JP5044882B2 - 非水電解液二次電池用正極活物質および非水電解液二次電池 - Google Patents

非水電解液二次電池用正極活物質および非水電解液二次電池

Info

Publication number
JP5044882B2
JP5044882B2 JP2003297069A JP2003297069A JP5044882B2 JP 5044882 B2 JP5044882 B2 JP 5044882B2 JP 2003297069 A JP2003297069 A JP 2003297069A JP 2003297069 A JP2003297069 A JP 2003297069A JP 5044882 B2 JP5044882 B2 JP 5044882B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003297069A
Other languages
English (en)
Other versions
JP2005071680A5 (ja
JP2005071680A (ja
Inventor
謙一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2003297069A priority Critical patent/JP5044882B2/ja
Priority to US10/846,694 priority patent/US7294435B2/en
Publication of JP2005071680A publication Critical patent/JP2005071680A/ja
Publication of JP2005071680A5 publication Critical patent/JP2005071680A5/ja
Application granted granted Critical
Publication of JP5044882B2 publication Critical patent/JP5044882B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池等の非水電解液二次電池用正極活物質(以下、単に「正極活物質」ともいう。)および非水電解液二次電池に関する。詳しくは、電池特性が非常に向上した、スピネル構造のリチウム遷移金属複合酸化物に関する。
非水電解液二次電池は、従来のニッケルカドミウム二次電池などに比べて作動電圧が高く、かつエネルギー密度が高いという特徴を有し、モバイル電子機器の電源として広く利用されている。この非水電解液二次電池の正極活物質としてはLiCoO、LiNiO、LiMnに代表されるリチウム遷移金属複合酸化物が用いられている。
しかしながら、現在では、携帯電話、ノート型パソコン、デジタルカメラ等のモバイル機器は、さまざまな機能が付与される等の高機能化や、高温や低温での使用等のため、使用環境がより一層厳しいものとなっている。また、電気自動車用バッテリー等の電源への応用が期待されている。これまでの非水電解液二次電池では、十分な電池特性が得られず、更なる改良が求められている。
特許文献1には、リチウム遷移元素複合酸化物LiMe中の遷移元素Meの一部を、Li、Fe、Mn、Ni、Mg、Zn、B、Al、Co、Cr、Si、Ti、Sn、P、V、Sb、Nb、Ta、Mo、Wの中から選ばれた2種類以上の元素で置換してなるLiMMex−z(但し、Mは置換元素でM≠Me、Zは置換量を表す。)を正極活物質として使用することが記載されている。そして、この正極活物質により、正極活物質自体の電子伝導性が向上し、電池の内部抵抗が低減されると同時に、LiMnについては、Liの挿入/脱離に対する結晶構造の可逆性が改善されるので、電池としてのサイクル特性が向上することが記載されている。また、置換元素Mとして少なくともTiを含ませると、電子伝導性の改善の効果が顕著に得られ、好ましく、Tiは正極容量の低下の防止にも有効に用いることができ、好ましいことが記載されている。
しかしながら、この正極活物質では、より一層厳しい使用環境下において十分な高温下での電池特性が得られなかった。また、十分な充放電容量が得られず、常温での十分なサイクル特性および負荷特性も得られなかった。
特開2000−90933号公報
本発明の目的は、より一層厳しい使用環境下においても優れた電池特性を有する非水電解液二次電池用正極活物質および非水電解液二次電池を提供することにある。
本発明に記載される非水電解液二次電池用正極活物質は、少なくともスピネル構造のリチウム遷移金属複合酸化物を有する非水電解液二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、一般式Li1+aMgTiMn2−a−b−c4+e(aは−0.2≦a≦0.2を満たす数を表し、bは0.005≦b≦0.10を満たす数を表し、cは0.005≦c≦0.05を満たす数を表し、eは−0.5≦e≦0.5を満たす数を表す。)で表され、前記リチウム遷移金属複合酸化物は、粒子であるとともに、該粒子の表面のMn/Mgモル比が(2−a−b−c)/b未満である。
本発明に記載される非水電解液二次電池用正極活物質は、少なくともスピネル構造のリチウム遷移金属複合酸化物を有する非水電解液二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、粒子であるとともに、前記粒子の表面に存在するホウ素の濃度は、前記粒子の内部に存在するホウ素の濃度より大きく、前記粒子の表面に存在するマグネシウムの濃度は、前記粒子の内部に存在するマグネシウムの濃度より大きく、前記粒子の内部に存在するチタンの濃度は、前記粒子の内部に存在するホウ素の濃度より大きく、前記粒子の内部に存在するマグネシウムの濃度は、前記粒子の内部に存在するホウ素の濃度より大きい。
本発明に記載される非水電解液二次電池用正極活物質は、少なくともスピネル構造のリチウム遷移金属複合酸化物を有する非水電解液二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、粒子であるとともに、少なくとも前記粒子の表面に、ホウ素を有し、マグネシウムと、チタンとを有するリチウム遷移金属複合酸化物である。
前記ホウ素の含有量は、ホウ素とチタンとマグネシウムの合計に対して、0.4〜55.6重量%であり、前記マグネシウムの含有量は、ホウ素とチタンとマグネシウムの合計に対して、3.7〜97.0重量%であり、前記チタンの含有量は、ホウ素とチタンとマグネシウムの合計に対して、2.1〜95.2重量%であるのが好ましい。
前記リチウム遷移金属複合酸化物の(400)結晶子径は、700〜1100Åであるのが好ましい。
本発明に記載される非水電解液二次電池は、本発明のいずれかに記載の非水電解液二次電池用正極活物質を正極活物質として用いた正極活物質層を帯状正極集電体の両面にそれぞれ形成させることにより構成した帯状正極と、金属リチウム、リチウム合金またはリチウムイオンを吸蔵放出可能な化合物を負極活物質として用いた負極活物質層を帯状負極集電体の両面にそれぞれ形成させることにより構成した帯状負極と、帯状セパレータとを具備し、前記帯状正極と前記帯状負極とを前記帯状セパレータを介して積層した状態で複数回巻回させて、前記帯状正極と前記帯状負極との間に前記帯状セパレータが介在している渦巻型の巻回体を構成してなる。
本発明では、MgとTiのマンガン酸リチウム結晶中での分布状態を制御している。
Mgがマンガン酸リチウムに固溶すると高温サイクル特性が向上するものの+3価のマンガンイオンが減少するため充放電容量は低下する。したがって、本発明では、マンガン酸リチウム粒子の表面と内部において、Mgの濃度に傾斜をつけている。
すなわち、リチウム遷移金属複合酸化物粒子の表面のMn/Mgモル比を(2−a−b−c)/b未満とすることにより、Mgの固溶による充放電容量の低下を実用レベルの範囲に抑え、Mnイオンの電解液中への溶出を抑制することができる。これにより高温サイクル特性が向上する。
しかしながら、粒子の表面と内部において、Mgの濃度に傾斜をつけただけでは、高温サイクル特性は向上するものの十分な負荷特性、サイクル特性を得ることは難しい。
そこで、本発明では、Tiをマンガン酸リチウムに固溶させている。Tiを固溶させることで、マンガン酸リチウムの格子定数を大きくすることができる。これにより高温サイクル特性の向上を損なうことなく、マンガン酸リチウム結晶中のLiイオンの拡散性が向上するため負荷特性が向上すると考えられる。また、Liイオンの拡散性が向上することは、充放電サイクルによるマンガン酸リチウム結晶の歪みを抑制することになるためサイクル特性も向上すると考えられる。
リチウム遷移金属複合酸化物の粒子(以下、単に「粒子」ともいう。)の表面に存在するホウ素の濃度が、粒子の内部に存在するホウ素の濃度より大きいことで、効果的に粒子の一次粒子径を成長させることができる。これにより、粒子の充填性を向上させ、極板密度を向上させることができる。したがって、電池単位体積あたりの充放電容量が向上する。
粒子の表面に存在するマグネシウムの濃度が、粒子の内部に存在するマグネシウムの濃度より大きいことで、充放電容量の低下を実用レベルの範囲に抑え、遷移金属のイオンの電解液中への溶出を抑制させることができると考えられる。これにより、高温サイクル特性が向上する。
粒子の内部に存在するチタンの濃度が、粒子の内部に存在するホウ素の濃度より大きいことで、一次粒子径の成長を損なうことなく、リチウム遷移金属複合酸化物の格子定数を大きくさせることができる。これにより、負荷特性、サイクル特性が向上する。
粒子の内部に存在するマグネシウムの濃度は、粒子の内部に存在するホウ素の濃度より大きいことで、一次粒子径の成長を損なうことなく、遷移金属のイオンの電解液中への溶出を抑制させることができる。これにより極板密度の向上と高温サイクル特性の向上の両立を図ることができる。
粒子の表面に、ホウ素を有することにより、効果的に一次粒子径を成長させることができる。
また、マグネシウムと、チタンとを有することにより、一次粒子径の成長を損なうことなく、遷移金属のイオンの電解液中への溶出を抑制させ、リチウム遷移金属複合酸化物の格子定数を大きくさせることができる。
これにより、極板密度を向上させ、高温サイクル特性、負荷特性およびサイクル特性を向上させることができる。
ホウ素の含有量が、ホウ素とチタンとマグネシウムの合計に対して、0.4〜55.6重量%であり、マグネシウムの含有量が、ホウ素とチタンとマグネシウムの合計に対して、3.7〜97.0重量%であり、チタンの含有量が、ホウ素とチタンとマグネシウムの合計に対して、2.1〜95.2重量%であることで、極板密度の向上と、高温サイクル特性、サイクル特性および負荷特性の向上との両立を図ることができる。また、チタンの含有量が上記範囲であることで、リチウムイオンの拡散性がより向上し、正極活物質中の内部抵抗も低減できると考えられる。これにより平均電位が向上する。
リチウム遷移金属複合酸化物の(400)結晶子径が、700〜980Åであることで、さらにサイクル特性および負荷特性を向上させることができる。
本発明のいずれかに記載の非水電解液二次電池用正極活物質を正極活物質として用いた正極活物質層を帯状正極集電体の両面にそれぞれ形成させることにより構成した帯状正極と、金属リチウム、リチウム合金、リチウムイオンを吸蔵放出可能な炭素材料またはリチウムイオンを吸蔵放出可能な化合物を負極活物質として用いた負極活物質層を帯状負極集電体の両面にそれぞれ形成させることにより構成した帯状負極と、帯状セパレータとを具備し、前記帯状正極と前記帯状負極とを前記帯状セパレータを介して積層した状態で複数回巻回させて、前記帯状正極と前記帯状負極との間に前記帯状セパレータが介在している渦巻型の巻回体を構成することで、製造工程が簡単になり、正極活物質層および負極活物質層の割れや帯状セパレータからの剥離を生じにくくさせる。これにより電池容量およびエネルギー密度を向上させることができる。また、正極と負極との密着性が良くなるため、さらに高温サイクル特性、サイクル特性および負荷特性に優れた非水電解液二次電池となる。
以下、本発明に係る非水電解液二次電池用正極活物質および非水電解液二次電池を、実施の形態、実施例及び図1〜図5を用いて説明する。ただし、本発明は、この実施の形態、実施例及び図1〜図5に限定されない。
本発明の正極活物質は、少なくともスピネル構造(スピネル型の結晶構造)のリチウム遷移金属複合酸化物を有する。「スピネル構造」とは、複酸化物でAB型の化合物(AとBは金属元素)にみられる代表的結晶構造型の一つである。
図1は、スピネル構造のリチウム遷移金属複合酸化物の結晶構造を示す模式図である。図1において、リチウム原子1は8aサイトの四面体サイトを占有し、酸素原子2は32eサイトを占有し、遷移金属原子3(および、場合により過剰のリチウム原子)は16dサイトの八面体サイトを占有している。
スピネル構造のリチウム遷移金属複合酸化物としては、リチウムマンガン複合酸化物、リチウムチタン複合酸化物等が挙げられる。中でも、リチウムマンガン複合酸化物が好ましい。
本発明の正極活物質においては、上記リチウム遷移金属複合酸化物が、粒子の形態で存在する。具体的には、上記リチウム遷移金属複合酸化物が、一次粒子およびその凝集体である二次粒子の一方または両方からなる粒子の形態で存在する。即ち、リチウム遷移金属複合酸化物は、粒子の形態で存在し、その粒子は、一次粒子のみからなっていてもよく、一次粒子の凝集体である二次粒子のみからなっていてもよく、一次粒子と二次粒子の両者からなっていてもよい。
本発明において、粒子の表面および内部に存在するホウ素、マグネシウムおよびチタンの濃度は、種々の方法によって解析することができる。例えば、オージェ電子分光法(AES:Auger Electron Spectroscopy)で解析することができる。
また例えば、オージェ電子分光法、誘導結合高周波プラズマ(ICP:Inductively Coupled Plasma)分光分析法、滴定法を組み合わせることで定量することができる。
本発明においては、少なくとも粒子の表面に、ホウ素を有するリチウム遷移金属複合酸化物であるのが好ましい。
ホウ素は、リチウム遷移金属複合酸化物の粒子の表面にどのような形で存在していても本発明の効果を発揮する。例えば、ホウ素が粒子表面の全体を被覆している場合であっても、ホウ素が粒子表面の一部を被覆している場合であっても、極板密度を向上させることができる。
また、ホウ素は、少なくとも粒子の表面に存在していればよい。したがって、ホウ素の一部が粒子の内部に存在していてもよい。粒子の表面におけるホウ素の存在状態は、特に限定されない。ホウ素化合物の状態で存在していてもよい。ホウ素化合物としては、ホウ酸リチウムが好ましい。
ホウ素が粒子の表面に存在しているかどうかは、種々の方法によって解析することができる。例えば、オージェ電子分光法(AES:Auger Electron Spectroscopy)、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)で解析することができる。
本発明においては、チタンを有していればよく、粒子の表面に存在していても、粒子に固溶していてもよい。粒子の表面におけるチタンの存在状態は、特に限定されない。チタン化合物の状態で存在していてもよい。チタン化合物としては、酸化チタン、チタン酸リチウムが好ましい。
本発明においては、マグネシウムを有していることが好ましい。マグネシウムは粒子の表面に存在していても、粒子に固溶していてもよい。粒子の表面におけるマグネシウムの存在状態は、特に限定されない。マグネシウム化合物の状態で存在していてもよい。マグネシウム化合物としては、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウムが好ましい。
本発明において、「リチウム遷移金属複合酸化物粒子の表面」は、リチウム遷移金属複合酸化物粒子の表面から深さ0μm以上0.1μm以下のことをいう。
本発明において、ホウ素の含有量は、ホウ素とチタンとマグネシウムの合計に対して1.0重量%以上であるのが好ましく、2.0重量%以上であるのがより好ましく、また、16.0重量%以下であるのが好ましく、8.0重量%以下であるのがより好ましい。
ホウ素の含有量が多すぎると、初期容量が低下する。また、遷移金属のイオンの溶出が増大し、ガス発生を引き起こすため、高温特性が劣化する。ホウ素の含有量が少なすぎると、一次粒子径が成長しないため、粒子の充填性が向上しない。
本発明において、マグネシウムの含有量は、ホウ素とチタンとマグネシウムの合計に対して8.0重量%以上であるのが好ましく、30.0重量%以上であるのがより好ましく、また、83.0重量%以下であるのが好ましく、75.0重量%以下であるのがより好ましい。
マグネシウムの含有量が多すぎると、遷移金属のサイトに固溶しきれないマグネシウムが増大するため、初期容量が低下する。マグネシウムの含有量が少なすぎると、遷移金属のイオンの溶出が増大し、ガス発生を引き起こすため、高温特性が劣化する。
本発明において、チタンの含有量は、ホウ素とチタンとマグネシウムの合計に対して8.0重量%以上であるのが好ましく、20.0重量%以上であるのがより好ましく、また、90.0重量%以下であるのが好ましく、55.0重量%以下であるのがより好ましい。
チタンの含有量が多すぎると、充放電高率が低下する。チタンの含有量が少なすぎると、十分な負荷特性、サイクル特性が得られない。
本発明においては、ホウ素、マグネシウムおよびチタンの定量は種々の方法を用いることができる。例えば、誘導結合高周波プラズマ(ICP:Inductively Coupled Plasma)分光分析法、滴定法で定量することができる。
本発明の正極活物質は、遷移金属がマンガンであるのが好ましい。遷移金属がマンガンであると、本発明の正極活物質を用いた非水電解液二次電池がサイクル特性、高温サイクル特性および負荷特性に優れたものになるため、携帯電話、電動工具等の用途に特に好適に用いることができる。また、出力特性にも優れたものになるため、電気自動車の用途にも特に好適に用いることができる。
本発明の正極活物質は、リチウムマンガン複合酸化物であるのが好ましく、リチウムマンガン複合酸化物のLi、MnおよびOの組成比を一般式Li1+aMn2−a4+dで表したときに、aが−0.2≦a≦0.2を満たす数を表し、dが−0.5≦d≦0.5を満たす数を表すのが好ましい。
aは、0より大きいのが好ましく、また、0.15以下であるのが好ましい。リチウムでマンガンの一部を置換することにより、サイクル特性がさらに向上すると考えられる。
本発明の正極活物質においては、リチウム遷移金属複合酸化物の好適な態様として、以下の(i)〜(iv)が挙げられる。
(i)一般式Li1+aMgTiMn2−a−b−c4+e(aは−0.2≦a≦0.2を満たす数を表し、bは0.005≦b≦0.10を満たす数を表し、cは0.005≦c≦0.05を満たす数を表し、dは0.002≦d≦0.02を満たす数を表し、eは−0.5≦e≦0.5を満たす数を表す。)で表される態様。
態様(i)は、サイクル特性、高温サイクル特性および負荷特性に優れる。
態様(i)において、aは、0より大きいのが好ましい。リチウムでマンガンの一部を置換することにより、サイクル特性が向上すると考えられる。
態様(i)において、bは、0.01以上であるのが好ましく、0.02以上であるのがより好ましく、また、0.08以下であるのが好ましく、0.07以下であるのがより好ましい。bが大きすぎると、+3価のマンガンイオンが減少するため充放電容量は低下する。bが小さすぎると、遷移金属のイオンの溶出が増大し、ガス発生を引き起こすため、高温特性が劣化する。
態様(i)において、cは、0.01以上であるのが好ましく、0.02以上であるのがより好ましく、また、0.08以下であるのが好ましく、0.07以下であるのがより好ましい。cが大きすぎると、充放電高率が低下する。cが小さすぎると、十分な負荷特性、サイクル特性が得られない。
態様(i)において、dは、0.003以上であるのが好ましく、また、0.008以下であるのが好ましい。dが大きすぎると、初期容量が低下する。また、遷移金属のイオンの溶出が増大し、ガス発生を引き起こすため、高温特性が劣化する。dが小さすぎると、一次粒子径が成長しないため、粒子の充填性が向上しない。
(ii)リチウム遷移金属複合酸化物が、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種を有するリチウムマンガン複合酸化物である態様。
チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種を有することで、リチウムマンガン複合酸化物粒子の単位格子の格子定数は上昇し、粒子内のリチウムイオンの易動度は上昇しインピーダンスを低減することができると考えられる。このためサイクル特性および高温サイクル特性の向上を損なわずに、出力特性が向上すると考えられる。
態様(ii)においては、リチウム遷移金属複合酸化物は、少なくとも粒子の表面にジルコニウムを有しているのが好ましい。粒子の表面にジルコニウムが存在することにより、界面抵抗が減少し負荷特性、低温特性が向上すると考えられる。また充電時および充電保存時にガスが発生することを抑制し、ドライアウトを防止することができるためサイクル特性が向上すると考えられる。
(iii)リチウム遷移金属複合酸化物が、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種と、硫黄とを有するリチウムマンガン複合酸化物である態様。
態様(iii)においては、硫黄の存在により電子の通りやすさが向上するため、さらに、サイクル特性および負荷特性が向上すると考えられる。
硫黄の含有量は、リチウム遷移金属複合酸化物と硫黄の合計に対して、0.03〜0.3重量%であるのが好ましい。0.03重量%より少ないと、電子の移動抵抗が低減しにくい場合がある。0.3重量%より多いと、水分吸着により電池の膨れが生じる場合がある。
硫黄はどのような形で存在してもよい。例えば、硫酸根の形で存在していてもよい。
硫酸根は、硫酸イオン、硫酸イオンからその電荷を除いた原子の集団およびスルホ基を含む。アルカリ金属の硫酸塩、アルカリ土類金属の硫酸塩、有機硫酸塩ならびに有機スルホン酸およびその塩からなる群から選ばれる少なくとも1種に基づくのが好ましい。
中でも、アルカリ金属の硫酸塩およびアルカリ土類金属の硫酸塩からなる群から選ばれる少なくとも1種に基づくのが好ましく、アルカリ金属の硫酸塩に基づくのがより好ましい。これらは、強酸強塩基の結合からなるため、化学的に安定だからである。
態様(iii)において、硫黄以外の元素を含有する理由は、態様(ii)と同様である。
態様(iii)においては、上記各元素を含有することで、各元素の相乗効果により、高い充放電容量を有し、かつ、結着性および表面の平滑性に優れる正極板を得ることができる。
リチウム遷移金属複合酸化物は、少なくとも粒子の表面に硫酸根を有していてもよい。
硫酸根がリチウム遷移金属複合酸化物の粒子の表面に存在することにより、粒子の周りの電子の移動抵抗が極めて小さくなり、その結果、電子の通りやすさが向上し、サイクル特性および負荷特性が向上すると考えられる。
また、本発明の正極活物質を用いて高電圧電池(例えば、リチウム遷移金属複合酸化物としてLiMn1.5Ni0.5を用いた電池)とした場合、従来の高電圧電池において問題であった充電時における電解液の分解が抑制され、その結果、サイクル特性が向上する。電解液の分解反応は、リチウム遷移金属複合酸化物の粒子と電解液との界面において、リチウム遷移金属複合酸化物が触媒として起こると考えられているが、電解液を分解させる働きのない硫酸根でリチウム遷移金属複合酸化物の粒子の表面の全部または一部が被覆されることにより、電解液と触媒との接触面積が減り、上記反応が抑制されると考えられる。
本発明において、硫酸根はリチウム遷移金属複合酸化物の粒子の表面にどのような形で存在していても本発明の効果を発揮する。例えば、硫酸根がリチウム遷移金属複合酸化物の粒子表面の全体を被覆している場合であっても、硫酸根がリチウム遷移金属複合酸化物の粒子表面の一部を被覆している場合であっても、サイクル特性および負荷特性が向上する。
また、硫酸根は、少なくとも粒子の表面に存在していればよい。したがって、硫酸根の一部が粒子の内部に存在していてもよい。
硫酸根がリチウム遷移金属複合酸化物の粒子の表面に存在しているかどうかは、種々の方法によって解析することができる。例えば、オージェ電子分光法、X線光電子分光法で解析することができる。
また、硫酸根の定量としては、種々の方法を用いることができる。例えば、ICP発光分光分析法、滴定法で定量することができる。
(iv)リチウム遷移金属複合酸化物が、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種と、硫黄と、ナトリウムおよび/またはカルシウムとを有するリチウムマンガン複合酸化物である態様。
態様(iv)においては、ナトリウムおよび/またはカルシウムを含有することにより、ホウ素(好ましくは、ホウ素と硫黄)との相乗効果により、マンガンイオンの溶出をさらに抑制することができ、実用レベルの優れたサイクル特性を実現することができる。
態様(iv)において、ナトリウムおよび/またはカルシウム以外の元素を含有する理由は、態様(ii)および(iii)と同様である。
リチウム遷移金属複合酸化物は、鉄の含有量が25ppm以下であるのが好ましく、20ppm以下であるのがより好ましく、18ppm以下であるのがさらに好ましい。鉄の含有量が多すぎると、電池の内部短絡の原因になる場合がある。
本発明の正極活物質においては、(400)結晶子径が720Å以上であるのが好ましく、750Å以上であるのがより好ましく、また、1000Å以下であるのが好ましく、950Å以下であるのがより好ましい。(400)結晶子径が大きすぎると、リチウム遷移金属複合酸化物粒子の結晶内部から粒子表面へのリチウムイオンの拡散パスが長くなるため、粒子の内部抵抗が増大する。また、充放電に伴うリチウム遷移金属複合酸化物粒子の結晶の膨張、収縮も大きくなり導電剤との接触性が悪化したり、リチウム遷移金属複合酸化物粒子の結晶そのものが崩れることが考えられるため好ましくない。(400)結晶子径が小さすぎると、充放電サイクルを重ねるごとにリチウム遷移金属複合酸化物粒子の結晶の崩壊が進むため、サイクル特性が劣化する。
ここで、「結晶子」は、単結晶と考えられる最大限の集合を意味し、「結晶子径」とは、結晶子の大きさを意味する。
したがって、結晶子径が大きいほど、結晶性に優れ、結晶構造の歪みが少ないことになる。なお、本発明に用いられるような、スピネル構造のリチウム遷移金属複合酸化物においては、以下に示す(400)結晶子径により、単位格子の配列の規則性の程度を示すことができる。
リチウム遷移金属複合酸化物の(400)結晶子径は、例えば、X線回折法により求めることができる。X線回折法は、例えば、管電流100mA、管電圧40kVの条件で行うことができる。X線回折法で求められた(400)面に起因する回折ピークより、下記式(1)で表されるシェラーの式によって、結晶子径が算出される。
D=Kλ/(βcosθ) (1)
上記式中、Dは結晶子の大きさ(Å)を表し、Kはシェラー定数(βを積分幅より算出した場合は、1.05)を表し、λはX線源の波長(CuKα1の場合は、1.540562Å)を表し、βは結晶子の大きさによる回折線の広がりの幅(radian)を表し、θは回折角(degree)を表す。
本発明の正極活物質は、製造方法を特に限定されないが、例えば、以下の(1)および(2)のようにして製造することができる。
(1)原料混合物の作製
後述する化合物を各構成元素が所定の組成比となるように混合して、原料混合物を得る。原料混合物に用いられる化合物は、目的とする組成を構成する元素に応じて選択される。
混合の方法は、特に限定されず、例えば、粉末状の化合物をそのまま混合して原料混合物とする方法;水および/または有機溶媒を用いてスラリー状として混合した後、乾燥させて原料混合物とする方法;上述した化合物の水溶液を混合して沈降させ、得られた沈殿物を乾燥させて原料混合物とする方法;これらを併用する方法が挙げられる。
以下に、原料混合物に用いられる化合物を例示する。
リチウム化合物は、特に限定されないが、例えば、LiCO、LiOH、LiOH・HO、LiO、LiCl、LiNO、LiSO、LiHCO、Li(CHCOO)、フッ化リチウム、臭化リチウム、ヨウ化リチウム、過酸化リチウムが挙げられる。中でも、LiCO、LiOH、LiOH・HO、LiO、LiCl、LiNO、LiSO、LiHCO、Li(CHCOO)が好ましい。
マンガン化合物は、特に限定されないが、例えば、マンガンメタル、酸化物(例えば、MnO、Mn、Mn)、水酸化物、硝酸塩、炭酸塩(MnCO)、塩化物塩、ヨウ化マンガン、硫酸マンガン、硝酸マンガンが挙げられる。中でも、マンガンメタル、MnCO、MnSO、MnClが好ましい。
マグネシウム化合物は、特に限定されないが、例えば、MgO、MgCO、Mg(OH)、MgCl、MgSO、Mg(NO、Mg(CHCOO)、ヨウ化マグネシウム、過塩素酸マグネシウムが挙げられる。中でも、MgSO、Mg(NOが好ましい。
チタン化合物は、特に限定されない。例えばフッ化チタン、塩化チタン、臭化チタン、ヨウ化チタン、酸化チタン、硫化チタン、硫酸チタン等が挙げられる。中でもTiO、TiO、Ti、TiCl、Ti(SOが好ましい。
ホウ素化合物は、特に限定されないが、例えば、B(融点460℃)、HBO(分解温度173℃)、リチウムホウ素複合酸化物、オルトホウ酸、酸化ホウ素、リン酸ホウ素等が用いられる。中でも、HBO、Bが好ましい。
ジルコニウム化合物は、特に限定されない。例えば、フッ化ジルコニウム、塩化ジルコニウム、臭化ジルコニウム、ヨウ化ジルコニウム、酸化ジルコニウム、硫化ジルコニウム、炭酸ジルコニウム等が挙げられる。中でもZrF、ZrCl、ZrCl、ZrBr、ZrI、ZrO、ZrO、ZrS、Zr(OH)等が好ましい。
ハフニウム化合物は、特に限定されない。例えば、フッ化ハフニウム、塩化ハフニウム、臭化ハフニウム、ヨウ化ハフニウム、酸化ハフニウム、炭酸ハフニウム等が挙げられる。中でもHfF、HfCl、HfBr、HfO、Hf(OH)、HfS等が好ましい。
硫黄化合物は、特に限定されないが、例えば、LiSO、MnSO、(NHSO、Al(SO、MgSO、硫化物、ヨウ化硫黄、硫化水素、硫酸とその塩、硫化窒素が挙げられる。中でも、LiSO、MnSO、(NHSO、Al(SO、MgSOが好ましい。
ナトリウム化合物は、特に限定されないが、例えば、NaCO、NaOH、NaO、NaCl、NaNO、NaSO、NaHCO、CHCONaが挙げられる。
カルシウム化合物は、特に限定されないが、例えば、CaO、CaCO、Ca(OH)、CaCl、CaSO、Ca(NO、Ca(CHCOO)が挙げられる。
また、上述した各元素の2種以上を含有する化合物を用いてもよい。
以下に、原料混合物を得る好適な方法を、リチウム遷移金属複合酸化物がマグネシウムとチタンとホウ素を有するリチウムマンガン複合酸化物である正極活物質を例に挙げて、具体的に説明する。
上述したマンガン化合物およびマグネシウム化合物から調製した、所定の組成比のマンガンイオンおよびマグネシウムイオンを含有する水溶液を、攪拌している純水中に滴下する。
ついで、炭酸水素アンモニウム水溶液を滴下し、マンガンおよびマグネシウムを沈殿させ、マンガンおよびマグネシウムの塩を得る。なお、炭酸水素アンモニウム水溶液の代わりに、水酸化ナトリウム水溶液、炭酸水素ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液等のアルカリ溶液を用いることもできる。
つぎに、水溶液をろ過して沈殿物を採取し、採取した沈殿物を水洗し、熱処理した後、上述したリチウム化合物、チタン化合物およびホウ素化合物と混合して、原料混合物を得る。
(2)原料混合物の焼成および粉砕
ついで、原料混合物を焼成する。焼成の温度、時間、雰囲気等は、特に限定されず、目的に応じて適宜決定することができる。
焼成温度は、650℃以上であるのが好ましく、700℃以上であるのがより好ましい。焼成温度が低すぎると、未反応の原料が正極活物質に残留し、正極活物質の本来の特徴を生かせない場合がある。また、焼成温度は、1100℃以下であるのが好ましく、950℃以下であるのがより好ましい。焼成温度が高すぎると、正極活物質の粒径が大きくなり過ぎて電池特性が低下する場合がある。また、LiMnO、LiMnO等の副生成物が生成しやすくなり、単位重量あたりの放電容量の低下、サイクル特性の低下、動作電圧の低下を招く場合がある。
焼成時間は、一般に、1〜24時間であるのが好ましく、6〜12時間であるのがより好ましい。焼成時間が短すぎると、原料粒子間の拡散反応が進行しない。焼成時間が長すぎると、拡散反応がほぼ完了した後の焼成が無駄となり、また、焼結による粗大粒子が形成されてしまう場合がある。
焼成は、複数の焼成工程に分けてもよい。例えば第一の焼成工程を350〜550℃で、1〜24時間行い、第二の焼成工程を650〜1000℃で、1〜24時間行うことができる。
焼成の雰囲気は、例えば、大気、酸素ガス、これらと窒素ガス、アルゴンガス等の不活性ガスとの混合ガス、酸素濃度(酸素分圧)を制御した雰囲気、弱酸化雰囲気が挙げられる。中でも、酸素濃度を制御した雰囲気が好ましい。
焼成後、所望により、らいかい乳鉢、ボールミル、振動ミル、ピンミル、ジェットミル等を用いて粉砕し、目的とする粒度の粉体とすることもできる。
上述した製造方法により、本発明の正極活物質を得ることができる。
本発明の正極活物質は、リチウムイオン二次電池、リチウムイオンポリマー二次電池等の非水電解液二次電池に好適に用いられる。
即ち、本発明の非水電解液二次電池は、本発明の正極活物質を用いた非水電解液二次電池である。本発明の非水電解液二次電池は、その正極活物質の少なくとも一部として本発明の正極活物質を用いていればよい。
以下、リチウムイオン二次電池を例に挙げて説明する。
負極活物質としては、金属リチウム、リチウム合金、またはリチウムイオンを吸蔵放出可能な化合物が使用することができる。リチウム合金としては、例えば、LiAl合金,LiSn合金,LiPb合金が挙げられる。リチウムイオンを吸蔵放出可能な炭素材料としては、例えば、グラファイト,黒鉛等の炭素材料が挙げられる。リチウムイオンを吸蔵放出可能な化合物としては、例えば、酸化スズ、酸化チタン等の酸化物が挙げられる。
電解液としては、作動電圧で変質したり、分解したりしない化合物であれば特に限定されない。
溶媒としては、例えば、ジメトキシエタン,ジエトキシエタン,エチレンカーボネート,プロピレンカーボネート,ジメチルカーボネート,ジエチルカーボネート,エチルメチルカーボネート,メチルホルメート,γ−ブチロラクトン,2−メチルテトラヒドロフラン,ジメチルスルホキシド,スルホラン等の有機溶媒が挙げられる。これらは単独でまたは2種類以上を混合して用いることができる。
電解質としては、例えば、過塩素酸リチウム,四フッ化ホウ酸リチウム,六フッ化リン酸リチウム,トリフルオロメタン酸リチウム等のリチウム塩が挙げられる。
上述した溶媒と電解質とを混合して電解液とする。ここで、ゲル化剤等を添加し、ゲル状として使用してもよい。また、吸液性を有するポリマーに吸収させて使用してもよい。更に、無機系または有機系のリチウムイオンの導電性を有する固体電解質を使用してもよい。
セパレーターとしては、例えば、ポリエチレン製、ポリプロピレン製等の多孔性膜等が挙げられる。
結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミドアクリル樹脂等が挙げられる。
本発明の正極活物質と、上述した負極活物質、電解液、セパレーターおよび結
着剤を用いて、定法に従い、リチウムイオン二次電池とすることができる。
これにより従来達成できなかった優れた電池特性が実現できる。
正極活物質として本発明の正極活物質とともにコバルト酸リチウム及び/又はニッケル酸リチウムを用いることができる。これにより高い充放電容量で、サイクル特性、負荷特性および出力特性にも優れた非水電解液二次電池を得ることができる。
一般式Li1+xCoO(xは−0.5≦x≦0.5を満たす数を表す。)で表されるコバルト酸リチウムが好ましい。前記コバルト酸リチウムは、その一部がマグネシウム、アルミニウム、カルシウム、バナジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ストロンチウム、ジルコニウム、ニオブ、モリブデンおよびスズからなる群から選ばれる少なくとも1種で置換されていてもよい。
一般式Li1+xNiO(xは−0.5≦x≦0.5を満たす数を表す。)で表されるニッケル酸リチウムが好ましい。前記ニッケル酸リチウムは、その一部がマグネシウム、アルミニウム、カルシウム、バナジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ストロンチウム、ジルコニウム、ニオブ、モリブデンおよびスズからなる群から選ばれる少なくとも1種で置換されていてもよい。
本発明の正極活物質とともに用いるコバルト酸リチウム及び/又はニッケル酸リチウムは、少なくともリチウム遷移金属複合酸化物を有する非水電解液二次電池用正極活物質である。このリチウム遷移金属複合酸化物の好適な態様として、以下の(i)〜(iii)が挙げられる。
(i)リチウム遷移金属複合酸化物が、一般式LiCo1−x (MはAlまたはTiを表し、MはMgおよび/またはBaを表し、vは0.95≦v≦1.05を満たす数を表し、wは0またはMがAlであるとき0<w≦0.10を満たし、MがTiであるとき0<w≦0.05を満たす数を表し、xは0<x≦0.10を満たす数を表し、yは1≦y≦2.5を満たす数を表し、zは0<z≦0.015を満たす数を表す。)で表される態様。
このリチウム遷移金属複合酸化物を有する正極活物質と本発明の正極活物質を組み合わせることにより、高温サイクル特性、負荷特性およびサイクル特性に優れるだけでなく、高容量かつ安全性の両立された電池を得ることができる。
(ii)リチウム遷移金属複合酸化物が、一般式LiCo1−b(MはTi、Al、V、Zr、Mg、CaおよびSrからなる群から選ばれる少なくとも1種を表し、Xはハロゲン元素から選ばれる少なくとも1種を表し、aは0.95≦a≦1.05を満たす数を表し、bは0<b≦0.10を満たす数を表し、cは1≦c≦2.5を満たす数を表し、dは0<d≦0.1を満たす数を表し、eは0<e≦0.015を満たす数を表す。)で表される態様。
このリチウム遷移金属複合酸化物を有する正極活物質と本発明の正極活物質を組み合わせることにより、高温サイクル特性、負荷特性およびサイクル特性に優れるだけでなく、高容量かつ安全性の両立された電池を得ることができる。
(iii)リチウム遷移金属複合酸化物が、コバルト酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミン酸リチウムおよびニッケルコバルトマンガン酸リチウムからなる群から選ばれる少なくとも1種であり、粒子であるとともに、前記粒子の表面におけるジルコニウムの存在割合が20%以上である態様。
このリチウム遷移金属複合酸化物を有する正極活物質と本発明の正極活物質を組み合わせることにより、高温サイクル特性、負荷特性およびサイクル特性に優れるだけでなく、低温特性、高容量および安全性が優れた電池を得ることができる。
この正極活物質においては、上記粒子の表面におけるジルコニウムの存在割合が20%以上である。以下、詳細に説明する。
本発明において、「リチウム遷移金属複合酸化物の粒子の表面におけるジルコニウムの存在割合」は、以下のようにして求められる。
まず、波長分散型X線分光装置(WDX)を装備した電子線マイクロアナライザ(EPMA)によって、リチウム遷移金属複合酸化物の粒子群について、粒子の表面のジルコニウムの存在状態を観察する。ついで、観察視野中、単位面積あたりのジルコニウム量が最も多い部分(ジルコニウムのピークが大きい部分)を選択し、この部分を通過する線分(例えば、長さ300μmの線分)に沿ってライン分析を行う。ライン分析において、上記単位面積あたりのジルコニウム量が最も多い部分におけるピークの値を100%としたときのピークが4%以上の部分の長さの合計を、上記線分の長さで除した商を、「リチウム遷移金属複合酸化物の粒子の表面におけるジルコニウムの存在割合」とする。なお、ライン分析を複数回(例えば、10回)行うことによって、「リチウム遷移金属複合酸化物の粒子の表面におけるジルコニウムの存在割合」の平均値を用いるのが好ましい。
上記方法においては、ジルコニウムのピークが4%未満の部分は、ジルコニウム量が最も多い部分との差が大きいため、ジルコニウムが存在しない部分とみなす。
上述した「リチウム遷移金属複合酸化物の粒子の表面におけるジルコニウムの存在割合」により、リチウム遷移金属複合酸化物の粒子の表面において、ジルコニウムが均一に存在しているか、偏って存在しているかを表すことができる。
本発明の正極活物質を用いて正極を製造する好ましい方法を以下に説明する。
本発明の正極活物質の粉末に、アセチレンブラック、黒鉛等のカーボン系導電剤、結着剤および結着剤の溶媒または分散媒とを混合することにより正極合剤を調製する。得られた正極合剤をスラリーまたは混練物とし、アルミニウム箔等の集電体に塗布し、または担持させ、プレス圧延して正極活物質層を集電体に形成させる。
図2は、正極の模式的な断面図である。図2に示されているように、正極13は、正極活物質5を結着剤4により集電体12上に保持させてなる。
本発明の正極活物質は、導電剤粉末との混合性に優れ、電池の内部抵抗が小さいと考えられる。したがって、充放電特性、特に放電容量に優れる。
また、本発明の正極活物質は、結着剤と混練するときも、流動性に優れ、また、結着剤の高分子と絡まりやすく、優れた結着性を有する。
さらに、本発明の正極活物質は、粗大粒子を含まず、球状であるため、作製した正極の塗膜面の表面が平滑性に優れたものになる。このため、正極板の塗膜面は結着性に優れ、剥がれにくくなる。また、表面が平滑で充放電に伴う塗膜面表面のリチウムイオンの出入りが均一に行われるため、サイクル特性において顕著な改善がみられる。
リチウムイオン二次電池の形状は、特に限定されず、円筒型、コイン型、角型、ラミネート型等とすることができる。
図3は、円筒型電池の模式的な断面図である。図3に示されるように、円筒型電池20においては、集電体12上に正極活物質層を形成させた正極13と、集電体12上に負極活物質層を形成させた負極11とがセパレーター14を介して、繰り返し積層されている。
図4は、コイン型電池の模式的な部分断面図である。図4に示されるように、コイン型電池30においては、集電体12上に正極活物質層を形成させた正極13と、負極11とが、セパレーター14を介して、積層されている。
図5は、角型電池の模式的な斜視図である。図5に示されるように、角型電池40においては、集電体12上に正極活物質層を形成させた正極13と、集電体12上に負極活物質層を形成させた負極11とが、セパレーター14を介して、繰り返し積層されている。
正極、負極、セパレーターおよび非水電解液を有する非水電解液二次電池であって、下記Iを正極の正極活物質として、下記IIを負極の負極活物質として用いる非水電解液二次電池を得ることができる。
I:本発明に記載の非水電解液二次電池用正極活物質に用いられるリチウム遷移金属複合酸化物と、一般式がLi1+xCoO(xは−0.5≦x≦0.5を満たす数を表す。)で表されるコバルト酸リチウム及び/又は一般式がLi1+xNiO(xは−0.5≦x≦0.5を満たす数を表す。)で表されるニッケル酸リチウムを、前記リチウム遷移金属複合酸化物の重量をAとし、前記コバルト酸リチウム及び/又は前記ニッケル酸リチウムの重量をBとした場合に0.2≦B/(A+B)≦0.8の範囲になるように混合する非水電解液二次電池用正極活物質。
II:金属リチウム、リチウム合金およびリチウムイオンを吸蔵放出可能な化合物からなる群から選ばれる少なくとも1種からなる非水電解液二次電池用負極活物質。
この非水電解液二次電池は、高い極板密度を有し、サイクル特性、高温サイクル特性に優れるだけでなく、負荷特性、出力特性にも優れている。
正極活物質は、0.4≦B/(A+B)≦0.6の範囲になるように混合することが好ましい。0.4≦B/(A+B)≦0.6の範囲であれば、極板密度、ドライアウトの防止および過充電特性の向上だけでなく、サイクル充放電特性、負荷特性および出力特性の向上が著しいからである。
リチウムイオンを吸蔵放出可能な化合物としては、アルカリ金属及び/又はアルカリ土類金属を含むスピネル構造からなる一般式がLiTi4+c(aは0.8≦a≦1.5を満たす数を表し、bは1.5≦b≦2.2を満たす数を表し、cは−0.5≦c≦0.5を満たす数を表す。)で表される非水電解液二次電池用負極活物質を用いることができる。このときサイクル特性が非常に向上した非水電解液二次電池を得ることができる。
本発明の正極活物質を用いた非水電解液二次電池の用途は特に限定されない。例えばノートパソコン、ペン入力パソコン、ポケットパソコン、ノート型ワープロ、ポケットワープロ、電子ブックプレーヤ、携帯電話、コードレスフォン子機、電子手帳、電卓、液晶テレビ、電気シェーバ、電動工具、電子翻訳機、自動車電話、携帯プリンタ、トランシーバ、ページャ、ハンディターミナル、携帯コピー、音声入力機器、メモリカード、バックアップ電源、テープレコーダ、ラジオ、ヘッドホンステレオ、ハンディクリーナ、ポータブルコンパクトディスク(CD)プレーヤ、ビデオムービ、ナビゲーションシステム等の機器の電源として用いることができる。
また、照明機器、エアコン、テレビ、ステレオ、温水器、冷蔵庫、オーブン電子レンジ、食器洗浄器、洗濯機、乾燥器、ゲーム機器、玩具、ロードコンディショナ、医療機器、自動車、電気自動車、ゴルフカート、電動カート、電力貯蔵システム等の電源として用いることができる。
さらに、用途は、民生用に限定されず、軍需用または宇宙用とすることもできる。
以下に実施例を示して本発明を具体的に説明するが、本発明はこれらに限られるものではない。
1.正極活物質の作製
〔実施例1〕
マンガンおよびマグネシウムの炭酸塩を水洗し、乾燥させた後、オルトホウ酸、酸化チタンおよび炭酸リチウムと混合させた。酸化チタンは、リチウムマンガン複合酸化物に対して0.01mol%混合させた。得られた混合物を約800℃で約10時間焼成した。粉砕して、正極活物質を得た。
得られた正極活物質の組成は、Li1.04Mn1.92Mg0.05Ti0.01であった。
〔実施例2〕
マンガンおよびマグネシウムの炭酸塩を水洗し、乾燥させた後、オルトホウ酸、酸化チタンおよび炭酸リチウムと混合させた。酸化チタンは、リチウムマンガン複合酸化物に対して0.05mol%混合させた。得られた混合物を約800℃で約10時間焼成した。粉砕して、正極活物質を得た。
得られた正極活物質の組成は、Li1.03Mn1.89Mg0.05Ti0.05であった。
〔比較例1〕
マンガンおよびマグネシウムの炭酸塩を水洗し、乾燥させた後、オルトホウ酸および炭酸リチウムと混合させた。得られた混合物を約800℃で約10時間焼成した。得られた焼成物を粉砕して、正極活物質を得た。
得られた正極活物質の組成は、Li1.04Mn1.93Mg0.05であった。
〔比較例2〕
所定の組成比となるようにマンガンおよびマグネシウムの炭酸塩を水洗し、乾燥させた後、オルトホウ酸および炭酸リチウムと混合させた以外は比較例1と同様の方法により、正極活物質を得た。
得られた正極活物質の組成は、Li1.03Mn1.87Mg0.12であった。
正極活物質の性状
(1)正極活物質の格子定数
X線回折装置(Ultima、理学電気社製)を用い、X線源としてCuKα1を用い、管電流200mA、管電圧40kVの条件で15〜70°の範囲の強度を測定して算出した。
(2)正極活物質の(400)結晶子径
得られた正極活物質についてX線回折法を行った。X線回折法は、X線回折装置(Ultima、理学電気社製)を用い、X線源としてCuKα1を用い、管電流100mA、管電圧40kVの条件で行った。X線回折法により得られたX線回折パターンを基に、上記式(1)で表されるシェラーの式から、正極活物質の(400)結晶子径を求めた。
(3)正極活物質のMn溶出試験
得られた正極活物質を110℃で15時間乾燥させた後、エチレンカーボネート/ジエチルカーボネート=3/7の混合溶媒にLiPFを1mol/Lの濃度で溶解した電解液と混合させて85℃で48時間保存した。これをフィルターろ過により正極活物質を取り除いた後、ICP分光分析法によりMnの溶出量(電解液の重量に対するMn元素の重量)を測定した。Mnの溶出量が少ないほど高温保存時のガス発生の抑制に優れると言える。
結果を第1表に示す。なお、表中、「−」は、該当する項目を測定していないことを示す。
第1表から明らかなように、本発明の正極活物質は、比較例1の正極活物質に比べて、Mnの溶出量が低く、高温保存時のガス発生の抑制に優れていた。
Figure 0005044882
(4)チタン、マグネシウムおよびホウ素の表面と内部の濃度
実施例1および実施例2で得られた正極活物質についてArビームで一定時間スパッタを行い、各元素の濃度を測定した。リチウム遷移金属複合酸化物粒子の表面から深さ0μm以上0.1μm以下の部分(スパッタ時間1分以内)を「リチウム遷移金属複合酸化物粒子の表面」と定義し、粒子の表面から深さ0.1μmより大きい部分(スパッタ時間1分より20分)を「リチウム遷移金属複合酸化物粒子の内部」と定義する。リチウム遷移金属複合酸化物粒子の表面に存在する各元素の濃度は、スパッタ時間0分と1分の平均値として計算した。リチウム遷移金属複合酸化物粒子の内部に存在する各元素の濃度は、スパッタ時間5分、10分および20分の平均値として計算した。
結果を第2表に示す。
第2表から明らかなように、本発明の正極活物質は、粒子の表面に存在するホウ素の濃度が粒子の内部に存在するホウ素の濃度より大きいことが分かる。
また、本発明の正極活物質は、粒子の表面に存在するマグネシウムの濃度が粒子の内部に存在するマグネシウムの濃度より大きいことが分かる。
さらに、本発明の正極活物質は、粒子の内部に存在するチタンの濃度が粒子の内部に存在するホウ素の濃度より大きいことが分かる。
さらに、本発明の正極活物質は、粒子の内部に存在するマグネシウムの濃度が粒子の内部に存在するホウ素の濃度より大きいことが分かる。
Figure 0005044882
3.正極活物質の評価
上記で得られた各正極活物質を用いて、負極がリチウム金属である試験用二次電池および円筒電池を作製して、以下のようにして評価した。
A.負極がリチウム金属である試験用二次電池を用いた評価
負極がリチウム金属である試験用二次電池は以下のように作製した。
正極活物質の粉末90重量部と、導電剤となる炭素粉末5重量部と、ポリフッ化ビニリデンのノルマルメチルピロリドン溶液(ポリフッ化ビニリデン量として5重量部)とを混練してペーストを調製し、これを正極集電体に塗布し乾燥させて正極板とした。得られた正極板を用い、負極がリチウム金属である試験用二次電池を作製した。
(1)初期放電容量
充電電位4.3V、放電電位2.85V、放電負荷0.2C(なお、1Cは、1時間で放電が終了する電流負荷である。以下、同じ。)の条件で、負極がリチウム金属である試験用二次電池を放電させた。このときの放電容量を初期放電容量とした。
B.円筒電池を用いた評価
円筒電池は以下のように作製した。
負極がリチウム金属である試験用二次電池の場合と同様の方法により、正極板を得た。また、負極活物質として炭素材料を用い、正極板の場合と同様にして負極集電体に塗布し乾燥させて負極板とした。セパレーターには多孔性プロピレンフィルムを用いた。電解液には、エチレンカーボネート/メチルエチルカーボネート=3/7(体積比)の混合溶媒にLiPF6を1mol/Lの濃度になるように溶解させた溶液を用いた。正極板、負極板およびセパレーターを薄いシート状に成形し、これを巻回させて金属円筒形の電池ケースに収納し、電池ケース内に電解液を注入して、リチウムイオン二次電池の円筒電池を得た。
(1)放電容量維持率
充電電位4.2V、放電電位2.75V、放電負荷2Cの条件で充放電を繰り返し行い、200サイクル後の放電容量を測定した。得られた200サイクル後の放電容量の値を1サイクル後の放電容量の値で除して、放電容量維持率を求め、サイクル特性を評価した。
(2)高温放電容量維持率
60℃において、充電電位4.2V、放電電位2.75V、放電負荷2Cの条件で充放電を繰り返し行い、500サイクル後の放電容量を測定した。得られた500サイクル後の放電容量の値を1サイクル後の放電容量の値で除して、高温放電容量維持率を求め、サイクル特性を評価した。
(3)負荷容量維持率
充電電位4.2V、放電電位3.0V、放電負荷0.2Cの条件で、初期放電容量を測定した後、充電電位4.2V、放電電位3.0V、放電負荷3.0Cの条件で、負荷放電容量を測定した。得られた負荷放電容量の値を初期放電容量で除して、負荷容量維持率を求め、負荷特性を評価した。
(4)初期平均電位、200サイクル後の平均電位および平均電位維持率
充電電位4.2V、放電電位2.75V、放電負荷2.0Cの条件で、初期放電容量および電力量を測定した。得られた電力量の値を初期放電容量で除して、初期平均電位を求めた。
次に、充電電位4.2V、放電電位2.75V、放電負荷2.0Cの条件で、200サイクル後の放電容量および電力量を測定した。得られた電力量の値を初期放電容量で除して、200サイクル後の平均電位を求めた。
得られた200サイクル後の平均電位の値を初期平均電位で除して、平均電位維持率を求めた。
(5)初期高温平均電位、200サイクル後の高温平均電位および高温平均電位電位維持率
60℃において、充電電位4.2V、放電電位2.75V、放電負荷2.0Cの条件で、初期放電容量および電力量を測定した。得られた電力量の値を初期放電容量で除して、初期高温平均電位を求めた。
次に、60℃において、充電電位4.2V、放電電位2.75V、放電負荷2.0Cの条件で、200サイクル後の放電容量および電力量を測定した。得られた電力量の値を初期放電容量で除して、200サイクル後の高温平均電位を求めた。
得られた200サイクル後の高温平均電位の値を初期高温平均電位で除して、高温平均電位維持率を求めた。
結果を第3表に示す。なお、表中、「−」は、該当する項目を測定していないことを示す。
第3表から明らかなように、本発明の正極活物質は、サイクル特性、高温サイクル特性および負荷特性に優れていることが分かる。また、初期平均電位、200サイクル後の平均電位、初期高温平均電位および200サイクル後の平均電位が高く、平均電位維持率および高温平均電位維持率が向上していることが分かる。
Figure 0005044882
本発明の非水電解液二次電池用正極活物質は、非水電解液二次電池に利用することができる。
本発明の非水電解液二次電池は、携帯電話、ノート型パソコン、デジタルカメラ等のモバイル機器および電気自動車用バッテリー等の電源等に利用することができる。
図1は、スピネル構造のリチウム遷移金属複合酸化物の結晶構造を示す模式図である。 図2は、正極の模式的な断面図である。 図3は、円筒型電池の模式的な断面図である。 図4は、コイン型電池の模式的な部分断面図である。 図5は、角型電池の模式的は斜視断面図である。
符号の説明
1 8aサイト
2 32eサイト
3 16dサイト
4 結着剤
5 正極活物質
11 負極
12 集電体
13 正極
14 セパレーター
20 円筒型電池
30 コイン型電池
40 角型電池

Claims (3)

  1. 少なくともスピネル構造のリチウム遷移金属複合酸化物を有する非水電解液二次電池用正極活物質であって、
    前記リチウム遷移金属複合酸化物は、一般式Li1+aMgTiMn2−a−b−c4+e(aは−0.2≦a≦0.2を満たす数を表し、bは0.005≦b≦0.10を満たす数を表し、cは0.005≦c≦0.05を満たす数を表し、eは−0.5≦e≦0.5を満たす数を表す。)で表され
    前記リチウム遷移金属複合酸化物は、粒子であるとともに、該粒子の表面のMn/Mgモル比が(2−a−b−c)/b未満であり、少なくとも粒子の表面にホウ素を有することを特徴とする非水電解液二次電池用正極活物質。
  2. 前記リチウム遷移金属複合酸化物は、ホウ素の含有量はホウ素とチタンとマグネシウムの合計に対して0.4〜55.6重量%であり、マグネシウムの含有量はホウ素とチタンとマグネシウムの合計に対して3.7〜97.0重量%であり、チタンの含有量はホウ素とチタンとマグネシウムの合計に対して2.1〜95.2重量%であることを特徴とする請求項1に記載の非水電解液二次電池用正極活物質。
  3. 請求項1乃至2のいずれか1項に記載の非水電解液二次電池用正極活物質を正極活物質として用いた非水電解液二次電池。
JP2003297069A 2003-05-15 2003-08-21 非水電解液二次電池用正極活物質および非水電解液二次電池 Expired - Fee Related JP5044882B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003297069A JP5044882B2 (ja) 2003-08-21 2003-08-21 非水電解液二次電池用正極活物質および非水電解液二次電池
US10/846,694 US7294435B2 (en) 2003-05-15 2004-05-17 Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297069A JP5044882B2 (ja) 2003-08-21 2003-08-21 非水電解液二次電池用正極活物質および非水電解液二次電池

Publications (3)

Publication Number Publication Date
JP2005071680A JP2005071680A (ja) 2005-03-17
JP2005071680A5 JP2005071680A5 (ja) 2006-10-05
JP5044882B2 true JP5044882B2 (ja) 2012-10-10

Family

ID=34403027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297069A Expired - Fee Related JP5044882B2 (ja) 2003-05-15 2003-08-21 非水電解液二次電池用正極活物質および非水電解液二次電池

Country Status (1)

Country Link
JP (1) JP5044882B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189384B2 (ja) * 2008-02-29 2013-04-24 株式会社日立製作所 リチウム二次電池
US9136569B2 (en) 2008-05-21 2015-09-15 Applied Materials, Inc. Microwave rapid thermal processing of electrochemical devices
US8568571B2 (en) * 2008-05-21 2013-10-29 Applied Materials, Inc. Thin film batteries and methods for manufacturing same
KR101305462B1 (ko) * 2009-07-10 2013-09-06 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 리튬 이차 전지
CN102024950B (zh) 2009-09-09 2018-05-25 株式会社村田制作所 正极活性物质及其制备方法、正极和非水电解质电池
JP5644176B2 (ja) * 2009-11-18 2014-12-24 ソニー株式会社 正極活物質、およびリチウムイオン二次電池
JP5589536B2 (ja) * 2009-09-09 2014-09-17 ソニー株式会社 正極活物質、正極、非水電解質電池および正極活物質の製造方法
WO2017022222A1 (ja) * 2015-08-06 2017-02-09 パナソニックIpマネジメント株式会社 非水電解質二次電池
US12002954B2 (en) * 2018-09-28 2024-06-04 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-Aqueous electrolyte secondary battery, non-Aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN117393769B (zh) * 2023-12-13 2024-04-19 天津力神电池股份有限公司 正极活性材料、正极材料、正极极片和电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265984A (ja) * 1996-03-28 1997-10-07 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP3142522B2 (ja) * 1998-07-13 2001-03-07 日本碍子株式会社 リチウム二次電池
JP2000067861A (ja) * 1998-08-26 2000-03-03 Ngk Insulators Ltd リチウム二次電池
JP2001048545A (ja) * 1999-08-09 2001-02-20 Mitsubishi Chemicals Corp リチウムマンガン複合酸化物の製造方法及びこれを用いた二次電池
JP5199522B2 (ja) * 1999-08-17 2013-05-15 日揮触媒化成株式会社 スピネル型リチウム・マンガン複合酸化物、その製造方法および用途
JP2001058828A (ja) * 1999-08-20 2001-03-06 Sony Corp リチウムマンガン複合酸化物の合成方法及び非水電解質電池の製造方法
JP3503688B2 (ja) * 1999-12-27 2004-03-08 株式会社ユアサコーポレーション リチウム二次電池
JP4878690B2 (ja) * 2001-03-23 2012-02-15 三洋電機株式会社 リチウム二次電池
JP4040271B2 (ja) * 2001-07-30 2008-01-30 日本碍子株式会社 リチウム二次電池及びそれに用いる正極活物質の製造方法
JP2003203678A (ja) * 2002-01-10 2003-07-18 Ngk Insulators Ltd リチウム二次電池

Also Published As

Publication number Publication date
JP2005071680A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
JP5382025B2 (ja) 非水電解質二次電池、非水電解質二次電池用正極活物質および非水電解質二次電池用正極合剤
US7294435B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR100583384B1 (ko) 비수성 전해질 이차전지용 양극활성물질 및 비수성 전해질이차전지
JP2006012433A (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2005251716A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
JP2004311408A (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2006012426A (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2005044743A (ja) 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2004235144A (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
JP4259393B2 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP5124933B2 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP4876371B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
JP2022513679A (ja) 八面体構造のリチウムマンガン系正極活物質、これを含む正極及びリチウム二次電池
JP2005222956A (ja) 非水電解液二次電池
JP4626141B2 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2008130287A (ja) 非水電解質二次電池用正極活物質の製造方法および非水電解質二次電池
JP3856015B2 (ja) 非水電解液二次電池用正極副活物質、非水電解液二次電池用正極活物質および非水電解液二次電池
JP5044882B2 (ja) 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2004327309A (ja) 非水電解液二次電池用正極活物質
JP4940530B2 (ja) 非水電解液二次電池用正極活物質
JP4492058B2 (ja) 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2004047448A (ja) 非水電解液二次電池用正極活物質
JP2005158612A (ja) 非水電解質二次電池用正極副活物質、非水電解質二次電池用正極活物質、非水電解質二次電池および非水電解質二次電池の製造方法
JP3835419B2 (ja) 非水電解液二次電池用正極活物質
JP4765254B2 (ja) 非水電解質二次電池、非水電解質二次電池用正極活物質および非水電解質二次電池用正極合剤

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5044882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees