JP5043679B2 - 燃料電池発電装置のための汚染物質除去方法 - Google Patents

燃料電池発電装置のための汚染物質除去方法 Download PDF

Info

Publication number
JP5043679B2
JP5043679B2 JP2007548438A JP2007548438A JP5043679B2 JP 5043679 B2 JP5043679 B2 JP 5043679B2 JP 2007548438 A JP2007548438 A JP 2007548438A JP 2007548438 A JP2007548438 A JP 2007548438A JP 5043679 B2 JP5043679 B2 JP 5043679B2
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
electrode
flow field
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007548438A
Other languages
English (en)
Other versions
JP2008546130A (ja
Inventor
パターソン,ティモシー,ダブリュー.,ジュニア
ペリー,マイケル,エル.
洋 知沢
努 青木
スキバ,トミー
ユウ,ピング
ライストラ,ジェームス,エー.
ジャルヴィ,トーマス,ディー.
Original Assignee
ユーティーシー パワー コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーティーシー パワー コーポレイション filed Critical ユーティーシー パワー コーポレイション
Publication of JP2008546130A publication Critical patent/JP2008546130A/ja
Application granted granted Critical
Publication of JP5043679B2 publication Critical patent/JP5043679B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04238Depolarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Description

本発明は、輸送車両における使用に適した燃料電池発電装置、携帯型燃料電池発電装置、あるいは据置型燃料電池発電設備に関し、さらには、本発明は特に、装置が作動する期間と期間の間に、燃料電池発電装置の燃料電池電極から汚染物質を除去する汚染除去期間を備えた、燃料電池発電装置のための汚染物質除去方法に関する。
燃料電池発電装置は良く知られており、水素含有還元流体燃料ストリームと、酸素含有酸化剤反応物ストリームとから電力を発生して、発電機および輸送用車両などの電動装置に電力を供給するのに通常用いられている。従来における燃料電池においては、汚染物質は、装置の燃料電池の電極に吸着される場合があり、それにより、発電装置の性能を劣化させる場合がある。特に、硫化水素は、共通して種々の水素燃料内に存在しており、燃料電池を通過すると燃料極触媒に有害なものとなる。ごく少量の硫化水素汚染物質でさえも時間経過とともに燃料電池性能の深刻な損失が起こることになる。その他の既知の汚染物質には、アンモニア、および、やはり燃料電池の電極に吸着される、本発明者等の米国特許第6,316,135号明細書に開示される化合物などの「ダイレクト不凍溶液」の有機化合物が含まれる。
燃料電池から汚染物質を除去する既知の方法には、オコ(Oko)等の、2002年3月19日発効の米国特許第6,358,639号明細書に開示されるような有機溶剤、過酸化物やオゾン化水などの液体除去物質を、燃料電池が作動していないときに燃料電池に通過させることが包含される。しかしながら、そのような方法は、複雑で費用のかさむ液体ポンピングならびに弁システムの使用、および燃料電池運転の著しい中断することを伴うことが避けられない。2001年10月9日発効の米国特許第6,299,996号明細書には、燃料が燃料極流れ場プレートを通る第1の作動状態から酸化物ガスの供給が燃料極流れ場プレートを通って流れる第2の作動状態へと、システムの燃料電池を切り換えるための3つの弁を有するシステムの使用が開示されている。このシステムはまた、多数の配置と複雑な流路をともなういくつかの複雑な弁を必要とする。
したがって、広範にわたって燃料電池発電装置の運転を中断させることなく、燃料電池の電極から汚染物質を効率的に除去することができ、しかも、高価で複雑な弁や流路装置を必要としない、汚染物質除去方法が必要とされている。
本発明は、燃料電池発電装置のための汚染物質除去方法であり、該装置は、水素含有還元流体燃料ストリームおよび酸素含有酸化剤反応物ストリームから電力を生成する少なくとも1つの燃料電池を備える。燃料電池からの電力を主要な電気負荷に送るために電力回路が燃料電池に接続される。燃料電池は、電解質の両面にある、燃料極電極と、空気極電極と、水素燃料が燃料電池を介して隣接する燃料極電極に流れるよう案内するための、燃料極電極と流体的に連通する燃料極流れ場と、酸化剤ストリームが燃料電池を介して隣接する空気極電極に流れるように案内するための、空気極電極と流体的に連通する空気極流れ場と、を備える。
汚染物質除去方法は、主要電気負荷を燃料電池に接続することによって運転期間中電力を生成するよう燃料電池発電装置を作動させるステップと、酸化剤の流れを、空気極流れ場を通るよう案内するステップと、水素燃料の流れを、燃料極流れ場を通って流すよう案内するステップと、を含んでなる。燃料電池の電力生成が、電極の汚染によって少なくとも5%減少するなど、所与量を下回る場合にはいつでも、運転期間を終了させ、電気負荷を燃料電池から切り離すことによって汚染物質除去期間を開始する。次いで、運転期間中に電極に吸着された汚染物質を酸化することによって、汚染物質除去期間中に燃料電池を汚染物質除去する。その後、装置を作動させるために主要電気負荷を燃料電池に再び接続することによって汚染物質除去期間を終了する。汚染物質除去期間は、燃料中の汚染物質などに基づいて、燃料電池発電装置の特定の保守スケジュールの一部として調整することができる。
好ましい運転方法において、汚染物質除去工程は、汚染物質除去期間中に、燃料極流れ場と空気極流れ場とを、停滞した周囲空気などの酸素含有酸化剤へ開放することによって汚染物質を酸化するステップをさらに含む。燃料極と空気極の流れ場を酸素含有酸化剤へ開放することは、2003年7月17日に、米国特許出願公開第2003/0134164A1号として公開された米国特許出願第10/305,300号明細書(本出願人が出願人)に開示される方法を用いて、水素含有流体から酸素含有流体へ流れを移動させることによって好ましく行われる。該明細書には、燃料電池が停止した際の燃料極流れ場の空気による急速なパージが開示されている。さらに、好ましい方法とは、酸化剤の流れを燃料電池の燃料極流れ場と空気極流れ場を通るよう案内することによって汚染物質を酸化するステップをさらに含む。さらに好ましい方法には、酸化剤を加熱し、その後、加熱された酸化剤の流れを、燃料電池の燃料極流れ場と空気極流れ場とを通るよう案内することによって汚染物質を酸化することが包含される。酸化剤ブロワ圧縮機や加圧酸化剤の供給など、または、流れを供給する既知の方法によって、酸化剤の流れを燃料極流れ場を通るよう案内することができる。
加熱酸化剤は、燃料電池の酸化剤インレットと流体的に連通する既知の加熱器によって加熱することができ、さらに、燃料極流れ場を通る酸化剤または加熱された酸化剤の流れは、燃料電池を出て行く酸化剤の流れを、燃料電池排気再循環ループを通り、次いで燃料極と空気極の流れ場と通って戻るよう案内することによって促進することができ、それにより、より迅速かつより効率的な燃料電池電極の汚染物質除去を達成することができる。燃料電池そのものは、汚染物質除去工程を改善する、当該分野において従来既知のその他の方法で加熱することができる。そのような方法には、燃料電池に隣接して流れる加熱された冷却液を用いることや、燃料電池が通常の作動温度やその温度周辺にある間に汚染物質除去工程を行うことが包含される。
汚染物質除去工程のさらなる代替的な方法には、上述の米国特許出願第10/305,300号明細書に開示される燃料電池を停止する方法、および、2003年7月17日に、米国特許出願公開第US2003/0134165号A1公報として公開された米国特許出願第10/305,301号明細書に開示の燃料電池を始動させる方法で、好ましく、水素含有流体と酸素含有流体との間で、燃料極流れ場を介して交互に流すことによって、少なくとも2回、多くても10回のサイクルを実行することによって汚染物質を酸化するさらなるステップが包含される。前述の米国特許出願第10/305,301号明細書には、水素含有流体によって燃料極流れ場内の空気を迅速にパージし、次いで燃料電池を始動するために主要電気負荷に接続することが開示されている。
汚染物質除去工程はまた、水素燃料の流れを燃料極流れ場を通るよう案内し、直流電圧源を燃料極と空気極の電極に接続し、直流電圧を燃料極電極に印加して0.9V以上1.6V以下にすることによって汚染物質を酸化することを含む。さらには、直流電圧の燃料極電極と空気極電極への印加は、5回〜20回繰り返すことができる。この工程はまた、交流電源の適当な電圧、周波数および電流によって実行することができる。
さらに、汚染物質除去工程の代替方法には、前述の米国特許出願第10/305,300号明細書に開示の燃料電池を停止させる方法にしたがって、燃料極流れ場と空気極流れ場とを酸素含有酸化剤に開放することによって汚染物質を酸化することが含まれる。次いで、直流電圧源の正端子を電極の一方に接続し、直流電圧源の負端子を他方の電極に接続する。電極に印加された直流電圧は、燃料電池の電圧が約0.0V〜約0.5Vになり、燃料極電極の電位が燃料極の空気電位より上となり、かつ、空気極電位が空気極の空気電位より低くなるよう制御される。さらには、直流電圧源の正端子と負端子とは、正端子を逆側の電極に接続し、負端子をその反対側の電極に接続するよう、選択的に逆にすることができる。このような逆転は、好ましい方法において5〜20回生じる。
汚染物質除去工程はまた、発電装置の第2の燃料電池が通常運転し続けている間に第1の燃料電池に上述の工程を実行することを含む。例えば、大型の発電機に関して、燃料電池のセルを、2つまたはより多くの燃料電池スタックアッセンブリに配置することができることが知られており、また、そのような燃料電池スタックアッセンブリのそれぞれが、反応物ストリームの流れと電力の流れを方向付ける共通のマニホルド構造ならびにフロー構造を利用することも知られている。本発明は、第2の燃料電池、または燃料電池スタックアッセンブリが運転期間にあり、かつ、主要な電気負荷に接続されている間に、主要な電気負荷に接続された運転期間にない第1の燃料電池、または燃料電池スタックアッセンブリに対して説明した汚染物質除去工程を行うことを包含する。第2の燃料電池、または燃料電池スタックアッセンブリは、それにより、上述の汚染物質除去工程を第1の燃料電池または燃料電池スタックアッセンブリに対して行うために必要な電力を供給することができるため、汚染物質除去工程の効率を増大させることができる。
本発明の燃料電池発電装置のための汚染物質除去工程は、各汚染物質除去工程に対して、特定の運転期間の継続時間を有するカスタムデザインによる保守スケジュールによって実施することができる。所与の発電装置に対するそのような保守スケジュールは、用いられる装置の発電装置の構成、装置の運転パラメータ、および特定の燃料に基づく特定の発電装置に予測される条件を満たすようカスタムデザインすることができる。カスタムデザインされた保守スケジュールは、電力損失が所定のレベル、例えば約20%の減少に到達するときに汚染物質除去期間を開始するよう設計された制御スキームによって設定することができる。そのようなカスタムデザインによる保守スケジュールにより、本発明の汚染物質除去工程は、装置の燃料電池電極から実質的に全ての汚染物質を除去することができるため、運転が長く延長されても、装置の性能が著しく減衰することがなくなる。
したがって、本発明の目的は、従来技術における欠点を克服する汚染物質除去方法を提供することである。
より詳細には、装置の燃料電池電極の汚染物質を除去する保守スケジュール内において、複雑で費用の高い弁や精巧な流路などを要することなく用いることの可能な、燃料電池発電装置のための汚染物質除去方法を提供することが目的である。
本発明の燃料電池発電装置の汚染物質除去方法のこれら、ならびにその他の目的および利点は、以下の説明を関連図面と組み合わせて読むことによってより容易に明らかになるであろう。
図面を詳細に参照すると、本発明の燃料電池発電装置の汚染物質除去方法を実施するのに適した燃料電池発電装置が図1に示されており、概して、符号10で示されている。装置10は、水素含有還元流体燃料ストリームと酸素含有酸化剤反応物ストリームとから電力を生成するための少なくとも1つの燃料電池12を備える。水素燃料は、燃料貯蔵源14から、燃料インレット弁20を備える燃料インレット16を介して送られる。燃料は、従来既知の方法で燃料を隣接する燃料極電極24を通るよう案内する、燃料電池12の燃料極流れ場22を通過する。燃料はその後、燃料アウトレット弁28を有する燃料アウトレット26を介して燃料電池から排出される。
同様にして、酸化剤は、大気などの酸化剤源30から、酸化剤インレット弁34を備え、酸化剤の流速と圧力を増大するための酸化剤ブロワまたは圧縮機36と酸化剤加熱器38とを備え得る酸化剤インレット32を介して送られる。酸化剤インレット32は、酸化剤を燃料電池12内へ送り、そこでは、酸化剤は、これを、隣接する空気極電極42を通るよう案内する空気極流れ場40を通過する。酸化剤アウトレット44は、酸化剤アウトレット弁46を通って空気極流れ場40から出るように酸化剤を案内する。当業界で既知の固体陽子交換膜などの電解質48は、燃料電池12内の燃料極電極24と空気極電極42との間に固定される。
発電装置10はまた、燃料電池12を出る燃料電池反応物の流れを燃料電池12中に戻すよう案内するための燃料電池排気再循環ループ手段を備え得る。燃料電池排気再循環ループ手段は、燃料インレット弁20の下流において、燃料アウトレット26と燃料インレット16との間で流体的に連通させて固定された燃料再循環ループ50を備えてもよく、ここで、燃料再循環ブロワ52は該燃料再循環ループ50に固定されている。排気再循環ループ手段はまた、酸化剤再循環ブロワ56を有する酸化剤インレット弁34から下流で酸化剤アウトレット44と酸化剤インレット32との間で流体的に連通して固定される酸化剤再循環ループ54を有することもでき、ここで酸化剤再循環ブロワ56は酸化剤再循環ループ54に固定されている。酸化剤クロスオーバー手段もまた、酸化剤インレット32からの酸化剤の流れを燃料インレット16中へ案内するために、酸化剤インレット32と燃料インレット16との間に固定される。酸化剤クロスオーバー手段はまた、燃料インレット弁20と酸化剤インレット弁34の下流で燃料インレット16と酸化剤インレット32との間で流体的に連通して固定された酸化剤クロスオーバーライン58と酸化剤クロスオーバー弁60などのそのように機能可能な従来既知の装置を備え得る。
電力回路80は、燃料電池12と、主要な電気負荷82と、主要な電気負荷スイッチ84と、に電気的に接続して固定される。電力回路はまた、補助負荷スイッチ88を閉じることによって作動可能な抵抗型負荷などの補助負荷86を備え得る。さらに、直流電圧90の電源は、直流ライン92A,92Bを介して直流コントローラ94に固定される。直流コントローラ94は、電力回路80などを介して、直流電圧源90から燃料極電極24と空気極電極42への直流を単に接続しかつ接続を切り、さらに該直流の適用の選択的な制御に用いることができる。さらに、図1に示すように電力回路80を介して、または従来既知のように、直流コントローラは、特に、ライン92Aを介して接続された直流正端子96を燃料極電極24に、ライン92Bを介して接続された直流負端子98を空気極電極42に、案内するのに用いることができる。
さらに、直流コントローラ94は、上述の機能を実施可能な従来既知のいずれのコントローラ手段であってよく、また、汚染物質除去期間を介して、直流の適用の連続的な中断の間、燃料極電極24と空気極電極への直流の適用を選択的に遮断することが可能なものであり、また、燃料極電極24と空気極電極42の電位を測定するのに用いることも可能であり、また、電極24,42への電流の適用または適用の終了を制御することもできる。直流電圧90の電源は、バッテリーなどの直流電圧を供給可能な従来既知の装置、グリッドなどの外部交流源と電気的に連絡している変換器、電力回路80と電気的に接続している変換器などであってよい。条件が交流電力デバイスを必要とする場合、燃料電池への電源はまた、交流電力デバイスを備え得る。
開示の燃料電池発電装置10は、装置10を、運転期間の中に電力を生成させるようまず作動させることにより、本発明の汚染物質除去方法を実施するのに利用できる(本明細書において「運転期間」という語は特定の期間を意味する)。次いで、燃料極電極24および/または空気極電極42の汚染による場合などの原因によって、燃料電池の最適電力生成が所定量、例えば少なくとも5%、低減するときには、いつでも運転期間が終了し、燃料電池12から主要な負荷82を切り離すよう主要な負荷スイッチ84を開放することによって汚染物質除去期間を開始する。燃料電池12の燃料極電極24および/または空気極電極42の汚染物質を除去する第1の好ましい方法において、水素含有燃料の流れは、燃料インレット弁20を閉じることによって終端し、次いで空気が、クロスオーバー弁60を開くこと、あるいは従来既知の方法などによって燃料極流れ場22中へ流される。燃料電池12への損傷を最小限にするために、燃料極流れ場22中への空気の移動は、前述の米国特許出願第10/305,301号明細書に開示の停止方法に従うことが好ましい。燃料極電極24および空気極電極42の両方の両電極上の空気を有することにより、両電極は同時に汚染物質除去される。そのような空気/空気モードにおいて、両方の電極24,42は、空気極電極42電位を抑制する水素燃料が存在しないため、(標準的な水素電極と比較して)通常の燃料電池12開路電位より高い電極電位まで上昇可能である。そのような空気/空気モードにおいて、両電極24,42を、約1.0〜約1.25Vの電位まで上昇させることができる。この方法による電極24,42の汚染物質除去は、燃料電池12が最適な電力生成に戻るまで、クロスオーバー弁60を閉じ、燃料インレット弁30を開くことよって上述の酸素含有酸化剤と水素燃料との間で燃料流れ場22を通る流れを交互させるか、あるいは、燃料流れ場22を通る流れを、酸化剤ストリームと水素反応物ストリームとの間で交互に流させる従来既知の方法による追加ステップによって1.0〜1.25V範囲で電極24,42の電位をサイクルさせることによって増大することができ、この追加の方法において、交互流は、効率を目的として少なくとも2回、多くても10回繰り返すことができる。このステップにより、電圧の上限は燃料極電極24における水素燃料と、空気極電極42における酸素含有酸素との理論的開路電圧である。
燃料電池12の汚染物質を除去する第2の好ましい方法において、主要電気負荷82の接続を切ることによって停止すると、燃料インレット弁60は、水素が燃料極電極24に残存し、かつ、空気が空気極電極42に残存するよう開いた状態を維持する。次いで、直流電圧源90を、空気極電極42が、標準的な水素電極と比較して約0.9V〜約1.6Vの電圧を得るようコントローラ94によって制御する。この方法は、クロスオーバー弁60を用いず、電極24,42が、工程中に通常の水素反応物と酸素反応物とをそれぞれ維持しているため、従来の方法と比較して複雑ではない。しかしながら、この汚染物質除去方法は、空気極電極42の汚染物質を除去することにのみ限定されている。直流電圧コントローラ94は、電極24,42の電圧限界を設定する。さらに、直流電圧の燃料極電極および空気極電極への適用は、5回から20回の間で繰り返しオンとオフが行われ得る。
燃料電池12の汚染物質を除去する第3の好ましい方法において、第1の好ましい方法同様、主要な電気負荷82の接続を切ることによって停止すると、水素含有燃料の流れは、燃料インレット弁20を閉じることによって終端し、クロスオーバー弁60を開くことによるか、あるいは従来既知の方法によって、空気が燃料極流れ場22中へ流される。燃料電池12への損傷を最小限にするため、燃料流れ場22中への空気の移動は、前述の米国特許出願第10/305,301号明細書に開示される停止方法にしたがうことが好ましい。直流電圧源90は、次いで、各電極が、標準的な水素電極と比較して、コントローラ94を通る電流を、コントローラ端子96,98の間で逆転させることなどにより、約1.0Vの電位と約1.6Vの電位の間で交互に上昇するよう、燃料電池12の電極24,42を駆動するようコントローラ94によって制御される。燃料極電極24と空気極電極42がコントローラ94によって、上述の電圧範囲で交代する一方、空気などの酸素含有酸化剤は、燃料極流れ場22と空気極流れ場40の両方を通る最小限に流される。空気の流量は、約10〜約50mA/cm2の間の電流に耐えるのに必要な量までである。同時に、燃料極電極24と空気極電極42との間における電圧差は、電圧差が約0.5Vに制限されるようコントローラ94によって制御される。0.5Vの電圧差に達すると、コントローラ94は、燃料極電極24と空気極電極42への直流電流の流れを逆転させる。
開示した全ての汚染物質除去方法において、汚染物質除去方法が、確実にいずれの電極も回復不能なまでに損傷しないようにするために特別なケアを施さなければならない。前述の米国特許出願第10/305,300号明細書ならびに第10/305,301号明細書に開示の燃料電池12の始動ならびに停止工程を用いることによって損傷を防止することができる。これら米国特許出願の両方とも、本発明の権利所有者が所有する。開示の方法のいずれかを用いる汚染物質除去期間の期間は、燃料電池12を最適な電力出力に戻すのに適している。さらに、ここで目的のため、「約」という語は、±10%であることを意味する。
電極24,42の汚染物質を酸化することによる開示の汚染物質除去の方法を包含する上述の汚染物質除去方法はまた、第1の燃料電池12が汚染物質除去期間にあり、かつ、(図示しない)第2の燃料電池が運転期間にある間に、第1の燃料電池12に対して実施することもできる。これにより、電力源を要する汚染物質除去方法に電力を供給することによって、増大された効率が得られる。電力の需要が不規則であることが知られており、複数の燃料電池を有する燃料電池発電装置が、最大容量で作動する場合に全ての燃料電池が作動し、また、装置が低い需要を供給するよう作動する場合に、燃料電池のいくつかが作動していない。効率目的のため、開示する複数の燃料電池を有する燃料電池発電装置は、従来既知の2つまたはそれより多くの燃料電池スタックアッセンブリに配置された上記燃料電池を有することができる。さらに、そのような(図示しない)複数の燃料電池スタックアッセンブリを有する燃料電池発電装置に、本発明の汚染物質除去工程および方法を実施する場合、本発明の方法は、他の、第2の燃料電池スタックアッセンブリが、汚染物質除去工程に必要な電気、ならびに装置に必要な電気を得るよう作動している間、電気を生成していない第1の燃料電池スタックアッセンブリに対して行われるであろう。続いて、第2の、すなわち作動している燃料電池スタックアッセンブリは、汚染物質除去期間に移るよう制御され、第1の燃料電池スタックアッセンブリが作動して、装置と、汚染物質除去工程を受けている第2の燃料電池スタックアッセンブリに必要な電気を供給する。この方法において、発電機として機能する燃料電池発電装置は、その通常の運転条件を妨害することなく、通常の汚染物質除去工程を実行することができる。本発明の目的において、そのような配置は、第1の燃料電池12と(図示しない)第2の燃料電池とを有する燃料電池発電装置10として単に特徴づけられるものであり、第2の燃料電池が運転期間にある間に、第1の燃料電池12は汚染物質除去期間にある。
図2は、前記汚染物質除去工程の酸化方法のいずれか1つを適用したわずか5分後に、燃料電池が汚染前の運転性能まで完全に回復していることを示す試験を示している。約65℃である燃料電池から出るときの酸化剤温度、340cm3/分(「ccm」)の冷却流量、および反応物ストリームとしての水素ガスと大気空気とで作動する試験燃料電池は、図2の符号100のダイヤモンド形のプロットで示されるように、様々な電流密度におけるセル電圧のプロットを示した。燃料極反応物ストリーム内の10ppmの濃度の硫化水素に2時間さらされた後、燃料電池の性能は著しく劣化し、符号102の四角形のプロットで示されるような様々な電流密度におけるセル電圧のプロットを示している。次に、本発明の汚染物質除去工程を、試験燃料電池に適用した。ここで、電極汚染物質の酸化ステップは、直流電源の正端子を燃料極電極に接続することと、直流電源の負端子を燃料電池の空気極電極に接続すること、とを含んでおり、両方の電極上には酸化剤が存在していた。燃料電池の電圧が約5分間約0.4Vに保持されるように、直流を燃料電池に適用した。本発明の汚染物質除去方法のこれらステップの実行後、様々な電流密度におけるセル電圧を測定することにより、符号104で示される図2の線で見られるようなプロットが得られた。このラインは、符号100により図2で示される燃料電池の本来のプロットと完全に重なっている。これは、上述の工程によりわずか5分以内で、燃料電池が完全に回復したことを示している。
図3は、二酸化硫黄による空気極電極の汚染物質に起因した燃料電池の性能の低下を示す、さらなる試験の結果を示している。符号106のプロットは、700時間の運転後のセル電圧における減退を示しており、符号108のさらなるプロットは、低下した性能のベースラインを示している。符号110のプロットは、符号112の「回復処理」という用語で示される汚染物質除去工程適用後の、改善された燃料電池性能を示している。改善された性能は、上述の、燃料極電極24に水素が残存し、かつ、空気極電極24に空気が残存する、第2の好ましい汚染物質除去方法によって達成された。
明らかなように、本発明の汚染物質除去工程は、特定の燃料電池発電装置の運転条件、ならびに、特定の反応物ストリームの性質に基づくそれぞれの汚染物質除去期間に対して、特定の運転期間を有するカスタムデザインされた保守スケジュールに容易に組み込まれることができる。輸送車両に電力を供給するのに用いられる燃料電池発電装置に対して、カスタムデザインされた保守スケジュールは、バスなどの輸送車両が使用されていないときのシャットダウンしている間隔と概ね組み合わせることができる。例えば、燃料電池発電装置により電力を供給されるバスが、毎日8時間の運転期間を有する場合、汚染物質除去条件に依存して、保守期間は、それぞれの運転期間後、または、30運転期間に1回などの特定回数の運転期間後に実施されるよう制御することができる。さらに、電力発生器として利用される燃料電池発電装置に対しては、1つの燃料電池または燃料電池スタックアッセンブリが、該装置の別の燃料電池または燃料電池スタックアッセンブリが運転期間中にある間に汚染物質除去期間を経るようカスタムデザインされた保守スケジュールを利用することができる。
本発明を説明の例示された汚染物質除去工程ならびに方法を参照して説明してきたが、本発明はそれらの実施態様に限定されるものではないことは理解すべきである。例えば、燃料電池発電装置10が、クロスオーバーライン58と弁60、および酸化剤ならびに燃料再循環ループ54,50とともに示されているが、電極の汚染物質を酸化する開示の方法の多くは、燃料流れ場22,40を周囲空気に単に解放させるよう燃料インレット弁20を閉じる一方で、単に酸化剤インレット弁34、酸化剤アウトレット弁46、および燃料アウトレット弁28を開くことなどにより、それら構成要素をともなうことなく達成可能であることを理解すべきである。したがって、本発明の範囲を決定するためには、前述の説明ではなく特許請求の範囲を主として参照すべきである。
本発明の燃料電池発電装置のための汚染物質除去工程を実施するのに適した燃料電池発電装置を簡略的、概略的に示す図である。 燃料電池に関する、硫化水素汚染物質にさらされる前の、硫化水素汚染物質にさらされた後の、本発明の汚染物質除去工程の好ましい方法を実施した後の、セル電圧と電流密度のプロットを示すグラフである。 二酸化硫黄による空気極電極の汚染に起因する、燃料電池の性能における減少と、本発明の汚染物質除去工程実施後の該燃料電池の性能の回復と、を示すグラフである。

Claims (13)

  1. 燃料電池発電装置(10)のための汚染物質除去方法であって、該装置(10)は、水素含有還元流体燃料ストリームと酸素含有酸化剤反応物ストリームとから電力を生成するための少なくとも1つの燃料電池(12)と、該燃料電池(12)からの電力を主要電気負荷(82)へ送るための電力回路(80)と、を備え、該燃料電池(12)は、電解質(48)の両面に、燃料極電極(24)と、空気極電極(42)と、該水素燃料が該燃料電池(12)を通って隣接する燃料極電極(24)を流れるよう案内するための、該燃料極電極(24)と流体的に連通する燃料極流れ場(22)と、前記酸素含有酸化剤反応物ストリームが該燃料電池(12)を通って隣接する空気極電極(42)を流れるよう案内するための、該空気極電極(42)と流体的に連通する空気極流れ場(40)と、を備え、該汚染物質除去方法は、
    a.該主要な電気負荷(82)を燃料電池(12)に接続し、該酸化剤の流れを空気極流れ場(40)を通るよう案内し、かつ、該水素燃料の流れを該燃料極流れ場(22)を通るよう案内することにより、運転期間の間電力を生成するよう該燃料電池発電装置(10)を作動させるステップと、
    b.次いで、燃料電池(12)の最適な電力生成が所定量減少する場合にはいつでも、燃料電池(12)から電気負荷(82)への接続を切ることによって、汚染物質除去期間の間装置(10)の燃料電池(12)の運転を終させるステップと、
    c.次いで、運転期間中に燃料極電極(24)と空気極電極(42)の少なくとも一方に吸着された汚染物質を酸化するために、該汚染物質除去期間の間、燃料極流れ場(22)を通る水素燃料の流れを停止して、電極(24,42)の電位が、標準的な水素基準電極と比較して、約1.0〜1.25V上昇するよう、該酸素含有酸化剤の流れを、該燃料流れ場(22)を通るよう案内することによって燃料電池(12)の汚染物質を除去するステップと、
    を含んでなることを特徴とする汚染物質除去方法。
  2. 前記燃料電池(12)の汚染物質を除去するステップ中であって、燃料極流れ場(22)を通るよう酸素含有酸化剤ストリームの流れを案内するステップ後に、前記燃料電池(12)が最適な電力生成に戻るまで、前記酸素含有酸化剤ストリームと前記水素含有還元流体燃料ストリームの間で、燃料極流れ場(22)を通る流れを交互させることにより、前記電極(24,42)の電位をサイクルさせるステップをさらに含むことを特徴とする請求項1記載の汚染物質除去方法。
  3. 前記酸化剤ストリームと水素反応物ストリームとの間で燃料流れ場(22)をサイクルするステップを少なくとも2サイクルさらに含むことを特徴とする、請求項記載の汚染物質除去方法。
  4. 前記燃料電池(12)の汚染物質を除去するステップ中に、前記酸素含有酸化剤を加熱し、その後、加熱された酸素含有酸化剤が燃料電池(12)の前記燃料極流れ場(22)と空気極流れ場(40)とを通るよう案内されるステップをさらに含むことを特徴とする請求項1記載の汚染物質除去方法。
  5. 前記燃料電池(12)の汚染物質を除去するステップ中に、前記酸素含有酸化剤を、前記燃料電池(12)の前記燃料電池流れ場(22)と前記空気極流れ場(40)とを通るよう案内するステップの間、前記燃料電池(12)を加熱するステップをさらに含むことを特徴とする請求項1記載の汚染物質除去方法。
  6. 前記燃料電池発電装置(10)を作動させるステップ後に、燃料電池(12)の最適電力生成が、前記燃料極電極(24)と前記空気極電極(42)の少なくとも一方の汚染によって少なくとも5%減少するときはいつでも、汚染物質除去期間の間、前記燃料電池(12)から前記電気負荷(82)への接続を切ることにより、前記装置(10)の前記燃料電池(12)の運転を停止するステップをさらに含むことを特徴とする請求項1記載の汚染物質除去方法。
  7. 燃料電池発電装置(10)のための汚染物質除去方法であって、該装置(10)は、水素含有還元流体燃料ストリームと酸素含有酸化剤反応物ストリームとから電力を生成するための少なくとも1つの燃料電池(12)と、該燃料電池(12)からの電力を主要電気負荷(82)へ送るための電力回路(80)と、を備え、該燃料電池(12)は、電解質(48)の両面に、燃料極電極(24)と、空気極電極(42)と、該水素燃料が該燃料電池(12)を通って隣接する燃料極電極(24)を流れるよう案内するための、該燃料極電極(24)と流体的に連通する燃料極流れ場(22)と、該酸化剤ストリームが該燃料電池(12)を通って隣接する空気極電極(42)を流れるよう案内するための、該空気極電極(42)と流体的に連通する空気極流れ場(40)と、を備え、該汚染物質除去方法は、
    a.該主要な電気負荷(82)を燃料電池(12)に接続し、該酸化剤の流れを空気極流れ場(40)を通るよう案内し、かつ、該水素燃料の流れを該燃料極流れ場(22)を通るよう案内することにより、運転期間の間電力を生成するよう該燃料電池発電装置(10)を作動させるステップと、
    b.次いで、燃料電池(12)の最適な電力生成が所定量減少する場合にはいつでも、燃料電池(12)から電気負荷(82)への接続を切ることによって、汚染物質除去期間の間装置(10)の燃料電池(12)の運転を終端させるステップと、
    c.次いで、運転期間中に空気極電極(42)に吸着された汚染物質を酸化するために、該汚染物質除去期間の間、直流電圧源(90)を前記燃料極と空気極の電極(24,42)に接続し、前記空気極電極(42)の電位を、標準的な水素基準電極と比較して、0.9Vと約1.6Vの間で前記燃料極電極(24)より増大させるために該直流電圧を適用することにより、前記燃料電池(12)の汚染物質を除去するステップと、
    を含んでなることを特徴とする汚染物質除去方法。
  8. 前記燃料電池(12)の汚染物質を除去するステップの間、前記燃料極電極(24)に対して、標準的な水素参照電極と比較して、前記空気極電極(42)の電位を約0.9Vと約1.6Vの間で変化させるために、前記直流電圧のオンとオフを5回〜20回繰り返すために直流コントローラ(94)を用いるステップをさらに含むことを特徴とする請求項7記載の汚染物質除去方法。
  9. 前記燃料電池発電装置(10)を作動させるステップ後に、前記燃料電池(12)の最適電力生成が、前記空気極電極(42)の汚染によって少なくとも5%減少するときはいつでも、前記電気負荷(82)を前記燃料電池(12)から切り離すことにより、汚染物質除去期間の間、前記装置(10)の前記燃料電池(12)の運転を終了させるステップをさらに含むことを特徴とする請求項7記載の汚染物質除去方法。
  10. 燃料電池発電装置(10)のための汚染物質除去方法であって、該装置(10)は、水素含有還元流体燃料ストリームと酸素含有酸化剤反応物ストリームとから電力を生成するための少なくとも1つの燃料電池(12)と、該燃料電池(12)からの電力を主要電気負荷(82)へ送るための電力回路(80)と、を備え、該燃料電池(12)は、電解質(48)の両面に、燃料極電極(24)と、空気極電極(42)と、該水素燃料が該燃料電池(12)を通って隣接する燃料極電極(24)を流れるよう案内するための、該燃料極電極(24)と流体的に連通する燃料極流れ場(22)と、該酸化剤ストリームが該燃料電池(12)を通って隣接する空気極電極(42)を流れるよう案内するための、該空気極電極(42)と流体的に連通する空気極流れ場(40)とを備え、該汚染物質除去方法は、
    a.該主要な電気負荷(82)を燃料電池(12)に接続し、該酸化剤の流れを空気極流れ場(40)を通るよう案内し、かつ、該水素燃料の流れを該燃料極流れ場(22)を通るよう案内することにより、運転期間の間電力を生成するよう該燃料電池発電装置(10)を作動させるステップと、
    b.次いで、燃料電池(12)の最適な電力生成が所定量減少する場合にはいつでも、燃料電池(12)から電気負荷(82)への接続を切ることによって、汚染物質除去期間の間装置(10)の燃料電池(12)の運転を終端させるステップと、
    c.次いで、前記燃料極流れ場(22)を通る前記水素燃料の流れを停止して、前記燃料極流れ場(22)を通るよう酸素含有酸化剤ストリームの流れを案内することにより、汚染物質除去期間中に前記燃料電池(12)の汚染物質を除去するステップと、
    d.次いで、前記燃料と前記空気極の電極(24,42)に直流電圧(90)源を接続して、前記電極間における電圧差が約0.5Vに制限されるよう制御し、かつ、該電圧差が約0.5Vに増加するときはいつでも、前記直流源(90)から前記燃料極と空気極の電極(24,42)への電流方向を逆転するよう、前記直流電圧の印加を制御するステップと、
    e.前記直流電圧の前記電極(24,42)への適用を制御するステップの間、前記燃料極流れ場(22)と空気極流れ場(40)とを通るよう、酸素含有酸化剤ストリームの最小限の流れを案内するステップと、
    を含んでなることを特徴とする汚染物質除去方法。
  11. 前記燃料電池(12)の汚染物質を除去するステップ中、前記酸素含有酸化剤を加熱し、その後加熱された酸素含有酸化剤を、燃料電池(12)の前記燃料極流れ場(22)と空気極流れ場(40)とを通るよう案内するステップをさらに含むことを特徴とする請求項10記載の汚染物質除去方法。
  12. 前記燃料電池(12)の汚染物質を除去するステップ中に、前記酸素含有酸化剤を、前記燃料電池(12)の前記燃料電池流れ場(22)と前記空気極流れ場(40)とを通るよう案内するステップの間、前記燃料電池(12)を加熱するステップをさらに含むことを特徴とする請求項10記載の汚染物質除去方法。
  13. 前記燃料電池発電装置(10)を作動させるステップ後に、燃料電池(12)の最適電力生成が、前記燃料極電極(24)と前記空気極電極(42)の少なくとも一方の汚染によって少なくとも5%減少するときはいつでも、汚染物質除去期間の間、前記燃料電池(12)から前記電気負荷(82)への接続を切ることにより、前記装置(10)の前記燃料電池(12)の運転を停止するステップをさらに含むことを特徴とする請求項10記載の汚染物質除去方法。
JP2007548438A 2004-12-27 2005-12-20 燃料電池発電装置のための汚染物質除去方法 Active JP5043679B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/023,148 US7442453B1 (en) 2004-12-27 2004-12-27 Decontamination procedure for a fuel cell power plant
US11/023,148 2004-12-27
PCT/US2005/046428 WO2007040576A2 (en) 2004-12-27 2005-12-20 Decontamination procedure for a fuel cell power plant

Publications (2)

Publication Number Publication Date
JP2008546130A JP2008546130A (ja) 2008-12-18
JP5043679B2 true JP5043679B2 (ja) 2012-10-10

Family

ID=37906598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007548438A Active JP5043679B2 (ja) 2004-12-27 2005-12-20 燃料電池発電装置のための汚染物質除去方法

Country Status (6)

Country Link
US (1) US7442453B1 (ja)
JP (1) JP5043679B2 (ja)
KR (1) KR101169828B1 (ja)
CN (1) CN101443945B (ja)
DE (1) DE112005003296B4 (ja)
WO (1) WO2007040576A2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206610A1 (en) * 2005-09-30 2008-08-28 Saunders James H Method of Operating an Electrochemical Device Including Mass Flow and Electrical Parameter Controls
RU2011111722A (ru) * 2008-08-29 2012-10-10 Панасоник Корпорэйшн (Jp) Система генерирования энергии на топливном элементе
CA2763526C (en) * 2009-06-03 2017-06-27 Bdf Ip Holdings Ltd. Methods of operating fuel cell stacks and systems
US9786934B2 (en) * 2009-07-08 2017-10-10 The United States Of America, As Represented By The Secretary Of The Navy Performance recovery of a fuel cell
CN102301515A (zh) * 2009-09-02 2011-12-28 松下电器产业株式会社 燃料电池发电系统及其运转方法
US20120251908A1 (en) * 2011-03-30 2012-10-04 GM Global Technology Operations LLC Voltage recovery and contaminant removal by ex-situ water flush
FR2991506B1 (fr) * 2012-05-29 2015-03-20 Commissariat Energie Atomique Procede de la mesure de la reproductibilite de n assemblages unitaires membrane echangeuse d'ions/electrodes par introduction d'agent polluant
EP2675008B1 (en) * 2012-06-15 2020-01-22 Airbus Operations GmbH Fuel cell system and method for operating a fuel cell system
US20140072887A1 (en) * 2012-09-12 2014-03-13 GM Global Technology Operations LLC Oxidation of fuel cell electrode contaminants
CN108987768B (zh) * 2018-06-26 2023-05-09 华电电力科学研究院有限公司 一种自净化的燃料电池系统及自净化方法
CN112652793B (zh) * 2020-12-21 2022-09-16 清华大学 发电装置和发电方法
DE102022204006A1 (de) 2022-04-26 2023-10-26 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines PEM-Brennstoffzellenstacks

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422509B2 (ja) * 1993-03-08 2003-06-30 三菱重工業株式会社 固体高分子電解質燃料電池システム
US5945229A (en) * 1997-02-28 1999-08-31 General Motors Corporation Pattern recognition monitoring of PEM fuel cell
JP2000156239A (ja) * 1998-11-18 2000-06-06 Toyota Motor Corp 固体酸化物型燃料電池
US6316135B1 (en) 1999-07-22 2001-11-13 International Fuel Cells Llc Direct antifreeze cooled fuel cell
US6358639B2 (en) 1999-08-27 2002-03-19 Plug Power Llc Methods and kits for decontaminating fuel cells
US6299996B1 (en) 1999-09-24 2001-10-09 Plug Power Inc. Fuel cell system
JP2001146407A (ja) * 1999-11-18 2001-05-29 Matsushita Electric Ind Co Ltd 一酸化炭素浄化装置、その運転方法およびその停止方法
DE10134193A1 (de) * 2000-07-17 2002-02-07 Vodafone Pilotentwicklung Gmbh Brennstoffzellensystem
US6858336B2 (en) 2000-12-20 2005-02-22 Utc Fuel Cells, Llc Procedure for shutting down a fuel cell system using air purge
US20020076582A1 (en) 2000-12-20 2002-06-20 Reiser Carl A. Procedure for starting up a fuel cell system using a fuel purge
JP4879461B2 (ja) * 2002-03-29 2012-02-22 エストコ バッテリー マネージメント インコーポレイテッド 燃料電池を再生する為の装置および方法、燃料電池をバイパスする為の装置および方法、並びに燃料電池を診断する為の装置
JP3801096B2 (ja) * 2002-05-20 2006-07-26 トヨタ自動車株式会社 スタック構造を有する燃料電池
JP2004265692A (ja) * 2003-02-28 2004-09-24 Nissan Motor Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
KR20070090009A (ko) 2007-09-04
DE112005003296B4 (de) 2020-08-13
KR101169828B1 (ko) 2012-07-30
WO2007040576A3 (en) 2009-04-02
WO2007040576A2 (en) 2007-04-12
CN101443945A (zh) 2009-05-27
CN101443945B (zh) 2011-06-08
DE112005003296T5 (de) 2007-11-08
US7442453B1 (en) 2008-10-28
JP2008546130A (ja) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5043679B2 (ja) 燃料電池発電装置のための汚染物質除去方法
JP4926708B2 (ja) カソード再利用ループを使用する燃料電池の停止及び始動
JP4263912B2 (ja) アノード排気再循環ループを有する燃料電池装置の停止方法
KR101753610B1 (ko) 고온 연료 전지 스택을 동작시키는 공정
JP4943151B2 (ja) カソード再利用ループを使用する燃料電池の停止及び始動
JP2007507856A (ja) 燃料電池電圧制御
JP4481165B2 (ja) 酸化剤の周期的欠乏による燃料電池の性能の回復
WO2004004057A1 (en) System and method for shutting down a fuel cell power plant
JP2009506498A (ja) 燃料電池セルの再生
JP3863042B2 (ja) 燃料電池の再活性化処理方法およびそのシステム
JP5418800B2 (ja) 燃料電池システムの起動方法及び起動プログラム
JP5338023B2 (ja) 燃料電池システム
JP2009140757A (ja) 燃料電池システム
US20070154745A1 (en) Purging a fuel cell system
JP6304430B1 (ja) 燃料電池システム及びその運転方法
JP2008210697A (ja) 燃料電池発電システムの停止保管方法およびプログラム並びに燃料電池発電システム
JPH1032013A (ja) 溶融炭酸塩型燃料電池のパージ方法
JP2931372B2 (ja) 燃料電池発電システムの運転方法
JP2021103642A (ja) 燃料電池システム
JP2005174757A (ja) 燃料電池システム
JP4703936B2 (ja) 燃料電池発電設備とその運転停止方法
JP2004265692A (ja) 燃料電池システム
JP5850982B2 (ja) 燃料電池発電システムと性能回復方法及び性能回復プログラム
JP2018186075A (ja) 燃料電池システム及びその運転方法
JP2006140065A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5043679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250