JP2009506498A - 燃料電池セルの再生 - Google Patents

燃料電池セルの再生 Download PDF

Info

Publication number
JP2009506498A
JP2009506498A JP2008527924A JP2008527924A JP2009506498A JP 2009506498 A JP2009506498 A JP 2009506498A JP 2008527924 A JP2008527924 A JP 2008527924A JP 2008527924 A JP2008527924 A JP 2008527924A JP 2009506498 A JP2009506498 A JP 2009506498A
Authority
JP
Japan
Prior art keywords
oxygen
cathode
current charging
anode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008527924A
Other languages
English (en)
Inventor
カーリン・カールソン
リファン・リン
リカルド・エフ・カレラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bose Corp
Original Assignee
Bose Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bose Corp filed Critical Bose Corp
Publication of JP2009506498A publication Critical patent/JP2009506498A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/04917Current of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池システムは、燃料を受け入れるように構築されそして配置されるアノード、酸化剤を受け入れるように構築されそして配置されるカソード、及び、アノード及びカソードの間に少なくとも部分的に位置する電解質を含む。制御可能スイッチは、アノード及びカソードとの間に選択的に負荷を連結するように構築されそして配置される。コントローラは、アノードで受け取る燃料と、カソードで受け取る酸化剤と、制御可能スイッチとの少なくとも1つを制御するように、そして、逆電流充電操作、順電流充電操作、酸素無しの操作及び開回路の操作、を含む群から選択される2つの改質操作を実行するように、構築されそして配置される。

Description

本発明は燃料電池セルに、そして、特に燃料電池セルの再生に関する。
この特許出願は、CHEMOELECTRIC GENERATINGと名付けられた2003年3月21日に出願の米国特許出願第10/394,822号の一部継続出願(CIP)であり、その全ての開示は、本願明細書に参照として組み込まれるものとする。
燃料電池セルは、化学エネルギーを電気エネルギーに変換することによって有用な電気を発生する電気化学的装置である。典型的な燃料電池セルは、電解質(例えば、高分子電解質膜(PEM))によって離隔される正及び負の電極を含む。典型的なダイレクトメタノール燃料電池(DMFC)において、負極に供給される燃料(例えば水素又はメタノール)は、アノード触媒に拡散して、陽子及び電子に分離する。陽子は、PEMを通過してカソードに向かい、そして、電子は、負荷に電力を供給するために外部回路を通って移動する。
改良された燃料電池セルを提供することは、発明の重要な目的である。一つの態様では、本発明は、燃料電池セルでの化学電気的生成方法で実施される。この方法は、燃料電池セルのアノードに燃料を供給することを含む。酸化剤は、燃料電池セルのカソードに供給される。この方法は、燃料電池セルにおける少なくとも2つの再生操作を実行することをも含む。この2つの再生操作は、逆電流充電操作、順電流充電操作、酸素無し(酸素レス)の操作及び開回路の操作から選択される。
一実施の形態において、この2つの再生操作は、断続的に、同時に、又は、順次に、実行される。例えば、逆電流充電操作、酸素無しの操作及び開回路の操作は、順次実行可能である。あるいは、逆電流充電操作、酸素無しの操作及び開回路の操作は、断続的にも実行可能である。他の実施の形態において、逆電流充電操作及び酸素無しの操作は、断続的に、同時に、又は、順次、実行可能である。いくつかの実施の形態では、酸素無しの操作及び開回路の操作は、断続的に、順次、又は、同時に、実行可能である。
順電流充電操作、逆電流充電操作、酸素無しの操作及び開回路の操作は、断続的に、又は、順次実行可能である。
この方法は、燃料電池セルの作動状態のモニタリングを更に含んでもよい。再生操作は、モニタされた作動状態が燃料電池セルの性能減衰を示すときに、実行可能である。燃料電池セルのモニタリングは、燃料電池セルの電圧をモニタすることを含んでもよい。
一実施の形態において、逆電流充電操作を少なくとも一つの他の再生操作と組み合わせて実行することは、燃料電池セルの動作電圧を増加させる。一実施の形態において、順電流充電操作を少なくとも一つの他の再生操作と組み合わせて実行することは、燃料電池セルの動作電圧を増加させる。一実施の形態において、酸素無しの操作を少なくとも一つの他の再生操作と組み合わせて実行することは、燃料電池セルの動作電圧を増加させる。
いくつかの実施の形態では、カソードに酸化剤を供給することは、カソードに空気を流すこと、又は、酸化剤を含む液体をカソードに運ぶことを含む。この酸化剤は、塩素酸カリウムの分解又は過酸化水素の分解からの酸素を含んでもよい。
この方法は、アノード及びカソードの間に負荷を接続することを更に含んでもよい。この方法は、アノード及びカソードの間に電源を接続することを更に含んでもよい。この方法は、燃料電池セルからのエネルギーを保存することを更に含んでもよい。
別の態様においては、本発明は、化学電気的生成のための装置において実施される。この装置は、燃料を受け入れるためのアノードを含む。カソードは、酸化剤を受け入れる。電解質は、アノード及びカソードの間に少なくとも部分的に配置される。この装置は、アノード及びカソードの間に負荷のスイッチングが可能な制御可能スイッチをも含む。コントローラは、アノードで受け入れる燃料、カソードで受け入れる酸化剤、及び、制御可能スイッチのうちの少なくとも1つを制御する。このコントローラは、逆電流充電操作、順電流充電操作、酸素無しの操作及び開回路の操作を含む少なくとも2つの再生操作を実行する。
この装置は、制御可能スイッチと、アノード及びカソードのうちの一つとの間に連結される電源を更に含んでもよい。この装置は、制御可能スイッチと、アノード及びカソードのうちの一つとの間に連結されるエネルギー・ストレージを含んでもよい。
この燃料は、カーボン・ベースの燃料、水素燃料、又は一酸化炭素(CO)と混合される水素を含んでもよい。
本発明による燃料電池セルは、アノード、カソード、及び電解質を含む。コントローラは、燃料電池セルの性能及び操作状態のうちの少なくとも1つをモニタすることができる。このコントローラは、負荷を通る電流をモニタすることができる。酸化剤は、カソードへの流動空気又は液体によってカソードに供給される。酸化剤は、空気からの酸素ガス、又は、塩素酸カリウムの分解からの酸素、過酸化水素の分解からの酸素を含む。
コントローラは、少なくとも2つの再生操作を、断続的に、同時に、又は、順次に、実行することができる。コントローラによって実行される再生操作のうちの少なくとも2つは、逆電流充電操作、酸素無しの操作及び開回路の操作を含んでもよい。コントローラによって実行される再生操作のうちの少なくとも2つは、逆電流充電操作及び酸素無しの操作を含んでもよい。コントローラによって実行される再生操作のうちの少なくとも2つは、酸素無しの操作及び開回路の操作からなる。コントローラによって実行される再生操作のうちの少なくとも2つは、順電流充電操作、逆電流充電操作、酸素無しの操作及び開回路の操作を含んでもよい。コントローラによって実行される再生操作のうちの少なくとも2つは、順電流充電操作、酸素無しの操作及び開回路の操作を含む。
本発明における他の特徴、目的、及び効果は、添付図面と関連して読み込まれるときに、以下の説明から明らかである。
図1は、本発明に従う燃料電池セルの操作のシステムブロック図を示す。
図2は、電圧対時間のグラフを示す。このグラフは、本発明による逆電流充電を使用する燃料電池セルの前処理工程の効果を示す。
図3は電圧対時間のグラフを示す。このグラフは、本発明による逆電流充電を使用する燃料電池セル電圧の長期減衰の改良を示す。
図4は電圧対時間のグラフを示す。このグラフは、本発明による逆電流充電を使用するセル反転後の、燃料電池セル電圧の回復を示す。
図5は電圧対時間のグラフを示す。このグラフは、本発明による逆電流充電及びカソード側空気流量の増加を使用する燃料電池セル電圧の改良を示す。
図6は、本発明による様々な再生操作に対する電圧対時間のグラフである。
図7は、本発明による時間の関数としてのカソード上のCOと、時間の関数としての電圧とのグラフである。
本発明の方法及びシステムは、ダイレクトメタノール燃料電池(DMFC)に関して例示される。しかしながら、この方法及びシステムは、カーボン・ベースの燃料(例えばメタノール及びエタノール)を利用する燃料電池セルを含むがこれに限らず、燃料電池セルの任意の型に適用できる。本発明は、燃料として純粋な水素又は一酸化炭素(CO)に混合される水素を利用する水素燃料セルにも適用される。
図1を参照すると、メタノールを負極(アノード)120に供給して、このメタノールが電気化学的に酸化されて、電子(e)及び陽子(H)を生成する、DMFC110のシステムブロック図が示される。燃料供給源112は、アノード120にメタノールを供給する。弁114は、メタノールの流量を制御することができる。コントローラ190は、信号伝送ライン116を介して弁114を制御する。アノード120で生成される陽子は、カソード130に電解質100を通って移動する。電解質100は、固体ポリマー電解質膜(PEM)の形態であってもよい。電子は、外部回路200(後述する)を通って正極(カソード)130に移動する。電子は、水及び熱を生成するためにPEMを通って伝えられる酸素(又は酸化剤)及び陽子と反応する。
一実施の形態において、空気又は酸素供給源132は、カソード130に酸素を供給する。弁134は、酸素の流量を制御することができる。コントローラ190は、信号伝送ライン136を介して弁134を制御する。別の実施の形態では、酸素は、(例えばガスを流したり又は液体を介して運んだりといった)様々な方法によって、カソード130に供給することができる。例えば、酸化剤は、カソード130への流体又はガスを介して酸素を酸化させて及び/又は分配するために用いることができる。多くの可能な酸化剤(例えば塩素酸カリウム(KClO)及び塩素酸ナトリウム(NaClO))は、加熱されるときに、分解されて酸素を放出することができる。(液体状態の)過酸化水素もまた、触媒又は酸を接触させるときに、分解されて酸素を放出することができる。これらの酸化剤はカソード130に直接接触させることができ、還元反応を完了するために電子と反応することができるが、これらの酸化剤は最初に分解されてもよく、そうすると、放出された酸素は、カソード130に分配される。
電極は、PEMの各辺と接触していて、概して、触媒(例えばプラチナ(Pt)、又はプラチナ及びルテニウムの混合物、又はプラチナ・ルテニウム合金(Pt−Ru))で覆われているカーボンペーパーの形態をとる。アノード及びカソードで発生している電気化学反応は、以下の通りに例示できる。
アノード(酸化の半反応):CHOH+HO→CO+6H+6e
カソード(還元の半反応):3/2O+6H+6e→3H
正味の反応:CHOH+3/2O→CO+2H
アノードで発生する電子は、電動処理回路及び負荷回路(後述する)を含む外部回路200を通って移動する。外部回路200は、例えば電池及び/又はコンデンサを含みうるエネルギー・ストレージ機器150を含む。燃料電池セルからのエネルギーは、エネルギー・ストレージ機器150に保存することができる。外部回路200は、任意的に第1の電動処理回路140を含んでもよい。そして、この処理回路140は、必要に応じて、燃料電池セルから発生する電力をエネルギー・ストレージ機器150に適切に供給するように条件づける。第1の電動処理回路140は、例えば、DC/DCコンバータを含むことができる。エネルギー・ストレージ機器150において保存されるエネルギーは、任意的な第2の電動処理回路160を介して負荷回路170(例えば携帯式電子機器)を作動するために用いることができる。第2の電動処理回路160は、負荷回路170の要件に応じて、エネルギー・ストレージ機器150からの出力における更なる電力調節を提供することができ、そして、例えば、DC/DC又はDC/ACコンバータを含むことができる。第1の電動処理回路140、第2の電動処理回路160、及びエネルギー・ストレージ機器150の組合せによって、電力を負荷回路170へ供給する。通常、燃料電池セルは、負荷回路170への安定した電力を供給するように構築されそして配置される。そして、電源150において保存される余剰のエネルギーは、負荷回路170からのピークの電力要求を満たすために更に用いることができる。
燃料電池セル性能の減衰が観察されるときに、様々な再生操作(詳細は後述)が、その作業を中断してその性能を高めるために燃料電池セルに適用することができる。
燃料電池セルの中断(割込み)は、回路180、第2の電動処理回路160、エネルギー・ストレージ機器150、及びコントローラ190の相互作用によって提供することができる。回路180及びコントローラ190は、ハードウェアモジュール、ソフトウェアモジュール又はそれらの組み合わせを含んでもよい。
第1の再生操作は、燃料電池セルに逆電流を印加することを含む。回路180は、スイッチ又はリレー147を介して燃料電池セルに逆電流185を提供することによって、エネルギー・ストレージ機器150から電力を引き出す。コントローラ190は、信号伝送ライン148を介してスイッチ又はリレー147を制御する。回路180は、電流を注入することによって燃料電池セルに逆電流を提供する。この電流は、通常の燃料電池セルの放電電流の逆向きである。従って、逆電流充電の間、カソード電位は正常運転時よりも高く、そして、アノード電位は正常運転時よりも低い。
スイッチ又はリレー147は、通常の燃料電池セル操作のための端子(ターミナル)145に接続している。スイッチ又はリレー147は、逆電流充電の間、スイッチ端子146に接続して、エネルギー・ストレージ機器150に保存されたエネルギーからの電力は、回路180へ供給される。エネルギー・ストレージ機器150は、逆電流充電の間、第2の電動処理回路160を介して負荷170に電力を提供し続ける。コントローラ190は、エネルギー・ストレージ機器150から電力を引き出して、回路180がどのようにシステムに逆電流パルスを提供するかを制御する。逆電流充電パルスは、逆電流パルスの数及び各パルスの継続時間によって規定される。逆電流パルスは、燃料電池セル仕様、燃料電池セル作業状況、燃料電池セル性能及び外部の回路作動状態に更に依存しうる。
コントローラ190は、燃料電池セルの作動状況(すなわち、燃料電池セルが前処理工程を必要として、反転状態にあるかどうか、又は、長い間作動中であり、そして、性能の低下が、観察されているか否か)に応じて燃料電池セル性能を高めるための燃料電池への周期的な逆電流を提供することができる。コントローラ190は、様々なセル性能パラメータ(例えば、燃料電池セル電圧、負荷電流175、第2の電動処理回路160、エネルギー・ストレージ機器150、状態ライン125を介した燃料電池セルの作動状況、燃料供給源状況のモニタによる燃料電池セルの反転、稼動時間経過、及び長期性能減衰)をモニタする。
燃料電池セルに印加される逆電流充電パルスは、回路180及びスイッチ又はリレー147を介してモニタされたパラメータ毎に制御されうる。例えば、コントローラ190は、逆電流充電の間、第1の電動処理回路140を使用不能にすることができる。燃料電池セルの出力電圧の減衰が観察されるときに、コントローラ190は、まず、燃料電池セル出力のレベルを上昇させるために、セルに一連の急速な逆電流パルスを提供することができる。逆電流パルスは、それから、モニタされた電池性能によって定まるような、すなわち、セル出力の観察された増加及び安定化のため、より少ない振動数に調整されることができる。通常、燃料電池セルは、安定した電力を負荷回路170へ供給するように構築されそして配置され、そして、エネルギー・ストレージ機器150において保存される余分のエネルギーは、負荷回路170からのピークの電力需要を満たすために更に用いることができる。
第2の再生操作は、増加した順電流を燃料電池セルに印加することを含む。これは、順電流充電とも呼ばれる。例えば、順電流は、負荷170のインピーダンスを低下させることによって増加しうる。加えて、順電流は、回路180、第1の電動処理回路140、及び/又は第2の電動処理回路160のパラメータを修正することによって増加しうる。一実施の形態において、順電流は、特定の期間(例えば15秒)の間増加して、そして、特定の期間の間減少しうる。再生操作が完了するまで、この方法は繰り返されうる。加えて、第2の再生操作は、他の再生操作(例えば第1の再生操作)と組み合わせてもよい。
第3の再生操作は、開回路(OC)操作を含む。開回路操作とは、燃料電池セルの少なくとも一つの出力端子が回路140から分離されていることを意味する。コントローラ190は、いずれかの端末145又は146、又は、両方の端末145、146からスイッチ又はリレー147に燃料電池セルの出力端子を分離するよう指示することによって、燃料電池セルの開回路(OC)操作を提供することができる。開回路(OC)操作において、燃料電池を通る電流は、実質的にゼロである。一実施の形態において、燃料電池セルは、特定の期間(例えば2分)の間、開回路状態において操作することができ、そして、特定の期間の間、閉回路作業に戻すことができる。再生操作が完了するまで、この方法は繰り返されうる。加えて、第3の再生操作は、他の再生操作(例えば第1及び/又は第2の再生操作)と組み合わせてもよい。
第4の再生操作は、(一般性を損なうことなく)燃料電池セルへの酸素供給を中断することを含む(この再生操作は、酸素が流入空気を介して供給される後述の説明において酸素無し(酸素レス)の操作と呼ばれる)。コントローラ190は、燃料供給源112からの燃料の流量を弁114で制御する。コントローラ190は、酸素供給132からの酸素の流量を弁134で制御する。弁114及び134は、それぞれ、燃料電池セルに供給される燃料及び酸素の量を正確に測定されるように設計されうる。加えて、弁114及び134は閉じることもでき、それによって、燃料電池セルへの燃料及び酸素の流れを、それぞれ実質的に防止する。加えて、第4の再生操作は、他の再生操作(例えば第1、第2及び/又は第3の再生操作)と組み合わせてもよい。
操作中において、コントローラ190は、様々なセル性能パラメータ(例えば燃料電池セル電圧、負荷電流175、第2の電動処理回路160、及びエネルギー・ストレージ機器150)をモニタする。コントローラ190は、状態ライン125を介して燃料電池セルの作動状況をモニタすることもできる。コントローラ190は、燃料電池セル反転、燃料供給源状況、稼動時間経過、及び長期性能減衰をモニタすることもできる。コントローラ190は、セル性能パラメータをモニタして、上記の4つの再生操作の一つ以上を、単独又は組み合わせて、断続的に適用することによって、燃料電池セル性能を高めることができる。
[実施例]
膜電極アセンブリ(MEA)は、商業的供給源で製作され又は商業的供給源から購入した。MEAを、16cmの作用面積を有する単一セルにおいてテストした。実験を、1Mメタノール溶液及び圧縮空気を使用して行った。逆電流は、負荷電流と典型的に同様であった。逆電流充電の期間は、2、3秒から数分の範囲であった。充電の間、酸化状態下のカソード及び還元状態下のアノードで、セル電圧は、開路電圧よりも大きかった。
MEAには、以下のようなものを準備した。Pt‐Ruブラック(Johnson Matthey, London, UK)は、インクを形成するために、5wt%のNAFION(登録商標)溶液(Electrochem Inc, Woburn, Mass.)及び水と混合した。そして、アノード電極は、得られたインクの層を予めテフロン(登録商標)加工された(10wt%の)カーボンペーパー(Toray, Torayca, Japan)に適用することによって準備した。Pt‐Ruブラック(Johnson Matthey, London, UK)に換えてPtを用いたことを除き、同様の処理を、カソードを準備するために用いた。完全なMEAは、NAFION(登録商標)N117(Dupont, Wilmington, Del.)膜にアノード電極及びカソード電極を組合せることによって製造された。空気供給源132からの空気及び燃料供給源112からの燃料を有する2つの被加熱黒鉛ブロックの間に、MEAを、テストのために組み立てた。
[実施例1]
この実施例は、第1の再生操作(すなわち逆電流充電)に従って準備される燃料電池セルの前処理工程の後の、性能改善を示す。図2は、図1のシステムに対する時間の関数としてのセル電圧のグラフである。曲線(b)は、第1の再生操作に従う前処理工程の前の、セルの性能を例示する。曲線(a)は、第1の再生操作に従う前処理工程の後の、セルの高まった性能を例示する。具体的には、曲線(a)は、逆電流がMEAに短時間(例えば約18秒)印加された後の、セルの性能を例示する。
MEAを、4.5mg/cmのPt‐Ruと3mg/cmのPtとで企業内で製造した。NAFION(登録商標)N117は、電解質膜(Dupont, Wilmington, Del.)として用いた。新たに作られたMEAの性能(出力電圧)を、前処理工程の前及び後に、2Aの負荷において70℃で試験した。
短い逆電流充電を経た前処理工程は、以下のように行われた。逆電流充電は、180分の期間にわたって合計6回電流パルスを逆転させることで、そして、18秒の逆電流パルスを2Aで周期的にMEAに印加することで行った。逆電流充電状態ではないとき、セル出力電流は、2Aに維持した。前処理工程による出力電圧改善は、ほぼ15%であった。図2に示されるように、一定の出力電流状態下での15%の電圧の向上は、15%の電力の向上に変換されることに注意すべきである。逆電流充電後のより高い電圧での燃料電池セルによって、電力が提供されたことに注意すべきである。
[実施例2]
この実施例は、燃料電池セルの長期性能減衰を遅延させることにおける周期的な逆電流充電の効果を示す。燃料電池セルは、一定の負荷の下で、すなわち恒常的な電流モードで、概して作動される。このモードにおける長期操作によって、セルの出力電圧の減衰がもたらされる。この実施例において、燃料電池セル操作は、手動で周期的に中断して、そして、逆電流充電パルスを印加した。作動システムにおいて、これらの機能は、図1のシステムによって提供される。回路180及びコントローラ190は、位置145及び146との間で周期的に切り替えることで、スイッチ147を制御する。
テストされるMEAを、NAFION(登録商標)N117の膜に、アノード側に2.2mg/cmのPt‐Ru(Johnson Matthey)、及び、カソード側に3.3mg/cmのPtで準備した。テフロン(登録商標)加工された東レのカーボンペーパーが、ガス拡散電極として用いられた。セルを、42℃で、そして、550cc/minのエアフロー(空気流)でテストした。燃料電池セルの操作を、負荷(0.78A)から燃料電池セルを分離することによって、割込負荷電流を介して中断した。割込みの間、逆電流パルスを、スイッチ147、回路180、コントローラ190及びエネルギー・ストレージ機器150を使用して印加した。
セルを、0.81A/15分の放電の電流と、これに続く−0.81A/0.3分の逆電流充電との放電/充電サイクルを有する第1の期間に対してテストした。そして、セルを、単に0.78Aの定電流放電のみからなる第2の期間に対して更にテストした。図3の曲線は、両方の期間に対して、試験下におけるセルの出力電圧を示す。セルは、一定の電流操作が発生した周期に対する略3.0mV/hrの性能減衰に比較して、周期的な中断及び逆電流充電が発生した時間中において0.5mV/hrの性能減衰を経験した。
周期的な逆電流充電が発生していた期間における電流放電は、燃料電池セルが定電流負荷(0.78A)の下で作動されるときの期間中のものよりも高いレベル(0.81A)に維持されたことに注意すべきである。これは、充分なエネルギーが逆電流充電回路180から負荷170及びエネルギー需要を満たすために逆電流充電期間の間に利用できることを確実にするためになされる。
[実施例3]
この実施例は、セル反転が発生した後の、燃料電池セル性能の回復を記述している。燃料電池セルの長期作業間に、大型のセルスタックに含まれる一つ以上のセルの出力電圧を逆にすることができる。この時、セルの出力電圧は、負になる。すなわち、セル反転の間、アノードは、カソードよりも正になる。反転のための1つの共通の原因は、反応物の消耗である。アノード又はカソードの反応物のいずれかの消耗によってセル反転が生じうるにもかかわらず、アノード燃料が制限されるときに、最も大きな問題が発生する。例えば、アノードの燃料なしでは、カーボンの腐食が発生するおそれがあり、そして、アノード触媒は過剰な酸化処理によって損傷するおそれがありうる。しかしながら、セルは、本発明に従う電流の反転操作を使用して、再生することができる。
セル反転を、セル電圧が負になるまで燃料無しで一時的に電池を作動することによってシミュレーションした。短時間の逆電流をセルに適用することによって、セル減衰は低減されて、そして、セル性能の多くは回復される。
MEAを、後述する規定の負荷(放電電流)で最初にテストした。セル電圧が安定した後、燃料供給源112を遮断して、その一方で、同じ電流量をセルに通した。これは、セルに損害を与えるのに十分長い期間で発生した。燃料源が回復した後に同じ出力電流密度状態の下でセル電圧が本来のセル電圧よりも低いときに、セル反転によって生じるセル損傷は発生した。
MEAを、膜にプレコートされる触媒を有するLynntech(College Station, Tex.)から購入した。アノードは、4mg/cmのPt−Ruを含み、そして、カソードは4mg/cmのPtを含んでいた。このMEAは、アノードガス拡散電極としてテフロン(登録商標)加工されたカーボンペーパーで、そして、カソードガス拡散電極として金メッシュで、600cc/分の空気流を用いて、テストした。図4は、700℃の温度で、1A負荷での燃料電池セル性能曲線(電圧対時間)を示す。テストの後しばらくの間(図4の曲線(a))、同じ電流量がセルから強制されると共に、燃料供給源112を遮断した。2、3分後に、セル電圧は、逆転(図4の曲線(b))された。アノードは、−1.7Vのセル電圧出力でカソードよりも正になった。−1.7Vに達する図4の曲線(b)の部分は、グラフの境界の外側にあることに注意すべきである。燃料供給源112が復帰したときに、出力電圧はセル反転(図4の曲線(c))の前よりも著しく低かった。数回で短期の逆電流充電パルスの適用後に、大部分のセル電圧は、回復された(図4の曲線(d))。
[実施例4]
この実施例は、カソード130への増加した空気流量と逆電流充電を組合せることを記述する。図5は、カソード130への空気流量の増加とともに逆電流充電を使用した燃料電池セル電圧の向上を示す。
実施例1に記載されているMEAを使用して、逆電流充電を、200cc/分(図5の曲線(c))及び600cc/分(図5の曲線(a))の空気流量でテストした。逆電流充電の前に、MEAは、高い空気流量(曲線(a))で、低い空気流量(曲線(c))でのMEAよりも、より低い電圧出力を有した。逆電流充電の後、MEAは、600cc/分(図5の曲線(b))のより高い空気流量で、200cc/分(図5の曲線(d))の低い空気流量のMEAよりも、より高い電圧出力であった。カソード130への増加した空気流量と逆電流充電操作とを組合せることで、MEAの出力電圧を増加させることができる。
再生操作の付加的な組合せは、燃料電池セルの性能を高めるため及び/又は復元するため、及び/又は燃料電池セルを前処理するために、用いることもできる。以下の組合せは例示である。多くの他の組合せが、本発明の範囲内で使用可能である。例えば、逆電流充電操作、順電流充電操作、酸素無しの操作、及び開回路の操作を含む作業の組合せが、使用可能である。酸素無しの操作及び開回路の操作の組合せは、増加した順電流再生操作と同様に、カソード上において交差(クロスオーバー)するメタノールのさらなるCOの転換をも示している。
膜電極アセンブリ(MEA)は、Toray, Torayca, Japanのカーボンペーパー、Johnson Matthey, London, UKのPt及びPtRu触媒、Dupont, Wilmington, Del.のNAFION(登録商標)N117といった、商業的供給源で製作され又は商業的供給源から購入したものであり、グラファイトのテストセルでシールした。MEAを、以下のように準備した。インクを形成するために、Pt‐Ruブラック(Johnson Matthey, London, UK)を、5wt%のNAFION(登録商標)溶液(Electrochem Inc, Woburn, Mass.)及び水と混合した。そして、予めテフロン(登録商標)加工された(10wt%の)カーボンペーパー(Toray, Torayca, Japan)に得られたインクの層を適用することで、アノード電極を、準備した。Pt‐Ruブラック(Johnson Matthey, London, UK)に換えてPtを用いたことを除き、同様の処理を、カソードを準備するために用いた。完全なMEAを、NAFION(登録商標)N117(Dupont, Wilmington, Del.)膜にアノード電極及びカソード電極を組合せることで製造した。MEAを、空気供給源132からの空気及び燃料供給源112からの燃料を有する2つの被加熱黒鉛ブロックの間に、テストのために組み立てた。
これらの実験は、45℃の温度で行ったが、65℃の実験も、記述された再生操作の正の(ポジティブな)効果を示した。セル性能を高める再生(回復)のために、カソード130への酸素源132の流量は、通常50−800ml/分に亘るが、本発明はこの実験的な流量に制限されない。例えば、この流量は、より低くてもよい。アノード120への燃料は、概して3.2wt%であったが、最大16wt%の燃料が使用可能である。燃料の流量は、3.2wt%及び16wt%燃料を有する典型的なセルに対して、それぞれ、0.5−1.5ml/分及び0.2−0.8ml/分に亘った。
これらのセルを、典型的に以下のように前処理した。始動時に、逆電流充電操作、その後に、約5分間の順電流充電操作(例えば、0.5A)が続いた。それから、セルは、順電流充電操作と組み合わせて酸素無しの操作を15秒受けた。それから、セルは、開回路の操作と共に酸素無しの操作の組合せを2分受けた。これは、5−15分の期間内で二回実行される。それから、記載されている再生操作の所望の組合せを、2−24時間ごとに使用してもよい。
16cmの活性領域を有する単一セル又は二重セルにおいて、MEAをテストした。これらの実験は、1Mのメタノール溶液を有する燃料供給源112、及び、圧縮空気からなる酸素供給132を使用して行った。逆電流充電操作の逆電流は、負荷電流と典型的に同様だった。逆電流充電の期間は、2、3秒から数分に亘った。逆電流充電の間、酸化状態下のカソード130及び還元状態下のアノード120で、セル電圧は、開回路電圧よりも大きかった。
[実施例5]
この実施例は、3つの再生操作(すなわち、逆電流充電操作、酸素無しの操作及び開回路の操作)を組み合わせることを含む。これらの再生操作は、断続的に、同時に、又は、順次に、といった任意の組合せで実行することができる。これらの再生操作を使用する再生の1つの方法は、下記のように燃料電池セルが0.5Aの順電流で作動することを想定している。第1段階において、逆電流(例えば、0.5A)を、短い期間(例えば15−30秒)の間印加する。第2段階において、電池を、しばらくの間(例えば1−15分)の順電流(例えば、0.5A)によって、再び作動する。第3段階において、カソードへの空気流を、しばらくの間(例えば15−30秒)中断する。第4段階において、セルを、しばらくの間(例えば約2分)開回路モードで作動する。第5段階において、カソードに対する空気流を、ある期間(例えば5秒以上)の間に回復する。第6段階において、セルを、順電流(例えば、0.5A)で再び作動する。これらの段階は、再生サイクルを生成するために繰り返されてもよい。再生サイクル間の期間は、変えることができる。
この実施例は、本発明に従って準備される燃料電池セルの前処理工程を介した性能の改善を示す。実験的な状況は、以下の通りである。順電流充電操作は、0.5Aの順電流を使用する。カソード130の空気流量は、100ml/分である。温度は、450℃である。アノード120への燃料の流量は、1M燃料の0.5ml/分である。
図6は、この実施例における各々の再生動作に要する時間に亘る電圧のグラフ300を例示する。実施例5(すなわち、酸素レス(空気無しの)操作及び開回路(OC)操作に加えて、逆電流充電)をベースにした2つの再生サイクルでの前処理工程操作によって、概して10−30%でセルの性能電圧が向上している。
約0.6Vの初期電圧302は、開回路(OC)操作に対応する。0.3Vよりもわずかに大きい第2の電圧304をもたらす負荷を、導入する。それから、電圧スパイク306をもたらす逆電流充電操作を、印加する。第3電圧308は、逆電流充電操作のターミネーション(終端)に対応する。酸素レス(空気無しの)操作は、電圧降下310をもたらす。酸素の回復は、電圧スパイク312をもたらす。それから、加負荷での電圧314は、これらの再生操作の組合せに起因して、0.4Vより上に達する。そして、このサイクルを、繰り返す。
図7は、時間の関数としての電圧及び時間の関数としてのカソード130上のCOのグラフ400である。具体的には、グラフ400は、本発明に従って準備される燃料電池セルにおいて実施例5に記載の再生方法を断続的に適用することによって電圧で測定されるように、COに対するメタノールの交差(クロスオーバー)の転換で測定されるカソード130のCOがセル性能の改良とともに増加することを示している。
具体的には、図7は、電圧において4%の全セルの向上をもたらす3つの続いて起こる逆電流操作402、404、406を例示する。酸素レスの操作408と組み合わされる開回路の操作は、13%の全体の向上に対して9%の更なる性能の向上をもたらした。酸素レスの操作412と組み合わされる他の逆電流作業410及び他の開回路の操作も示されている。
[実施例6]
この実施例は、2つの再生操作(すなわち、逆電流充電操作及び酸素レスの操作)を組み合わせることを含む。これらの再生操作は、断続的に、同時に、又は、順次に、といった任意の組合せで実行することができる。これらの再生操作を使用する再生の1つの方法は、下記のように燃料電池セルが0.5Aの順電流で作動することを想定している。第1段階において、カソードへの空気流は、ある期間(例えば15−30秒)中断される。第2段階において、逆電流(例えば、0.5A)は、短期間(例えば15−30秒)印加される。第3段階において、カソードへの空気流は、回復され、セルは、順電流(例えば、0.5A)で、再び作動される。
[実施例7]
この実施例は、3つの再生操作(すなわち、逆電流充電操作、酸素レス操作及び開回路操作)を組み合わせることを含む。酸素レス操作及び開回路操作は、同時に実行されてもよい。これらの再生操作を使用する再生の1つの方法は、下記のように燃料電池セルが0.5Aの順電流で作動することを想定している。第1段階において、カソード130への空気流は、中断される。ある期間(例えば15−30秒)の後、逆電流(例えば、0.5A)は、短期間(例えば15−30秒)印加される。第3段階において、セルは、ある期間(例えば2分以上)開回路モードで操作される。第4段階において、カソードへの空気流は、回復される。ある期間(例えば5秒)後に、セルは、順電流(例えば、0.5A)で、再び作動される。
[実施例8]
この実施例は、4つの再生操作(すなわち、順電流充電操作、逆電流充電操作、酸素レス操作及び開回路操作)を組み合わせることを含む。酸素レス操作及び開回路の操作は、同時に実行してもよい。これらの再生操作を使用する再生の1つの方法は、下記のように燃料電池セルが0.5Aの順電流で作動することを想定している。第1段階において、順電流は、ある期間増大される(例えば15秒間で3A)。第2段階において、順電流は、元の0.5Aに減少される。そして、これらの2つの段階は、第3及び第4段階において繰り返される。第1及び第3段階における増大した順電流は、性能の向上をもたらすことに留意すべきである。また、第2及び第4段階における電圧がほぼゼロに減少する場合に、より高い性能の向上が達成されることが観察されている。
第5段階において、逆電流(例えば、3A)は、短い期間(例えば15秒)印加される。第6段階において、セルは、短い期間(例えば15秒)0.5Aの順電流で作動される。そして、これらの2つの段階は、第7及び第8段階において繰り返される。第9段階において、カソードへの空気流は中断され、セルは、ある期間(例えば2分以上)開回路モードで作動される。第10段階において、カソードへの空気流は、回復される。ある期間(例えば5秒)の後、セルは、順電流(例えば、0.5A)で再び作動される。4つの再生操作は、本願明細書において記載されているものから異なるシーケンス及び/又は異なる組合せにおいて適用されてもよいということに留意すべきである。
燃料電池セルの性能を高めるための新規な装置及び技術が、記述されてきた。当業者は、ここで、本発明の概念から逸脱することなく、本願明細書において開示される特定の装置及び技術の多数の修正及び離脱してもよいことは、明らかである。従って、本発明は、本願明細書において開示される装置及び技術によって備えられ又は存在している各々の又は全ての新規な特徴及び新規な組合せを受け入れるものとして解釈されるべきものであり、添付の請求の範囲の趣旨及び範囲のみによって単に制限されるものである。
図1は、本発明に従う燃料電池セルの操作のシステムブロック図を示す。 図2は、電圧対時間のグラフを示す。このグラフは、本発明による逆電流充電を使用する燃料電池セルの前処理工程の効果を示す。 図3は電圧対時間のグラフを示す。このグラフは、本発明による逆電流充電を使用する燃料電池セル電圧の長期減衰の改良を示す。 図4は電圧対時間のグラフを示す。このグラフは、本発明による逆電流充電を使用するセル反転後の、燃料電池セル電圧の回復を示す。 図5は電圧対時間のグラフを示す。このグラフは、本発明による逆電流充電及びカソード側空気流量の増加を使用する燃料電池セル電圧の改良を示す。 図6は、本発明による様々な再生操作に対する電圧対時間のグラフである。 図7は、本発明による時間の関数としてのカソード上のCOと、時間の関数としての電圧とのグラフである。
符号の説明
100 電解質
110 DMFC
112 燃料供給源
114 弁
116 信号伝送ライン
120 アノード(負極)
130 カソード(正極)
132 空気又は酸素供給源
134 弁
140 第1の電動処理回路
146 端子
147 スイッチ又はリレー
150 エネルギー・ストレージ機器
160 第2の電動処理回路
180 回路
190 コントローラ
200 外部回路

Claims (51)

  1. アノード及びカソードを有する燃料電池セルでの化学電気的生成の方法であって、
    前記アノードに燃料を供給すること、
    前記カソードに酸化剤を供給すること、
    そして、
    前記燃料電池セルにおいて、逆電流充電操作、順電流充電操作、酸素無しの操作及び開回路の操作からなる群から選択される少なくとも2つの再生操作を実行すること、を含む、方法。
  2. 前記少なくとも2つの再生操作が、断続的に実行される請求項1に記載の方法。
  3. 前記少なくとも2つの再生操作が、同時に実行される請求項1に記載の方法。
  4. 前記少なくとも2つの再生操作が、順次実行される請求項1に記載の方法。
  5. 前記少なくとも2つの再生操作を実行することは、前記逆電流充電操作、前記酸素無しの操作、及び前記開回路の操作を順次実行することを含む請求項1に記載の方法。
  6. 前記少なくとも2つの再生操作を実行することは、前記逆電流充電操作、前記酸素無しの操作、及び前記開回路の操作を断続的に実行することを含む請求項1に記載の方法。
  7. 前記少なくとも2つの再生操作を実行することは、前記逆電流充電操作及び前記酸素無しの操作を断続的に実行することを含む請求項1に記載の方法。
  8. 前記少なくとも2つの再生操作を実行することは、前記逆電流充電操作及び前記酸素無しの操作を同時に実行することを含む請求項1に記載の方法。
  9. 前記少なくとも2つの再生操作を実行することは、前記逆電流充電操作及び前記酸素無しの操作を順次実行することを含む請求項1に記載の方法。
  10. 前記少なくとも2つの再生操作を実行することは、前記酸素無しの操作及び前記開回路の操作を断続的に実行することを含む請求項1に記載の方法。
  11. 前記少なくとも2つの再生操作を実行することは、前記酸素無しの操作及び前記開回路の操作を同時に実行することを含む請求項1に記載の方法。
  12. 前記少なくとも2つの再生操作を実行することは、前記酸素無しの操作及び前記開回路の操作を順次実行することを含む請求項1に記載の方法。
  13. 前記少なくとも2つの再生操作を実行することは、前記順電流充電操作、前記逆電流充電操作、前記酸素無しの操作及び前記開回路の操作を断続的に実行することを含む請求項1に記載の方法。
  14. 前記少なくとも2つの再生操作を実行することは、前記順電流充電操作、前記逆電流充電操作、前記酸素無しの操作及び前記開回路の操作を順次実行することを含む請求項1に記載の方法。
  15. 前記燃料電池セルの作動状態をモニタリングすることを更に含む請求項1に記載の方法。
  16. 前記モニタされた作動状態が前記燃料電池セルの性能減衰を示すときに、前記少なくとも2つの再生操作が実行される請求項15の方法。
  17. 前記燃料電池セルの作動状態をモニタリングすることは、前記燃料電池セルの電圧をモニタリングすることを含む請求項15の方法。
  18. 前記逆電流充電操作を少なくとも一つの他の再生操作と組み合わせて実行することで、前記燃料電池セルの動作電圧を増加させる請求項1に記載の方法。
  19. 前記順電流充電操作を少なくとも一つの他の再生操作と組み合わせて実行することで、前記燃料電池セルの動作電圧を増加させる請求項1に記載の方法。
  20. 前記開回路の操作を少なくとも一つの他の再生操作と組み合わせて実行することで、前記燃料電池セルの動作電圧を増加させる請求項1に記載の方法。
  21. 前記酸素無しの操作を少なくとも一つの他の再生操作と組み合わせて実行することで、前記燃料電池セルの動作電圧を増加させる請求項1に記載の方法。
  22. 前記カソードへの酸化剤を供給することは、前記カソードへの空気を流すことを含む請求項1に記載の方法。
  23. 前記酸化剤を供給することは、前記酸化剤を含む液体を前記カソードに輸送することを含む請求項1に記載の方法。
  24. 前記酸化剤を供給することは、酸素を供給するために塩素酸カリウムを分解することを含む請求項1に記載の方法。
  25. 前記酸化剤を供給することは、酸素を供給するために塩素酸ナトリウムを分解することを含む請求項1に記載の方法。
  26. 酸化剤を供給することは、酸素を供給するために過酸化水素を分解することを含む請求項1に記載の方法。
  27. 前記アノード及び前記カソードの間に負荷を接続することを更に含む請求項1に記載の方法。
  28. 前記アノード及び前記カソードの間に電源を接続することを更に含む請求項1に記載の方法。
  29. 前記燃料電池セルからのエネルギーを格納することを更に含む請求項1に記載の方法。
  30. 化学電気的生成のための装置であって、
    燃料を受け入れるように構成されて配置されたアノードと、
    酸化剤を受け入れるように構成されて配置されたカソードと、
    前記アノード及び前記カソードの間に少なくとも部分的に位置している電解質と、
    前記アノード及び前記カソードの間に負荷を選択的に接続可能な制御可能スイッチと、
    そして、
    前記アノードで受け入れられる前記燃料、前記カソードで受け入れられる前記酸化剤、前記制御可能スイッチ、の少なくとも1つを制御するように、そして、逆電流充電操作、順電流充電操作、酸素無しの操作及び開回路の操作からなる群から選択される少なくとも2つの再生操作を実行するように、構成されそして配置される、コントローラと、を備える、装置。
  31. 前記制御可能スイッチと前記アノード及び前記カソードのうち一つとの間に接続される電源を更に備える請求項30に記載の装置。
  32. 前記制御可能スイッチと前記アノード及び前記カソードのうち一つとの間に接続されるエネルギー・ストレージを更に備える請求項30に記載の装置。
  33. 前記アノードで受け入れられるカーボン・ベースの燃料を更に含む請求項30に記載の装置。
  34. 前記アノードで受け入れられる水素燃料を更に含む請求項30に記載の装置。
  35. 前記燃料は、一酸化炭素(CO)と混合されている水素を含む請求項34に記載の装置。
  36. 前記アノード、前記カソード及び前記電解質が燃料電池セルを備える請求項30に記載の装置。
  37. 前記コントローラは、前記燃料電池セルの性能及び作動状態のうちの少なくとも1つをモニタするように構成されそして配置されている請求項36に記載の装置。
  38. 前記コントローラは、前記アノード及び前記カソード間に接続されたときの負荷を通る電流をモニタするように構成されそして配置されている請求項30に記載の装置。
  39. 前記酸化剤を供給するために構成されそして配置される装置は、前記カソードに空気を流すことによって供給する請求項30に記載の装置。
  40. 前記カソードに液体を流すことで前記カソードへの前記酸化剤を供給するように構成されそして配置される請求項30に記載の装置。
  41. 空気から酸素ガスで前記カソードに前記酸化剤を供給するように構成されそして配置される請求項30に記載の装置。
  42. 塩素酸カリウムの分解からの酸素で前記酸化剤を供給するように構成されそして配置される請求項30に記載の装置。
  43. 過酸化水素の分解からの酸素で前記酸化剤を供給するように構成されそして配置される請求項30に記載の装置。
  44. 前記コントローラは、前記少なくとも2つの再生操作を断続的に実行する請求項30に記載の装置。
  45. 前記コントローラは、前記少なくとも2つの再生操作を同時に実行するように構成されそして配置されている請求項30に記載の装置。
  46. 前記コントローラは、前記少なくとも2つの再生操作を順次実行するように構成されそして配置されている請求項30に記載の装置。
  47. 前記コントローラによって実行される前記少なくとも2つの再生操作は、前記逆電流充電操作、前記酸素無しの操作及び前記開回路の操作を含む請求項30に記載の装置。
  48. 前記コントローラによって実行される前記少なくとも2つの再生操作は、前記逆電流充電操作及び前記酸素無しの操作を含む請求項30に記載の装置。
  49. 前記コントローラによって実行される前記少なくとも2つの再生操作は、前記酸素無しの操作及び前記開回路の操作を含む請求項30に記載の装置。
  50. 前記コントローラによって実行される前記少なくとも2つの再生操作は、前記順電流充電操作、前記逆電流充電操作、前記酸素無しの操作及び前記開回路の操作を含む請求項30に記載の装置。
  51. 前記コントローラによって実行される前記少なくとも2つの再生操作は、前記順電流充電操作、前記酸素無しの操作及び前記開回路の操作を含む請求項30に記載の装置。
JP2008527924A 2005-08-23 2006-07-25 燃料電池セルの再生 Pending JP2009506498A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/211,256 US20070237993A1 (en) 2003-03-21 2005-08-23 Fuel cell reforming
PCT/US2006/028863 WO2007024390A1 (en) 2005-08-23 2006-07-25 Fuel cell regeneration

Publications (1)

Publication Number Publication Date
JP2009506498A true JP2009506498A (ja) 2009-02-12

Family

ID=37103013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008527924A Pending JP2009506498A (ja) 2005-08-23 2006-07-25 燃料電池セルの再生

Country Status (5)

Country Link
US (1) US20070237993A1 (ja)
EP (1) EP1917695A1 (ja)
JP (1) JP2009506498A (ja)
CN (1) CN101268579A (ja)
WO (1) WO2007024390A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059477A (ja) * 2007-08-29 2009-03-19 Toshiba Corp 燃料電池発電システムの制御方法及び燃料電池発電システム
JP2010027430A (ja) * 2008-07-22 2010-02-04 Honda Motor Co Ltd 固体高分子型燃料電池のエージング方法
JP2010086851A (ja) * 2008-10-01 2010-04-15 Honda Motor Co Ltd 固体高分子型燃料電池のエージング方法
JP2011129432A (ja) * 2009-12-18 2011-06-30 Fujikura Ltd 燃料電池の酸素供給装置
WO2011125840A1 (ja) * 2010-03-31 2011-10-13 本田技研工業株式会社 固体高分子型燃料電池の活性化方法
JP2013535085A (ja) * 2010-06-29 2013-09-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン 燃料電池に酸素を供給するための塩素酸ナトリウム分解反応器を含む燃料電池を備えた電動乗り物
JP2014032947A (ja) * 2012-08-01 2014-02-20 Hyundai Motor Company Co Ltd 燃料電池性能の回復方法
JP2014527260A (ja) * 2011-07-13 2014-10-09 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ 硫黄化合物によって被毒した燃料電池電極の汚染除去および再生の方法
JP2020177786A (ja) * 2019-04-17 2020-10-29 トヨタ自動車株式会社 燃料電池セルにおけるアノード触媒の硫黄被毒を回復する方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476602B2 (ja) * 2003-11-14 2010-06-09 株式会社東芝 燃料電池発電装置及び燃料電池発電方法
US20060194082A1 (en) * 2005-02-02 2006-08-31 Ultracell Corporation Systems and methods for protecting a fuel cell
US7862947B2 (en) * 2006-06-28 2011-01-04 Plug Power Inc. Fault management in a fuel cell-based system
KR101023141B1 (ko) * 2008-01-24 2011-03-18 삼성에스디아이 주식회사 연료전지 시스템 및 그 운전 방법
KR100941256B1 (ko) * 2008-05-15 2010-02-11 현대자동차주식회사 연료전지 가속 활성화 방법
US8309259B2 (en) 2008-05-19 2012-11-13 Arizona Board Of Regents For And On Behalf Of Arizona State University Electrochemical cell, and particularly a cell with electrodeposited fuel
US8927167B2 (en) 2008-12-03 2015-01-06 Samsung Sdi Co., Ltd. Fuel cell system and driving method thereof
WO2010073962A1 (ja) * 2008-12-26 2010-07-01 株式会社 東芝 燃料電池システム及び燃料電池
US20110165667A1 (en) * 2009-07-02 2011-07-07 The University Of Chicago Method and System for Converting Electricity Into Alternative Energy Resources
WO2011044528A1 (en) 2009-10-08 2011-04-14 Fluidic, Inc. Rechargeable metal-air cell with flow management system
US20110091781A1 (en) * 2009-10-16 2011-04-21 Gm Global Technology Operations, Inc. Automated procedure for executing in-situ fuel cell stack reconditioning
CN202721244U (zh) 2010-06-24 2013-02-06 流体股份有限公司 具有阶梯形支架燃料阳极的电化学电池
CN105206789B (zh) 2010-09-16 2018-09-07 流体公司 具有渐进析氧电极/燃料电极的电化学电池系统
US9105946B2 (en) 2010-10-20 2015-08-11 Fluidic, Inc. Battery resetting process for scaffold fuel electrode
JP5908251B2 (ja) 2010-11-17 2016-04-26 フルイディック,インク.Fluidic,Inc. 階層型アノードのマルチモード充電
SI3072979T1 (sl) 2011-01-05 2021-08-31 The University Of Chicago Sev methanothermobacter thermautotrophicus in njegove različice
US10862140B2 (en) 2013-10-31 2020-12-08 Hyundai Motor Company Method for recovering fuel cell performance by using electrode reversal
CN104867677A (zh) * 2015-05-28 2015-08-26 南通华裕电子有限公司 一种铝电解电容器极性病变去除方法
CA3031513A1 (en) 2016-07-22 2018-01-25 Nantenergy, Inc. Moisture and carbon dioxide management system in electrochemical cells
US11251476B2 (en) 2019-05-10 2022-02-15 Form Energy, Inc. Nested annular metal-air cell and systems containing same
DE102020124579A1 (de) 2020-09-22 2022-03-24 Audi Aktiengesellschaft Brennstoffzellensystem mit lastpunktabhängiger Degradationsregeneration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288638A (ja) * 2003-03-21 2004-10-14 Bose Corp 電気化学発電

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628010A (en) * 1985-12-13 1986-12-09 The United States Of America As Represented By The Secretary Of The Navy Fuel cell with storable gas generator
JPS62216172A (ja) * 1986-03-17 1987-09-22 Toshiba Corp 燃料電池の製造方法
GB9412073D0 (en) * 1994-06-16 1994-08-03 British Gas Plc Method of operating a fuel cell
ATE221259T1 (de) * 1996-06-10 2002-08-15 Siemens Ag Verfahren zum betreiben einer pem- brennstoffzellenanlage
US6485851B1 (en) * 1997-09-23 2002-11-26 California Institute Of Technology Power generation in fuel cells using liquid methanol and hydrogen peroxide
US6096448A (en) * 1997-12-23 2000-08-01 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
CA2420887A1 (en) * 2000-09-01 2002-03-07 Global Thermoelectric Inc. Anode oxidation protection in a high-temperature fuel cell
US20020076582A1 (en) * 2000-12-20 2002-06-20 Reiser Carl A. Procedure for starting up a fuel cell system using a fuel purge
US6589686B2 (en) * 2001-02-28 2003-07-08 Ovonic Battery Company, Inc. Method of fuel cell activation
US6984464B2 (en) * 2003-08-06 2006-01-10 Utc Fuel Cells, Llc Hydrogen passivation shut down system for a fuel cell power plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288638A (ja) * 2003-03-21 2004-10-14 Bose Corp 電気化学発電

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059477A (ja) * 2007-08-29 2009-03-19 Toshiba Corp 燃料電池発電システムの制御方法及び燃料電池発電システム
JP2010027430A (ja) * 2008-07-22 2010-02-04 Honda Motor Co Ltd 固体高分子型燃料電池のエージング方法
JP2010086851A (ja) * 2008-10-01 2010-04-15 Honda Motor Co Ltd 固体高分子型燃料電池のエージング方法
JP2011129432A (ja) * 2009-12-18 2011-06-30 Fujikura Ltd 燃料電池の酸素供給装置
WO2011125840A1 (ja) * 2010-03-31 2011-10-13 本田技研工業株式会社 固体高分子型燃料電池の活性化方法
JP5526226B2 (ja) * 2010-03-31 2014-06-18 本田技研工業株式会社 固体高分子型燃料電池の活性化方法
JP2013535085A (ja) * 2010-06-29 2013-09-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン 燃料電池に酸素を供給するための塩素酸ナトリウム分解反応器を含む燃料電池を備えた電動乗り物
JP2014527260A (ja) * 2011-07-13 2014-10-09 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ 硫黄化合物によって被毒した燃料電池電極の汚染除去および再生の方法
JP2014032947A (ja) * 2012-08-01 2014-02-20 Hyundai Motor Company Co Ltd 燃料電池性能の回復方法
JP2020177786A (ja) * 2019-04-17 2020-10-29 トヨタ自動車株式会社 燃料電池セルにおけるアノード触媒の硫黄被毒を回復する方法

Also Published As

Publication number Publication date
EP1917695A1 (en) 2008-05-07
CN101268579A (zh) 2008-09-17
WO2007024390A1 (en) 2007-03-01
US20070237993A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP2009506498A (ja) 燃料電池セルの再生
JP5111722B2 (ja) 電気化学発電
KR100941256B1 (ko) 연료전지 가속 활성화 방법
AU725835B2 (en) Fuel cell with pulsed anode potential
JPH10144334A (ja) 燃料電池発電プラント及びその起動・停止方法
CN111916800B (zh) 一种燃料电池膜电极的活化方法及应用
JPWO2011125840A1 (ja) 固体高分子型燃料電池の活性化方法
WO2020138338A1 (ja) 燃料電池の活性化方法及び活性化装置
US6896982B2 (en) Conditioning method for fuel cells
JP2006228553A (ja) 燃料電池の運転方法
JP2003115318A (ja) 燃料電池の運転装置及び方法
JP5303419B2 (ja) 燃料電池発電システムおよびその運転方法
US6730424B1 (en) Electrochemical method to improve the performance of H2/air PEM fuel cells and direct methanol fuel cells
CA2551607C (en) Method for producing hydrogen and hydrogen producing apparatus used therefor
JP2005340022A (ja) 燃料電池のエージング方法および燃料電池の製造方法
JP2010135315A (ja) 燃料電池システム及び燃料電池システムの運転方法
CN114464846A (zh) 一种燃料电池的阴极还原方法及系统
JP2000233905A (ja) 一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減する装置およびそれを用いた燃料電池発電システム
JP5504726B2 (ja) 燃料電池システム及び燃料電池の特性回復方法
JP5073447B2 (ja) 固体高分子型燃料電池の運転方法
JP2014239017A (ja) ダイレクトメタノール型燃料電池の活性化方法
JP2008103227A (ja) 電源装置
JP2009518000A (ja) ハイブリッド電源のための方法及び装置
JP2021128868A (ja) 燃料電池のエージング方法
JP5256630B2 (ja) 燃料電池の運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724