JP5043707B2 - 血圧測定装置およびその制御方法 - Google Patents

血圧測定装置およびその制御方法 Download PDF

Info

Publication number
JP5043707B2
JP5043707B2 JP2008030717A JP2008030717A JP5043707B2 JP 5043707 B2 JP5043707 B2 JP 5043707B2 JP 2008030717 A JP2008030717 A JP 2008030717A JP 2008030717 A JP2008030717 A JP 2008030717A JP 5043707 B2 JP5043707 B2 JP 5043707B2
Authority
JP
Japan
Prior art keywords
blood pressure
pulse wave
cuff
measurement site
pressure measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008030717A
Other languages
English (en)
Other versions
JP2009189425A (ja
Inventor
耕一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP2008030717A priority Critical patent/JP5043707B2/ja
Priority to PCT/JP2009/050739 priority patent/WO2009101842A1/ja
Priority to CN2009801032384A priority patent/CN101925330B/zh
Priority to TW098103796A priority patent/TWI374021B/zh
Publication of JP2009189425A publication Critical patent/JP2009189425A/ja
Priority to US12/854,345 priority patent/US8430822B2/en
Application granted granted Critical
Publication of JP5043707B2 publication Critical patent/JP5043707B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、測定部位にカフを装着し、カフ圧を変化させたときに検出される圧脈波の変化に基づいて血圧を測定する技術に関するものであり、特に、拡張期血圧値および収縮期血圧値を決定する技術に関するものである。
高血圧症の治療においての血圧測定は非常に重要である。WHO/ISHの高血圧治療ガイドラインによれば、5mmHg単位の血圧値により高血圧症の程度が分類されそれぞれに適した治療方法が推奨されている。そのため、適切な治療ができるかできないかは測定した血圧値により左右されることになる。また、人口の高齢化が進む中、高血圧症が大きく関与する循環器疾患、メタポリックシンドロームへの予防を考慮した場合、血圧測定への精度、信頼性の要求は非常に大きい。
従来、血圧側定部位にカフを巻いて、カフ圧を収縮期血圧(収縮期血圧とも呼ばれる)より高い圧力より拡張期血圧(拡張期血圧とも呼ばれる)より低い圧力まで徐々に変化させて血圧を測定する非観血的血圧計の測定法として、聴診法と同様にコロトコフ音を検出して血圧を測定するマイクロフオン法とカフ内の空気袋の内圧に重畳している圧脈波の変化を検出して血圧を測定するオシロメトリック法とが利用されている。
オシロメトリック法では、例えば、カフ圧力を収縮期血圧値以上の圧力(例えば180mmHg)から拡張期血圧値以下(例えば60mmHg)まで徐々に変化させたときに検出される圧脈波の振幅は、最初はほぼ一定値を示すが、カフ圧力が収縮期血圧値に近づくにつれて徐々に大きくなる。そして、カフ圧力が収縮期血圧以下になり、拡張期血圧に近づくと圧脈波の振幅は最大となり、今度は徐々に小さくなる変化を示す。さらに、カフ圧力が拡張期血圧以下になると圧脈波の振幅は徐々にある一定値に近づくように変化する。そこで、オシロメトリック方式では、圧脈波振幅のカフ圧力の変化にともなう時系列変化プロフィルを、検出した圧脈波の大きさの最大圧脈波振幅値を基準としたときの各圧脈波振幅の割合(%)で示すことにより正規化する。そして、同時に測定した聴診法(K法)による収縮期血圧値と拡張期血圧値に該当する圧脈波の割合を数多く取った実データの平均値からもとめている。この値は、収縮期血圧については50%、拡張期血圧については60〜80%の値になる。
ただし、聴診法による血圧値と上述の圧脈波振幅の割合との関係は、血圧値、脈の強弱、血管内圧である観血血圧波形の形状の個体差による影響をうける。また、カフの巻き方によるカフの上流部および下流部のカフエッジ効果(カフの中央部より端部で血管を押さえる力が弱くなる現象)のバラツキ、カフの巻き方によるコンプライアンスの変化(脈波検出感度の変化)などの測定方法に関係する影響もうける。そして、カフ末梢部の拍出現象は、カフ装着部位より末梢側である前腕部、手部の血管弾性および血管容積の大小の個体差、血圧測定後の血液の末梢循環の良し悪しの個体差、血圧測定の繰り返し時間の短さの影響をうけるカフ末梢側血管のうっ血の程度による末梢血管内圧の上昇の影響をうける。
影響要因のほとんどが個体差に起因した問題であり直接的な対応が困難であり、カフの巻き方への対応は血圧測定のユーザビリティへの影響が大きいことから、収縮期血圧の測定における影響要因を低減する方法としては、カフ末梢側への拍出脈波の検出の感度を上げS/Nを向上する対応策がとられる。例えば、特許文献1には、阻血用空気袋の圧力が最も反映されているカフ中央部にカフの末梢側の拍出を選択的に検出するための脈波検出用空気袋を設置し、収縮期血圧測定のキーポイントとなるカフ末梢側への拍出脈波の検出能力を向上するダブルカフ法が提案されている。
特開2005−185295号公報
しかしながら、上述のダブルカフ法を用いた場合であっても、カフ末梢側の拍出による脈波信号の検出を阻害するカフ圧力が収縮期血圧よりも高いときにカフのエッジ効果や、カフの上流部に心臓の収縮および拡張に同期して侵入しては押し戻される血流変化により発生するカフ上流部脈波により十分なS/Nが確保できない場合がある。また、ダブルカフ法においても、脈波が小さい場合などの血圧値の導出には聴診法の拡張期血圧との相関よりもとめるオシロメトリック法に準じた方法を用いざるを得ない場合があり、個体差による影響を受ける場合がある。そのため、より正確な測定のためには血圧測定を複数回行うか、あるいは、医師による聴診法を用いた測定を行うなどの必要があった。
本発明は上述の問題点に鑑みなされたものであり、非測定者の個体差に影響されにくいより精度の高い血圧値の導出手法を提供することを目的とする。
上述の問題点を解決するために、本発明の血圧測定装置は以下の構成を備える。すなわち、血圧測定装置であって、血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部やや下流側の脈波を検出する脈波検出用空気袋と、を含むカフ部と、前記カフ部の各空気袋を加圧または減圧する圧力制御手段と、前記カフ部の各空気袋内の圧力を検出する圧力センサと、前記圧力制御手段により前記カフ部の各空気袋を加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出手段と、脈波信号の特徴量の変化と当該変化時点でのカフ内の圧力とに基づき、収縮期血圧値及び/又は拡張期血圧値を導出する血圧値導出手段と、を備え、前記血圧値導出手段は、前記脈波信号の時系列データに含まれる複数の1周期脈波信号の各々について、ピーク点と該ピーク点に先行して現れるボトム点との期間での1周期脈波の最大勾配点を検出し、検出された最大勾配点に先行して現れるボトム点における脈波振幅値と検出された最大勾配点を通過する接線の前記ボトム点における時刻での値との差値に基づいて収縮期血圧値及び/又は拡張期血圧値を導出することを特徴とする。
また、血圧測定装置であって、血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部やや下流側の脈波を検出する脈波検出用空気袋と、を含むカフ部と、前記カフ部の各空気袋を加圧または減圧する圧力制御手段と、前記カフ部の各空気袋内の圧力を検出する圧力センサと、前記圧力制御手段により前記カフ部の各空気袋を加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出手段と、脈波信号の特徴量の変化と当該変化時点でのカフ内の圧力とに基づき、収縮期血圧値及び/又は拡張期血圧値を導出する血圧値導出手段と、を備え、前記血圧値導出手段は、前記脈波信号の時系列データに含まれる複数の1周期脈波信号の各々について、ピーク点と該ピーク点に先行して現れるボトム点との期間での1周期脈波の最大勾配点を検出し、検出された最大勾配点と該最大勾配点に先行して現れるボトム点との期間において該最大勾配点を通過する接線と前記脈波信号とに囲まれる部分の面積に基づいて収縮期血圧値及び/又は拡張期血圧値を導出することを特徴とする。
上述の問題点を解決するために、本発明の血圧測定装置の制御方法は以下の構成を備える。すなわち、血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部やや下流側の脈波を検出する脈波検出用空気袋と、を含むカフ部と、前記カフ部の各空気袋を加圧または減圧する圧力制御手段と、前記カフ部の各空気袋内の圧力を検出する圧力センサと、を備える血圧測定装置の制御方法において、前記圧力制御手段により前記カフ部の各空気袋を加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出工程と、脈波信号の特徴量の変化と当該変化時点でのカフ内の圧力とに基づき、収縮期血圧値及び/又は拡張期血圧値を導出する血圧値導出工程と、を備え、前記血圧値導出工程は、前記脈波信号の時系列データに含まれる複数の1周期脈波信号の各々について、ピーク点と該ピーク点に先行して現れるボトム点との期間での1周期脈波の最大勾配点を検出し、検出された最大勾配点に先行して現れるボトム点における脈波振幅値と検出された最大勾配点を通過する接線の前記ボトム点における時刻での値との差値に基づいて収縮期血圧値及び/又は拡張期血圧値を導出することを特徴とする。
また、血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部やや下流側の脈波を検出する脈波検出用空気袋と、を含むカフ部と、前記カフ部の各空気袋を加圧または減圧する圧力制御手段と、前記カフ部の各空気袋内の圧力を検出する圧力センサと、を備える血圧測定装置の制御方法において、前記圧力制御手段により前記カフ部の各空気袋を加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出工程と、脈波信号の特徴量の変化と当該変化時点でのカフ内の圧力とに基づき、収縮期血圧値及び/又は拡張期血圧値を導出する血圧値導出工程と、を備え、前記血圧値導出工程は、前記脈波信号の時系列データに含まれる複数の1周期脈波信号の各々について、ピーク点と該ピーク点に先行して現れるボトム点との期間での1周期脈波の最大勾配点を検出し、検出された最大勾配点と該最大勾配点に先行して現れるボトム点との期間において該最大勾配点を通過する接線と前記脈波信号とに囲まれる部分の面積に基づいて収縮期血圧値及び/又は拡張期血圧値を導出することを特徴とする。
本発明によれば、非測定者の個体差に影響されにくいより精度の高い血圧値の導出手法を有する血圧測定装置及びその制御方法を提供することが可能となる。
(第1実施形態)
本発明の血圧測定装置を、好適な実施形態に基づいて図面を参照して説明する。なお、ここでは、阻血用空気袋,脈波検出用空気袋,サブ空気袋(いわゆるトリプルカフ)を備えた血圧測定装置を例について説明する。また、以下では、カフ圧力の減圧過程における本発明のトリプルカフを使用した場合に得られる脈波信号について詳細に説明した後、本発明の血圧測定装置の詳細動作について説明する。
<装置構成>
図11は、第1実施形態に係る血圧測定装置を示すブロック図である。カフ本体201は、上腕部を含む血圧測定部位に対して着脱自在に設けられる布製のカフ部材202を備えており、このカフ部材202の測定部位接触側の端部に破線で図示した雄(フック型)面ファスナー203を設け、また、測定部位接触側と反対の面の阻血用空気袋と同じ位置と面積の雌(ループ型)面ファスナー204を設けている。このカフ部材202を図示のように上腕に巻き付け、各面ファスナーを係止することで、カフ本体201の着脱ができるように構成されている。ここで、面ファスナーは一例に過ぎず、これ以外の部材でもよく、また筒状に形成しておき上腕を挿入する方式にカフ本体を設ける構成であっても良い。
このカフ部材202の内部には、血圧測定部位の全体を圧迫するための破線図示の阻血用空気袋208が敷設されている。また、この阻血用空気袋208の血圧測定部位に接する側には血圧測定部位の心臓H側を圧迫するために幅がより狭く形成された破線図示のサブ空気袋207が敷設されている。サブ空気袋207と阻血用空気袋208との間にはサブ空気袋207の振動を減衰するため、サブ空気袋207の全体を覆うように第1緩衝部材209が設けられている。
また、この阻血用空気袋208の血圧測定部位の接する側に敷設されて血圧測定部位の血管下流側を圧迫し、かつ下流側の脈波を検出する破線図示の脈波検出用空気袋205が敷設されてカフ本体201を構成している。
このカフ本体201を加圧及び減圧するために、カフ本体201の阻血用空気袋208とは第2配管212と配管215により、また、カフ本体201の脈波検出用空気袋205とは第1配管211と流体抵抗器214を介して、また、カフ本体201のサブ空気袋207とは第3配管213と開閉弁216を介して、加減圧手段であるポンプ223が接続されている。また脈波検出用空気袋205の圧力変化からカフ圧信号を得るためのカフ圧力検出手段である圧力センサ231は脈波検出用空気袋205との間で第1配管211を介して接続されている。また、サブ空気袋207には第3配管213が接続されている。
第1配管211、第2配管212、第3配管213は軟質チューブからなり、コネクタ210を介して本体230から着脱自在に設けられている。また、第3配管213には、好ましくは、さらに、圧力に比例して容積が大きくなるとともに圧力の平滑化を行うダンパー装置218(破線図示)が接続される場合がある。
十字分岐部220にはポンプ223と急速排気弁兼定速排気弁222が接続されている。急速排気弁兼定速排気弁222は制御部248に、開閉弁216は制御部246に夫々接続されており、中央制御部235の指令で、急速排気弁兼定速排気弁222は電磁弁の開口面積が制御され、また、開閉弁216は電磁開閉弁が開閉動作される。
また、ポンプ223はモータMに接続されるポンプ駆動部249からの電力供給にともない駆動され、外気を開口部223aからポンプ内に導入して加圧を行い十字分岐部220を介して加圧空気を配管215と、第3配管部213aに送ることで各空気袋の加圧ができるように構成されている。
急速排気弁兼定速排気弁222は、毎秒2〜4mmHgの減圧速度を実現するために電磁力の強さで開口面積を可変する構造であり、制御部248からのPWM駆動信号を得ることで任意の減圧速度を設定できるように構成されている。
流体抵抗器214を介して、脈波成分を減衰した阻血用空気袋208からの阻血圧力信号と脈波検出用空気袋205の圧力変化はカフ圧力検出手段である圧力センサ231に入力される。この圧力センサ231にはアナログ電気信号に変換する圧力計測部232が接続されており、さらに圧力計測部232にはA/Dコンバータ233が接続されており、デジタル信号を中央制御部235にカフ圧信号として出力するように構成されている。
この中央制御部235は、測定データ及び解析結果の読み書き等を行なうRAM238、また、カフ圧力信号から重畳している脈波信号を検出する脈波処理部239、カフ(阻血用空気袋,脈波検出用空気袋,サブ空気袋)の圧力を加圧,減圧するカフ圧制御部240、検出した脈波変化と阻血カフ圧力信号から血圧を決定する血圧測定部241、測定した血圧値を血圧表示手段237に表示させるための表示制御部237aを中央制御部235により読取り可能な各種制御プログラムとし記憶したROM236を含んでいる。なお、RAM238は、中央制御部235において処理されるプログラムのワークエリアとしても機能する。
また、中央制御部235には、血圧値を表示する血圧表示手段である液晶表示部237と、上記の各駆動制御を行う各駆動部が接続されている。
また、乾電池を含む電源部243からの電力供給は、スイッチ242の操作により、中央制御部235にて各部に電力供給して血圧測定に必要な各動作を行えるように構成される。
以上のように構成される血圧測定装置ではROM236に予め記憶された各種測定用制御プログラムを中央制御部235で読み出し、後述の血圧測定ルーチンのフローチャートのように動作させることができる。
<カフの圧迫力と脈波信号>
図1は、カフ圧力の減圧過程で、カフ圧力に脈波信号が重畳している様子を示すグラフである。このグラフには、カフ圧力の減少につれて、脈波信号の大きさや形が変化していく様子が示されている。また、図2は、カフ圧力の減圧過程での、カフ圧力に重畳する脈波振幅値の変化の様子をカフ圧力の変化と共に示した図である。カフ圧力の減圧過程で、脈波振幅値は徐々に大きくなり、最大振幅値が現れるポイントMを経て後、脈波振幅値は徐々に減少する傾向をもつことが示されている。
図3は、第1実施形態に係る血圧測定装置のカフ(トリプルカフ)の長手方向(上腕の延びる方向)の断面図である。変形例に係るカフは、血管阻血用の大カフ1、脈波検出用の小カフ2、および上流部に設けられたサブカフ3を含むトリプルカフである。加圧された血管阻血用の大カフ1およびサブカフ3により血管100はQの部分で阻血され、上流側100aから下流側100bへの血流が抑えられている様子が示されている。
大カフ1により腕を圧拍する力は、カフの幅方向の中央部(図3のAの部分、以下、単に、カフ中央部Aという)で最も強く、両端に近くなるに従い弱くなり、両端ではほぼ0となる。ただし、サブカフ3を備えないダブルカフの場合と比較すると、サブカフ3の効果により図3の”B”に示される区間における血流の侵入が阻止されている点が異なる。小カフ2は、このカフの幅方向のカフ中央部Aに設けられることで、この部分での血管内圧力変化(血管内容積変化)を最もよく捉える。尚、明細書中において「カフ圧力」は、カフ内の圧力を意味するが、実質的には、カフの幅方向のカフ中央部Aでの腕の圧迫力と等しいことから、カフの幅方向のカフ中央部Aの下の血管へ加えられるカフからの圧力でもある。
<脈波信号を構成する各成分の性質>
脈波検出用の小カフ2により検出されるカフ圧力に重畳する脈波信号は、主に、カフの上流側からの血流の拍出による血管内容積変化に伴う直接のカフ内圧力変化に由来する成分W1(以下、W1成分という)と、カフの下流側の血管からの反射による血管内容積変化に伴うカフ内圧力変化に由来する成分W2(以下、W2成分という)とに分けられる。そして、W1成分は、カフの幅方向の中央部、すなわち、カフ中央部Aの部分の下の圧力変化(血管内容積変化)に由来する成分W1−A(以下、W1−A成分という)とカフの幅方向の上流部、すなわち、図3のBの部分(以下、単に、カフ上流部Bという)の下の圧力変化(血管内容積変化)に由来する成分W1−B(以下、W1−B成分という)とカフの幅方向の下流部、すなわち、図3のCの部分(以下、単に、カフ下流部Cという)の下の血管内容積変化に由来する成分W1−C(以下、W1−C成分という)に分けて考えることができる。さらに、血管内圧力による血管の振動に由来する成分W0がわずかであるが含まれる。
図4は、トリプルカフ法において取得される脈波信号PWに含まれる各成分を模式的に示す図である。具体的には、太線で示す脈波信号PWには、W1成分およびW2成分が含まれ、さらに、W1成分はW1−A成分とW1−C成分により構成される。なお、サブカフ3を備えないダブルカフの場合と比較すると、サブカフ3により大カフ1のカフエッジ効果を補償しているため、カフ上流部Bの下に流れ込む血流による血管内容積変化に由来するW1−B成分を大きく低減している。
なお、W1−B成分が抑圧される結果、血管内圧力による血管の振動成分であるW0成分が新たに観測できる。ただし、W1−A成分とW1−C成分による振幅変化に比較しW0成分の振幅変化は十分小さい。
脈波信号PWは、減圧過程において、カフ圧力が収縮期血圧値と拡張期血圧値との間にある場合の観測される代表的な例である。減圧過程でのカフ圧力が収縮期血圧値から拡張期血圧値までの間では、カフ中央部Aに血流が流れ込み、カフよりも下流側の血管に血流を拍出する現象がみられる。そして、この場合、下流側の血管への血流の拍出に伴うカフ中央部A下での血管内容積変化に由来するW1−A成分とカフ下流部C下での血管内容積変化に由来するW1−C成分が重なりW1成分を形成し、更に、それに、下流側からの反射によるW2成分が、時間差をもって重なり、カフ圧力に重畳した脈波信号PWが形成される。
ここで、脈波検出用の小カフ2は、カフ中央部Aに取り付けられていることから、W0成分やW1−C成分に比べて、W1−A成分を最も感知しやすい。従って、W1−A成分の特徴は、W1−C成分の特徴に比べて、W1成分の形状に大きく反映する。
W1−C成分については、カフ下流部C下での血管内容積変化を示すが、下流部Cは中央部Aの下流側に位置し、下流部Cのカフの圧迫力は中央部Aのカフの圧迫力よりも小さいことから、下流部C下の血管の開閉は中央部A下の血管の開閉にほぼ同期しており、W1−A成分とW1−C成分の出現の時間差は実質的にない。
W2成分は、上流からの血流の拍出に対するカフの下流側の血管からの反射であるから、下流側の血管内圧力がカフ圧力より高くなるタイミングによってピークの出現はW1成分のピークの出現より遅れる(図4)。一般に、W2成分の形状の脈波信号の全体形状への反映は、W1成分(W1−A成分とW1−C成分の合成)の形状の反映よりも小さい。また、減圧過程でのカフ圧力が拡張期血圧値の近傍では、カフ下流側の血管内圧力はカフによる阻血前の状態に充分に回復しているので、下流側の血管からの反射は実質的になくなる。従って、カフ圧力が拡張期血圧値の近傍で検出される脈波信号では、実質的に、W2成分は消滅している。
図5は、カフ中央部Aの下の血管内容積変化に由来するW1−A成分が、カフ圧力の減圧過程で生じて、変化していく様子を模式的に示す図である。
グラフ1では、横軸は、カフ圧力を一定の減圧速度で減圧していく場合の経過時間を表し、縦軸は、血管内外圧差(血管内圧力−カフ圧力)を表し、観血波形(血管内圧力変化)を三角形波形で簡略化した場合に基づいて、経過時間の各時点での観血波形(血管内圧力変化)に由来するカフ中央部A下の血管内外圧差の変化(観血波形と同じ三角形波形)を表わしている。
また、グラフ1の上側に、縦軸を血管内容積として、血管内外圧差の変化に応じて生じる各時点の血管内容積の変化がグラフ2として表されている。血管内外圧差の縦軸の左側には、血管内外圧差の変化(グラフ1)を血管内容積の変化(グラフ2)に変換する血管内外圧差−血管内容積の関係が、横軸を血管内容積としたグラフ3として表されている。
グラフ3の血管内外圧差−血管内容積の関係については、血管内容積が血管内外圧差が0の近傍で急変(急増加もしくは急減少)する傾向に注目して、簡略化した関係を仮定している。すなわち、血管内外圧差の増減する過程での血管が完全に閉じた状態(血管内容積0)と完全に開いた状態(血管内容積Vmax)との間の変化を、血管内容積がV0とV1の点で2つの折れ部をもち、V0とV1の間の急勾配の部分とV0以下とV1以上の緩やかな勾配の部分の直線からなる折れ線で表わしている。
これは、血管内外圧差が0の位置では、血管は自重によりつぶれた状態(血管内容積V0)であるが、この位置から血管内外圧差が正の値に変化すると急に血管内容積が増大し、血管が十分に開いた状態(血管内容積V1)に達し、その後は、血管内外圧差の変化に対して、緩やかに増大する(最大の血管内容積Vmaxに向かう)傾向と、血管内外圧差が0の位置から負の値に変化すると、血管内容積は緩やかに減少していく(血管内容積0に向う)傾向を示している。尚、グラフ3では、血管内容積がV0とV1の間の急勾配の部分は直線で近似されているため血管内容積の変化の割合はこの間では同じとなっているが、実際には、血管内外圧差が0の位置(血管内容積V0の位置)での変化の割合が最大となっている。
このような血管内容積が血管内外圧差が0の近傍で急変(急増加)する傾向の程度は、被測定者の血管の伸展性の大きさに依存するものであるが、傾向自体は、一般化できるものと考えられる。
グラフ1では、カフ圧力の減圧過程(経過時間)の中で、aはカフ圧力が収縮期血圧値に等しい時点、bはカフ圧力が収縮期血圧値と拡張期血圧値のほぼ中央に位置する時点、cはカフ圧力が拡張期血圧値に等しい時点での、カフ中央部A下の血管内外圧差の変化(三角形波形)を示している。
経過時間の各時点での血管内外圧差の変化(三角形波形)a、b、cの各頂点(ピーク点)は、観血波形(血管内圧力変化)での収縮期血圧値の部分(すなわち、心臓の拡張期初期)に由来するものであり、下向き頂点(ボトム点)は、観血波形(血管内圧力変化)での拡張期血圧値の部分(すなわち、心臓の収縮期初期)に由来するものである。
これらグラフ1のa、b、cの血管内外圧差の変化をグラフ3の血管内外圧差−血管内容積の関係を用いて、血管内容積の変化に変換したものが、グラフ2の(a)、(b)、(c)で示されている。(a)、(b)、(c)には、心臓の収縮期初期の位置(前後2箇所)を白丸で示している。これは、観血波形(血管内圧力変化)の下向き頂点(ボトム点)に対応している。そして、この心臓の収縮期初期の位置(前後2箇所)の間に示される成分(太線で表示)が、W1−A成分である。すなわち、グラフ2には、W1−A成分が、カフ圧力の減圧過程(経過時間)の各時点で変化していく様子が示される。
(b)、(c)のW1−A成分(血管内容積変化)の中では、ピーク点に先行して血管内外圧差が0となる位置をドットで示している。(a)のW1−A成分(血管内容積変化)では、ピーク点が、血管内外圧差が0の位置に対応しており、この位置をドットで示している。(a)、(b)、(c)のドットで示されている血管内外圧差が0の位置は、実際には、血管内容積が急増加(急上昇)する部分(波形の前半での最大勾配点)となる。
更に、(a)、(b)、(c)のW1−A成分の中では、ピーク点に遅れて生じる血管内容積が最小となる位置もドットで示している。このW1−A成分のピーク点に遅れて生じる血管内容積が最小となる位置は、実際の脈波信号の下向きピーク点(ボトム点)の位置にほぼ等しいことが知られている。従って、以下、W1−A成分のピーク点に遅れて生じる血管内容積が最小となる位置を、W1−A成分のボトム点と呼ぶ。
グラフ2では、W1−A成分で血管内容積が急上昇する部分(波形の前半での最大勾配点)[ドットで示した血管内外圧差が0となる位置]が、W1−A成分に先行する心臓収縮期初期の位置から遅れる時間(時間差)をt1で示し、また、脈波信号の一周期をTで示している。ここで、脈波信号の周期Tは、測定の期間中、実質的に一定である。また、W1−A成分のボトム点の血管内容積が急上昇する部分(波形の前半での最大勾配点)から下方の変位をHで示している。
グラフ2の(a)、(b)、(c)に示されるように、時間差t1は、カフ圧力が収縮期血圧値から拡張期血圧値に近づくにつれて小さくなる。すなわち、最大勾配点の先行するボトム点からの出現の時間差t1は、カフ圧力が収縮期血圧値から拡張期血圧値に近づくにつれて小さくなっている。
脈波信号の周期Tは、測定の期間中、実質的に一定であることから、最大勾配点の先行するボトム点からの出現の位相差2π(t1/T)も、同様に、カフ圧力が収縮期血圧値から拡張期血圧値に近づくにつれて小さくなる。
そして、グラフ2の(c)にみるように、カフ圧力が拡張期血圧値に等しくなる時点においては、この簡略化したグラフのもとでは、W1−A成分の先行するボトム点と最大勾配点(急上昇点)と心臓収縮期初期が同時に生じ、t1=0となっている。
<脈波信号の特徴>
以上、脈波信号PWを成分に分けて、W1−A成分についての簡略化した検討内容を示したが、実際には、脈波信号PWは、W1−A成分やW0成分などに分離されることなくそれぞれが重畳された1つの脈波信号として、脈波検出用の小カフ2で検出される。
しかし、既に述べたとおり、W0成分が立ち上がり部分に反映されるもののW1−A成分は、カフ圧力に重畳される脈波信号のW1成分の形状を大きく反映している。更に、脈波信号のW2成分は、一般にW1成分より小さく、カフ圧力が拡張期血圧値の近傍では消滅している。
そのため、圧伝播による圧変化(W0成分)と、血管内容積変化による圧変化(W1成分)が時間的にずれて重畳する場合、脈波のボトムからピークまでの間の傾きが大きく変化するノッチが生成される。
<血圧値の決定>
そこで、上述した脈波信号の特徴に基づき、以下のようにして血圧値を決定することが出来る。
収縮期血圧値:
カフ圧が収縮期血圧値より高い場合は、W1−A,W1−Cの成分は存在しないため、W0の成分の信号となる。カフ圧が収縮期血圧値と等しくなった場合、W1−A,W1−Cの成分が現れ、ノッチが生成される。よって、W1−A,W1−Cの成分が圧伝播成分に重畳した脈波(ノッチが生成された脈波)を検出すれば、その時のカフ圧より収縮期血圧値が求められる。
そこで、以下の手法により精度よく導出することができる。
手順1。各1周期脈波について、脈波基底部付近から脈波の最大脈波振幅点までの間での最大の傾きを示す最大変化点での脈波の接線を導出する。
手順2.各1周期脈波について、脈波基底部の時刻における手順1で導出した接線の交点の値と脈波基底部の時刻における実測の脈波レベルとの差値Hを求める。
手順3.各1周期脈波について導出した差値Hが急激に0付近から離れる時点(減圧過程での測定では急激に増加する時点)でのカフ圧を収縮期血圧値として決定する。
図6は、収縮期血圧値の導出方法を例示的に説明する図である。図6(a)はカフ圧が収縮期血圧値よりも高い場合の例を示しており、図6(b)はカフ圧が収縮期血圧値以下になった場合の例を示している。
図からわかるように、収縮期血圧値のポイントでは、ノッチが生成されるため、最大変化点が脈波基底部より離れるため差値Hが急劇に大きくなる。そのため、差値Hが急激に変化する時点でのカフ圧が収縮期血圧値として利用できることが分かる。なお、Hの代わりに、脈波基底部付近から最大変化点までの接線と脈波の間の面積を求め、この値の変化でも同じ処理を行なうことができる。
拡張期血圧値:
カフ圧が拡張期血圧値に近づくにつれ、脈派の立ち上がり(脈圧の最低点)の時刻から傾きの最大変化点(ノッチ)の時刻まで時間差Tは短くなり、圧伝播による成分(W0の成分)とW1−A,W1−Cの分離ができなくなる。よって、この分離できなくなる点を検出すればよい。
そこで、以下の手法により精度よく導出することができる。
手順1。各1周期脈波について、脈波基底部付近から脈波の最大脈波振幅点までの間での最大の傾きを示す最大変化点での脈波の接線を導出する。
手順2.各1周期脈波について、脈波基底部の時刻における手順1で導出した接線の交点の値と脈波基底部の時刻における実測の脈波レベルとの差値Hを求める。
手順3.各1周期脈波について導出した差値Hが急激に0付近の一定の値に近づく時点(減圧過程での測定では急激に減少する時点)でのカフ圧を拡張期血圧値として決定する。
図7は、拡張期血圧値の導出方法を例示的に説明する図である。図7(a)はカフ圧が拡張期血圧値よりも高い場合の例を示しており、図7(b)はカフ圧が拡張期血圧値以下になった場合の例を示している。
図からわかるように、拡張期血圧値のポイントでは、最大変化点が脈波基底部に近づくため差値Hが急劇に小さくなる。そのため、差値Hが急激に変化する時点でのカフ圧が拡張期血圧値として利用できることが分かる。なお、Hの代わりに、脈波基底部付近から最大変化点までの接線と脈波の間の面積を求め、この値の変化でも同じ処理を行なうことができる。
また、上述の収縮期血圧値および拡張期血圧値の導出における手順を比較すると分かるように、ほぼ同一の手順(アルゴリズム)であることが分かるであろう。
図8は、減圧過程での測定における脈派の最大振幅および差値Hの時系列変化を例示的に示す図である。図からわかるように、差値Hの時系列変化における急激な変化点は、収縮期血圧値および拡張期血圧値と良好な対応を示していることがわかる。
上述したように、脈波信号のボトム点や最大勾配点(急上昇点)は、個々の脈波信号の中で検出されるものである。また、所定の閾値は、検出される脈波の信号処理過程でのノイズ等を考慮して設定される。なお、この信号処理過程でのノイズ等への個体差や減圧速度等の測定条件による影響は一般的に小さい。
そして、これらの血圧値の決定方法は、従来のオシロメトリック式血圧計のように、被測定者の個体差や測定条件(減圧速度等)の影響の大きいパラメータ(統計手法に基づいて設定される脈波振幅値の最大脈波振幅値に対する割合等)を用いるカフ圧力の減圧過程の脈波振幅値の変化プロフィルを扱う必要はない。そのため、個体差や測定条件(減圧速度等)によるバラツキの小さい測定が実現できる。
<装置の動作>
図9は、カフ加圧ルーチンの動作フローチャートである。
先ず、カフ本体201が上腕部に対して装着される。そして、不図示の測定開始スイッチ242が押圧されると、急速排気弁兼定速排気弁222の開口面積を全開にし、また、開閉弁216を開き、各空気袋の排気をおこなう、ステップS401において各空気袋内の残留空気の排気が終了すると、圧力センサ231のゼロセット(初期化)が行われる。
次にステップS402において、開閉弁216は開いた状態に維持される。一方、急速排気弁兼定速排気弁222は全閉される。以上でカフ(阻血用空気袋,脈波検出用空気袋,サブ空気袋)への加圧の準備が整い、ステップS403でポンプ223への通電が行われる。
続いて、ステップS404で規定圧力(阻血の障害にならず、カフエッジ効果を低減できるようにサブ空気袋207を膨らませるような圧力)になったか否かをチェックし、規定圧力になったらステップS405で開閉弁216を閉じる。
ステップS406ではカフ圧力が加圧設定値になったか否かが判断され、加圧設定値になると、ステップS407に進み、ポンプ駆動を停止した後に血圧値の測定ルーチンに進む。このようにして、阻血用空気袋408の圧力が予想される収縮期血圧より20〜30mmHg高い加圧設定値になるようにポンプ223の連続駆動が行われる。
図10は、血圧値の測定ルーチンを示すフローチャートである。なお、ここでは血圧決定に上述の差値Hを用いる。
ステップS620に進むと急速排気弁兼定速排気弁222により定速排気が開始される。カフ圧制御部240によりカフ圧力検出部からの信号を用いて、減圧速度が2〜3mmHg/秒になるように急速排気弁兼定速排気弁222の開口面積を可変して定速減圧が開始される。
これに続いてステップS621で、カフ圧力検出部からカフ圧力を得る、また次のステップS622では、脈波信号を検出し、各1脈波信号における最大変化点(ノッチ)を検出し当該最大変化点での接線を導出する。そして、脈波基底部の時刻における当該接線の交点の値と脈波基底部の時刻における実測の脈波レベルとの差値Hを求める。次に、ステップS623に進み脈波処理部239で導出された差値Hとカフ圧力とを一組にしてRAM238に記憶する。
ステップS624ではステップS623で記憶された差値Hが、0付近より大きく変動したか否かを判定し、変動した時点でのカフ圧力値を収縮期血圧値として決定する。なお、あらかじめ閾値を決めておき、差値Hが当該閾値を超えた時点のカフ圧力値を収縮期血圧値として決定してもよい。変動していない場合は、ステップS621に戻る。
ステップS626では、収縮期血圧値が決定された後、再び、脈波信号を検出し、各1脈波信号における最大変化点(ノッチ)を検出し当該最大変化点での接線を導出する。そして、脈波基底部の時刻における当該接線の交点の値と脈波基底部の時刻における実測の脈波レベルとの差値Hを求める。次に、ステップS627に進み脈波処理部239で導出された差値Hとカフ圧力とを一組にしてRAM238に記憶する。
ステップS628ではステップS626で記憶された差値Hが、0付近の一定の値に近づいたか否かを判定し、近づいた時点でのカフ圧力値を拡張期血圧値として決定する。なお、あらかじめ閾値を決めておき、差値Hが当該閾値を下回った時点のカフ圧力値を拡張期血圧値として決定してもよい。下回っていない場合は、ステップS625に戻る。
ステップS629では、急速排気弁兼定速排気弁222の開口面積を全開にし、かつ、開閉弁216を開くことでカフを大気圧にする。
そして、ステップS630では、記憶した収縮期血圧値と拡張期血圧値を表示部で表示して一連の血圧測定動作を終了する。
以上説明したように、第1実施形態に係る血圧測定装置によれば、統計的手法ではなく脈波信号(1周期脈波信号)の形状の変化に基づき血圧値(収縮期血圧値および拡張期血圧値)を決定する。その結果、個体差に適応した測定が行え、より精度の高い血圧値(収縮期血圧値および拡張期血圧値)を導出可能となる。
図8を用いて説明したように、差値Hの変化は収縮期血圧値および拡張期血圧値付近で良好な対応をもって変化するため、より精度高く検出することが可能となる。また、収縮期血圧値および拡張期血圧値に対応する血圧値を単純かつ同一の計算アルゴリズムにより検出しているため、より少ない計算リソースで実現できるという利点を有する。
カフ圧力の減圧過程で、カフ圧力に脈波信号が重畳している様子を示す図である。 カフ圧力の減圧過程での、カフ圧力に重畳する脈波振幅値の変化の様子をカフ圧力の変化と共に示した図である。 第1実施形態に係る血圧測定装置のカフの長手方向の断面図である。 脈波信号PWに含まれる各成分を模式的に示す図である。 カフ中央部Aの下の血管内容積変化に由来するW1−A成分が、カフ圧力の減圧過程で生じて、変化していく様子を模式的に示す図である。 収縮期血圧値の導出方法を例示的に説明する図である。 拡張期血圧値の導出方法を例示的に説明する図である。 減圧過程での測定における脈派の最大振幅および差値Hの時系列変化を例示的に示す図である。 第1実施形態に係る血圧測定装置のカフ加圧ルーチンの動作フローチャートである。 血圧値の測定ルーチンの詳細フローチャートである。 第1実施形態に係る血圧測定装置の構成を示す図である。

Claims (4)

  1. 血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部やや下流側の脈波を検出する脈波検出用空気袋と、を含むカフ部と、
    前記カフ部の各空気袋を加圧または減圧する圧力制御手段と、
    前記カフ部の各空気袋内の圧力を検出する圧力センサと、
    前記圧力制御手段により前記カフ部の各空気袋を加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出手段と、
    脈波信号の特徴量の変化と当該変化時点でのカフ内の圧力とに基づき、収縮期血圧値及び/又は拡張期血圧値を導出する血圧値導出手段と、
    を備え、
    前記血圧値導出手段は、前記脈波信号の時系列データに含まれる複数の1周期脈波信号の各々について、ピーク点と該ピーク点に先行して現れるボトム点との期間での1周期脈波の最大勾配点を検出し、検出された最大勾配点に先行して現れるボトム点における脈波振幅値と検出された最大勾配点を通過する接線の前記ボトム点における時刻での値との差値に基づいて収縮期血圧値及び/又は拡張期血圧値を導出することを特徴とする血圧測定装置。
  2. 血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部やや下流側の脈波を検出する脈波検出用空気袋と、を含むカフ部と、
    前記カフ部の各空気袋を加圧または減圧する圧力制御手段と、
    前記カフ部の各空気袋内の圧力を検出する圧力センサと、
    前記圧力制御手段により前記カフ部の各空気袋を加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出手段と、
    脈波信号の特徴量の変化と当該変化時点でのカフ内の圧力とに基づき、収縮期血圧値及び/又は拡張期血圧値を導出する血圧値導出手段と、
    を備え、
    前記血圧値導出手段は、前記脈波信号の時系列データに含まれる複数の1周期脈波信号の各々について、ピーク点と該ピーク点に先行して現れるボトム点との期間での1周期脈波の最大勾配点を検出し、検出された最大勾配点と該最大勾配点に先行して現れるボトム点との期間において該最大勾配点を通過する接線と前記脈波信号とに囲まれる部分の面積に基づいて収縮期血圧値及び/又は拡張期血圧値を導出することを特徴とする血圧測定装置。
  3. 血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部やや下流側の脈波を検出する脈波検出用空気袋と、を含むカフ部と、前記カフ部の各空気袋を加圧または減圧する圧力制御手段と、前記カフ部の各空気袋内の圧力を検出する圧力センサと、を備える血圧測定装置の制御方法であって、
    前記圧力制御手段により前記カフ部の各空気袋を加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出工程と、
    脈波信号の特徴量の変化と当該変化時点でのカフ内の圧力とに基づき、収縮期血圧値及び/又は拡張期血圧値を導出する血圧値導出工程と、
    を備え、
    前記血圧値導出工程は、前記脈波信号の時系列データに含まれる複数の1周期脈波信号の各々について、ピーク点と該ピーク点に先行して現れるボトム点との期間での1周期脈波の最大勾配点を検出し、検出された最大勾配点に先行して現れるボトム点における脈波振幅値と検出された最大勾配点を通過する接線の前記ボトム点における時刻での値との差値に基づいて収縮期血圧値及び/又は拡張期血圧値を導出することを特徴とする血圧測定装置の制御方法。
  4. 血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部やや下流側の脈波を検出する脈波検出用空気袋と、を含むカフ部と、前記カフ部の各空気袋を加圧または減圧する圧力制御手段と、前記カフ部の各空気袋内の圧力を検出する圧力センサと、を備える血圧測定装置の制御方法であって、
    前記圧力制御手段により前記カフ部の各空気袋を加圧または減圧する過程において、前記圧力センサにより検出されるカフ内の圧力に重畳した脈波信号の時系列データを抽出する脈波信号抽出工程と、
    脈波信号の特徴量の変化と当該変化時点でのカフ内の圧力とに基づき、収縮期血圧値及び/又は拡張期血圧値を導出する血圧値導出工程と、
    を備え、
    前記血圧値導出工程は、前記脈波信号の時系列データに含まれる複数の1周期脈波信号の各々について、ピーク点と該ピーク点に先行して現れるボトム点との期間での1周期脈波の最大勾配点を検出し、検出された最大勾配点と該最大勾配点に先行して現れるボトム点との期間において該最大勾配点を通過する接線と前記脈波信号とに囲まれる部分の面積に基づいて収縮期血圧値及び/又は拡張期血圧値を導出することを特徴とする血圧測定装置の制御方法。
JP2008030717A 2008-02-12 2008-02-12 血圧測定装置およびその制御方法 Active JP5043707B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008030717A JP5043707B2 (ja) 2008-02-12 2008-02-12 血圧測定装置およびその制御方法
PCT/JP2009/050739 WO2009101842A1 (ja) 2008-02-12 2009-01-20 血圧測定装置およびその制御方法
CN2009801032384A CN101925330B (zh) 2008-02-12 2009-01-20 血压测量装置
TW098103796A TWI374021B (en) 2008-02-12 2009-02-06 Blood pressure measuring apparatus and control method therefor
US12/854,345 US8430822B2 (en) 2008-02-12 2010-08-11 Blood pressure measuring apparatus and method of controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030717A JP5043707B2 (ja) 2008-02-12 2008-02-12 血圧測定装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2009189425A JP2009189425A (ja) 2009-08-27
JP5043707B2 true JP5043707B2 (ja) 2012-10-10

Family

ID=40956872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030717A Active JP5043707B2 (ja) 2008-02-12 2008-02-12 血圧測定装置およびその制御方法

Country Status (5)

Country Link
US (1) US8430822B2 (ja)
JP (1) JP5043707B2 (ja)
CN (1) CN101925330B (ja)
TW (1) TWI374021B (ja)
WO (1) WO2009101842A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418302B2 (ja) * 2010-02-26 2014-02-19 オムロンヘルスケア株式会社 血圧情報測定装置
TWI418337B (zh) * 2010-03-10 2013-12-11 Geee Creations Inc 高精確度血壓計及血壓量測方法
JP5499833B2 (ja) * 2010-03-30 2014-05-21 オムロンヘルスケア株式会社 血圧情報測定装置用カフおよびこれを備えた血圧情報測定装置
JP5640527B2 (ja) * 2010-07-28 2014-12-17 オムロンヘルスケア株式会社 血圧測定装置
JP5732692B2 (ja) * 2010-08-02 2015-06-10 セイコーエプソン株式会社 血圧検出装置及び血圧検出方法
TWI459926B (zh) * 2011-08-19 2014-11-11 中原大學 Pulse pressure signal measurement system and its measurement method
JP5821657B2 (ja) * 2012-01-25 2015-11-24 オムロンヘルスケア株式会社 測定装置および測定方法
JP6027767B2 (ja) * 2012-05-16 2016-11-16 株式会社エー・アンド・デイ 自動血圧測定装置。
WO2017136772A1 (en) * 2016-02-03 2017-08-10 Angilytics Inc. Non-invasive and non-occlusive blood pressure monitoring devices and methods
TWM547950U (zh) 2016-05-31 2017-09-01 宜強科技股份有限公司 不具加壓泵的穿戴式血壓量測裝置
CN111065324B (zh) * 2017-07-06 2023-05-26 职业医生有限责任公司 用于血压波形分析和诊断支持的自校准系统和方法
WO2019113100A1 (en) 2017-12-04 2019-06-13 Caretaker Medical, Llc Butterfly cuff
CN109009044B (zh) * 2018-08-15 2024-01-02 合肥博谐电子科技有限公司 一种新型脉搏波获取装置
TWI696445B (zh) * 2018-11-22 2020-06-21 研能科技股份有限公司 健康監測裝置
CN111615357A (zh) * 2018-12-25 2020-09-01 深圳市大富网络技术有限公司 血压脉象检测方法及检测装置、检测系统
JP2022518204A (ja) * 2019-01-14 2022-03-14 コーニンクレッカ フィリップス エヌ ヴェ 血圧測定用の測定システムを制御するための制御装置
JP7320807B2 (ja) * 2019-02-14 2023-08-04 デルタ工業株式会社 体調判定装置及びコンピュータプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100835B2 (en) * 2004-07-29 2012-01-24 Martin Baruch Arterial pulse decomposition analysis for vital signs determination
JP4906204B2 (ja) * 2001-09-27 2012-03-28 テルモ株式会社 電子血圧計
KR100515105B1 (ko) 2003-03-14 2005-09-13 세인전자 주식회사 이중 블래더를 내장한 혈압계용 커프
TW200701946A (en) * 2005-07-06 2007-01-16 Cardio Vascular Metrics Inc Diagnostic device and the method using the same
JP4795777B2 (ja) * 2005-11-04 2011-10-19 テルモ株式会社 血圧測定用カフ、血圧測定装置及び血圧測定方法
CN100413464C (zh) * 2006-05-26 2008-08-27 中国人民解放军空军航空医学研究所 在脉搏波法动脉血压连续测量中的脉搏波传导时间的获取方法和装置
JP4819594B2 (ja) * 2006-06-27 2011-11-24 テルモ株式会社 血圧測定用カフ、血圧測定装置及び血圧測定方法
JP4943748B2 (ja) * 2006-06-27 2012-05-30 テルモ株式会社 血圧測定装置、その測定方法及び記憶媒体

Also Published As

Publication number Publication date
TW200934443A (en) 2009-08-16
TWI374021B (en) 2012-10-11
US8430822B2 (en) 2013-04-30
CN101925330B (zh) 2012-06-13
US20100324430A1 (en) 2010-12-23
CN101925330A (zh) 2010-12-22
WO2009101842A1 (ja) 2009-08-20
JP2009189425A (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5043707B2 (ja) 血圧測定装置およびその制御方法
JP5146996B2 (ja) 血圧測定装置およびその制御方法
JP3587837B2 (ja) 動脈硬化度評価装置
JP4795777B2 (ja) 血圧測定用カフ、血圧測定装置及び血圧測定方法
US20110152650A1 (en) Adaptive pump control during non-invasive blood pressure measurement
US20110224558A1 (en) Blood pressure information measurement device for measuring pulse wave propagation speed as blood pressure information
JP2001333888A (ja) 血圧測定装置
JP5143529B2 (ja) 血圧測定装置およびその制御方法
JP4943748B2 (ja) 血圧測定装置、その測定方法及び記憶媒体
US20040171941A1 (en) Blood flow amount estimating apparatus
JP4906204B2 (ja) 電子血圧計
JP5111053B2 (ja) 血圧測定装置
JP5146994B2 (ja) 血圧測定装置およびその制御方法
JP5112756B2 (ja) 血圧測定装置
JP3818853B2 (ja) 電子血圧計
WO2014162360A1 (ja) 血圧測定装置及び血圧値算出方法
JP4819594B2 (ja) 血圧測定用カフ、血圧測定装置及び血圧測定方法
JP5146995B2 (ja) 血圧測定装置およびその制御方法
JP5112767B2 (ja) 血圧測定装置
JP5146997B2 (ja) 電子血圧計及びその信号処理方法
JP4906205B2 (ja) 電子血圧計
JP4352952B2 (ja) 血圧測定装置
JP5158786B2 (ja) 血圧測定装置およびその制御方法
JPH1094528A (ja) 心拍出量推定装置
JP3649464B2 (ja) 心機能評価装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5043707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250