * 2002-02-11 2003-08-21 Gold - T Tech, Inc. Method for preventing thrombus formation
EP1487536A4 (en) * 2002-03-27 2009-12-02 Cvrx Inc DEVICES AND METHODS FOR CARDIOVASCULAR REFLEX CONTROL OF COUPLED ELECTRODES
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US20110207758A1 (en) 2003-04-08 2011-08-25 Medtronic Vascular, Inc. Methods for Therapeutic Renal Denervation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US6978174B2 (en) 2002-04-08 2005-12-20 Ardian, Inc. Methods and devices for renal nerve blocking
US20070135875A1 (en) * 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US20140018880A1 (en) 2002-04-08 2014-01-16 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7162303B2 (en) * 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US8551069B2 (en) 2002-04-08 2013-10-08 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for treating contrast nephropathy
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US20040039417A1 (en) * 2002-04-16 2004-02-26 Medtronic, Inc. Electrical stimulation and thrombolytic therapy
US7321793B2 (en) * 2003-06-13 2008-01-22 Biocontrol Medical Ltd. Vagal stimulation for atrial fibrillation therapy
US7885711B2 (en) * 2003-06-13 2011-02-08 Bio Control Medical (B.C.M.) Ltd. Vagal stimulation for anti-embolic therapy
US7844346B2 (en) * 2002-05-23 2010-11-30 Biocontrol Medical Ltd. Electrode assembly for nerve control
US7561922B2 (en) * 2004-12-22 2009-07-14 Biocontrol Medical Ltd. Construction of electrode assembly for nerve control
US8204591B2 (en) * 2002-05-23 2012-06-19 Bio Control Medical (B.C.M.) Ltd. Techniques for prevention of atrial fibrillation
NL1021969C2 (nl) * 2002-11-21 2004-05-26 Eugene Christian Olgers Inrichting voor inbrenging in een menselijk lichaam.
US7189204B2 (en) 2002-12-04 2007-03-13 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US8880192B2 (en) 2012-04-02 2014-11-04 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
US7627384B2 (en) 2004-11-15 2009-12-01 Bio Control Medical (B.C.M.) Ltd. Techniques for nerve stimulation
AU2004213010A1 (en) * 2003-02-18 2004-09-02 Neurosignal Technologies, Inc. Regulation of blood pressure by coded nerve signals
US20060111626A1 (en) * 2003-03-27 2006-05-25 Cvrx, Inc. Electrode structures having anti-inflammatory properties and methods of use
US8060197B2 (en) * 2003-05-23 2011-11-15 Bio Control Medical (B.C.M.) Ltd. Parasympathetic stimulation for termination of non-sinus atrial tachycardia
US8718791B2 (en) 2003-05-23 2014-05-06 Bio Control Medical (B.C.M.) Ltd. Electrode cuffs
JP4192040B2 (ja) * 2003-06-11 2008-12-03 泉工医科工業株式会社 バルーンポンプ駆動装置
EP1648558A4 (en) * 2003-06-13 2015-05-27 Biocontrol Medical B C M Ltd APPLICATIONS OF VAGAL STIMULATION
US7184830B2 (en) * 2003-08-18 2007-02-27 Ebr Systems, Inc. Methods and systems for treating arrhythmias using a combination of vibrational and electrical energy
EP1670547B1 (en) 2003-08-18 2008-11-12 Cardiac Pacemakers, Inc. Patient monitoring system
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
US7571008B2 (en) * 2003-08-18 2009-08-04 Medtronic, Inc. System and apparatus for remote activation of implantable medical devices
US8014872B2 (en) 2003-08-18 2011-09-06 Medtronic, Inc. System and apparatus for controlled activation of acute use medical devices
US7887493B2 (en) * 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US8606356B2 (en) 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
DE202004021951U1 (de) 2003-09-12 2013-06-19 Vessix Vascular, Inc. Auswählbare exzentrische Remodellierung und/oder Ablation von atherosklerotischem Material
US7480532B2 (en) * 2003-10-22 2009-01-20 Cvrx, Inc. Baroreflex activation for pain control, sedation and sleep
US7572226B2 (en) * 2003-10-28 2009-08-11 Cardiac Pacemakers, Inc. System and method for monitoring autonomic balance and physical activity
US7657312B2 (en) * 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US20050165317A1 (en) * 2003-11-04 2005-07-28 Turner Nicholas M. Medical devices
US7783353B2 (en) * 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
US7706884B2 (en) * 2003-12-24 2010-04-27 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US7643875B2 (en) * 2003-12-24 2010-01-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US7486991B2 (en) 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US7647114B2 (en) 2003-12-24 2010-01-12 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US7869881B2 (en) * 2003-12-24 2011-01-11 Cardiac Pacemakers, Inc. Baroreflex stimulator with integrated pressure sensor
EP1706177B1 (en) * 2003-12-24 2009-08-19 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US7460906B2 (en) * 2003-12-24 2008-12-02 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US7769450B2 (en) * 2004-11-18 2010-08-03 Cardiac Pacemakers, Inc. Cardiac rhythm management device with neural sensor
US20080015659A1 (en) * 2003-12-24 2008-01-17 Yi Zhang Neurostimulation systems and methods for cardiac conditions
US20050149132A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Automatic baroreflex modulation based on cardiac activity
US8126559B2 (en) 2004-11-30 2012-02-28 Cardiac Pacemakers, Inc. Neural stimulation with avoidance of inappropriate stimulation
US8126560B2 (en) * 2003-12-24 2012-02-28 Cardiac Pacemakers, Inc. Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US20050149129A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baropacing and cardiac pacing to control output
US8396560B2 (en) 2004-11-18 2013-03-12 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US8200331B2 (en) * 2004-11-04 2012-06-12 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
US9020595B2 (en) * 2003-12-24 2015-04-28 Cardiac Pacemakers, Inc. Baroreflex activation therapy with conditional shut off
US7509166B2 (en) * 2003-12-24 2009-03-24 Cardiac Pacemakers, Inc. Automatic baroreflex modulation responsive to adverse event
US20050149133A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Sensing with compensation for neural stimulator
US8086315B2 (en) * 2004-02-12 2011-12-27 Asap Medical, Inc. Cardiac stimulation apparatus and method for the control of hypertension
US7499747B2 (en) 2004-03-02 2009-03-03 Cvrx, Inc. External baroreflex activation
US7697991B2 (en) * 2004-05-04 2010-04-13 The Cleveland Clinic Foundation Methods of treating neurological conditions by neuromodulation of interhemispheric fibers
WO2005107854A2 (en) 2004-05-04 2005-11-17 The Cleveland Clinic Foundation Corpus callosum neuromodulation assembly
US7260431B2 (en) 2004-05-20 2007-08-21 Cardiac Pacemakers, Inc. Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device
PT1759536E (pt) * 2004-06-01 2011-09-08 Kwalata Trading Ltd Técnicas in vitro para utilização com células estaminais
US7747323B2 (en) 2004-06-08 2010-06-29 Cardiac Pacemakers, Inc. Adaptive baroreflex stimulation therapy for disordered breathing
US7596413B2 (en) * 2004-06-08 2009-09-29 Cardiac Pacemakers, Inc. Coordinated therapy for disordered breathing including baroreflex modulation
US20060004417A1 (en) * 2004-06-30 2006-01-05 Cvrx, Inc. Baroreflex activation for arrhythmia treatment
US7346382B2 (en) 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
US7999806B2 (en) * 2004-07-23 2011-08-16 Panasonic Corporation Three-dimensional shape drawing device and three-dimensional shape drawing method
US9706997B2 (en) 2004-08-27 2017-07-18 Rox Medical, Inc. Device and method for establishing an artificial arterio-venous fistula
US7828814B2 (en) 2004-08-27 2010-11-09 Rox Medical, Inc. Device and method for establishing an artificial arterio-venous fistula
US20060047337A1 (en) 2004-08-27 2006-03-02 Brenneman Rodney A Device and method for establishing an artificial arterio-venous fistula
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US20060074453A1 (en) * 2004-10-04 2006-04-06 Cvrx, Inc. Baroreflex activation and cardiac resychronization for heart failure treatment
US8175705B2 (en) * 2004-10-12 2012-05-08 Cardiac Pacemakers, Inc. System and method for sustained baroreflex stimulation
US7672733B2 (en) * 2004-10-29 2010-03-02 Medtronic, Inc. Methods and apparatus for sensing cardiac activity via neurological stimulation therapy system or medical electrical lead
US20070083239A1 (en) * 2005-09-23 2007-04-12 Denise Demarais Methods and apparatus for inducing, monitoring and controlling renal neuromodulation
US7937143B2 (en) * 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US8332047B2 (en) * 2004-11-18 2012-12-11 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US8226592B2 (en) * 2004-12-15 2012-07-24 Rox Medical, Inc. Method of treating COPD with artificial arterio-venous fistula and flow mediating systems
US8609082B2 (en) 2005-01-25 2013-12-17 Bio Control Medical Ltd. Administering bone marrow progenitor cells or myoblasts followed by application of an electrical current for cardiac repair, increasing blood supply or enhancing angiogenesis
WO2006080075A1 (ja) * 2005-01-27 2006-08-03 Japan Health Sciences Foundation 頚部圧力負荷による自律神経治療装置
EP1863564B1 (en) * 2005-03-11 2016-11-23 Cardiac Pacemakers, Inc. Combined neural stimulation and cardiac resynchronization therapy
US7587238B2 (en) * 2005-03-11 2009-09-08 Cardiac Pacemakers, Inc. Combined neural stimulation and cardiac resynchronization therapy
US7840266B2 (en) 2005-03-11 2010-11-23 Cardiac Pacemakers, Inc. Integrated lead for applying cardiac resynchronization therapy and neural stimulation therapy
US7660628B2 (en) * 2005-03-23 2010-02-09 Cardiac Pacemakers, Inc. System to provide myocardial and neural stimulation
ATE542486T1 (de) 2005-03-28 2012-02-15 Minnow Medical Llc Intraluminale elektrische gewebecharakterisierung und abgestimmte hf-energie zur selektiven behandlung von atherom und anderen zielgeweben
US7542800B2 (en) 2005-04-05 2009-06-02 Cardiac Pacemakers, Inc. Method and apparatus for synchronizing neural stimulation to cardiac cycles
US8406876B2 (en) 2005-04-05 2013-03-26 Cardiac Pacemakers, Inc. Closed loop neural stimulation synchronized to cardiac cycles
US7493161B2 (en) 2005-05-10 2009-02-17 Cardiac Pacemakers, Inc. System and method to deliver therapy in presence of another therapy
US8473049B2 (en) 2005-05-25 2013-06-25 Cardiac Pacemakers, Inc. Implantable neural stimulator with mode switching
US7499748B2 (en) * 2005-04-11 2009-03-03 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US7881782B2 (en) * 2005-04-20 2011-02-01 Cardiac Pacemakers, Inc. Neural stimulation system to prevent simultaneous energy discharges
US7734348B2 (en) 2005-05-10 2010-06-08 Cardiac Pacemakers, Inc. System with left/right pulmonary artery electrodes
US7617003B2 (en) * 2005-05-16 2009-11-10 Cardiac Pacemakers, Inc. System for selective activation of a nerve trunk using a transvascular reshaping lead
DE102005031116B4 (de) * 2005-07-04 2012-04-12 Siemens Ag Stoßwellensystem
US20070021803A1 (en) 2005-07-22 2007-01-25 The Foundry Inc. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US20110077729A1 (en) * 2009-09-29 2011-03-31 Vascular Dynamics Inc. Devices and methods for control of blood pressure
US9642726B2 (en) 2005-07-25 2017-05-09 Vascular Dynamics, Inc. Devices and methods for control of blood pressure
US8923972B2 (en) * 2005-07-25 2014-12-30 Vascular Dynamics, Inc. Elliptical element for blood pressure reduction
US9125732B2 (en) * 2005-07-25 2015-09-08 Vascular Dynamics, Inc. Devices and methods for control of blood pressure
US9592136B2 (en) 2005-07-25 2017-03-14 Vascular Dynamics, Inc. Devices and methods for control of blood pressure
US8862243B2 (en) * 2005-07-25 2014-10-14 Rainbow Medical Ltd. Electrical stimulation of blood vessels
US20110118773A1 (en) * 2005-07-25 2011-05-19 Rainbow Medical Ltd. Elliptical device for treating afterload
US20070142879A1 (en) * 2005-12-20 2007-06-21 The Cleveland Clinic Foundation Apparatus and method for modulating the baroreflex system
US7616990B2 (en) 2005-10-24 2009-11-10 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US7570999B2 (en) 2005-12-20 2009-08-04 Cardiac Pacemakers, Inc. Implantable device for treating epilepsy and cardiac rhythm disorders
US20070156200A1 (en) 2005-12-29 2007-07-05 Lilian Kornet System and method for regulating blood pressure and electrolyte balance
US8109879B2 (en) 2006-01-10 2012-02-07 Cardiac Pacemakers, Inc. Assessing autonomic activity using baroreflex analysis
AU2007212587B2 (en) * 2006-02-03 2012-07-12 Synecor, Llc Intravascular device for neuromodulation
US20070191904A1 (en) * 2006-02-14 2007-08-16 Imad Libbus Expandable stimulation electrode with integrated pressure sensor and methods related thereto
TW200734462A (en) 2006-03-08 2007-09-16 In Motion Invest Ltd Regulating stem cells
US20070225781A1 (en) * 2006-03-21 2007-09-27 Nidus Medical, Llc Apparatus and methods for altering temperature in a region within the body
JP4828984B2 (ja) * 2006-03-28 2011-11-30 テルモ株式会社 穿刺具
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US7647101B2 (en) * 2006-06-09 2010-01-12 Cardiac Pacemakers, Inc. Physical conditioning system, device and method
US8968204B2 (en) * 2006-06-12 2015-03-03 Transonic Systems, Inc. System and method of perivascular pressure and flow measurement
ATE536147T1 (de) 2006-06-28 2011-12-15 Ardian Inc Systeme für wärmeinduzierte renale neuromodulation
US8170668B2 (en) 2006-07-14 2012-05-01 Cardiac Pacemakers, Inc. Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy
US8457734B2 (en) 2006-08-29 2013-06-04 Cardiac Pacemakers, Inc. System and method for neural stimulation
US8175712B2 (en) * 2006-09-05 2012-05-08 The Penn State Research Foundation Homotopic conditioning of the brain stem baroreflex of a subject
US20080091255A1 (en) * 2006-10-11 2008-04-17 Cardiac Pacemakers Implantable neurostimulator for modulating cardiovascular function
EP2455036B1 (en) * 2006-10-18 2015-07-15 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
EP3257462B1 (en) 2006-10-18 2022-12-21 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
WO2008049082A2 (en) 2006-10-18 2008-04-24 Minnow Medical, Inc. Inducing desirable temperature effects on body tissue
WO2008070189A2 (en) 2006-12-06 2008-06-12 The Cleveland Clinic Foundation Method and system for treating acute heart failure by neuromodulation
US20080167690A1 (en) * 2007-01-05 2008-07-10 Cvrx, Inc. Treatment of peripheral vascular disease by baroreflex activation
US8150521B2 (en) * 2007-03-15 2012-04-03 Cvrx, Inc. Methods and devices for controlling battery life in an implantable pulse generator
US8496653B2 (en) * 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US20090132002A1 (en) * 2007-05-11 2009-05-21 Cvrx, Inc. Baroreflex activation therapy with conditional shut off
US8209033B2 (en) * 2007-05-14 2012-06-26 Cardiac Pacemakers, Inc. Method and apparatus for regulating blood volume using volume receptor stimulation
EP1998054B1 (de) * 2007-05-24 2014-08-13 Parker Origa Holding AG Pneumatikzylinder mit einer selbsteinstellenden Endlagendämpfung und entsprechendes Verfahren
US20080306563A1 (en) * 2007-06-05 2008-12-11 Jose Roberto Kullok System and method for cardiovascular treatment or training
US8828068B2 (en) 2007-07-17 2014-09-09 Cardiac Pacemakers, Inc. Systems and methods for local vasoactive response using temperature modulation
US8594794B2 (en) 2007-07-24 2013-11-26 Cvrx, Inc. Baroreflex activation therapy with incrementally changing intensity
WO2009021535A1 (en) * 2007-08-14 2009-02-19 Campus Micro Technologies Gmbh Medical devices, systems and methods for blood pressure regulation
US20090112962A1 (en) * 2007-10-31 2009-04-30 Research In Motion Limited Modular squaring in binary field arithmetic
JP5189654B2 (ja) * 2007-12-12 2013-04-24 カーディアック ペースメイカーズ, インコーポレイテッド 肺動脈から神経刺激を伝達する刺激システム
WO2009081411A2 (en) * 2007-12-26 2009-07-02 Rainbow Medical Nitric oxide generation to treat female sexual dysfunction
JP5116856B2 (ja) 2007-12-28 2013-01-09 シーブイアールエックス,インコーポレイテッド 患者の生理学的パラメータの測定
US8214050B2 (en) * 2007-12-31 2012-07-03 Cvrx, Inc. Method for monitoring physiological cycles of a patient to optimize patient therapy
US8538535B2 (en) 2010-08-05 2013-09-17 Rainbow Medical Ltd. Enhancing perfusion by contraction
US20100305392A1 (en) * 2008-01-31 2010-12-02 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US8626299B2 (en) * 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US9005106B2 (en) 2008-01-31 2015-04-14 Enopace Biomedical Ltd Intra-aortic electrical counterpulsation
US8626290B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta
US9220889B2 (en) 2008-02-11 2015-12-29 Intelect Medical, Inc. Directional electrode devices with locating features
US8019440B2 (en) 2008-02-12 2011-09-13 Intelect Medical, Inc. Directional lead assembly
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US20100211131A1 (en) * 2008-04-07 2010-08-19 Williams Michael S Intravascular system and method for blood pressure control
US8958870B2 (en) * 2008-04-29 2015-02-17 Medtronic, Inc. Therapy program modification
US9272153B2 (en) 2008-05-15 2016-03-01 Boston Scientific Neuromodulation Corporation VOA generation system and method using a fiber specific analysis
US8401652B2 (en) 2008-06-16 2013-03-19 Cvrx, Inc. Devices and methods for treatment of heart failure and associated conditions
US8321024B2 (en) 2008-06-16 2012-11-27 Cvrx, Inc. Devices and methods for treatment of heart failure and associated conditions
US8326430B2 (en) * 2008-06-16 2012-12-04 Cvrx, Inc. Devices and methods for treatment of heart failure and associated conditions
US8768469B2 (en) 2008-08-08 2014-07-01 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
CA2737785A1 (en) * 2008-09-22 2010-03-25 Minnow Medical, Inc. Inducing desirable temperature effects on body tissue using alternate energy sources
EP2346405B1 (en) * 2008-09-26 2019-03-13 Vascular Dynamics Inc. Devices and methods for control of blood pressure
WO2010039862A1 (en) * 2008-09-30 2010-04-08 Rox Medical, Inc. Methods for screening and treating patients with compromised cardiopulmonary function
KR20110104504A (ko) 2008-11-17 2011-09-22 미노우 메디컬, 인코포레이티드 조직 토폴로지의 지식 여하에 따른 에너지의 선택적 축적
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8808345B2 (en) * 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US9682512B2 (en) 2009-02-06 2017-06-20 Nike, Inc. Methods of joining textiles and other elements incorporating a thermoplastic polymer material
US20100199406A1 (en) 2009-02-06 2010-08-12 Nike, Inc. Thermoplastic Non-Woven Textile Elements
US8906275B2 (en) 2012-05-29 2014-12-09 Nike, Inc. Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
EP2470258B1 (en) 2009-08-27 2017-03-15 The Cleveland Clinic Foundation System and method to estimate region of tissue activation
JP6013186B2 (ja) 2009-11-13 2016-10-25 セント ジュード メディカル インコーポレイテッド 千鳥配置された焼灼素子のアセンブリ
WO2011068997A1 (en) 2009-12-02 2011-06-09 The Cleveland Clinic Foundation Reversing cognitive-motor impairments in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming
JP5600751B2 (ja) 2009-12-08 2014-10-01 カーディアック ペースメイカーズ, インコーポレイテッド 埋め込み型医療装置における併用療法検出
US20110208173A1 (en) * 2010-02-24 2011-08-25 Medtronic Vascular, Inc. Methods for Treating sleep apnea via renal Denervation
US8556891B2 (en) 2010-03-03 2013-10-15 Medtronic Ablation Frontiers Llc Variable-output radiofrequency ablation power supply
CA2795229A1 (en) 2010-04-09 2011-10-13 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8870863B2 (en) 2010-04-26 2014-10-28 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
AU2011267853B2 (en) 2010-06-14 2016-12-08 Boston Scientific Neuromodulation Corporation Programming interface for spinal cord neuromodulation
US9782592B2 (en) * 2010-07-15 2017-10-10 Boston Scientific Neuromodulation Corporation Energy efficient high frequency nerve blocking technique
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
CA2807277C (en) 2010-08-05 2020-05-12 Medtronic Ardian Luxembourg S.A.R.L. Cryoablation apparatuses, systems, and methods for renal neuromodulation
WO2012149511A2 (en) 2011-04-28 2012-11-01 Synecor Llc Neuromodulation systems and methods for treating acute heart failure syndromes
WO2012054762A2 (en) * 2010-10-20 2012-04-26 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable mesh structures for renal neuromodulation and associated systems and methods
US9084610B2 (en) 2010-10-21 2015-07-21 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
EP4059459A1 (en) 2010-10-25 2022-09-21 Medtronic Ireland Manufacturing Unlimited Company Microwave catheter apparatuses for renal neuromodulation
JP2013540563A (ja) 2010-10-25 2013-11-07 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ 腎臓神経調節のための多電極アレイを有するカテーテル装置、ならびに関連するシステムおよび方法
US9066720B2 (en) 2010-10-25 2015-06-30 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US9060754B2 (en) 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US9066713B2 (en) 2010-10-26 2015-06-30 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US8437867B2 (en) 2010-10-29 2013-05-07 Cvrx, Inc. Implant tool and improved electrode design for minimally invasive procedure
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9457186B2 (en) 2010-11-15 2016-10-04 Bluewind Medical Ltd. Bilateral feedback
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US10292754B2 (en) 2010-11-17 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Therapeutic renal neuromodulation for treating dyspnea and associated systems and methods
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US8649863B2 (en) 2010-12-20 2014-02-11 Rainbow Medical Ltd. Pacemaker with no production
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
EP2691896A2 (en) 2011-03-29 2014-02-05 Boston Scientific Neuromodulation Corporation Communication interface for therapeutic stimulation providing systems
US20120259269A1 (en) 2011-04-08 2012-10-11 Tyco Healthcare Group Lp Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
TW201242570A (en) 2011-04-25 2012-11-01 Medtronic Ardian Luxembourg Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US9526572B2 (en) 2011-04-26 2016-12-27 Aperiam Medical, Inc. Method and device for treatment of hypertension and other maladies
WO2012149205A1 (en) * 2011-04-27 2012-11-01 Dolan Mark J Nerve impingement systems including an intravascular prosthesis and an extravascular prosthesis and associated systems and methods
US8909316B2 (en) 2011-05-18 2014-12-09 St. Jude Medical, Cardiology Division, Inc. Apparatus and method of assessing transvascular denervation
US9592389B2 (en) 2011-05-27 2017-03-14 Boston Scientific Neuromodulation Corporation Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information
US9248296B2 (en) 2012-08-28 2016-02-02 Boston Scientific Neuromodulation Corporation Point-and-click programming for deep brain stimulation using real-time monopolar review trendlines
US9446240B2 (en) 2011-07-11 2016-09-20 Interventional Autonomics Corporation System and method for neuromodulation
US20130072995A1 (en) 2011-07-11 2013-03-21 Terrance Ransbury Catheter system for acute neuromodulation
WO2013022543A2 (en) 2011-07-11 2013-02-14 Synecor Llc Catheter system for acute neuromodulation
EP2734259B1 (en) 2011-07-20 2016-11-23 Boston Scientific Scimed, Inc. Percutaneous device to visualize, target and ablate nerves
JP6106669B2 (ja) 2011-07-22 2017-04-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. ヘリカル・ガイド内に配置可能な神経調節要素を有する神経調節システム
US9199082B1 (en) 2011-07-27 2015-12-01 Cvrx, Inc. Devices and methods for improved placement of implantable medical devices
WO2013023085A2 (en) 2011-08-09 2013-02-14 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing
US9814395B2 (en) 2011-08-10 2017-11-14 Cardiac Pacemakers, Inc. Method and apparatus for determination of physiological parameters using cervical impedance
US9526637B2 (en) 2011-09-09 2016-12-27 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US8855783B2 (en) 2011-09-09 2014-10-07 Enopace Biomedical Ltd. Detector-based arterial stimulation
US9427579B2 (en) 2011-09-29 2016-08-30 Pacesetter, Inc. System and method for performing renal denervation verification
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
WO2013055815A1 (en) 2011-10-11 2013-04-18 Boston Scientific Scimed, Inc. Off -wall electrode device for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
EP2768568B1 (en) 2011-10-18 2020-05-06 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
WO2013058962A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Deflectable medical devices
WO2013067018A2 (en) 2011-11-01 2013-05-10 Synthes Usa, Llc Intraoperative neurophysiological monitoring system
WO2013076588A2 (en) 2011-11-07 2013-05-30 Medtronic Ardian Luxembourg S.A.R.L. Endovascular nerve monitoring devices and associated systems and methods
EP3366250A1 (en) 2011-11-08 2018-08-29 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9192766B2 (en) 2011-12-02 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation methods and devices for treatment of polycystic kidney disease
US8577458B1 (en) 2011-12-07 2013-11-05 Cyberonics, Inc. Implantable device for providing electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction with leadless heart rate monitoring
US8630709B2 (en) 2011-12-07 2014-01-14 Cyberonics, Inc. Computer-implemented system and method for selecting therapy profiles of electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction
US8918191B2 (en) 2011-12-07 2014-12-23 Cyberonics, Inc. Implantable device for providing electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction with bounded titration
US8600505B2 (en) 2011-12-07 2013-12-03 Cyberonics, Inc. Implantable device for facilitating control of electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction
US8918190B2 (en) 2011-12-07 2014-12-23 Cyberonics, Inc. Implantable device for evaluating autonomic cardiovascular drive in a patient suffering from chronic cardiac dysfunction
US10188856B1 (en) 2011-12-07 2019-01-29 Cyberonics, Inc. Implantable device for providing electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
CN104244856B (zh) 2011-12-23 2017-03-29 维西克斯血管公司 重建身体通道的组织或身体通路附近的组织的方法及设备
EP2797534A1 (en) 2011-12-28 2014-11-05 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US8700150B2 (en) 2012-01-17 2014-04-15 Cyberonics, Inc. Implantable neurostimulator for providing electrical stimulation of cervical vagus nerves for treatment of chronic cardiac dysfunction with bounded titration
US8571654B2 (en) 2012-01-17 2013-10-29 Cyberonics, Inc. Vagus nerve neurostimulator with multiple patient-selectable modes for treating chronic cardiac dysfunction
WO2013111137A2 (en) 2012-01-26 2013-08-01 Rainbow Medical Ltd. Wireless neurqstimulatqrs
US9386991B2 (en) 2012-02-02 2016-07-12 Rainbow Medical Ltd. Pressure-enhanced blood flow treatment
CN104254367A (zh) 2012-03-07 2014-12-31 美敦力阿迪安卢森堡有限公司 肾神经的选择性调制
US9974593B2 (en) 2012-03-08 2018-05-22 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation and associated systems and methods for the treatment of sexual dysfunction
AU2013230893B2 (en) 2012-03-08 2015-12-03 Medtronic Af Luxembourg S.A.R.L. Neuromodulation and associated systems and methods for the management of pain
AU2013230886B2 (en) 2012-03-08 2015-10-01 Medtronic Af Luxembourg S.A.R.L. Renal neuromodulation methods and systems for treatment of hyperaldosteronism
CN104271062B (zh) 2012-03-08 2017-07-07 美敦力Af卢森堡有限责任公司 采用神经调节装置的生物标志物取样和相关系统及方法
AU2013230781B2 (en) 2012-03-08 2015-12-03 Medtronic Af Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US11013549B2 (en) 2012-03-08 2021-05-25 Medtronic Ardian Luxembourg S.A.R.L. Gastrointestinal neuromodulation and associated systems and methods
US8934988B2 (en) 2012-03-16 2015-01-13 St. Jude Medical Ab Ablation stent with meander structure
US20130255103A1 (en) 2012-04-03 2013-10-03 Nike, Inc. Apparel And Other Products Incorporating A Thermoplastic Polymer Material
US9113929B2 (en) 2012-04-19 2015-08-25 St. Jude Medical, Cardiology Division, Inc. Non-electric field renal denervation electrode
WO2013162722A1 (en) 2012-04-27 2013-10-31 Medtronic Ardian Luxembourg Sarl Methods and devices for localized disease treatment by ablation
US10258791B2 (en) 2012-04-27 2019-04-16 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies for neuromodulation proximate a bifurcation of a renal artery and associated systems and methods
WO2013162700A1 (en) 2012-04-27 2013-10-31 Medtronic Ardian Luxembourg Sarl Cryotherapeutic devices for renal neuromodulation and associated systems and methods
US9943354B2 (en) 2012-04-27 2018-04-17 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for localized inhibition of inflammation by ablation
US9241752B2 (en) 2012-04-27 2016-01-26 Medtronic Ardian Luxembourg S.A.R.L. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
ES2614272T3 (es) 2012-05-11 2017-05-30 Medtronic Ardian Luxembourg S.à.r.l. Conjuntos de catéter de múltiples electrodos para neuromodulación renal y sistemas y métodos asociados
US8951296B2 (en) 2012-06-29 2015-02-10 Medtronic Ardian Luxembourg S.A.R.L. Devices and methods for photodynamically modulating neural function in a human
US8688212B2 (en) 2012-07-20 2014-04-01 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing bradycardia through vagus nerve stimulation
WO2014025624A1 (en) 2012-08-04 2014-02-13 Boston Scientific Neuromodulation Corporation Techniques and methods for storing and transferring registration, atlas, and lead information between medical devices
WO2014032016A1 (en) 2012-08-24 2014-02-27 Boston Scientific Scimed, Inc. Intravascular catheter with a balloon comprising separate microporous regions
US8612022B1 (en) 2012-09-13 2013-12-17 Invatec S.P.A. Neuromodulation catheters and associated systems and methods
EP2895095A2 (en) 2012-09-17 2015-07-22 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
EP2906135A2 (en) 2012-10-10 2015-08-19 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US20140110296A1 (en) 2012-10-19 2014-04-24 Medtronic Ardian Luxembourg S.A.R.L. Packaging for Catheter Treatment Devices and Associated Devices, Systems, and Methods
CN108310589B (zh) 2012-10-22 2024-05-28 美敦力Af卢森堡有限责任公司 具有改善的柔性的导管
US9044575B2 (en) 2012-10-22 2015-06-02 Medtronic Adrian Luxembourg S.a.r.l. Catheters with enhanced flexibility and associated devices, systems, and methods
US9792412B2 (en) 2012-11-01 2017-10-17 Boston Scientific Neuromodulation Corporation Systems and methods for VOA model generation and use
US9643008B2 (en) 2012-11-09 2017-05-09 Cyberonics, Inc. Implantable neurostimulator-implemented method for enhancing post-exercise recovery through vagus nerve stimulation
US9452290B2 (en) 2012-11-09 2016-09-27 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing tachyarrhythmia through vagus nerve stimulation
US8923964B2 (en) 2012-11-09 2014-12-30 Cyberonics, Inc. Implantable neurostimulator-implemented method for enhancing heart failure patient awakening through vagus nerve stimulation
US9095321B2 (en) 2012-11-21 2015-08-04 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
US9861812B2 (en) 2012-12-06 2018-01-09 Blue Wind Medical Ltd. Delivery of implantable neurostimulators
US9017317B2 (en) 2012-12-06 2015-04-28 Medtronic Ardian Luxembourg S.A.R.L. Refrigerant supply system for cryotherapy including refrigerant recompression and associated devices, systems, and methods
US9008769B2 (en) 2012-12-21 2015-04-14 Backbeat Medical, Inc. Methods and systems for lowering blood pressure through reduction of ventricle filling
US9179997B2 (en) 2013-03-06 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Thermochromic polyvinyl alcohol based hydrogel artery
WO2014143571A1 (en) 2013-03-11 2014-09-18 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US10328238B2 (en) 2013-03-12 2019-06-25 St. Jude Medical, Cardiology Division, Inc. Catheter system
US9775966B2 (en) 2013-03-12 2017-10-03 St. Jude Medical, Cardiology Division, Inc. Catheter system
US10716914B2 (en) 2013-03-12 2020-07-21 St. Jude Medical, Cardiology Division, Inc. Catheter system
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9510902B2 (en) 2013-03-13 2016-12-06 St. Jude Medical, Cardiology Division, Inc. Ablation catheters and systems including rotational monitoring means
EP2777761B1 (de) * 2013-03-14 2017-03-29 BIOTRONIK SE & Co. KG Implantierbare Elektrode
US9643011B2 (en) 2013-03-14 2017-05-09 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing tachyarrhythmic risk during sleep through vagus nerve stimulation
US8876813B2 (en) 2013-03-14 2014-11-04 St. Jude Medical, Inc. Methods, systems, and apparatus for neural signal detection
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US9066726B2 (en) 2013-03-15 2015-06-30 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode apposition judgment using pressure elements
US9186212B2 (en) 2013-03-15 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods utilizing two or more sites along denervation catheter
EP2967725B1 (en) 2013-03-15 2019-12-11 Boston Scientific Scimed, Inc. Control unit for detecting electrical leakage between electrode pads and system comprising such a control unit
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9179974B2 (en) 2013-03-15 2015-11-10 Medtronic Ardian Luxembourg S.A.R.L. Helical push wire electrode
US9974477B2 (en) 2013-03-15 2018-05-22 St. Jude Medical, Cardiology Division, Inc. Quantification of renal denervation via alterations in renal blood flow pre/post ablation
WO2014150553A1 (en) 2013-03-15 2014-09-25 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
WO2014145146A1 (en) 2013-03-15 2014-09-18 Medtronic Ardian Luxembourg S.A.R.L. Controlled neuromodulation systems and methods of use
US9987070B2 (en) 2013-03-15 2018-06-05 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9561070B2 (en) 2013-03-15 2017-02-07 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9179973B2 (en) 2013-03-15 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
US9370660B2 (en) 2013-03-29 2016-06-21 Rainbow Medical Ltd. Independently-controlled bidirectional nerve stimulation
US10350002B2 (en) 2013-04-25 2019-07-16 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system
US10548663B2 (en) 2013-05-18 2020-02-04 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods
CN105473092B (zh) 2013-06-21 2019-05-17 波士顿科学国际有限公司 具有可旋转轴的用于肾神经消融的医疗器械
JP2016523147A (ja) 2013-06-21 2016-08-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 同乗型電極支持体を備えた腎除神経バルーンカテーテル
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9872728B2 (en) 2013-06-28 2018-01-23 St. Jude Medical, Cardiology Division, Inc. Apparatuses and methods for affixing electrodes to an intravascular balloon
AU2014284558B2 (en) 2013-07-01 2017-08-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US20150011991A1 (en) 2013-07-03 2015-01-08 St. Jude Medical, Cardiology Division, Inc. Electrode Assembly For Catheter System
EP3019105B1 (en) 2013-07-11 2017-09-13 Boston Scientific Scimed, Inc. Devices for nerve modulation
CN105377170A (zh) 2013-07-11 2016-03-02 波士顿科学国际有限公司 具有可伸展电极组件的医疗装置
CN105377361B (zh) * 2013-07-14 2018-09-14 心脏起搏器股份公司 用于机械/压力感受器刺激的具有背衬的多电极导线
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
EP3024405A1 (en) 2013-07-22 2016-06-01 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
CN105555220B (zh) 2013-07-22 2019-05-17 波士顿科学国际有限公司 用于肾神经消融的医疗器械
US9345877B2 (en) 2013-08-05 2016-05-24 Cvrx, Inc. Adapter for connection to pulse generator
US10478097B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions Neural event detection
US10478096B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions. Neural event detection
CN105473093B (zh) 2013-08-22 2019-02-05 波士顿科学国际有限公司 具有至肾神经调制球囊的改善的粘附力的柔性电路
US9339332B2 (en) 2013-08-30 2016-05-17 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters with nerve monitoring features for transmitting digital neural signals and associated systems and methods
US9326816B2 (en) 2013-08-30 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation systems having nerve monitoring assemblies and associated devices, systems, and methods
WO2015035047A1 (en) 2013-09-04 2015-03-12 Boston Scientific Scimed, Inc. Radio frequency (rf) balloon catheter having flushing and cooling capability
US20150073515A1 (en) 2013-09-09 2015-03-12 Medtronic Ardian Luxembourg S.a.r.I. Neuromodulation Catheter Devices and Systems Having Energy Delivering Thermocouple Assemblies and Associated Methods
US9138578B2 (en) 2013-09-10 2015-09-22 Medtronic Ardian Luxembourg S.A.R.L. Endovascular catheters with tuned control members and associated systems and methods
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US10449002B2 (en) 2013-09-20 2019-10-22 Innovative Surgical Solutions, Llc Method of mapping a nerve
US10376208B2 (en) 2013-09-20 2019-08-13 Innovative Surgical Solutions, Llc Nerve mapping system
US10376209B2 (en) 2013-09-20 2019-08-13 Innovative Surgical Solutions, Llc Neural locating method
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
EP3057488B1 (en) 2013-10-14 2018-05-16 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
JP6259098B2 (ja) 2013-10-15 2018-01-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 医療デバイスおよび同医療デバイスを製造する方法
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
CN105636538B (zh) 2013-10-18 2019-01-15 波士顿科学国际有限公司 具有柔性导线的球囊导管及其使用和制造的相关方法
USD914883S1 (en) 2013-10-23 2021-03-30 St. Jude Medical, Cardiology Division, Inc. Ablation generator
US10856936B2 (en) 2013-10-23 2020-12-08 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including thermoplastic-based struts
USD747491S1 (en) 2013-10-23 2016-01-12 St. Jude Medical, Cardiology Division, Inc. Ablation generator
US10433902B2 (en) 2013-10-23 2019-10-08 Medtronic Ardian Luxembourg S.A.R.L. Current control methods and systems
USD774043S1 (en) 2013-10-23 2016-12-13 St. Jude Medical, Cardiology Division, Inc. Display screen with graphical user interface for ablation generator
WO2015061034A1 (en) 2013-10-24 2015-04-30 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
US10034705B2 (en) 2013-10-24 2018-07-31 St. Jude Medical, Cardiology Division, Inc. High strength electrode assembly for catheter system including novel electrode
EP3060285A1 (en) 2013-10-24 2016-08-31 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
JP2016534842A (ja) 2013-10-25 2016-11-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 除神経フレックス回路における埋め込み熱電対
WO2015065636A1 (en) 2013-10-28 2015-05-07 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including interlinked struts
US9999773B2 (en) 2013-10-30 2018-06-19 Cyberonics, Inc. Implantable neurostimulator-implemented method utilizing multi-modal stimulation parameters
US9861433B2 (en) 2013-11-05 2018-01-09 St. Jude Medical, Cardiology Division, Inc. Helical-shaped ablation catheter and methods of use
EP3065673A4 (en) 2013-11-06 2017-07-12 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US9839785B2 (en) 2013-12-13 2017-12-12 Cardiac Pacemakers, Inc. Surgical instrument for implanting leads for baroreceptor stimulation therapy
US9370662B2 (en) 2013-12-19 2016-06-21 Backbeat Medical, Inc. Methods and systems for controlling blood pressure by controlling atrial pressure
CN105899157B (zh) 2014-01-06 2019-08-09 波士顿科学国际有限公司 抗撕裂柔性电路组件
US9511228B2 (en) 2014-01-14 2016-12-06 Cyberonics, Inc. Implantable neurostimulator-implemented method for managing hypertension through renal denervation and vagus nerve stimulation
US10166069B2 (en) 2014-01-27 2019-01-01 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters having jacketed neuromodulation elements and related devices, systems, and methods
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
EP3424453A1 (en) 2014-02-04 2019-01-09 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US10029091B2 (en) 2014-02-20 2018-07-24 Cardiac Pacemakers, Inc. Apparatus for baroreceptor stimulation therapy
US10492842B2 (en) 2014-03-07 2019-12-03 Medtronic Ardian Luxembourg S.A.R.L. Monitoring and controlling internally administered cryotherapy
US10463424B2 (en) 2014-03-11 2019-11-05 Medtronic Ardian Luxembourg S.A.R.L. Catheters with independent radial-expansion members and associated devices, systems, and methods
US9579149B2 (en) 2014-03-13 2017-02-28 Medtronic Ardian Luxembourg S.A.R.L. Low profile catheter assemblies and associated systems and methods
US9415224B2 (en) 2014-04-25 2016-08-16 Cyberonics, Inc. Neurostimulation and recording of physiological response for the treatment of chronic cardiac dysfunction
US9409024B2 (en) 2014-03-25 2016-08-09 Cyberonics, Inc. Neurostimulation in a neural fulcrum zone for the treatment of chronic cardiac dysfunction
US9272143B2 (en) 2014-05-07 2016-03-01 Cyberonics, Inc. Responsive neurostimulation for the treatment of chronic cardiac dysfunction
US9950169B2 (en) 2014-04-25 2018-04-24 Cyberonics, Inc. Dynamic stimulation adjustment for identification of a neural fulcrum
US9713719B2 (en) 2014-04-17 2017-07-25 Cyberonics, Inc. Fine resolution identification of a neural fulcrum for the treatment of chronic cardiac dysfunction
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
CN106232043B (zh) 2014-04-24 2019-07-23 美敦力阿迪安卢森堡有限公司 具有编织轴的神经调节导管以及相关的系统和方法
EP2937053A1 (en) 2014-04-24 2015-10-28 St. Jude Medical, Cardiology Division, Inc. Ablation systems including pulse rate detector and feedback mechanism and methods of use
US10610292B2 (en) 2014-04-25 2020-04-07 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems, and methods for monitoring and/or controlling deployment of a neuromodulation element within a body lumen and related technology
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
CN111790047B (zh) 2014-05-22 2022-09-27 卡迪诺米克公司 用于电神经调制的导管和导管系统
JP6306742B2 (ja) * 2014-06-19 2018-04-04 カーディアック ペースメイカーズ, インコーポレイテッド 圧受容器マッピングシステム
US9959388B2 (en) 2014-07-24 2018-05-01 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for providing electrical stimulation therapy feedback
US10272247B2 (en) 2014-07-30 2019-04-30 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming
US10265528B2 (en) 2014-07-30 2019-04-23 Boston Scientific Neuromodulation Corporation Systems and methods for electrical stimulation-related patient population volume analysis and use
US9533153B2 (en) 2014-08-12 2017-01-03 Cyberonics, Inc. Neurostimulation titration process
US9737716B2 (en) 2014-08-12 2017-08-22 Cyberonics, Inc. Vagus nerve and carotid baroreceptor stimulation system
US9770599B2 (en) 2014-08-12 2017-09-26 Cyberonics, Inc. Vagus nerve stimulation and subcutaneous defibrillation system
US11154712B2 (en) 2014-08-28 2021-10-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for assessing efficacy of renal neuromodulation and associated systems and devices
US9572975B2 (en) 2014-09-02 2017-02-21 Cardiac Pacemakers, Inc. Paddle leads configured for suture fixation
WO2016040037A1 (en) 2014-09-08 2016-03-17 CARDIONOMIC, Inc. Catheter and electrode systems for electrical neuromodulation
EP3194017A1 (en) 2014-09-08 2017-07-26 Cardionomic, Inc. Methods for electrical neuromodulation of the heart
CN106604761B (zh) 2014-09-16 2019-05-21 心脏起搏器股份公司 具有非对称电极配置的桨状引线
EP3200712B1 (en) 2014-10-01 2020-11-25 Medtronic Ardian Luxembourg S.à.r.l. Systems for evaluating neuromodulation therapy via hemodynamic responses
EP3204112A1 (en) 2014-10-07 2017-08-16 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters
US9504832B2 (en) 2014-11-12 2016-11-29 Cyberonics, Inc. Neurostimulation titration process via adaptive parametric modification
EP3943032A1 (en) 2014-11-14 2022-01-26 Medtronic Ardian Luxembourg S.à.r.l. Catheter apparatuses for modulation of nerves in communication with the pulmonary system and associated systems
WO2016100720A1 (en) 2014-12-17 2016-06-23 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing sympathetic nervous system tone for renal neuromodulation therapy
SG10202013111PA (en) 2015-01-05 2021-02-25 Cardionomic Inc Cardiac modulation facilitation methods and systems
US10004896B2 (en) 2015-01-21 2018-06-26 Bluewind Medical Ltd. Anchors and implant devices
US9764146B2 (en) 2015-01-21 2017-09-19 Bluewind Medical Ltd. Extracorporeal implant controllers
US9597521B2 (en) 2015-01-21 2017-03-21 Bluewind Medical Ltd. Transmitting coils for neurostimulation
WO2016191436A1 (en) 2015-05-26 2016-12-01 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
US10780283B2 (en) 2015-05-26 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
US9782589B2 (en) 2015-06-10 2017-10-10 Bluewind Medical Ltd. Implantable electrostimulator for improving blood flow
WO2017003946A1 (en) 2015-06-29 2017-01-05 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters based on stimulation target region, effects, or side effects
EP3280491B1 (en) 2015-06-29 2023-03-01 Boston Scientific Neuromodulation Corporation Systems for selecting stimulation parameters by targeting and steering
US10342982B2 (en) 2015-09-11 2019-07-09 Backbeat Medical, Inc. Methods and systems for treating cardiac malfunction
WO2017062378A1 (en) 2015-10-09 2017-04-13 Boston Scientific Neuromodulation Corporation System and methods for clinical effects mapping for directional stimulations leads
US10105540B2 (en) 2015-11-09 2018-10-23 Bluewind Medical Ltd. Optimization of application of current
US9713707B2 (en) 2015-11-12 2017-07-25 Bluewind Medical Ltd. Inhibition of implant migration
EP3426338A4 (en) 2016-03-09 2019-10-30 Cardionomic, Inc. SYSTEMS AND METHODS FOR NEUROSTIMULATION OF CARDIAC CONTRACTILITY
US10485658B2 (en) 2016-04-22 2019-11-26 Backbeat Medical, Inc. Methods and systems for controlling blood pressure
US10716942B2 (en) 2016-04-25 2020-07-21 Boston Scientific Neuromodulation Corporation System and methods for directional steering of electrical stimulation
US10736692B2 (en) 2016-04-28 2020-08-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation and associated systems and methods for the treatment of cancer
US11439460B2 (en) 2016-06-23 2022-09-13 St. Jude Medical, Cardiology Division, Inc. Catheter system and electrode assembly for intraprocedural evaluation of renal denervation
US10776456B2 (en) 2016-06-24 2020-09-15 Boston Scientific Neuromodulation Corporation Systems and methods for visual analytics of clinical effects
WO2018044881A1 (en) 2016-09-02 2018-03-08 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and directing stimulation of neural elements
US10780282B2 (en) 2016-09-20 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters
US10321833B2 (en) 2016-10-05 2019-06-18 Innovative Surgical Solutions. Neural locating method
JP6828149B2 (ja) 2016-10-14 2021-02-10 ボストン サイエンティフィック ニューロモデュレイション コーポレイション 電気刺激システムに対する刺激パラメータ設定の閉ループ決定のためのシステム及び方法
US10231784B2 (en) 2016-10-28 2019-03-19 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for optimizing perivascular neuromodulation therapy using computational fluid dynamics
US10124178B2 (en) 2016-11-23 2018-11-13 Bluewind Medical Ltd. Implant and delivery tool therefor
CA3045697C (en) 2017-01-03 2021-07-20 Boston Scientific Neuromodulation Corporation Systems and methods for selecting mri-compatible stimulation parameters
ES2821752T3 (es) 2017-01-10 2021-04-27 Boston Scient Neuromodulation Corp Sistemas y procedimientos para crear programas de estimulación en base a áreas o volúmenes definidos por el usuario
US10653513B2 (en) 2017-02-21 2020-05-19 Vascular Dynamics, Inc. Baroreceptor testing prior to implantation methods and apparatus
US10646713B2 (en) 2017-02-22 2020-05-12 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and associated methods for treating patients via renal neuromodulation to reduce a risk of developing cognitive impairment
US10625082B2 (en) 2017-03-15 2020-04-21 Boston Scientific Neuromodulation Corporation Visualization of deep brain stimulation efficacy
US11357986B2 (en) 2017-04-03 2022-06-14 Boston Scientific Neuromodulation Corporation Systems and methods for estimating a volume of activation using a compressed database of threshold values
US20180353764A1 (en) 2017-06-13 2018-12-13 Bluewind Medical Ltd. Antenna configuration
US11160982B2 (en) 2017-07-05 2021-11-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating post-traumatic stress disorder in patients via renal neuromodulation
AU2018204842B2 (en) 2017-07-05 2023-07-27 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating depression in patients via renal neuromodulation
US11284934B2 (en) 2017-07-05 2022-03-29 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating sleep disorders in patients via renal neuromodulation
EP3651849B1 (en) 2017-07-14 2023-05-31 Boston Scientific Neuromodulation Corporation Estimating clinical effects of electrical stimulation
US10960214B2 (en) 2017-08-15 2021-03-30 Boston Scientific Neuromodulation Corporation Systems and methods for controlling electrical stimulation using multiple stimulation fields
EP3664703A4 (en) 2017-09-13 2021-05-12 Cardionomic, Inc. NEUROSTIMULATION SYSTEMS AND METHODS FOR INFLUENCING HEART CONTRACTILITY
US11304749B2 (en) 2017-11-17 2022-04-19 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and associated methods for neuromodulation with enhanced nerve targeting
CN111787857A (zh) 2017-12-22 2020-10-16 万能量子飞跃技术有限公司 双向传感器电路
US10959669B2 (en) 2018-01-24 2021-03-30 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing the efficacy of neuromodulation therapy
US11253189B2 (en) 2018-01-24 2022-02-22 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and methods for evaluating neuromodulation therapy via detection of magnetic fields
US11478298B2 (en) 2018-01-24 2022-10-25 Medtronic Ardian Luxembourg S.A.R.L. Controlled irrigation for neuromodulation systems and associated methods
US11116561B2 (en) 2018-01-24 2021-09-14 Medtronic Ardian Luxembourg S.A.R.L. Devices, agents, and associated methods for selective modulation of renal nerves
WO2019210214A1 (en) 2018-04-27 2019-10-31 Boston Scientific Neuromodulation Corporation Systems for visualizing and programming electrical stimulation
CN112041022B (zh) 2018-04-27 2024-07-02 波士顿科学神经调制公司 多模式电刺激系统及其制造和使用方法
JP2021535776A (ja) 2018-08-13 2021-12-23 カーディオノミック,インク. 心収縮及び/又は弛緩に作用するシステムおよび方法
WO2020037145A1 (en) 2018-08-15 2020-02-20 Cvrx, Inc. Devices and methods for percutaneous electrode implant
US11633120B2 (en) 2018-09-04 2023-04-25 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing efficacy of renal neuromodulation therapy
US10870002B2 (en) 2018-10-12 2020-12-22 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
WO2020091081A1 (en) 2018-11-01 2020-05-07 Kyushu University, National University Corporation Blood pressure controlling apparatus, non-transitory computer readable recording medium storing control program of blood pressure controlling apparatus, and method for controlling blood pressure
JP2022531658A (ja) 2019-05-06 2022-07-08 カーディオノミック,インク. 電気神経調節中に生理学的信号をノイズ除去するためのシステムおよび方法
US11399777B2 (en) 2019-09-27 2022-08-02 DePuy Synthes Products, Inc. Intraoperative neural monitoring system and method
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
EP4205801A1 (en) 2021-12-29 2023-07-05 CVRx, Inc. Devices and methods for baroreflex activation
US20230355170A1 (en) 2022-05-03 2023-11-09 Cvrx, Inc. External baroreflex activation for assessment and treatment

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522811A (en) 1969-02-13 1970-08-04 Medtronic Inc Implantable nerve stimulator and method of use
SE346468B (ja) 1969-02-24 1972-07-10 Lkb Medical Ab
US3645267A (en) 1969-10-29 1972-02-29 Medtronic Inc Medical-electronic stimulator, particularly a carotid sinus nerve stimulator with controlled turn-on amplitude rate
US3943936A (en) 1970-09-21 1976-03-16 Rasor Associates, Inc. Self powered pacers and stimulators
USRE30366E (en) 1970-09-21 1980-08-12 Rasor Associates, Inc. Organ stimulator
US4014318A (en) 1973-08-20 1977-03-29 Dockum James M Circulatory assist device and system
CA1103316A (en) 1978-09-11 1981-06-16 Cos Electronics Corporation Means and method of current application to bulk resistance
US4256094A (en) 1979-06-18 1981-03-17 Kapp John P Arterial pressure control system
US4331157A (en) 1980-07-09 1982-05-25 Stimtech, Inc. Mutually noninterfering transcutaneous nerve stimulation and patient monitoring
US4481953A (en) 1981-11-12 1984-11-13 Cordis Corporation Endocardial lead having helically wound ribbon electrode
FR2534801A1 (fr) 1982-10-21 1984-04-27 Claracq Michel Dispositif d'occlusion partielle d'un vaisseau, en particulier de la veine cave caudale, et partie constitutive de ce dispositif
US4551862A (en) 1982-12-15 1985-11-12 Haber Terry M Prosthetic sphincter
US4531943A (en) 1983-08-08 1985-07-30 Angiomedics Corporation Catheter with soft deformable tip
US4525074A (en) 1983-08-19 1985-06-25 Citizen Watch Co., Ltd. Apparatus for measuring the quantity of physical exercise
US5025807A (en) 1983-09-14 1991-06-25 Jacob Zabara Neurocybernetic prosthesis
US4702254A (en) 1983-09-14 1987-10-27 Jacob Zabara Neurocybernetic prosthesis
US4867164A (en) 1983-09-14 1989-09-19 Jacob Zabara Neurocybernetic prosthesis
US4887608A (en) 1986-01-31 1989-12-19 Boston Scientific Corporation Method and apparatus for estimating tissue damage
FR2561929B1 (fr) 1984-03-27 1989-02-03 Atesys Appareillage automatique implante pour la defibrillation ventriculaire
DE3414072A1 (de) 1984-04-13 1985-10-17 Siemens AG, 1000 Berlin und 8000 München Endokardiale elektrodenanordnung
US4682583A (en) 1984-04-13 1987-07-28 Burton John H Inflatable artificial sphincter
US4590946A (en) * 1984-06-14 1986-05-27 Biomed Concepts, Inc. Surgically implantable electrode for nerve bundles
EP0192712A1 (en) 1984-09-05 1986-09-03 Intra Optics Laboratories Pty. Limited Control of blood flow
US4640286A (en) 1984-11-02 1987-02-03 Staodynamics, Inc. Optimized nerve fiber stimulation
US4860751A (en) 1985-02-04 1989-08-29 Cordis Corporation Activity sensor for pacemaker control
US4881939A (en) 1985-02-19 1989-11-21 The Johns Hopkins University Implantable helical cuff
US4719921A (en) 1985-08-28 1988-01-19 Raul Chirife Cardiac pacemaker adaptive to physiological requirements
US4699147A (en) * 1985-09-25 1987-10-13 Cordis Corporation Intraventricular multielectrode cardial mapping probe and method for using same
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4664120A (en) 1986-01-22 1987-05-12 Cordis Corporation Adjustable isodiametric atrial-ventricular pervenous lead
US4770177A (en) 1986-02-18 1988-09-13 Telectronics N.V. Apparatus and method for adjusting heart/pacer relative to changes in venous diameter during exercise to obtain a required cardiac output.
US4762820A (en) 1986-03-03 1988-08-09 Trustees Of Boston University Therapeutic treatment for congestive heart failure
US4709690A (en) 1986-04-21 1987-12-01 Habley Medical Technology Corporation Implantable blood flow and occlusion pressure sensing sphincteric system
US4762130A (en) 1987-01-15 1988-08-09 Thomas J. Fogarty Catheter with corkscrew-like balloon
US5117826A (en) 1987-02-02 1992-06-02 Staodyn, Inc. Combined nerve fiber and body tissue stimulation apparatus and method
US4813418A (en) 1987-02-02 1989-03-21 Staodynamics, Inc. Nerve fiber stimulation using symmetrical biphasic waveform applied through plural equally active electrodes
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4969458A (en) 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US4791931A (en) 1987-08-13 1988-12-20 Pacesetter Infusion, Ltd. Demand pacemaker using an artificial baroreceptor reflex
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
JPH01229141A (ja) * 1988-03-08 1989-09-12 Hiroyuki Sakami 16段遊星歯車自動変速機
US4830003A (en) 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4917092A (en) 1988-07-13 1990-04-17 Medical Designs, Inc. Transcutaneous nerve stimulator for treatment of sympathetic nerve dysfunction
US4920979A (en) * 1988-10-12 1990-05-01 Huntington Medical Research Institute Bidirectional helical electrode for nerve stimulation
US4960133A (en) 1988-11-21 1990-10-02 Brunswick Manufacturing Co., Inc. Esophageal electrode
US4940065A (en) * 1989-01-23 1990-07-10 Regents Of The University Of California Surgically implantable peripheral nerve electrode
US5114423A (en) * 1989-05-15 1992-05-19 Advanced Cardiovascular Systems, Inc. Dilatation catheter assembly with heated balloon
US5040533A (en) 1989-12-29 1991-08-20 Medical Engineering And Development Institute Incorporated Implantable cardiovascular treatment device container for sensing a physiological parameter
US5078736A (en) 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5203348A (en) 1990-06-06 1993-04-20 Cardiac Pacemakers, Inc. Subcutaneous defibrillation electrodes
US5095905A (en) * 1990-06-07 1992-03-17 Medtronic, Inc. Implantable neural electrode
US5113869A (en) 1990-08-21 1992-05-19 Telectronics Pacing Systems, Inc. Implantable ambulatory electrocardiogram monitor
US5222971A (en) 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
FR2671010B1 (fr) 1990-12-27 1993-07-09 Ela Medical Sa Sonde endocardiaque munie d'un organe de fixation active.
US5224491A (en) 1991-01-07 1993-07-06 Medtronic, Inc. Implantable electrode for location within a blood vessel
US5170802A (en) 1991-01-07 1992-12-15 Medtronic, Inc. Implantable electrode for location within a blood vessel
US5199428A (en) 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5181911A (en) 1991-04-22 1993-01-26 Shturman Technologies, Inc. Helical balloon perfusion angioplasty catheter
US5299569A (en) 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5251634A (en) 1991-05-03 1993-10-12 Cyberonics, Inc. Helical nerve electrode
US5318592A (en) 1991-09-12 1994-06-07 BIOTRONIK, Mess- und Therapiegerate GmbH & Co., Ingenieurburo Berlin Cardiac therapy system
US5215089A (en) 1991-10-21 1993-06-01 Cyberonics, Inc. Electrode assembly for nerve stimulation
US5304206A (en) 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5314453A (en) 1991-12-06 1994-05-24 Spinal Cord Society Position sensitive power transfer antenna
US5295959A (en) 1992-03-13 1994-03-22 Medtronic, Inc. Autoperfusion dilatation catheter having a bonded channel
US5330507A (en) 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
AU663948B2 (en) 1992-06-12 1995-10-26 Kabushiki Kaisha Advance Electrical stimulator
US5330515A (en) 1992-06-17 1994-07-19 Cyberonics, Inc. Treatment of pain by vagal afferent stimulation
WO1994007564A2 (en) 1992-10-01 1994-04-14 Cardiac Pacemakers, Inc. Stent-type defibrillation electrode structures
FR2704151B1 (fr) 1993-04-21 1995-07-13 Klotz Antoine Olivier Dispositif électronique destiné à la stimulation adrénergique du système sympathique relatif à la média veineuse.
US5411540A (en) 1993-06-03 1995-05-02 Massachusetts Institute Of Technology Method and apparatus for preferential neuron stimulation
DE4331658B4 (de) 1993-09-17 2009-12-10 Eska Medical Gmbh & Co Implantierbare Vorrichtung zum wahlweisen Öffnen und Verschließen von rohrförmigen Körperorganen, insbesondere der Harnröhre
US5527159A (en) 1993-11-10 1996-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotary blood pump
US5545132A (en) 1993-12-21 1996-08-13 C. R. Bard, Inc. Helically grooved balloon for dilatation catheter and method of using
US5458626A (en) 1993-12-27 1995-10-17 Krause; Horst E. Method of electrical nerve stimulation for acceleration of tissue healing
US5501703A (en) 1994-01-24 1996-03-26 Medtronic, Inc. Multichannel apparatus for epidural spinal cord stimulator
US5522854A (en) 1994-05-19 1996-06-04 Duke University Method and apparatus for the prevention of arrhythmia by nerve stimulation
EP0688579B1 (en) 1994-06-24 2001-08-22 St. Jude Medical AB Device for heart therapy
US5509888A (en) 1994-07-26 1996-04-23 Conceptek Corporation Controller valve device and method
US5529067A (en) 1994-08-19 1996-06-25 Novoste Corporation Methods for procedures related to the electrophysiology of the heart
US5695468A (en) 1994-09-16 1997-12-09 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
DE4433111A1 (de) * 1994-09-16 1996-03-21 Fraunhofer Ges Forschung Cuff-Elektrode
US5531778A (en) * 1994-09-20 1996-07-02 Cyberonics, Inc. Circumneural electrode assembly
US5540734A (en) * 1994-09-28 1996-07-30 Zabara; Jacob Cranial nerve stimulation treatments using neurocybernetic prosthesis
US5725471A (en) 1994-11-28 1998-03-10 Neotonus, Inc. Magnetic nerve stimulator for exciting peripheral nerves
US5540735A (en) 1994-12-12 1996-07-30 Rehabilicare, Inc. Apparatus for electro-stimulation of flexing body portions
US5571150A (en) 1994-12-19 1996-11-05 Cyberonics, Inc. Treatment of patients in coma by nerve stimulation
US5535752A (en) 1995-02-27 1996-07-16 Medtronic, Inc. Implantable capacitive absolute pressure and temperature monitor system
US5707400A (en) 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
US5700282A (en) 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
US6073048A (en) * 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US6061596A (en) 1995-11-24 2000-05-09 Advanced Bionics Corporation Method for conditioning pelvic musculature using an implanted microstimulator
CN2291164Y (zh) 1996-12-23 1998-09-16 祝强 降压仪
US5727558A (en) 1996-02-14 1998-03-17 Hakki; A-Hamid Noninvasive blood pressure monitor and control device
US5651378A (en) 1996-02-20 1997-07-29 Cardiothoracic Systems, Inc. Method of using vagal nerve stimulation in surgery
US5913876A (en) 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US5690681A (en) 1996-03-29 1997-11-25 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US5766236A (en) 1996-04-19 1998-06-16 Detty; Gerald D. Electrical stimulation support braces
US5824021A (en) 1996-04-25 1998-10-20 Medtronic Inc. Method and apparatus for providing feedback to spinal cord stimulation for angina
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US5715837A (en) 1996-08-29 1998-02-10 Light Sciences Limited Partnership Transcutaneous electromagnetic energy transfer
US5800464A (en) 1996-10-03 1998-09-01 Medtronic, Inc. System for providing hyperpolarization of cardiac to enhance cardiac function
US5814079A (en) 1996-10-04 1998-09-29 Medtronic, Inc. Cardiac arrhythmia management by application of adnodal stimulation for hyperpolarization of myocardial cells
US5741316A (en) 1996-12-02 1998-04-21 Light Sciences Limited Partnership Electromagnetic coil configurations for power transmission through tissue
US5938596A (en) * 1997-03-17 1999-08-17 Medtronic, Inc. Medical electrical lead
US5861015A (en) 1997-05-05 1999-01-19 Benja-Athon; Anuthep Modulation of the nervous system for treatment of pain and related disorders
US5807258A (en) 1997-10-14 1998-09-15 Cimochowski; George E. Ultrasonic sensors for monitoring the condition of a vascular graft
US5967986A (en) 1997-11-25 1999-10-19 Vascusense, Inc. Endoluminal implant with fluid flow sensing capability
FR2772622B1 (fr) * 1997-12-23 2000-03-31 Ela Medical Sa Dispositif medical implantable actif, notamment stimulateur cardiaque, defibrillateur et/ou cardioverteur, de type multisite configurable
US5928272A (en) 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity
US5876422A (en) 1998-07-07 1999-03-02 Vitatron Medical B.V. Pacemaker system with peltier cooling of A-V node for treating atrial fibrillation
US6106477A (en) * 1998-12-28 2000-08-22 Medtronic, Inc. Chronically implantable blood vessel cuff with sensor
EP1198271A4 (en) * 1999-06-25 2009-01-21 Univ Emory DEVICES AND METHODS FOR STIMULATING THE VAGUSNERVS

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11229784B2 (en) 2018-02-01 2022-01-25 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use

Also Published As

Publication number Publication date
EP2399644A3 (en) 2012-03-14
AU2001294799A1 (en) 2002-04-08
EP2085114A3 (en) 2009-10-28
US20030060858A1 (en) 2003-03-27
EP2399644B1 (en) 2016-04-20
EP2535082B1 (en) 2015-09-09
JP2004526471A (ja) 2004-09-02
EP2535082A1 (en) 2012-12-19
EP1330288A4 (en) 2005-12-28
US6985774B2 (en) 2006-01-10
ES2330833T3 (es) 2009-12-16
WO2002026314A1 (en) 2002-04-04
EP2399644A2 (en) 2011-12-28
ATE432732T1 (de) 2009-06-15
EP2085114A2 (en) 2009-08-05
EP1330288A1 (en) 2003-07-30
EP1330288B1 (en) 2009-06-03
DE60138902D1 (de) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5047447B2 (ja) 心血管性反射制御のための装置および方法
US7158832B2 (en) Electrode designs and methods of use for cardiovascular reflex control devices
US8880190B2 (en) Electrode structures and methods for their use in cardiovascular reflex control
US6850801B2 (en) Mapping methods for cardiovascular reflex control devices
US7502650B2 (en) Baroreceptor activation for epilepsy control
US8290595B2 (en) Method and apparatus for stimulation of baroreceptors in pulmonary artery
US7840271B2 (en) Stimulus regimens for cardiovascular reflex control
US6522926B1 (en) Devices and methods for cardiovascular reflex control
US8755907B2 (en) Devices and methods for electrode implantation
JP4413626B2 (ja) 連結電極による循環系反射制御用デバイスおよび方法
US20060004417A1 (en) Baroreflex activation for arrhythmia treatment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110624

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111130

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111231

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120128

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5047447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250