JP5011713B2 - ヒートポンプ式給湯装置 - Google Patents

ヒートポンプ式給湯装置 Download PDF

Info

Publication number
JP5011713B2
JP5011713B2 JP2005337625A JP2005337625A JP5011713B2 JP 5011713 B2 JP5011713 B2 JP 5011713B2 JP 2005337625 A JP2005337625 A JP 2005337625A JP 2005337625 A JP2005337625 A JP 2005337625A JP 5011713 B2 JP5011713 B2 JP 5011713B2
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
water supply
pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337625A
Other languages
English (en)
Other versions
JP2007139393A (ja
Inventor
丈二 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005337625A priority Critical patent/JP5011713B2/ja
Priority to SE0602460A priority patent/SE531759C2/sv
Priority to DE102006054828A priority patent/DE102006054828A1/de
Publication of JP2007139393A publication Critical patent/JP2007139393A/ja
Application granted granted Critical
Publication of JP5011713B2 publication Critical patent/JP5011713B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • F24H15/225Temperature of the water in the water storage tank at different heights of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/26Vertically distributed at fixed positions, e.g. multiple sensors distributed over the height of a tank, or a vertical inlet distribution pipe having a plurality of orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、超臨界ヒートポンプサイクルを給湯用流体の加熱手段として使用するヒートポンプ式給湯装置に関する。
従来、この種の給湯装置として、例えば、特許文献1に示すように、高圧側の冷媒圧力を臨界圧以上まで加圧して使用する超臨界ヒートポンプサイクルを用いて給湯用流体を加熱するヒートポンプ式給湯装置が知られている。
この給湯装置では、給湯用流体と冷媒とを熱交換させる放熱器である水熱交換器を備え、その水熱交換器で加熱された高温の給湯用流体を貯湯タンク内に貯留しておき、使用時に貯湯タンク内から高温の給湯用流体を取り出して温度調節した後、使用者に供給する給湯システムである。
このヒートポンプ式給湯装置は、サイクル効率の高い領域でヒートポンプサイクルを運転するため、水熱交換器に流入する給湯用流体と水熱交換器から流出する冷媒との温度差ΔTが、所定温度差ΔTとなるように高圧側の冷媒圧力を制御している。より具体的には、所定温度差ΔTとなるように電気式膨張弁の開度を変化させることにより高圧側の冷媒圧力を制御している。
特許第3227651号公報
しかしながら、上記特許文献1では、水熱交換器から流出する給湯用流体を貯湯タンク内に貯える給湯システムであるため、貯湯タンク側からの目標沸き上げ温度をヒートポンプ式給湯装置でその信号を受信し、その目標沸き上げ温度に基づいて水熱交換器から流出する給湯用流体の沸き上げ温度が常に一定となるよう水熱交換器を流出する給湯用流体の流量と冷凍サイクルとのバランスを保ちながら高圧側の冷媒圧力を制御している。
言い換えれば、給湯用流体の供給先である貯湯タンクとその給湯用流体を加熱するヒートポンプユニットとが一対となって組み合わされた制御を行うように構成されており、水熱交換器を流出する給湯用流体の流量が比較的変化の少ない状態で、流量と冷凍サイクルとのバランスを保っている。
ところが、給湯用流体の供給先が、例えば、床暖房、浴室乾燥などの熱源用に用いられると、水熱交換器を流出する給湯用流体の流量が任意に変更される場合がある。このような場合には、流量の変化により冷凍サイクルのバランスが変化する際に、水熱交換器から流出する冷媒温度の応答性遅れによってヒートポンプサイクルの最適COPの確保が困難な問題がある。しかも、応答性遅れによる冷凍サイクル内にハンチング現象を発生する問題がある。
そこで、本発明の目的は、上記点を鑑みたものであり、放熱器を流出する流量に変化があっても温水を生成するために必要な動力を低減したヒートポンプ式給湯装置を提供することにある。
上記目的を達成するために、請求項1ないし請求項に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、高温側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにて給湯用流体を加熱するヒートポンプ式給湯装置であって、
冷媒を吸入圧縮する圧縮機(210)と、この圧縮機(210)から吐出する冷媒と給湯用流体とを熱交換するとともに、冷媒流れと給湯用流体流れとが対向するように構成された放熱器(220)と、この放熱器(220)から流出する冷媒を減圧する減圧器(230)と、この減圧器(230)から流出する冷媒を蒸発させて冷媒に熱を吸収させるとともに、圧縮機(210)の吸入側に向けて冷媒を流出する蒸発器(240)と、高圧側の冷媒圧力を検出する冷媒圧力検出手段(271)もしくは圧縮機(210)から吐出する冷媒の吐出温度を検出する吐出温度検出手段(276)とを備え、
放熱器(220)から流出する給湯用流体の沸き上げ温度と、外気温度、蒸発器(240)に流出入する冷媒温度もしくは放熱器(220)に流入する給湯用流体温度のいずれか一つとから求められた目標高圧圧力値(PHO)もしくは目標吐出温度(TdO)のいずれか一方を第1所定時間間隔毎に目標値として求め、当該求められた目標値となるように減圧器(230)の開度を制御し、
冷媒圧力検出手段(271)もしくは吐出温度検出手段(276)により検出された高圧側の冷媒圧力もしくは吐出温度の一方が、目標値となるように、減圧器(230)の開度もしくは圧縮機(210)の回転数を、第1所定時間間隔の複数回分以上の時間に設定された第2所定時間間隔毎に変化させることを特徴としている。
この発明によれば、放熱器(220)に流入する給湯用流体の温度は安定しているため、沸き上げ温度は放熱器(220)を流出する流量に基づいて決定される。従って、その沸き上げ温度に応じた目標高圧圧力値(PHO)を第1所定時間間隔毎に目標値として求め、当該求められた目標値となるように減圧器(230)の開度を制御することで最適なCOPとなるヒートポンプサイクルで運転することができる。これにより、高効率の運転の継続が可能なことで、温水を生成するための動力を低減することができる。
なお、放熱器(220)で加熱された給湯用流体を貯える貯湯タンクとを組み合わせたときに、従来の制御では、貯湯タンク側からの目標沸き上げ温度の指令を受けてヒートポンプ式給湯装置側で流量と冷凍サイクルとのバランスにより高圧側の冷媒圧力を制御していたが、その沸き上げ温度を目標沸き上げ温度となるように別途貯湯タンク側で放熱器(220)を流出する流量を制御するように構成すれば良い。
また、沸き上げ温度に基づいて求められる目標高圧圧力値(PO)の他に、圧縮機(210)から流出する目標吐出温度(TO)であっても良い。
請求項2に記載の発明では、高温側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにて給湯用流体を加熱するヒートポンプ式給湯装置であって、
冷媒を吸入圧縮する圧縮機(210)と、この圧縮機(210)から吐出する冷媒と給湯用流体とを熱交換するとともに、冷媒流れと給湯用流体流れとが対向するように構成された放熱器(220)と、冷媒を蒸発させて冷媒に熱を吸収させる蒸発器(240)と、圧縮機(21)から吐出する冷媒を減圧膨張させるノズル部を有し、このノズル部から噴射する高い速度の冷媒流により蒸発器(240)にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(210)の吸入圧を上昇させるエジェクタ(235)と、高圧側の冷媒圧力を検出する冷媒圧力検出手段(271)もしくは圧縮機(210)から吐出する冷媒の吐出温度を検出する吐出温度検出手段(276)とを備え、
放熱器(220)から流出する給湯用流体の沸き上げ温度と、外気温度、蒸発器(240)に流出入する冷媒温度もしくは放熱器(220)に流入する給湯用流体温度のいずれか一つとから求められた目標高圧圧力値(PHO)もしくは目標吐出温度(TdO)のいずれか一方を第1所定時間間隔毎に目標値として求め、当該求められた目標値となるようにエジェクタ(235)の開度を制御し、
冷媒圧力検出手段(271)もしくは吐出温度検出手段(276)により検出された高圧側の冷媒圧力もしくは吐出温度の一方が、目標値となるように、エジェクタ(235)の開度もしくは圧縮機(210)の回転数を、第1所定時間間隔の複数回分以上の時間に設定された第2所定時間間隔毎に変化させることを特徴としている。
この発明によれば、上記請求項1においては、本発明を膨張弁などによる減圧器(230)を用いる冷凍サイクルに適用させたが、これに限らず、エジェクタ(235)を用いる蒸気圧縮式冷凍サイクルに本発明を適用させても良い。
請求項3に記載の発明では、減圧器(230)もしくはエジェクタ(235)は、その開度を電気的に調節可能なものであって、減圧器(230)もしくはエジェクタ(235)の開度を変化させることにより、高圧側の冷媒圧力、もしくは圧縮機(210)からの吐出温度のいずれか一方を制御することを特徴としている。
この発明によれば、具体的には、減圧器(230)を用いる冷凍サイクルには、電気式膨張弁を用いれば、容易に上記目標値となるように制御できる。また、エジェクタ(235)を用いる冷凍サイクルには、電気式可変エジェクタを用いれば、容易に目標値となるように制御できる。
請求項4に記載の発明では、高温側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにて給湯用流体を加熱するヒートポンプ式給湯装置であって、
冷媒を吸入圧縮する圧縮機(210)と、この圧縮機(210)から吐出する冷媒と給湯用流体とを熱交換するとともに、冷媒流れと給湯用流体流れとが対向するように構成された放熱器(220)と、この放熱器(220)から流出する冷媒を減圧する減圧器(230)と、この減圧器(230)から流出する冷媒を蒸発させて冷媒に熱を吸収させるとともに、圧縮機(210)の吸入側に向けて冷媒を流出する蒸発器(240)と、高圧側の冷媒圧力を検出する冷媒圧力検出手段(271)もしくは圧縮機(210)から吐出する冷媒の吐出温度を検出する吐出温度検出手段(276)とを備え、
放熱器(220)から流出する給湯用流体の沸き上げ温度と、外気温度、蒸発器(240)に流出入する冷媒温度もしくは放熱器(220)に流入する給湯用流体温度のいずれか一つとから求められた目標高圧圧力値(PHO)もしくは目標吐出温度(TdO)のいずれか一方を第1所定時間間隔毎に目標値として求め、当該求められた目標値となるように圧縮機(210)の回転数を制御し、
冷媒圧力検出手段(271)もしくは吐出温度検出手段(276)により検出された高圧側の冷媒圧力もしくは吐出温度の一方が、目標値となるように、減圧器(230)の開度もしくは圧縮機(210)の回転数を、第1所定時間間隔の複数回分以上の時間に設定された第2所定時間間隔毎に変化させることを特徴としている。
この発明によれば、上記請求項1ないし請求項3では、目標値となるように減圧器(230)もしくはエジェクタ(235)の開度を制御するように構成したが、これに限らず、例えば、吐出冷媒流量を可変可能な圧縮機(210)の回転数を制御するように構成しても良い。
請求項5に記載の発明では、高温側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにて給湯用流体を加熱するヒートポンプ式給湯装置であって、
冷媒を吸入圧縮する圧縮機(210)と、この圧縮機(210)から吐出する冷媒と給湯用流体とを熱交換するとともに、冷媒流れと給湯用流体流れとが対向するように構成された放熱器(220)と、冷媒を蒸発させて冷媒に熱を吸収させるとともに、圧縮機(210)の吸入側に向けて冷媒を流出する蒸発器(240)と、圧縮機(21)から吐出する冷媒を減圧膨張させるノズル部を有し、このノズル部から噴射する高い速度の冷媒流により蒸発器(240)にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(210)の吸入圧を上昇させるエジェクタ(235)と、高圧側の冷媒圧力を検出する冷媒圧力検出手段(271)もしくは圧縮機(210)から吐出する冷媒の吐出温度を検出する吐出温度検出手段(276)と、を備え、
放熱器(220)から流出する給湯用流体の沸き上げ温度と、外気温度、蒸発器(240)に流出入する冷媒温度もしくは放熱器(220)に流入する給湯用流体温度のいずれか一つとから求められた目標高圧圧力値(PHO)もしくは目標吐出温度(TdO)のいずれか一方を第1所定時間間隔毎に目標値として求め、当該求められた目標値となるように圧縮機(210)の回転数を制御し、
冷媒圧力検出手段(271)もしくは吐出温度検出手段(276)により検出された高圧側の冷媒圧力もしくは吐出温度の一方が、目標値となるように、エジェクタ(235)の開度もしくは圧縮機(210)の回転数を、第1所定時間間隔の複数回分以上の時間に設定された第2所定時間間隔毎に変化させることを特徴としている。
この発明によれば、エジェクタ(235)を用いる蒸気圧縮式冷凍サイクルにおいても、吐出冷媒流量を可変可能な圧縮機(210)の回転数を制御するように構成しても良い。
請求項6に記載の発明では、高圧側の冷媒圧力を検出する冷媒圧力検出手段(271)もしくは前記圧縮機(210)から吐出する冷媒の吐出温度を検出する吐出温度検出手段(276)を備え、
冷媒圧力検出手段(271)もしくは吐出温度検出手段(276)により検出された高圧側の冷媒圧力もしくは吐出温度の一方が、目標値となるように、減圧器(230)の開度、エジェクタ(235)の開度もしくは圧縮機(210)の回転数を、第1所定時間間隔の複数回分以上の時間に設定された第2所定時間間隔毎に変化させることを特徴としている。
この発明によれば、放熱器(220)を流出する給湯用流体の流量の変化で可変する沸き上げ温度に応じて目標値となるように制御されることで、ヒートポンプ式給湯装置の起動直後からサイクルの安定まで最適なCOPのヒートポンプサイクルで運転を継続させることができる。これにより、温水を生成するために必要な動力を低減することができる。
なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。
(第1実施形態)
以下、本発明の第1実施形態によるヒートポンプ式給湯装置を図1ないし図3に基づいて説明する。本実施形態では、本発明に係わるヒートポンプ式給湯装置であるヒートポンプユニット200をタンクユニット300に組み合わせたときの給湯システムに適用したものであって、図1は給湯システムの全体構成を示す模式図であり、図2は熱源制御装置270の制御処理を示すフローチャートである。
また、図3は実際の沸き上げ温度をパラメータとしたときの目標高圧圧力値と外気温度との関係を示す特性図である。ところで、図1中、ヒートポンプユニット200は、減圧器として電気式膨張弁230を用いており、給湯用流体として給湯水を加熱し高温(本実施形態では、約85℃)の温水を生成する超臨界ヒートポンプサイクルである。
なお、超臨界ヒートポンプサイクルとは、高圧側の冷媒圧力が冷媒の臨界圧力以上となるヒートポンプサイクルを言い、例えば、二酸化炭素、エチレン、エタン、酸化窒素などを冷媒とするヒートポンプサイクルである。
本実施形態のヒートポンプユニット200は、放熱器である水熱交換器220から流出する給湯用流体の実際の沸き上げ温度に基づいて、最適なCOP(成績係数)が得られる運転条件でヒートポンプサイクルの運転を行うように構成している。
ヒートポンプユニット200は、図1に示すように、210は冷媒(本実施形態では二酸化炭素)を吸入圧縮する圧縮機であり、この圧縮機210は、冷媒を吸入圧縮する圧縮機構(図示せず)および圧縮機構を駆動する電動モータ(図示せず)が一体となった電動圧縮機である。
220は圧縮機210から吐出する冷媒と給湯水とを熱交換する放熱器である水熱交換器であり、この水熱交換器220は、冷媒流れと給湯水流れとが対向するように構成された対向流型の熱交換器である。
230は水熱交換器220から流出する冷媒を減圧する減圧器である電気式膨張弁であり、240は、電気式膨張弁230(以下、膨張弁230と称する)から流出する冷媒を蒸発させて大気中の熱を冷媒に吸収させるとともに、後述するアキュムレータ250(圧縮機210の吸入側)に向けて冷媒を流出する蒸発器である。
250は、蒸発器240から流出する冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機210の吸入側に流出するとともに、ヒートポンプサイクル中の余剰冷媒を蓄えるアキュムレータである。
260は蒸発器240に空気(外気)を送風するとともにその送風量を調節することができる送風機であり、この送風機260、圧縮機210および膨張弁230は、後述する各センサから検出される圧力情報、温度情報に基づいて熱源制御装置270により制御されている。
そして、271は水熱交換器220から流出する冷媒の温度を検出する冷媒温度センサ(冷媒温度検出手段)であり、272は水熱交換器220に流入する給湯水の温度を検出する第1温水温度センサ(第1温水温度検出手段)である。
273は水熱交換器220から流出する冷媒の圧力(高圧側の冷媒圧力)を検出する冷媒圧力センサ(冷媒圧力検出手段)であり、274は水熱交換器220から流出する給湯水の温度を検出する第2温水温度センサ(第2温水温度検出手段)である。275は蒸発器240に送風される空気(外気)の外気温度を検出する外気温センサである。そして、各センサ271〜275の検出信号は、熱源制御装置270に入力されている。
ここで、高圧側の冷媒圧力とは、圧縮機210の吐出側から膨張弁230の流入側に至る冷媒通路に存在する冷媒の圧力を言い、その圧力は、圧縮機210の吐出圧(水熱交換器220の内圧)に略等しい。一方、低圧側の冷媒圧力とは、膨張弁230の流出側から圧縮機210の吸入側に至る冷媒通路に存在する冷媒の圧力を言い、その圧力は、圧縮機210の吸入圧(蒸発器240の内圧)に略等しい。
なお、第2温水温度センサ274で検出された給湯水の温度を本発明では実際の沸き上げ温度と称している。熱源制御装置270は、マイクロコンピュータを主体として構成され、内蔵のROM(図示せず)には、予め設定された制御プログラムが設けられており、各センサ271〜275からの温度情報、圧力情報および後述する給湯制御装置370からの操作情報に基づいて圧縮機210、膨張弁230、送風機260などのアクチュエータ類を制御している。
次に、タンクユニット300は、貯湯タンク310、循環水回路320、および給湯側制御装置370から構成されている。貯湯タンク310は、耐食性に優れた金属製(例えば、ステンレス製)からなり、縦長形状に形成され、外周部に図示しない断熱材が配置されており高温の給湯水を長時間に渡って保温することができるようになっている。
また、その底面には導入口310aが設けられ、この導入口310aには貯湯タンク310内に水道水を導入する給水配管311が接続されている。なお、この給水配管311の上流には図示しない減圧逆止弁および開閉弁を介して上水に接続されて、所定圧の水道水を導入するようになっている。
一方、貯湯タンク310の最上部には導出口310bが設けられ、この導出口310bには貯湯タンク310内の給湯水を導出するための給湯配管312が接続されている。また、給湯配管312の経路途中には、図示しない逃がし弁を配設した排出配管が接続されており、貯湯タンク310内の圧力が所定圧以上に上昇した場合には、貯湯タンク310内の湯を外部に排出して、貯湯タンク310等にダメージを与えないようになっている。
さらに、給湯配管312の末端には給湯水栓313が設けられている。なお、給湯配管312の経路途中には、図示しない湯水混合手段が接続されており、貯湯タンク310内の高温の湯と水道水とを混合させて所定温度の給湯水が得られるようにしている。
なお、図示しない湯水混合手段は、給湯水栓313に出湯する給湯水の湯温を調節する温度調節弁であり、他方が水道水に接続されており、給湯配管312に流れる給湯水と水道水との開口面積比を調節することにより、設定温度の給湯水を給湯水栓313に出湯させる。さらに、湯水混合手段は、後述する給湯制御装置370に電気的に接続されており、貯湯サーミスタ372、および図示しない各サーミスタの検出信号に基づいて制御される。
また、貯湯タンク310の下部には、貯湯タンク310内の水を吸入するための吸入口310cが設けられ、貯湯タンク310の上部には、貯湯タンク310内に沸き上げた湯を吐出する吐出口310dが設けられている。
電動ポンプ330は、貯湯タンク310とヒートポンプユニット200内の水熱交換器220とを環状に接続する循環水回路320に設けられて、貯湯タンク310と水熱交換器220との間で給湯水を循環させるとともに、内蔵するモータの回転数に応じて循環流量を調節することができる。
また、電動ポンプ330は後述する給湯制御装置370に電気的に接続されており、循環水回路320に設けられた第3温水温度センサ371からの温度情報に基づいて制御される。この第3温水温度センサ371で検出される温度は、ヒートポンプユニット200で検出される実際の沸き上げ温度と略同等である。
因みに、給湯制御装置370は、第3温水温度センサ371の検出温度に基づいて電動ポンプ330の回転数制御を行っている。つまり、水熱交換器220を流出する給湯水の流量を電動ポンプ330の回転数を制御することで目標沸き上げ温度になるように制御している。
さらに、貯湯タンク310の外壁面には、貯湯量、もしくは貯湯温度を検出するための水温センサである複数(本例では5つ)の貯湯サーミスタ372が縦方向(貯湯タンク310の高さ方向)にほぼ等間隔に配置され、貯湯タンク310内に満たされた給湯水の各水位レベルでの温度情報を後述する給湯制御装置370に出力するようになっている。
従って、給湯制御装置370は複数の貯湯サーミスタ272からの温度情報に基づいて、貯湯タンク310内上方の沸き上げられた給湯水と貯湯タンク310内下方の沸き上げられる前の低温の給湯水との境界位置を検出できるとともに、各水位レベルでの給湯水の湯温を検出できる。なお、複数の貯湯サーミスタ272のうち、最上部に設けられた貯湯サーミスタ272は高温の給湯水を出湯する出湯温度を検出する機能を有している。
給湯制御装置370は、マイクロコンピュータを主体として構成され、内蔵のROM(図示せず)には、予め設定された制御プログラムが設けられており、各種サーミスタからの温度情報および図示しない操作盤に設けられた操作スイッチからの操作信号等に基づいて、電動ポンプ330、図示しない湯水混合手段などを制御している。
また、給湯制御装置370は、熱源制御装置270とは信号線で電気的に接続されており、ヒートポンプユニット200への運転指令を出力するとともに、電動ポンプ330の作動状態を出力するように構成されている。つまり、熱源制御装置270は、給湯制御装置370からの運転指令を受けて圧縮機210、膨張弁230、送風機260などのアクチュエータ類を制御してヒートポンプユニット200を稼動させるように構成している。
次に、本実施形態による給湯システムの作動について説明する。まず、貯湯タンク310に貯えられた高温の給湯水を給湯する場合は、タンクユニット300側に設けられた給湯制御装置370により制御される。つまり、給湯配管312の末端に設けられた給湯水栓313が開かれると、これに連動して水道水が給水配管311より貯湯タンク310内に給水される。
これにより、貯湯タンク310内に貯えられた高温の給湯水が水道水に押し出され、その押し出された給湯水が給湯水栓313より給湯される。このときに、給湯水栓313から給湯される給湯水は、給水配管311からの水道水と給湯配管312から押し出される給湯水との湯水混合を行う図示しない湯水混合手段により設定温度に調節されている。
これにより、貯湯タンク310内には、湯水混合手段で温度調節するために使用された給湯水分の水道水が貯湯タンク310の下方から給水される。つまり、給湯水栓313を開いて給湯を行うと、水道水が貯湯タンク310の下方から順次給水されて水道水と給湯水との境界位置が上方に移動することになる。
そして、貯湯サーミスタ272の検出信号により、貯湯タンク310内の貯湯温度が所定温度以下となったものと判定された場合、または所定温度以下の給湯水が所定量以上となったものと判定された場合には、貯湯タンク内の給湯水を沸き上げるための沸き上げ運転が必要となる。
具体的には、給湯制御装置370により電動ポンプ330を稼動させるとともに、ヒートポンプユニット200を稼動させる。ここで、電動ポンプ330は、第3温水温度センサ371からの温度情報に基づいて目標沸き上げ温度となるように回転数を変化させている。
具体的には、第3温水温度センサ371からの温度が目標沸き上げ温度よりも低いときには流量を低下するように回転数を変化させ、逆に第3温水温度センサ371からの温度が目標沸き上げ温度よりも高いときには流量を上昇するように回転数を変化させる。
ところで、給湯制御装置370から運転指令を受けた本実施形態の熱源制御装置270は、図2に示すフローチャートに基づいてヒートポンプユニット200を作動させており、図2に示すように、まず、ステップ110にて、給湯制御装置370からの運転指令があるかないかを判定することによりヒートポンプユニット200の運転が開始される(ステップ120)。ここで、運転指令がなければ待機している。
そして、ステップ120にて、圧縮機210が稼働すると、冷媒がヒートポンプサイクル内を循環する。なお、このとき、圧縮機210から吐出する冷媒は臨界圧力以上まで加圧されているので、水熱交換器220内では、冷媒は凝縮することなく、冷媒入口から冷媒出口に向かうほど温度が低下するような温度勾配を有して流通する。
一方、水熱交換器220は、冷媒流れと給湯水(温水)流れとが対向するように構成されているので、給湯水は、温水入口から温水出口に向かうほど温度が上昇するような温度勾配を有して流通する。また、膨張弁230にて減圧された冷媒は、蒸発器240にて大気から熱を吸収して蒸発した後、アキュムレータ250を経由して圧縮機210に吸入される。
ところで、本実施形態では、第2温水温度センサ274で検出された実際の沸き上げ温度に基づいて膨張弁230の開度を制御しているのでこれについて説明する。ステップ130にて、各センサ271〜275からの温度情報、圧力情報を読み込むとともに記憶する。そして、ステップ140にて、温度情報のうち、実際の沸き上げ温度と外気温センサ275より検出された外気温度とから目標高圧圧力値POを求めるとともに記憶する。
なお、この目標高圧圧力値POは、ヒートポンプサイクルにおける最良のCOP(成績係数)の得られる高圧圧力値であって、外気温度と実際の沸き上げ温度との関係から算出できる。
具体的には、図3に示すように、実際の沸き上げ温度をパラメータとした目標高圧圧力値POと外気温度との関係を示す特性図より求めることができる。つまり、図3に示す特性図が予めROM(図示せず)内に設定されておって、実際の沸き上げ温度と外気温度とを検出して求めるようにしている。
なお、ここでは、実際の沸き上げ温度と外気温度とから目標高圧圧力値POを求めるようにしたが、これに限らず、外気温度の代わりに、蒸発器240を流出入する冷媒の出入り口温度、もしくは水熱交換器220に流入する給湯水の流入温度を用いて目標高圧圧力値POを求めるように構成しても良い。
以上のようにスタップ140にて、目標高圧圧力値POが求められた後に、ステップ150にて、第2所定時間(例えば、約10秒)を計測するT1タイマのカウントを開始する。そして、ステップ160にて、タイマT1が第2所定時間を経過したか否かを判定する。
ここで、第2所定時間(例えば、約10秒)未満であれば、ステップ130のデータの読み込むとともに記憶し、およびステップ140の目標高圧圧力値POの算出、および記憶を、例えば所定の周期(例えば、約1秒)に基づいて繰り返す。これにより、給湯制御装置370により水熱交換器220を流出する流量が変化されることで実際の沸き上げ温度が変化しているため最新の温度情報を検出することができる。
ここで、所定の周期(例えば、約1秒)を請求項では第1所定時間と称する。そして、タイマT1が第2所定時間を超えておればステップ170にて膨張弁230の開度を制御する。ここでは、冷媒圧力センサ273により検出された高圧側の冷媒圧力が、目標高圧圧力値POとなるように膨張弁230の開度を制御している。
そして、ステップ180にて、タイマT1を初期値にリセットし、再度ステップ130に戻る構成としている。これによれば、冷媒圧力センサ273で検出された高圧側の冷媒圧力、および実際の沸き上げ温度、外気温度から求めた目標高圧圧力値POは、第1所定時間毎である所定の周期(例えば、約1秒)毎に変化している。
ところが、これに基づいて、第2所定時間毎に膨張弁230の開度が制御されているため、冷凍サイクル内が安定する前の過度時であっても、常に最適なCOPが得られるように膨張弁230の開度が制御されることで起動直後から安定的に至るまで総合的な動力の低減が図れるサイクル運転を行うことができる。
以上の第1実施形態によるヒートポンプ式給湯装置によれば、水熱交換器220から流出する給湯水の実際の沸き上げ温度と外気温度とから求めた目標高圧圧力値POを目標値として設定し、その目標値となるように膨張弁230の開度を制御している。
これによれば、水熱交換器220に流入する給湯水の温度は安定しているため上記実際の沸き上げ温度は、水熱交換器220を流出する流量に基づいて決定される。従って、その実際の沸き上げ温度に応じた目標高圧圧力値POを目標値として設定し、その目標値となるように膨張弁230の開度を制御することで最適なCOPとなるヒートポンプサイクルで運転することができる。これにより、高効率の運転の継続が可能なことで、温水を生成するための動力を低減することができる。
なお、ヒートポンプユニット200を水熱交換器220で加熱された給湯水を貯える貯湯タンク310とを組み合わせたときに、従来の制御では、貯湯タンク310側からの目標沸き上げ温度の指令を受けてヒートポンプユニット200側で流量と冷凍サイクルとのバランスにより高圧側の冷媒圧力を制御していたが、その実際の沸き上げ温度を目標沸き上げ温度となるように別途貯湯タンク310側で水熱交換器220を流出する流量を制御するように構成すれば良い。
これにより、タンクユニット300側の給湯出力が異なる装置であっても、ヒートポンプユニット200のみを実際の沸き上げ温度に基づいて制御することができる。ここで、タンクユニット300側の給湯出力が異なる装置とは、水熱交換器220で加熱された給湯水を床暖房用、浴室暖房用に利用するユニットであって、この場合には、目標沸き上げ温度が用途に応じて任意に変更される。従って、これらと組み合わせるときにおいても、これらの運転指令があればヒートポンプユニット200を最良のCOPで運転させることができる。
また、目標高圧圧力値PO、冷媒圧力センサ273で検出される高圧側の冷媒圧力は、ともに第1所定時間間隔(所定の周期)毎に求められ、第2所定時間間隔毎に目標値となるように、膨張弁230の開度を変化させることにより、水熱交換器220を流出する給湯水の流量の変化で可変する実際の沸き上げ温度に応じて目標値となるように制御されることで、ヒートポンプ式給湯装置の起動直後からサイクルの安定まで最適なCOPのヒートポンプサイクルで運転を継続させることができる。これにより、温水を生成するために必要な動力を低減することができる。
なお、外気温度の代用として、蒸発器240を流出入する冷媒の出入り口温度、もしくは水熱交換器220に流入する給湯水の流入温度を用いて目標高圧圧力値POを求めるように構成しても良い。
(第2実施形態)
以上の第1実施形態では、実際の沸き上げ温度と外気温度とから求められた目標高圧圧力値POを目標値として設定し、その目標値となるように膨張弁230の開度を制御するように構成したが、これに限らず、実際の沸き上げ温度と外気温度とから求められた目標吐出温度TOを目標値として設定し、その目標値となるように膨張弁230の開度を制御するように構成しても良い。
ただし、このときには、図4に示すように、圧縮機210の吐出側に冷媒の吐出温度を検出する吐出温度検出手段である吐出温度センサ276を設ける。そして、実際の沸き上げ温度と外気温度とから求められた目標吐出温度TOを目標値として設定し、その吐出温度センサ276により検出された吐出温度が、目標吐出温度TOとなるように膨張弁230の開度を制御している。
(第3実施形態)
以上の実施形態では、ヒートポンプサイクルに膨張弁230を用いてヒートポンプユニット200を構成させたが、これに限らず、具体的には、図5に示すように、膨張弁230の代わりに、圧縮機210から吐出する冷媒を減圧膨張させるノズル部(図示せず)を有し、このノズル部から噴射する高い速度の冷媒流により蒸発器240にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機210の吸入圧を上昇させるエジェクタ235用いたヒートポンプユニット200を構成させて本発明を適用させても良い。
具体的には、図中に示す符号235が可変式エジェクタであり、図示しないノズル部の上流側には、電気的に可変可能な絞り機構235aが設けられており、ノズル部に流入される高圧側の冷媒圧力が可変される。また、ノズル部(図示せず)から噴射する駆動流と蒸発器240から吸引された吸引流とは、混合部で互いの運動量が保存されるように混合されて昇圧し、その後、冷媒通路断面積を徐々に拡大するディフューザにて動圧が静圧に変換されて更に昇圧される。
そして、このエジェクタサイクルでは、可変式エジェクタ235のポンプ作用(JIS Z 8126 番号2.1.2.3等参照)により、アキュムレータ250→蒸発器240→可変式エジェクタ235→アキュムレータ250の順に冷媒が循環し、圧縮機210のポンプ作用により、圧縮機210→水熱交換器220→可変式エジェクタ235→アキュムレータ250→圧縮機210の順に冷媒が循環する。
そして、以上の実施形態と同じように、実際の沸き上げ温度と外気温度とから求められた目標高圧圧力値POもしくは目標吐出温度TOのいずれかを目標値として設定し、その目標値となるように可変式エジェクタ235の開度を制御するように構成している。
これによれば、膨張弁23の代わりに可変式エジェクタ235を用いるヒートポンプユニット200においても最適なCOPとなるヒートポンプサイクルによる運転ができる。
(第4実施形態)
以上の実施形態では、実際の沸き上げ温度と外気温度とから求められた目標高圧圧力値POもしくは目標吐出温度TOのいずれかを目標値として設定し、その目標値となるように膨張弁230もしくは可変式エジェクタ235のいずれかの開度を制御するように構成したが、これに限らず、目標値となるように圧縮機210の回転数を制御するように構成しても良い。
(第5実施形態)
以上の実施形態では、本発明に係わるヒートポンプユニット(ヒートポンプ式給湯装置)200をタンクユニット300に貯える給湯水を加熱する給湯システムに本発明を適用させたが、これに限らず、ヒートポンプユニット200を瞬間式給湯機能となるように構成させて、タンクユニット300と組み合わせる給湯システムに本発明を適用させても良い。
具体的には、図6に示すように、貯湯タンク310内の低温の給湯水を水熱交換器220に通水加熱させて貯湯タンク310内に高温の給湯水を貯めるとともに、水道水を水熱交換器220に通水加熱させ、その加熱された給湯水を給湯水栓313に流出するように構成している。
より具体的には、循環水回路320のうち、水熱交換器220の流入側と電動ポンプ330との間に第1切換弁321を設けるとともに、水熱交換器220の流出側と貯湯タンク310の吐出口310dとの間に第2切換弁322を設けている。
そして、第1切換弁321の一方を給水配管311に連通するように接続し、第2切換弁322の一方を、貯湯タンク310を迂回する給湯配管312aに接続している。なお、この給湯配管312aの下流端は貯湯タンク310の導出口310bに接続される給湯配管312に接続されている。ここで、図中に示す符号314は逆止弁であって貯湯タンク310内の給湯水が給湯配管312a側に逆流するのを防止している。
そして、第1切換弁321は、貯湯タンク310内の水を吸入口310cから水熱交換器220の流入側に通水する流れ方向(図中に示す矢印a)か、または給水配管311からの水道水を水熱交換器220の流入側に通水する流れ方向(図中に示す矢印b)のいずれか一方に切り換えるための三方弁である。
また、第2切換弁322は、水熱交換器220を流出する給湯水を給湯配管312aに流出する流れ方向(図中に示す矢印b)か、または水熱交換器220を流出する給湯水を貯湯タンク310内の吐出口310dに流出する流れ方向(図中に示す矢印a)のいずれか一方に切り換えるための三方弁である。
ところで、第1切換弁321および第2切換弁322が、図中に示す矢印aの流れ方向に切り換えられたときは、貯湯タンク310内の給湯水を沸き上げるための運転モードである。従って、このときの作動については上述した実施形態と同じであるため、その説明は省略する。
ここでは、第1切換弁321および第2切換弁322が、図中に示す矢印bの流れ方向に切り換えられたときのヒートポンプユニット200の作動について説明する。この場合は、貯湯タンク310内に貯えられた給湯水の残湯量が所定値以下となったときに、第1切換弁321および第2切換弁322が図中に示す矢印bの流れ方向に切り換えられる運転モードである。
この運転モードの時には、給水配管311から水熱交換器220の流入側に水道水が通水され、その水道水を水熱交換器220で加熱する運転モードとなる。つまり、水熱交換器220を流出する流量は給湯水栓313の弁開度によって決まってくる。言い換えれば、任意の流量に変化することになる。
従って、水熱交換器220を流出する実際の沸き上げ温度は、流量によって変動することになるがこの実際の沸き上げ温度に基づいて目標高圧圧力値POを求め、その目標高圧圧力値POを目標値として設定して第2所定時間毎にその目標高圧圧力値POとなるように膨張弁230の開度を制御することで対応することができる。
これによれば、実際の沸き上げ温度に基づいた最適なCOPとなる目標高圧圧力値POとなるヒートポンプサイクルの運転を行うことができる。
(他の実施形態)
以上の実施形態では、第1所定時間(周期約1秒)毎に検出された実際の沸き上げ温度に基づいて、目標高圧圧力値POを求めてその目標値を設定していたが、この実際の沸き上げ温度が第2所定時間(T1タイマで約10秒)内に変化がないときには目標高圧圧力値POを固定しても良い。
また、貯湯タンク310内の給湯水を電力料金の安い時間帯に沸き上げ運転を行う給湯システムにおいては、水熱交換器220を流出する実際の沸き上げ温度が目標沸き上げ温度となるため、この目標沸き上げ温度を設定温度としてタンクユニット300から操作指令を受信し、この設定温度に基づいて目標高圧圧力値POを求めてその目標値を設定しても良い。
これによれば、目標となる目標高圧圧力値POが固定されることで、ヒートポンプサイクルの運転を安定させることができる。
本発明の第1実施形態における給湯システムの全体構成を示す模式図である。 本発明の第1実施形態における熱源制御装置270の制御処理を示すフローチャートである。 本発明の第1実施形態における実際の沸き上げ温度をパラメータとしたときの目標高圧圧力値と外気温度との関係を示す特性図である。 本発明の第2実施形態における給湯システムの全体構成を示す模式図である。 本発明の第3実施形態における給湯システムの全体構成を示す模式図である。 本発明の第5実施形態における給湯システムの全体構成を示す模式図である。
符号の説明
210…圧縮機
220…水熱交換器(放熱器)
230…膨張弁(減圧器)
235…可変式エジェクタ(エジェクタ)
240…蒸発器
273…冷媒圧力センサ(冷媒圧力検出手段)
276…吐出温度センサ(吐出温度検出手段)
O…目標高圧圧力値(目標値)
O…目標吐出温度(目標値)

Claims (5)

  1. 高温側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにて給湯用流体を加熱するヒートポンプ式給湯装置であって、
    冷媒を吸入圧縮する圧縮機(210)と、
    前記圧縮機(210)から吐出する冷媒と給湯用流体とを熱交換するとともに、冷媒流れと給湯用流体流れとが対向するように構成された放熱器(220)と、
    前記放熱器(220)から流出する冷媒を減圧する減圧器(230)と、
    前記減圧器(230)から流出する冷媒を蒸発させて冷媒に熱を吸収させるとともに、前記圧縮機(210)の吸入側に向けて冷媒を流出する蒸発器(240)と
    高圧側の冷媒圧力を検出する冷媒圧力検出手段(271)もしくは前記圧縮機(210)から吐出する冷媒の吐出温度を検出する吐出温度検出手段(276)とを備え、
    前記放熱器(220)から流出する給湯用流体の沸き上げ温度と、外気温度、前記蒸発器(240)に流出入する冷媒温度もしくは前記放熱器(220)に流入する給湯用流体温度のいずれか一つとから求められた目標高圧圧力値(PHO)もしくは目標吐出温度(TdO)のいずれか一方を第1所定時間間隔毎に目標値として求め、当該求められた目標値となるように前記減圧器(230)の開度を制御し、
    前記冷媒圧力検出手段(271)もしくは前記吐出温度検出手段(276)により検出された高圧側の冷媒圧力もしくは吐出温度の一方が、前記目標値となるように、前記減圧器(230)の開度、もしくは前記圧縮機(210)の回転数を、前記第1所定時間間隔の複数回分以上の時間に設定された第2所定時間間隔毎に変化させることを特徴とするヒートポンプ式給湯装置。
  2. 高温側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにて給湯用流体を加熱するヒートポンプ式給湯装置であって、
    冷媒を吸入圧縮する圧縮機(210)と、
    前記圧縮機(210)から吐出する冷媒と給湯用流体とを熱交換するとともに、冷媒流れと給湯用流体流れとが対向するように構成された放熱器(220)と、
    冷媒を蒸発させて冷媒に熱を吸収させる蒸発器(240)と、
    前記圧縮機(21)から吐出する冷媒を減圧膨張させるノズル部を有し、前記ノズル部から噴射する高い速度の冷媒流により前記蒸発器(240)にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(210)の吸入圧を上昇させるエジェクタ(235)と
    高圧側の冷媒圧力を検出する冷媒圧力検出手段(271)もしくは前記圧縮機(210)から吐出する冷媒の吐出温度を検出する吐出温度検出手段(276)とを備え、
    前記放熱器(220)から流出する給湯用流体の沸き上げ温度と、外気温度、前記蒸発器(240)に流出入する冷媒温度もしくは前記放熱器(220)に流入する給湯用流体温度のいずれか一つとから求められた目標高圧圧力値(PHO)もしくは目標吐出温度(TdO)のいずれか一方を第1所定時間間隔毎に目標値として求め、当該求められた目標値となるように前記エジェクタ(235)の開度を制御し、
    前記冷媒圧力検出手段(271)もしくは前記吐出温度検出手段(276)により検出された高圧側の冷媒圧力もしくは吐出温度の一方が、前記目標値となるように、前記エジェクタ(235)の開度もしくは前記圧縮機(210)の回転数を、前記第1所定時間間隔の複数回分以上の時間に設定された第2所定時間間隔毎に変化させることを特徴とするヒートポンプ式給湯装置。
  3. 前記減圧器(230)もしくは前記エジェクタ(235)は、その開度を電気的に調節可能なものであって、前記減圧器(230)もしくは前記エジェクタ(235)の開度を変化させることにより、高圧側の冷媒圧力、もしくは前記圧縮機(210)からの吐出温度のいずれか一方を制御することを特徴とする請求項1または請求項2に記載のヒートポンプ式給湯装置。
  4. 高温側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにて給湯用流体を加熱するヒートポンプ式給湯装置であって、
    冷媒を吸入圧縮する圧縮機(210)と、
    前記圧縮機(210)から吐出する冷媒と給湯用流体とを熱交換するとともに、冷媒流れと給湯用流体流れとが対向するように構成された放熱器(220)と、
    前記放熱器(220)から流出する冷媒を減圧する減圧器(230)と、
    前記減圧器(230)から流出する冷媒を蒸発させて冷媒に熱を吸収させるとともに、前記圧縮機(210)の吸入側に向けて冷媒を流出する蒸発器(240)と
    高圧側の冷媒圧力を検出する冷媒圧力検出手段(271)もしくは前記圧縮機(210)から吐出する冷媒の吐出温度を検出する吐出温度検出手段(276)とを備え、
    前記放熱器(220)から流出する給湯用流体の沸き上げ温度と、外気温度、前記蒸発器(240)に流出入する冷媒温度もしくは前記放熱器(220)に流入する給湯用流体温度のいずれか一つとから求められた目標高圧圧力値(PHO)もしくは目標吐出温度(TdO)のいずれか一方を第1所定時間間隔毎に目標値として求め、当該求められた目標値となるように前記圧縮機(210)の回転数を制御し、
    前記冷媒圧力検出手段(271)もしくは前記吐出温度検出手段(276)により検出された高圧側の冷媒圧力もしくは吐出温度の一方が、前記目標値となるように、前記減圧器(230)の開度もしくは前記圧縮機(210)の回転数を、前記第1所定時間間隔の複数回分以上の時間に設定された第2所定時間間隔毎に変化させることを特徴とするヒートポンプ式給湯装置。
  5. 高温側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにて給湯用流体を加熱するヒートポンプ式給湯装置であって、
    冷媒を吸入圧縮する圧縮機(210)と、
    前記圧縮機(210)から吐出する冷媒と給湯用流体とを熱交換するとともに、冷媒流れと給湯用流体流れとが対向するように構成された放熱器(220)と、
    冷媒を蒸発させて冷媒に熱を吸収させるとともに、前記圧縮機(210)の吸入側に向けて冷媒を流出する蒸発器(240)と、
    前記圧縮機(21)から吐出する冷媒を減圧膨張させるノズル部を有し、前記ノズル部から噴射する高い速度の冷媒流により前記蒸発器(240)にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(210)の吸入圧を上昇させるエジェクタ(235)と
    高圧側の冷媒圧力を検出する冷媒圧力検出手段(271)もしくは前記圧縮機(210)から吐出する冷媒の吐出温度を検出する吐出温度検出手段(276)と、を備え、
    前記放熱器(220)から流出する給湯用流体の沸き上げ温度と、外気温度、前記蒸発器(240)に流出入する冷媒温度もしくは前記放熱器(220)に流入する給湯用流体温度のいずれか一つとから求められた目標高圧圧力値(PHO)もしくは目標吐出温度(TdO)のいずれか一方を第1所定時間間隔毎に目標値として求め、当該求められた目標値となるように前記圧縮機(210)の回転数を制御し、
    前記冷媒圧力検出手段(271)もしくは前記吐出温度検出手段(276)により検出された高圧側の冷媒圧力もしくは吐出温度の一方が、前記目標値となるように、前記エジェクタ(235)の開度もしくは前記圧縮機(210)の回転数を、前記第1所定時間間隔の複数回分以上の時間に設定された第2所定時間間隔毎に変化させることを特徴とするヒートポンプ式給湯装置。
JP2005337625A 2005-11-22 2005-11-22 ヒートポンプ式給湯装置 Expired - Fee Related JP5011713B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005337625A JP5011713B2 (ja) 2005-11-22 2005-11-22 ヒートポンプ式給湯装置
SE0602460A SE531759C2 (sv) 2005-11-22 2006-11-20 Vattenvärmare av värmepumpstyp
DE102006054828A DE102006054828A1 (de) 2005-11-22 2006-11-21 Wärmepumpen-Warmwasserbereiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337625A JP5011713B2 (ja) 2005-11-22 2005-11-22 ヒートポンプ式給湯装置

Publications (2)

Publication Number Publication Date
JP2007139393A JP2007139393A (ja) 2007-06-07
JP5011713B2 true JP5011713B2 (ja) 2012-08-29

Family

ID=38037955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337625A Expired - Fee Related JP5011713B2 (ja) 2005-11-22 2005-11-22 ヒートポンプ式給湯装置

Country Status (3)

Country Link
JP (1) JP5011713B2 (ja)
DE (1) DE102006054828A1 (ja)
SE (1) SE531759C2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101831547B1 (ko) 2014-02-27 2018-02-26 가부시끼가이샤 마에가와 세이사꾸쇼 Co2 급탕기

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257652A (ja) * 2008-02-29 2009-11-05 Daikin Ind Ltd 冷凍装置
EP2149767A1 (en) * 2008-07-28 2010-02-03 IMAT S.p.A. Heat pump device
WO2010039630A2 (en) * 2008-10-01 2010-04-08 Carrier Corporation High-side pressure control for transcritical refrigeration system
JP5426239B2 (ja) * 2009-06-08 2014-02-26 株式会社前川製作所 給湯装置及びその運転方法
JP5558937B2 (ja) * 2010-06-30 2014-07-23 株式会社コロナ ヒートポンプ式給湯装置
JP5338758B2 (ja) * 2010-07-09 2013-11-13 株式会社デンソー 給湯装置およびその給湯制御方法
JP5745624B2 (ja) * 2011-05-27 2015-07-08 三菱電機株式会社 給湯システム
JP5764029B2 (ja) * 2011-10-05 2015-08-12 日立アプライアンス株式会社 ヒートポンプ給湯機及び冷凍サイクル
JP2013079770A (ja) * 2011-10-05 2013-05-02 Hitachi Appliances Inc ヒートポンプ式給湯機
JP5940294B2 (ja) * 2011-12-22 2016-06-29 中部電力株式会社 冷凍装置
JP5840062B2 (ja) * 2012-04-09 2016-01-06 日立アプライアンス株式会社 ヒートポンプ式液体加熱装置およびヒートポンプ式給湯機
JP2014081119A (ja) * 2012-10-16 2014-05-08 Panasonic Corp 冷凍装置
JP5914307B2 (ja) * 2012-12-03 2016-05-11 リンナイ株式会社 ヒートポンプ暖房システム
JP6304996B2 (ja) * 2013-10-03 2018-04-04 三菱電機株式会社 給湯装置
CN103884095B (zh) * 2014-03-04 2016-12-07 江门菲普森电器制造有限公司 一种自调控的安全型空气能热水器
CN103983012B (zh) * 2014-05-04 2016-04-13 唐玉敏 一种防过热自适应调节系统
JP6450926B2 (ja) * 2014-06-16 2019-01-16 パナソニックIpマネジメント株式会社 給湯装置
EP3015791A1 (de) * 2014-10-29 2016-05-04 Eppendorf Ag Zentrifuge mit einem Kompressorkühlkreislauf und Verfahren zum Betrieb einer Zentrifuge mit einem Kompressorkühlkreislauf
CN105091332B (zh) * 2015-09-28 2017-11-21 广东纽恩泰新能源科技发展有限公司 一种分胆加热空气能热水器
US11739950B2 (en) * 2018-02-23 2023-08-29 Mitsubishi Electric Corporation Hot water supply apparatus
CN108775711A (zh) * 2018-05-28 2018-11-09 广东芬尼克兹节能设备有限公司 一种高压卸载控制方法、系统及装置
WO2020075238A1 (ja) * 2018-10-10 2020-04-16 三菱電機株式会社 プレート式熱交換器およびヒートポンプ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3393601B2 (ja) * 1999-09-09 2003-04-07 株式会社デンソー ヒートポンプ式給湯器
JP3659197B2 (ja) * 2000-06-21 2005-06-15 松下電器産業株式会社 ヒートポンプ給湯機
JP4737892B2 (ja) * 2001-09-04 2011-08-03 三洋電機株式会社 ヒートポンプ式給湯装置
JP3941602B2 (ja) * 2002-02-07 2007-07-04 株式会社デンソー エジェクタ方式の減圧装置
JP3835431B2 (ja) * 2003-05-15 2006-10-18 株式会社デンソー 蒸気圧縮式冷凍機
JP2004361046A (ja) * 2003-06-06 2004-12-24 Denso Corp ヒートポンプ式給湯装置
JP4349851B2 (ja) * 2003-06-24 2009-10-21 日立アプライアンス株式会社 冷凍サイクル装置
JP2005098675A (ja) * 2003-08-26 2005-04-14 Denso Corp エジェクタ方式の減圧装置
JP2005241085A (ja) * 2004-02-25 2005-09-08 Corona Corp 貯湯式給湯装置
JP4269323B2 (ja) * 2004-03-29 2009-05-27 三菱電機株式会社 ヒートポンプ給湯機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101831547B1 (ko) 2014-02-27 2018-02-26 가부시끼가이샤 마에가와 세이사꾸쇼 Co2 급탕기

Also Published As

Publication number Publication date
DE102006054828A1 (de) 2007-05-31
SE0602460L (sv) 2007-05-23
SE531759C2 (sv) 2009-07-28
JP2007139393A (ja) 2007-06-07

Similar Documents

Publication Publication Date Title
JP5011713B2 (ja) ヒートポンプ式給湯装置
JP4059616B2 (ja) ヒートポンプ式温水器
JP4337880B2 (ja) ヒートポンプ式給湯器
JP4678518B2 (ja) 貯湯式給湯装置
JP3783711B2 (ja) ヒートポンプ給湯装置
WO2006062190A1 (ja) ヒートポンプ
JP2010196975A (ja) 冷凍サイクル装置
JP3659197B2 (ja) ヒートポンプ給湯機
JP3901192B2 (ja) ヒートポンプ給湯機
JP4552836B2 (ja) ヒートポンプ式給湯装置
JP4123220B2 (ja) ヒートポンプ式加熱装置
JP2006097930A (ja) ヒートポンプ式加熱装置
JP2010025517A (ja) ヒートポンプ式給湯機
JP5194492B2 (ja) ヒートポンプ給湯装置
JP2007113897A (ja) ヒートポンプ式給湯装置
JP4715852B2 (ja) ヒートポンプ式給湯装置
JP4124195B2 (ja) ヒートポンプ式加熱装置
JP3835434B2 (ja) ヒートポンプ式給湯装置
WO2022071207A1 (ja) 給湯装置
JP2007113896A (ja) ヒートポンプ式給湯装置
JP5381749B2 (ja) 冷凍サイクル装置
JP5454063B2 (ja) ヒートポンプ式給湯機
JP3835141B2 (ja) ヒートポンプ
JP4251785B2 (ja) ヒートポンプ式温水器
JP2006194537A (ja) ヒートポンプ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees