JP5011619B2 - 電子放出膜および電界電子放出装置 - Google Patents

電子放出膜および電界電子放出装置 Download PDF

Info

Publication number
JP5011619B2
JP5011619B2 JP2001233873A JP2001233873A JP5011619B2 JP 5011619 B2 JP5011619 B2 JP 5011619B2 JP 2001233873 A JP2001233873 A JP 2001233873A JP 2001233873 A JP2001233873 A JP 2001233873A JP 5011619 B2 JP5011619 B2 JP 5011619B2
Authority
JP
Japan
Prior art keywords
electron emission
film
region
cnt
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001233873A
Other languages
English (en)
Other versions
JP2003045315A (ja
Inventor
和夫 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001233873A priority Critical patent/JP5011619B2/ja
Priority to US10/479,790 priority patent/US20040217382A1/en
Priority to PCT/JP2002/007801 priority patent/WO2003012817A1/ja
Publication of JP2003045315A publication Critical patent/JP2003045315A/ja
Application granted granted Critical
Publication of JP5011619B2 publication Critical patent/JP5011619B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3048Distributed particle emitters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Description

【0001】
【発明の属する技術分野】
本発明は、電子源として機能する電子放出膜、および電子放出膜を備えた電界電子放出装置に関するものである。
【0002】
【従来の技術】
従来より、電子放出膜を用いた各種の電界電子放出装置が提案されている。電子放出膜としては、例えば、ダイアモンド膜、DLC(ダイアモンドライクカーボン)膜、ホトレジスト用有機膜を焼成したカーボン膜、カーボンナノチューブ(CNT)膜がある。CNT膜は、1991年に飯島が発見した材料である(「Nature」354巻,56−58ページ(1991年)参照)。ここで、CNT膜について詳しく述べる。
【0003】
CNTは、ナノスケールからサブミクロンスケールの直径を持つ炭素原子からなる繊維状結晶である。長さ方向は、ミクロンスケールからミリメートルスケールである。曲げられたグラフェンシートが一重の筒状の形状となっている中空構造の単層カーボンナノチューブや、グラフェンシートが多層重なっている多層カーボンナノチューブが報告されている。また、筒の内部が各種物質で充填されているCNTも報告されている。筒の軸が充填されているCNTの製造方法の一例として、特開2000−327317号公報に記載された製造方法がある。
【0004】
グラフェンシートが繊維状形状の軸に直交する方向に重なっている構造や、繊維状形状がコイルのように巻いた形状のナノコイルと呼ばれる構造も存在する。このように、カーボンナノチューブは、狭義のカーボンナノチューブ(単層、多層)の他にも、類似した構造が各種報告されている。本明細書では、類似構造も含めてカーボンナノチューブと呼ぶ。また、カーボンナノチューブと同様の構造を持つが、構成元素が異なるものも各種報告されている。例えば、ボロンナイトライド(BN)やシリコンのナノチューブが報告されている。
【0005】
上記のものは、元素は異なっていても、繊維状形状で先鋭な先端を持つという特徴が共通であるため、以下、広義にカーボンナノチューブ、またはCNTと呼ぶが、構成元素の異なるものも含む。
【0006】
ここでのCNT膜とは、繊維形状体であるCNTが複数個存在することで、ほぼ膜形状となっている物体のことである。なお、CNTだけが集結して、ほぼ膜形状となっている場合もあるが、CNTにバインダーを含ませて、ほぼ膜形状にしている場合もある。CNT膜の形成については、特開2001−143602号公報において、「ビークル」と呼ぶバインダーを含ませた技術が公開されている。ビークルの成分は、酢酸イソアミル%とニトロセルロース1%である。
【0007】
電界電子放出装置として最も単純な構造の一例が、特開2001−143645号公報に開示されている。この公報には、カソードパネルと、そのカソードパネルから放出された電子の照射を受けて発光する蛍光体の構成が示されている。図32は、カソードパネルの典型的な構成を示している。同図に示すカソードパネル1000は、ガラス基板1001の片面に金属配線1003が形成されていて、この金属配線1003の上に、電子放出膜としてCNT膜1004が固着されている。
【0008】
特開2001−130904号公報は、CNT膜を基板に固着させる方法を開示している。その他、電子放出膜の固着方法として様々な方法が提案されている。例えば、スプレー塗布して、真空中でアニールすることで、CNT膜を下地金属膜に固着する方法等が公開されている。特開2001−110303号公報は、CNTを膜状に電着する技術を開示している。また、特開2000−353467号公報は、電子放出膜を基板に選択的に固着させる方法を開示している。
【0009】
CNT膜の表面の性質を変える方法についても、各種の報告がなされている。例えば、CNT膜の表面導電性を補うために金属コーティングを施す方法が、特開2001−096499号公報に開示されている。また、表面を電子放出し易い表面に改質する方法として、特開2001−035360号公報に開示されたものがある。この技術は、CNT膜の表面に紙を接触させて、紙とCNT膜とを一体化させた後、この紙を引き剥がす作業を行う際、CNTの一部を一緒に引き剥がすことで、CNT膜内部の繊維状構造を表面にむき出させるものである。
【0010】
特開2001−141056号公報は、キャスティングやモールディングによる整列法(配向させる方法)について紹介している。特開2001−118488号公報は、エミッタ膜の端部からの電子放出を防ぐための絶縁膜について開示している。
【0011】
特開2000−340098号公報、特開2000−243218号公報、特開2001−143602号公報には、電子放出膜を用いた電界電子放出装置についての技術が開示されている。これら3つの公報に記載された技術は、ノーマルゲート型と呼ばれる構造に関する技術である。
【0012】
ノーマルゲート型では、電界放出の原理で電子放出膜から電子を引き出すために電界を印加する目的で、電子放出膜の上部にゲート電極が配置されている。このゲート電極と電子放出膜との間には、電子を放出する領域(エミッタホール)を除いて、絶縁膜が置かれている。エミッタホールでは、ゲート電極と絶縁膜が取り除かれていて、電子放出膜の表面が真空に晒されている。なお、電子放出膜を用いた電界電子放出装置は、上記のノーマルゲート型の他、サスペンドゲート型、アンダーゲート型と呼ばれる構造のものも考案されている。
【0013】
図33は、従来のサスペンドゲート型のカソードパネルの一例を示している。同図に示すカソードパネルは、CNT膜1014の表面が立毛表面1015になっており、その上部には、グリッド電極1016が配された構造を有する。すなわち、このCNT膜1014は、上記の特開2001−035360号公報に開示された方法や特開2001−141056号公報に示されているキャスティングやモールディングによる整列法(配向させる方法)によって「立毛表面」にしたCNT膜であり、その上にグリッド電極1015が配置されている。
【0014】
なお、本明細書において、「立毛表面」と呼ぶCNT膜の表面状態は、細長いカーボンナノチューブが、膜表面に対してほぼ垂直方向に、数多く突き出す姿勢で並んでいる。これは、髪の毛が立っている状態を連想させる姿勢である。他の文献では、「立毛表面」を「整列」や「配向」と呼ぶ場合がある。より厳密には、立毛表面と整列や配向とは同じではないが、概ね同等の状態を表現している。
【0015】
図34は、アンダーゲート型のカソードパネルの構造例を示している。同図に示す構造のカソードパネルは、CNT膜1024よりも下方に、電子放出制御のためのアンダーゲート1027が配置されていることを特徴とする。
【0016】
【発明が解決しようとする課題】
しかしながら、上述した電子放出膜を電子源として用いた電子放出装置において、例えば、電子放出膜としてのCNT膜のエッジ部分から放出される電子が、平坦なCNT膜の表面よりも異常に多く(少なくとも2倍以上)、かつ、軌跡の曲がった電子が放出される場合、そのことが、フィールド・エミッション・ディスプレイ(FED:Field Emission Display)としての表示解像度を劣化させる原因となる、という問題がある。
【0017】
また、エッジ部分からの電子放出特性は、そのエッジ部分の形状に大きく依存するため、電子放出の安定性や再現性、画素(個々のCNT膜)間について、特性のバラツキが大きいという問題もある。
【0018】
このように、電子放出膜表面の内、その一部の面からの電子放出は抑制しなければならない場合があるが、上記従来の技術では、電子放出面の一部の電子放出特性を向上させたり、あるいは抑制することはできない。
【0019】
上記の特開2001−118488号公報には、エミッタ膜の端部からの電子放出を防ぐための絶縁膜について、技術的な説明がなされているが、この技術は、単にゲート絶縁膜の形状を工夫したものである。すなわち、この公報に記載の技術では、エミッタホールの底部において露出している電子放出面(DLC膜等の露出表面)を、さらに細かく部分に分けて、その部分毎に電子放出特性を制御する工夫はなされていない。
【0020】
結局、従来の技術では、電子放出面をさらに部分に分けて、その表面の電子放出特性を変えることは行われておらず、そのため、電子放出特性を制御する必要がある最小面積に切り出したり、絶縁膜等を被せることで、微細パターニングしなければならない。特に、電子放出膜を微細パターニングすると、上述したエッジ部の問題が顕著になり、かつ、下地と膜との密着性が乏しくなるという問題もある。
【0021】
本発明は、上述の課題に鑑みなてされたものであり、その目的とするところは、電子放出面の一部の電子放出特性を向上させたり、あるいは逆に抑制することのできる電子放出膜、およびその電子放出膜を有する電界電子放出装置を提供することである。
【0022】
また、本発明の他の目的は、無効電子の発生がなく、異常放電が起こりにくい電界電子放出装置を提供することである。
【0023】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、基板上に形成され、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、
前記基板上に細長い結晶が形成され、前記電子放出を促進する領域に対応する細長い結晶が立毛状態とされ、前記電子放出を抑制する領域に対応する細長い結晶が絶縁物質でカバーする以外の手段・方法により伏毛状態とされている電子放出膜を提供する。
【0024】
他の発明によれば、基板上に形成され、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記基板上に仕事関数の高い物質であるグラファイト膜がストライプ状に形成されることにより、前記電子放出を促進する領域中に前記電子放出を抑制する領域として基板露出部が点在し、更にエッジ部分がニッケル金属で覆われて前記電子放出を抑制する領域となっている、ことを特徴とする電子放出膜を提供する
【0029】
また、他の発明によれば、基板上に繊維状構造が形成されてなる、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記繊維状構造は、前記基板上に立毛状態に形成され、さらに、前記電子放出を抑制する領域に対応する部分が膜の平均表面に沿った方向に配向処理されたことにより伏毛状態とされている、ことを特徴とする電子放出膜が提供される。
【0030】
また、他の発明によれば、基板上に繊維状構造が形成されてなる、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記繊維状構造は、前記基板上に立毛状態に形成され、さらに、前記電子放出を抑制する領域に対応する部分が接着剤を塗布されて引っ張られ切断されて長さが短い、ことを特徴とする電子放出膜が提供される。
【0031】
他の発明によれば、基板上に繊維状構造が形成されてなる、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記繊維状構造は、前記基板上に立毛状態に形成され、さらに、前記電子放出を抑制する領域に対応する部分が接着剤を塗布されて引っ張られて細径化され切断されて先端が先鋭化している、ことを特徴とする電子放出膜が提供される。
【0032】
また、他の発明によれば、基板上に繊維状構造が形成されてなる、電子放出を促進する中間領域と、電子放出を抑制する最内周領域及び最外周領域領域とを有し、電子源として機能する連続した電子放出膜であって、前記繊維状構造は、伏毛状態に対して立毛状態の割合が高くなるように前記基板上に形成され、さらに前記最内周領域と前記最外周領域では伏毛状態に処理されたことにより立毛状態に対して伏毛状態の割合が高いことを特徴とする電子放出膜電子放出膜が提供される。
【0033】
また、他の発明によれば、基板上に繊維状構造が形成されてなる、電子放出を促進する中間領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記基板上に繊維状構造が立毛状態に形成され、かつ、前記中間領域の繊維状構造が導電性膜で覆われ先端が先鋭化され、その導電膜の導電率が、他の領域における導電率よりも大きいことを特徴とする電子放出膜が提供される。
【0037】
また、他の発明は、上記のいずれかに記載の電子放出膜を備え、その電子放出膜の所定領域の表面、または側面の一部が絶縁膜に接して配置されている電界電子放出装置を提供する。
【0038】
他の発明によれば、上記いずれかに記載の電子放出膜を備え、その電子放出膜の周辺部の一部を含む第1の領域、または中央部の一部あるいは周辺部を含まない第2の領域、または周辺部の一部を含み、かつ中央部の一部あるいは周辺部を含まない第3の領域の表面、または側面の一部が絶縁膜に接して配置されている電界電子放出装置が提供される。
【0039】
好ましくは、上記電界電子放出装置の電子放出膜の側面および端部が導電性膜で覆われている。また、好ましくは、上記絶縁膜の上面の一部にゲート電極が配置されている。
【0040】
好適には、電界電子放出装置のゲート電極に設けられた孔に対する、そのゲート電極の縁部分が、上部方向に開く斜面形状を有する。
【0041】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。ここでは、本発明に係る電子放出膜について、その特徴ごとに分けて、実施の形態を説明する。
【0042】
[第1の特徴に係る電子放出膜]
この電子放出膜は、基板上に形成され、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記基板上に細長い結晶が形成され、前記電子放出を促進する領域に対応する細長い結晶が立毛状態とされ、前記電子放出を抑制する領域に対応する細長い結晶が絶縁物質でカバーする以外の手段・方法により伏毛状態とされている、ことを特徴とする。この特徴を備える場合、電子放出膜の1つの領域表面について仕事関数の高い表面にする、または、電界集中する先鋭構造を減少あるいは除去する、または、先鋭構造について単位面積を疎にすること、または、これらを同時に行うことで、低い電界では電子を放出しないようにしている。
【0043】
このことで、電子放出面の内、上記の1つの領域表面以外の面(他の領域表面)と比較して、高い電界で電子を放出する電子放出膜を備えた電界電子放出装置を実現する。仕事関数の高い表面にするための手段として、その表面に高仕事関数の材料を極薄膜蒸着する等の表面修飾を行うものがある。例えば、酸素ガスや窒素ガス雰囲気で表面を酸化、または窒化することで、仕事関数を高くすることができる。
【0044】
その際、特定の表面にだけレーザー照射や電子線照射をすることで、その表面のみを選択的に反応させることもできる。また、例えば、イオン打ち込みによって打ち込んだ表面のみを、仕事関数の高い表面に改質することもできる。イオン照射後に照射ダメージを回復する熱処理を行う場合もあれば、ダメージを意図的に残存させる場合もある。
【0045】
先鋭構造を減少させる方法としては、表面を研磨する方法や化学的にエッチングする方法がある。イオンミリングで表面を平坦化する方法もある。また、イオンのエネルギーを調整することで、平坦化を極めていくこともできる。例えば、凹凸の激しい膜に対しては、重いイオンを高いエネルギーで照射することで、段差を減少させ、その凹凸が減少した段階で、軽いイオンを低エネルギーで照射するように切り替える。こうすることで、表面の微細構造を潰していく。
【0046】
電子放出膜について、その一部の表面が他の表面よりも低い電界で電子放出する特徴を備える場合、電子放出膜の表面の一部について仕事関数の低い表面にしたり、あるいは、電界集中する先鋭構造を増加させたり、あるいは、先鋭構造をさらに先鋭化させたり、あるいは、仕事関数の低下と先鋭化の両方を行うことで、低い電界では電子を放出しないようにする。
【0047】
このようにすることによって、電子放出面の内、上記1つの領域表面以外の面(他の領域表面)と比較して、高い電界で電子を放出する電子放出膜を備えた電界電子放出装置を実現できる。仕事関数の低い表面は、その表面に低仕事関数の材料を極薄膜蒸着する等の表面修飾を行うことで実現できる。また、例えば、上述したものとは異なる条件で、酸素ガスや窒素ガス雰囲気で表面を酸化、または窒化することで、上記とは反対に仕事関数を低くすることができる。
【0048】
その際、特定の表面にだけレーザー照射や電子線照射することで、その表面のみを選択的に反応させることができる。また、例えば、上述した条件とは異なる条件でイオン打ち込みして、打ち込んだ表面だけを、仕事関数の低い表面に改質することもできる。イオン照射後に照射ダメージを回復する熱処理を行う場合もあれば、ダメージを意図的に残存させる場合もある。
【0049】
仕事関数を高くしたり、あるいは低くしたりすることは、元来、その表面が備える仕事関数に対して、その後、付加する表面の仕事関数が相対的に高いか、低いかによる。各種材料は、その仕事関数が実測されて、データが整備されているので、目的に合わせて、表面に新たな表面を付加させるようにする。
【0050】
膜によっては、ダメージ(欠陥等)が残存すると仕事関数が高くなるものもあれば、逆に低くなるものもある。あらかじめ、その傾向が明らかなものは、その傾向を期待した処理を行って所望の仕事関数を得る。傾向が明らかでないものも、ダメージを与えた後の結果について予備実験を行い、変化の傾向を把握した後、実際の電界電子放出装置に適用することで、所望の仕事関数が得られる。
【0051】
先鋭構造を増加させる方法としては、表面を化学的にエッチングする方法がある。様々な材料が混在した電子放出膜では、エッチャント(腐食液)を選択することで、膜が部分的にエッチングされ、凹凸が付くことになる。また、イオンミリングで表面を荒らす方法もある。イオンのエネルギーを調整することで、荒らしていくことができる。
【0052】
例えば、重いイオンを、照射密度が低く、高いエネルギーで照射することで、照射された部分だけが深く掘られ、また、その深く掘られた際の膜構成材料が、その周辺に再付着して隆起することで、膜表面に凹凸が付く。イオン照射と化学エッチングを組み合わせる場合もある。あらかじめ電子放出膜にイオンを照射して、所々に欠陥を発生させておき、その後に化学エッチングすると、欠陥部分のエッチングが促進されてエッチピットが生じる。
【0053】
[第2の特徴に係る電子放出膜]
この電子放出膜は、基板上に形成され、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記基板上に仕事関数の高い物質であるグラファイト膜がストライプ状に形成されることにより、前記電子放出を促進する領域中に前記電子放出を抑制する領域として基板露出部が点在し、更にエッジ部分がニッケル金属で覆われて前記電子放出を抑制する領域となっている、ことを特徴とする。この構成の場合には、例えば、仕事関数を下げるため、表面にセシウム(Cs)を堆積させる。仕事関数が低下(または、高くなった)表面は、電子放出特性だけでなく、光電特性においても、その変化を確認できる。
【0063】
[第の特徴に係る電子放出膜]
この電子放出膜は、基板上に繊維状構造が形成されてなる、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記繊維状構造は、前記基板上に立毛状態に形成され、さらに、前記電子放出を抑制する領域に対応する部分が膜の平均表面に沿った方向に配向処理されたことにより伏毛状態とされている、ことを特徴とする。
【0064】
の特徴を備える場合、例えば、繊維状構造を膜の平均表面に沿った方向に配向させる。繊維状構造の一部を水分で濡らして、表面張力の作用で水平方向に配向させる。水平配向させる領域のみに、スプレーでエタノールを塗布させたり、あるいはスクリーン印刷によって、一部のみにゲル状物質を塗布して、その重力で押しつぶしたまま、固化させたりする。
【0065】
上記のゲル状物質は、繊維状構造を水平方向に配向させた後に、焼成工程で気体として除去する場合がある。また、水平方向に配向させる方法としては、ローラーやスキージによって、物理的に押し付ける方法がある。物理的に押し付ける場合、その接触が解ける瞬間、すなわちローラー等が離れる瞬間に、繊維状構造がローラー等と一体となって引っ張り上げられて、却って立毛表面状態になる場合がある。
【0066】
これを防ぐため、ローラー等の表面を滑らかにして、繊維状構造が付かないように工夫したり、ローラー等の表面と繊維状構造(例えば、カーボンナノチューブ)とが、互いに反発するように帯電させたり、帯磁させたりする。エアーブローと組み合わせて、ローラー等に密着して立毛になろうとしている繊維状構造をローラー等から引き剥がしたり(吹いて剥がしたり)、または、密着して立毛表面状態になってしまった繊維状構造を吹き飛ばして除去する。
【0067】
繊維状構造を、液体の表面張力によって膜面に押し付けたり、金属膜を蒸着して、「伏毛表面」状態にする方法もある。ここで、「伏毛表面」状態とは、繊維状構造が膜に平行な方向に配向することで、電界集中が起こりにくくなる状態を指す。このことで、電子放出が抑制される。しかし、その部分の耐電圧が向上するという効果もある。
【0068】
先鋭な構造があると、その部分が放電の起点となる可能性が高くなる。伏毛状態にしておくと、この起点を隠す効果がある。繊維状構造の先端(末端)は、結晶の完全性が乏しいため、仕事関数が低い性質を持つ場合がある。仕事関数が低い先端部分を隠す効果によって、電子放出を抑制したり、耐電圧を向上させることができる場合がある。
【0069】
結晶の完全性が乏しい場合、構造的に不安定であり、その構造が容易に破壊されてガス放出の原因になる場合がある。このような構造の先端を隠すことで、耐電圧を向上させることができる場合がある。ここで、「隠す」と表現している作用を、より厳密に説明する。すなわち、高電界な領域から外すこと、または、高電界な領域で、その電界をさらに高電界に作用させる状態から外すことを、「隠す」と表現している。
【0070】
伏毛表面状態にすることで、導電性の電子放出膜に埋もれさせることができるので、先端における電界集中を防ぐことができる。つまり、伏毛表面状態にすることで、等電位面に沿った方向に繊維状構造の長軸を合わせることになる。そのため、繊維状構造の先端部での電界集中効果を少なくすることができる。
【0071】
[第4,第5の特徴に係る電子放出膜]
この電子放出膜は、基板上に繊維状構造が形成されてなる、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記繊維状構造は、前記基板上に立毛状態に形成され、さらに、前記電子放出を抑制する領域に対応する部分が接着剤を塗布されて引っ張られ切断されて長さが短い、ことを特徴とする。また第5の電子放出膜は、基板上に繊維状構造が形成されてなる、電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記繊維状構造は、前記基板上に立毛状態に形成され、さらに、前記電子放出を抑制する領域に対応する部分が接着剤を塗布されて引っ張られて細径化され切断されて先端が先鋭化している、ことを特徴とする。
【0072】
粘着材をその表面に接触させて、繊維状構造の一部を引きちぎって、取り去ることで、その切断面が先鋭になる。引きちぎられた部分は、上記の作用前よりも細い繊維となる。引っ張られることで、繊維状構造が伸ばされ、細い形状になる場合もある。また、一部分にエッチングやイオン照射を行い、繊維状構造の一部を除去することで、細い繊維の割合を増やすことができる。
【0073】
繊維が細くなることで、電界集中効果が高まる。また、細くする作用によっては、先端部分の表面状態が変化して、仕事関数が低下し、電子放出特性が向上する場合もある。
【0074】
[第の特徴に係る電子放出膜]
この電子放出膜は、基板上に繊維状構造が形成されてなる、電子放出を促進する中間領域と、電子放出を抑制する最内周領域及び最外周領域領域とを有し、電子源として機能する連続した電子放出膜であって、前記繊維状構造は、伏毛状態に対して立毛状態の割合が高くなるように前記基板上に形成され、さらに前記最内周領域と前記最外周領域では伏毛状態に処理されたことにより立毛状態に対して伏毛状態の割合が高いことを特徴とする。
【0075】
電子放出膜が第9の特徴を備える場合、水平方向に配向している繊維の割合が少ない中間領域では、垂直方向に配向している繊維の割合が相対的に大きいので、この中間領域からの電子放出が、他の領域よりも多くなる。
【0076】
電子放出膜の周辺に、絶縁膜を介してゲート電極を備えることに加えて、電子放出膜に対向する位置に蛍光スクリーンを配置した三極管構造において、電子放出膜が、この第9の特徴を備える場合、絶縁膜の近傍の領域における水平配向の割合が多いので、そこでの電子放出が抑制される。
【0077】
上記の領域から放出される電子は、絶縁膜に飛び込んで、チャージアップさせたり、あるいは、ゲート電極に飛び込んで蛍光スクリーンに届かない場合がある。そのため、このような無効、かつ、故障原因になる可能性のある領域からの電子放出を抑制する。
【0078】
一方、最内周領域では、ゲート電極での制御が効き難い。また、蛍光スクリーンに正の高い電圧を印加してしまうと、ゲート電極電位の如何に関わらず、蛍光スクリーンの電位によって、最内周領域から電子が放出してしまう「無制御電子放出現象」が起こる。このような最内周領域の繊維を水平配向させて、電子放出しにくい性質にしておけば、上記の無制御電子放出現象が抑制される。
【0079】
[第の特徴に係る電子放出膜]
この電子放出膜は、基板上に繊維状構造が形成されてなる、電子放出を促進する中間領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、前記基板上に繊維状構造が立毛状態に形成され、かつ、前記中間領域の繊維状構造が導電性膜で覆われ先端が先鋭化され、その導電性膜の導電率が、他の領域における導電率よりも大きいことを特徴とする
【0080】
この特徴を備える場合、導電性膜で覆われた部分が帯電しにくくなるので、電子放出が促進される場合がある。以下、このことを詳しく説明する。帯電しやすい表面から電子が放出されると、放出した電子が、放出面に再付着して負電位に帯電する場合がある。負電位に帯電すると、その表面の電界が弱まり、電子放出が抑制されてしまう。
【0081】
これに対して、表面が導電膜であれば、たとえ再付着した電子があっても、その電子は導電膜中を運ばれて取り除かれる。このことで、その表面は帯電することなく電子放出を継続できる。
【0082】
領域が導電性膜で覆われた場合、その形状が、覆われる前に比べて凹凸が鈍化するか、あるいは鋭化するかによって、形状に起因した電子放出特性の変化の傾向が変わる。凹凸が鈍化すれば、電界集中効果が減少するので、電子放出特性は低下する。しかし、凹凸が先鋭化すれば、電界集中が促進される効果によって、電子放出特性は向上する。
【0100】
以下、本発明の具体的な実施例について、添付図面を参照しながら詳細に説明する。
[実施例1]
本発明の実施例1について説明する。本実施例に係るカソードパネルは、電子源であるCNT膜の中央部分のみから電子放出させ、周辺部分からは電子放出させないコールドカソードについての例である。
【0101】
図1は、本実施例に係る、コールドカソードのカソードパネルの側面図であり、図2は、その正面図である。図1に示すように、本実施例に係るカソードパネル10は、ガラス基板11、金属配線12、CNT膜13で構成されている。ガラス基板11は、その厚みが1mmで、一辺の大きさが10mmである。また、金属配線12は、図2に示すように、外部引出しパッド16として200μm角の領域を有し、そのパッドと、500μm角のCNT膜下地部分17との間を、幅50μm、長さ200μmの配線18でつないでいる。
【0102】
金属配線12は、厚みが1μmの金配線であり、その金の表面は、厚み100nmのチタンでコーティングされている。また、CNT膜13は、厚みが3μmで、大きさは400μm角である。CNT膜13の外周と金属配線12の外周との距離は、50μmである。CNT膜13は、その周囲部分と中央部分とで、表面の性質が異なっている。すなわち、中央部は、CNT膜表面に対してCNT結晶が垂直方向に配向して生えた表面を有している。その状態を図3に示す。
【0103】
図3に示すように、CNT膜の中央部には、細長い結晶構造を有するシングルウォールカーボンナノチューブが、膜表面に対してほぼ垂直方向に数多く突き出す姿勢で並んでいる。これは、髪の毛が立っている状態を連想させる姿勢であるため、立毛表面状態と呼ばれる。図1,図2において、立毛表面14として示した部分(CNT膜13の中央部分)は、図3に示す微細構造を有していることになる。
【0104】
一方、CNT膜13の周辺部分は、伏毛表面15、すなわち、CNTの結晶(髪の毛に例えられる繊細な構造)が伏せた状態になっている。図4は、このように結晶が実際に伏せた状態を示している。同図に示す状態は、CNT膜13の表面に、アルミニウムを約600nm被せた状態である。
【0105】
このように、CNT膜13の表面に、金属膜等の固体の膜を被せて伏毛表面を形成する場合もあるが、CNT膜の表面に固体の膜を被せずに、伏毛表面を形成する場合もある。金属膜を被せないで伏毛表面を形成する例としては、CNT膜をエタノールに浸漬する方法がある。なお、エタノールに限らず、イソプロピルアルコール、純水、塩酸等の液体に浸漬することで、伏毛表面になる。また、浸漬する方法以外に、スプレーでエタノールを噴霧する方法もある。
【0106】
これに類似する技術として、従来技術の中には、エッジ部分を絶縁物質でカバーする方法がある。しかし、この方法では、絶縁物質に放射電子やイオンが照射されることで、その絶縁物質がチャージアップし、電子の軌道が曲がったり、放電破壊のエネルギーが蓄積されたりする。本発明に係る技術は、このような絶縁膜を用いないものである。
【0107】
従来の他の類似技術によれば、作成したCNT膜が、部分的に電子放出が多かったり、少なかったりする場合がある。また、電子放出を報告する科学論文の記事に掲載されている電子放出現象は、大概、不均一な電子放出である。このような現象が、本発明に係る技術と一見類似した現象のように見られる懸念がある。すなわち、科学論文に掲載されている現象は、人工的でない不均一現象である。かかる現象は、ある時刻では、ある部分から電子が出ているが、しばらくすると、その電子放出点が消滅して、別の場所から電子放出するという現象である。この現象は、制御されていない、予想不可能な現象である。
【0108】
これに対して、本発明に係る技術は、例えば、表面張力を作用させて繊維構造を伏毛にするといった、人工的な作用によって、ある特定表面からの電子放出を抑制したり、あるいは反対に、ある特定の面の繊維構造を垂直に配向させて、電子放出を促進させたりする技術である。
【0109】
そこで、図2のカソードパネル10を用いて、実際に蛍光体に電子を照射したときの様子を説明する。図5は、図2に示すカソードパネルを用いたフィールド・エミッション・ディスプレイ(FED)(電界放出型画像表示装置)を、破断線A−A’で切断したときの切断側面を示し、また、図6は、同じく破断線B−B’における切断側面図である。
【0110】
図5において、蛍光体21として表した部分は、蛍光体と導電膜を組み合わせた構造を有する。この構造には、電流計23を介して、電源22の陽極が接続されている。また、カソードパネル10の金属配線12には、電源22の陰極が接続されている。そして、カソードパネル10と蛍光体21は、1×10-4Pa〜1×10-6Paの範囲の圧力で、真空に維持してある。
【0111】
CNT膜13の中央部分の平坦部分から放出された電子は、図5において実線の矢印で示す電子軌跡として描いたように、蛍光体21に向けて直進する。その結果、蛍光体21に照射された電子は、蛍光体21を励起発光させる。これに対して、膜のエッジ部から電子を放出させると、その電子は、同図において破線矢印で示すような電子軌道を描き、エッジから膨らんだ曲線状に飛行する。
【0112】
しかし、本実施例に係るカソードパネルでは、CNT膜13のエッジ部分(周辺部分)の表面を伏毛表面にして、電子を放出しにくくしているため、実際には、図5において破線で示すような電子放出は生じない。結果として、CNT膜13の平坦部からの電子放出だけが得られることになる。
【0113】
なお、CNT膜13は、CNTの直径がナノメートルオーダーで、かつ、マイクロメートルオーダーの長い筒形状の端部で電界集中が生じるので、低電界で電子が放出される。また、伏毛表面では、その端部が下向きや横向きになっており、隣接するCNT結晶と絡み合って、その下側に潜る位置にあったりすることで、電界が集中しにくい。一方、立毛表面では、その端部がCNT表面に対して垂直方向に立つ姿勢をとるので、電界が集中しやすい。
【0114】
図2のB−B’断面として、図6に示すFEDは、図5に比べて金属配線12の形状が異なる以外、その特徴は、図5に示すものと類似している。図6において、金属配線12のパッド、およびそのパッドへのワイヤー(電源22と金属配線12とを結んでいる曲線)が存在することで、蛍光体21と金属配線12との間に形成される等電位面(図中、水平方向に延びる多数の線で示す)が、図6に示すように左右非対称である。すなわち、図6の右半分では、等電位面が上に凸であるが、左半分では、下に凸である。
【0115】
エッジ部から放出され、破線で描いた軌跡を辿る電子(上記のように、実際には放出されない)は、図6の右半分では、電子がCNT膜13からはみ出す方向に曲がって飛行する。これに対して、左半分では、電子がCNT膜13の中央方向に曲がって飛行する。
【0116】
以上説明したように、実施例1では、曲がって飛行する電子が放出される領域である、CNT膜のエッジ部分を、伏毛表面にすることで、曲がる電子を放出しないコールドカソードを実現している。
【0117】
[実施例2]
図7は、実施例2に係るカソードパネルの側面を示している。同図に示すカソードパネル25は、CNT膜13の表面状態を自在に制御した例であり、表面には、立毛表面部分14と伏毛表面部分15とが形成されている。図7では、3箇所の立毛表面を形成し、エッジを含めて4箇所の伏毛表面を形成してある。立毛表面14からは、低電圧で電子放出される。このカソードパネル25では、CNT膜13の表面のある部分(立毛表面)からは電子放出し、ある部分(伏毛表面)からは電子放出しないという特性を持たせられる。この特性を利用して文字表示する等の応用が可能である。
【0118】
そこで、文字表示について、図5に示す、上記実施例1に係るFEDを利用して説明する。図5では、立毛表面部分14からのみ電子が放出されて、それに対向する蛍光体部分21が励起発光する。図7に示す構造のカソードパネル25を、図5に示すように、蛍光体21に対向する位置に配置すると、その立毛表面14に対向する蛍光体だけが発光する。
【0119】
本実施例における、立毛表面と伏毛表面とを自在に形成する方法を説明する。まず、粘着テープをCNT表面に付着させて、それを引き剥がすことで、CNT膜13の表面全体を立毛表面にする。この作用は、フェルト生地にガムテープを付着させて引き剥がすと、その表面が毛羽立つ現象に類似している。全体が立毛表面になった後、金属プレート製のマスクを介して、CNT膜上に部分的にエタノールをスプレー塗布する。その結果、エタノールで濡れた表面は、伏毛表面になる。
【0120】
立毛表面と伏毛表面を自在に形成する別の方法について説明する。まず、CNT膜13全体を純水に浸漬して、全体を伏毛表面にする。その後、スクリーンマスクを介して、粘着性のペーストを部分的にCNT表面に付着させる。ペーストを付着させる面が、立毛表面にしたい部分である。そして、粘着性のペーストを付着して乾燥・焼成した後に、そのペーストを引き剥がす。この引き剥がし時に、CNT膜の極表面がペーストに付着して、CNT膜から剥離される。この剥離の際、CNT結晶が毛羽立って、立毛表面が形成される。
【0121】
[実施例3]
図8は、本発明の実施例3に係るカソードパネルの側面を示している。同図に示すカソードパネル30の構造は、従来例として、図32に示すカソードパネルと同様の構造を有する。しかし、本実施例に係るカソードパネルは、エッジ部分を導電性カバー26で覆っていることが特徴である。
【0122】
導電性カバー26は、600nm厚のアルミニウム金属である。なお、このカバーは、厚みが5ミクロンの銀ペースト膜の場合もある。図8に示すように、導電性カバー26は、CNT膜13の側面も覆っている。さらに、導電性カバー26は、金属配線12とも接触している。
【0123】
導電性カバー26は、CNT膜13の側面も含むエッジ部分全体を覆うことで、エッジ部分からの電子放出を抑制している。また、この導電性カバー26は、CNT膜表面がチャージアップすることも防いでいる。例えば、CNT膜13が、バインダー等の絶縁物を含む場合には、CNT膜自体の導電性が悪くなる。このように導電性の悪いCNT膜表面に、イオンや電子が照射された場合、CNT膜表面がチャージアップして、電子が出にくくなったり、膜表面が放電破壊することがある。導電性カバー26は、CNT膜13の表面と金属配線12との導通を補助する作用がある。
【0124】
上記の構成によって、本実施例では、導電性カバー26に接触したCNT膜13の表面のCNT結晶が、横方向(表面に沿った方向)に電気伝導して、その表面のチャージアップを抑制する。
【0125】
[実施例4]
図9は、本発明の実施例4に係る、ノーマルゲート構造と呼ばれるカソードパネルの側面図である。同図に示すカソードパネル35は、ガラス基板11の上に金属配線12が配置され、その上にCNT膜13が堆積されている。CNT膜13の上方には、ゲート配線31が配置されている。このゲート配線31には、孔が設けられており、その部分をエミッタホール27と呼ぶ。エミッタホール部分は、その底部においてCNT膜13の表面が露出している。なお、エミッタホール27以外の部分は、ゲート絶縁膜32で覆われている。
【0126】
図9に示すカソードパネル35では、CNT表面が立毛表面14になっている。そして、エミッタホール27の端部付近が、導電性カバー26で覆われている。ノーマルゲート構造では、エミッタホール27の端部付近から電子が放出されると、ゲート絶縁膜32に電子が飛び込んで、この絶縁膜32がチャージアップを起こすという問題がある。そこで、本実施例では、図9に示すように、エミッタホール27の端部付近を導電性カバー26で覆うことで、電子放出を抑制している。
【0127】
本実施例に係るカソードパネルの例において、CNT膜の表面を立毛表面にする方法について述べる。まず、ゲート配線31側の表面に粘着シートを乗せたカソードパネル35を、真空容器に入れる。この真空容器を、10-1Pa程度に真空引きして、粘着シートの上部をローラー状の器具で押し、粘着シートをCNT膜表面に接触させる。なお、この粘着シートは、粘着剤に導電性粒子(銀の超微粒子)を混ぜてあるので、粘着表面は導電性である。
【0128】
上記の状態で、ゲート配線31と金属配線12との間の導通を検査する。それらの間に導通があれば、粘着シートがCNT膜表面に接触していることになる。しかし、導通がなければ、その部分の押し付けをさらに強くして、導電性を持たせる。粘着シートによるゲート配線31と金属配線12との導通が確認できれば、粘着シートがCNT表面に接触したことが確認できたことになるため、真空容器の圧力を大気圧に戻した後、粘着シートを引き剥がす。
【0129】
上述した方法によって、CNT膜が立毛になる。その際、銀の微粒子の一部がCNT膜表面に残存する。この微粒子は、CNT膜の表面の導電性を増す効果がある。
【0130】
[実施例5]
本発明の実施例5について説明する。図10は、本実施例に係るカソードパネル40の側面図であり、同図に示すパネルは、グリッド電極で電子を電界放出させるコールドカソードの例である。なお、本実施例に係るカソードパネル40は、従来例として示した、図33に示すパネルと類似した構造を有する。
【0131】
図10に示すカソードパネル40において、グリッド電極33の真下部分に位置するCNT膜13の表面は、導電性カバー28で覆われている。導電性カバー28は、ニッケル金属を100nmスパッタ法で堆積させたものである。また、グリッド電極33の開口部分に対応しているCNT膜13の表面は、立毛表面である。
【0132】
このような構造のカソードパネルでは、グリッド電極33の下にあるCNT膜13からの電子放出が抑制される。結果として、グリッド33の開口部分からの電子放出の割合が多くなる。かかる構造のカソードパネルを使用して、図5に示すFEDに類似した構造のFEDを組み立てて、その蛍光体を光らせると、蛍光体に対して選択的に電子を照射できる。よって、グリッドに流れてしまう無効電子放出(グリッド電流)の割合を低くすることができる。
【0133】
[実施例6]
本発明の実施例6について、図10に示す、上記実施例5に係るカソードパネルを利用して説明する。実施例6は、導電性カバーを形成する際に、グリッド電極自身を蒸着源として使用する例である。
【0134】
図10に示す構造のカソードパネルを形成し、そのカソードパネルを真空容器に入れて、グリッド電極33を導電加熱する。その結果、グリッド電極自身が蒸発して、その周囲に金属を放出する。グリッド33に近接しているCNT膜表面に、選択的に金属が堆積して、図10に示すように、グリッド33に対向する部分に導電性カバー28が形成される。
【0135】
上記のグリッド蒸発による導電性カバーの形成は、どのような素材のグリッドでも実現できる。例えば、グリッド電極自身をタングステンで構成し、そのグリッド表面の内、CNT膜に対向する部分にニッケルを付着させておくと、加熱時に、低融点金属のニッケルが選択的に蒸発するが、母材であるモリブデン金属は、蒸発しない。このようにして、本実施例では、低温で選択的に自己整合型の導電性カバーを形成することができる。
【0136】
[実施例7]
本発明の実施例7について、実施例6と同様、図10に示す、上記実施例5に係るカソードパネルを利用して説明する。本実施例7では、図10において導電性カバー28として描かれた部分を、CNT膜13表面の伏毛表面で置き換える。そこで、その表面形成方法を説明する。
【0137】
まず、CNT膜13の表面全体を、湿度90%の水蒸気雰囲気に1時間放置する。CNT膜の表面を、周囲よりも低温(周囲温度30℃、CNT表面温度10℃)にすると、CNT表面に露滴が付着する。露滴が付着した後、このCNT膜(カソードパネル)を乾燥オーブンに移して、100℃で乾燥させる。その結果、伏毛表面のCNT膜ができ上がる。
【0138】
次に、グリッド電極33の上から粘着剤を塗布する。粘着剤は、スプレー噴霧やスクリーン印刷で塗布する。その後、粘着剤をキュアにより硬化してから引き剥がし、グリッド33の開口部分を立毛表面にする。
【0139】
この開口部を立毛表面にする別の方法としては、グリッド33の上方からサンドブラストする方法がある。サンドブラストの粒子は、直径が1μm〜5μmの銅の微粉末を用いる。銅の微粉末が照射されたCNT表面は、その衝撃で荒れ、結果として、伏せていたCNT結晶が起き上がる。すなわち、その表面が立毛表面になる。
【0140】
[実施例8]
図11は、本発明の実施例8に係るカソードパネルの側面を示している。同図に示すカソードパネル45は、図10に示す、上記実施例5等に係るパネルと類似した構造を有するが、導電性カバー28が、グリッド電極33の対向面、および開口部分の一部に形成されている。
【0141】
本実施例に係るカソードパネル45では、グリッド電極33への飛び込み電子を抑制することを最優先としている。CNT膜13の表面の内、グリッド電極33に放出電子を飛び込ませる位置については、導電性カバー28で覆って、電子放出を抑制する。
【0142】
[実施例9]
本発明の実施例9について、図12を参照して説明する。同図に示すカソードパネル47は、アンダーゲートと呼ばれるコールドカソードの例である。本実施例に係るカソードパネルが、図34に示す、従来例としてのカソードパネル1020との相違点は、CNT膜13の表面の中央部分を、導電性カバー34で覆っている点である。
【0143】
従来のアンダーゲート構造では、蛍光体(図5参照)に印加された正電圧によって、CNT膜表面の中央部分から電子が放出されてしまう。この中央部分からの電子放出は、アンダーゲートの印加電圧では制御できない。このように、アンダーゲートで制御不可能な電子放出があると、蛍光体を光らせたくない場合にも、それが光ってしまうという問題がある。
【0144】
図12に示す、本実施例に係るカソードパネル47においては、アンダーゲート36では制御不可能な電子放出をするCNT膜13の表面を、導電性カバー34で覆うことで、上記の問題を解決している。なお、図12に示す構成に類似する例としては、導電性カバーで覆う代わりに、その部分のCNT膜を伏毛表面にするものがある。
【0145】
[実施例10]
本発明に係る実施例10について説明する。図13は、本実施例に係るカソードパネル49の側面図であり、ノーマルゲート構造において、エミッタホール27の底部に電子放出しない孤立面を形成する例である。ここでは、CNT膜13の露出面の一部を、導電性カバー38で覆う。本実施例に係るカソードパネル49と、図9に示す、上記実施例4に係るカソードパネルとの相違点について説明する。
【0146】
図9に示すカソードパネルでは、導電性カバー26で覆われている部分の内側に、立毛表面が存在しているのに対して、図13に示すカソードパネルでは、立毛表面14が存在する内側に、導電性カバー38の領域が周囲から孤立して存在する。例えば、異常に電子放出が発生する場合、その部分を抑制する補修の結果として、図13に示す構成となる。
【0147】
実際に電子放出させて、異常に多くの電子放出する部分に、インクジェットやレーザーCVD等の局所的に導電性膜を堆積する堆積法を用いると、上記のような孤立した状態になる場合がある。
【0148】
補修の場合とは別に、通常の製造プロセスにおいて、導電性孤立膜を形成する場合もある。浅底のエミッタホールの場合、底部の円周部分は、ゲート電極による制御が良く効く。一方、中央部分は、ゲート電極よりも、蛍光体の印加電圧により電子放出されてしまう。このため、浅底のエミッタホールを持つFEDを製造した場合には、蛍光体の電圧を高くするとゲート電極の印加電圧如何にかかわらず、電子が常に放出されてしまうという故障状態が起こりかねない。この種の故障を防ぐものとして、エミッタホールの中央部分に導電性カバー膜を形成する例がある。
【0149】
図14は、実際に試作したカーボンナノチューブFEDのエミッタホール部分の断面図である。同図に示すように、ほぼ平坦なカーボンナノチューブ(CNT)膜13をエミッタホールの底部に形成し、エミッタホール以外のカーボンナノチューブ膜は、絶縁膜41で覆われている。ゲート配線42は、絶縁膜41の開口よりも若干大きい。
【0150】
エミッタホールの具体的な寸法は、絶縁膜41の厚さが20μm、絶縁膜開口が100μm、ゲート配線はアルミニウム膜で、その膜厚は200nmであり、開口は120μmである。絶縁膜開口とゲート配線開口の形状は、ともに真円で同軸である。
【0151】
本願出願人は、図14に示す例とは異なる寸法のエミッタホールの試作も行った。その絶縁膜は、厚さが2μm〜30μm、絶縁膜開口は、5μm〜200μm、ゲート配線開口は、絶縁膜開口と同じか、あるいは20μm大きいものまでについて、これらの内、3つの組み合わせ条件を各種試作した。また、これらの形状は、真円の他に楕円についても試作して、本発明の効果を確認した。
【0152】
図15は、本実施例に係るカソードパネルのエミッタホール底部(図14において、その中央部分の○印で示した部分)の拡大図である。図15に示すように、エミッタホールの底部は立毛表面になっている。一方、絶縁膜で覆われたCNT膜は、図示しないが、伏毛表面状態になっている。伏毛表面にすることで、その上を覆う絶縁膜41の形状を平坦にできる上、絶縁膜41にCNT結晶が突き立っていない状態であるため、絶縁膜41の耐電圧特性も良好である。すなわち、図14に示す構造では、絶縁膜の下部分が伏毛になっていることに大きな特徴がある。
【0153】
スプレー塗布等でCNT膜を形成すると、CNT膜の表面は、自然と毛羽立った状態になる。つまり、ある程度、垂直に配向した状態になる。これに対して、本発明のCNTでは、スプレー塗布した後、純水を全面に霧状に塗布して、CNT膜の表面を濡らし、その表面張力によって繊維状構造を水平に配向させている。
【0154】
別の例では、スピンコータで有機絶縁膜を塗布する際に、まず、その有機絶縁膜の溶媒だけをCNT膜表面に塗布して、その溶媒が蒸発する前に、連続的に有機絶縁膜を塗布する。こうすることで、繊維状構造を配向させた状態を形成して、その上に絶縁膜を堆積させる。エミッタ表面となるエミッタホール底の部分は、粘着テープを接触させて、垂直に配向させてある。
【0155】
[実施例11]
本発明の実施例11について説明する。本実施例は、グラファイト膜(不図示)による電子放出膜に関するものである。このグラファイト膜は、微細突起はないが、仕事関数が低い面を所々に露出させた構造を備えている。すなわち、仕事関数の低い領域が点在している膜である。
【0156】
上記のグラファイト膜をストライプ状にガラス基板上に堆積させ、そのエッジ部分をニッケル金属で覆う。その結果、エッジ部分からの電子放出は抑制されて、面の中央部分のみから、電子が放出される。
【0157】
[実施例12]
図16は、本発明の実施例12に係る、カーボンナノチューブを用いたFEDの構成(断面図)を示している。同図に示すFED50は、蛍光体を塗布した蛍光スクリーン55に、真空中で電子線58を照射する構造をとる。カソード配線56の上には、CNT膜51を堆積してある。このCNT膜51は、ゲート電極53と絶縁膜52の両方を円柱状に切り抜いて形成されたエミッタホール54の底部に露出している。エミッタホール54の寸法は、孔径が10μm、高さが5μmである。
【0158】
CNT膜51の最中央領域57aは、その膜の底面の中心を領域の中心として直径3μmの範囲を占める。膜表面のCNT微細構造結晶は、伏毛の状態である。最中央領域57aに隣接し、それよりも一回り大きいドーナッツ状領域である中間領域57bでは、CNT膜表面が立毛状態になっている。このドーナッツ領域の内周の直径は3μmで、外周直径は8μmである。
【0159】
最外周領域57cは、中間領域57bに隣接しており、これよりも一回り大きいドーナッツ状領域である。この領域では、CNT膜表面が伏毛状態になっている。ドーナッツ領域の内周の直径は8μmで、外周直径は10μmである。そして、この最外周領域は、伏毛状態となって電子放出を抑制している。
【0160】
上記の構造を持つ結果、図16に示すように、中間領域57bからの電子放出が、他の領域57a,57cよりも多くなる。よって、蛍光スクリーン55には、ドーナツ状に電子線が照射される。
【0161】
ここで、蛍光スクリーン55には、6kV(ゲート電極53の上方、2mmの位置)が印加されていて、電子線を照射するモードでは、カソード配線56には−10V、ゲート電極53には+10Vが印加されている。この状態で、カソード配線56とゲート電極53との間の電界は、2V/μmで、蛍光スクリーン55とカソード配線56との間の電界(蛍光スクリーン電界)は、ほぼ3V/μmである。
【0162】
本実施例に係るFED50は、ゲート電極53が存在することで、最外周領域57c、および中間領域57bでは、この蛍光スクリーン電界を遮蔽しているが、最中央領域57aでは、蛍光スクリーン電界が、ほぼそのまま印加されている。ここでは、蛍光スクリーン電界という高電界が、継続してかかることで、最中央領域57aからの電子放出が容易になる。この例では、最中央領域57aを電子が放出しにくい表面にすることで、ゲート電極電位で制御できない電子放出がないようにしている。
【0163】
最外周領域57cでは、CNT膜51の表面形状によっては、電子が絶縁膜やゲート電極に飛び込んでしまう。そこで、この最外周領域57cでは、電子が放出しにくい表面にすることで、飛び込み電子を抑制している。
【0164】
図17は、本実施例に係るカソードパネルの製造プロセスを示している。最初に、同図の(a)に示す段階で、カソード配線56上にCNT膜51を堆積する。堆積の方法として、いくつか考えられる。例えば、シートを別の場所であらかじめ作成しておいて、それをカソード配線の上に乗せる。または、電着、CNT粉末をスプレー噴霧することが挙げられる。
【0165】
CNT膜は、一度エタノールに浸漬することで、エミッションがでなくなる。図17の(b)に示す段階では、凹凸の表面を備える粘着テープ59を、CNT膜51の表面に押し付ける。その結果、粘着テープ59の凸部59aと接触した領域が、立毛になる。なお、粘着テープの凸部パターンは、ドーナツ形状である。最後に、(c)に示すように、ゲート絶縁膜52とゲート電極53を形成して、電子放出装置となる。
【0166】
[実施例13]
本発明の実施例13について説明する。図18は、グラファイト系エミッション膜を用いた、本実施例に係るFEDの構造を示す断面図である。本実施例に係るFED60は、ガラス基板上に形成した、厚さ1ミクロンの鉄配線62の上に、グラファイト系エミッション膜61を堆積する。この堆積はCVD法で行い、形成膜厚は1ミクロンである。
【0167】
エミッション膜61の上には、アルミニウム製中央カバー63を形成する。このカバー63は、円状パターンを有し、その直径は10ミクロンである。また、アルミニウム製中央カバー63を挟むよう配された銀ペースト製周辺カバー64は、図19に示すように、ストライプ状のパターンを有する。各ストライプ幅は50ミクロンである。このストライプは、FED60のRGB配列に沿った方向に並べられている。
【0168】
アルミニウム製中央カバー63を挟んでいる銀ペースト製周辺カバー64の間隔は、30ミクロンである。アルミニウム製中央カバー63は、この間隔の中央に配置してある。なお、図18は、上述したストライプ状パターンに直行した方向で、アルミニウム製中央カバー63の中心を通る位置でFEDを切断したときの断面図である。
【0169】
図18に示すFEDのグラファイト系エミッション膜61の露出幅は、各10ミクロンである。また、アルミニウム製中央カバー63の膜厚は、1ミクロンである。一方、グラファイト系エミッション膜61上における銀ペースト周辺カバー64の厚みは、5ミクロンである。
【0170】
図18に示すFEDにおいて、グラフィト系エミッション膜61の周辺には、絶縁膜68、ゲート電極65、およびエミッタホール67が形成されている。このエミッタホール(孔)は、孔部分での実効絶縁膜厚が5ミクロンで、ゲート電極厚は8ミクロンである。また、エミッタホール67の直径は、50ミクロンである。アルミニウム製中央カバー63は、このエミッタホール67の中央部に配置されている。
【0171】
実効絶縁膜厚よりもゲート電極厚が厚い場合(図18に示す場合)を、ゲート電極厚膜構造と呼ぶことにする。電極厚膜構造では、導電性のゲート電極が配置されている影響で、図18に示すように、等電位面が複雑に歪んだ状態になる。グラファイト系エミッション膜61の露出幅部分から放出された放射電子線は、この歪んだ等電位面に沿って、複雑に軌道を曲げて、最終的に蛍光スクリーン66に到達する。
【0172】
なお、等電位面の歪みは、銀ペースト製周辺カバー64やアルミニウム製中央カバー63の存在も影響している。特に、膜厚が大きい銀ペースト製周辺カバー64が与える影響が大きい。
【0173】
本実施例に係るFEDにおける放射電子線は、図18において、▲1▼,▲2▼,▲3▼で示したような軌道をとる。なお、▲4▼として破線で示した電子線の軌道は、実際には、エミッション膜がアルミニウム製中央カバーで覆われているため、電子は放出されないが、カバーで覆われていないと仮定した場合、エミッタホール67の中心から放射され、▲4▼に示す軌道をとる。
【0174】
図20は、図18に示す構造を有するFEDのカソードパネルを形成するプロセスの概要を示している。ここでは、グラファイト系エミッション膜61の上を基板全面にアルミニウムをスパッタ堆積させ、その後、ホトリソグラフィー技術を用いて、不要な部分をエッチングする(図20の(a))。次に、スクリーン印刷技術で、ストライプ状に銀ペーストを刷り込む(同図(b))。そして、(b)に示す構造の上に、絶縁膜68とゲート電極65を、スクリーン印刷技術で形成する(同図(c))。
【0175】
図21は、図18に示すFEDにおける各電子線のエミッション特性をグラフ化して示したもので、横軸がゲート−カソード間電圧、縦軸がエミッション電流の密度(単位:アンペア/m2 )である。ここでは、ゲート配線から1mm離れた位置に設置してある蛍光スクリーン66に5kVの電圧が印加されている。また、同図中、▲1▼,▲2▼,▲3▼,▲4▼は、電子放出位置を示しており(図18参照)、それぞれエミッタホールの中心から14ミクロン、10ミクロン、6ミクロン、0ミクロンの位置である。
【0176】
ゲートホールの穴周辺部の▲1▼の特性と、穴中央部の▲4▼の特性とを比較すると、前者は、閾値が高電圧(30V)にあり、その閾値以上の電圧で、より急激に放出電流が増加している。そして、周辺部から中央部に向かって、特性が少しづつ変化していることが分かる。▲2▼の特性は、閾値が21V、▲3▼のそれは9Vである。
【0177】
図22は、上記▲1▼〜▲4▼の領域における、実際の電子放出の総和を示している。ここで領域とは、隣接領域との距離の半分の位置までの領域を意味する。例えば、▲1▼は、▲2▼との境界である、穴の中心から12.5ミクロンの円状境界よりも外側の部分からの電子放出である。また、▲2▼からの電子放出とは、中心から7.5ミクロン〜12.5ミクロンのドーナツ領域から放出される電子を指す。なお、▲4▼の領域(覆い(カバー)のある中心領域)からは、実際には電子が放出されないが、その領域に覆いがないとした場合の電子放出量を示している。
【0178】
図22から分かるように、全ての領域からの電子放出の総和(▲1▼+▲2▼+▲3▼+▲4▼)に必要とするエミッション電流“A”を得るには、50Vのゲート−カソード間電圧が必要である。これを、パルス幅変調(PWM)で得ようとして、ゲート−カソード間電圧(振幅)を設計すると、各25V(カソード電圧Vkは−25V(ON)と0V(OFF)のパルス、ゲート電圧Vgは25V(ON)と0V(OFF)のパルス)となる。
【0179】
しかし、この設計では、OFF時でも、図22の“B”で示す値のエミッション電流が流れるため、OFF時においても蛍光スクリーンが光ってしまうことがある。なお、実際には、穴の中央部が覆われているので、▲1▼+▲2▼+▲3▼で示すように、振幅が30Vの特性になる。この状態では、OFF時にエミッション電流が遮断されている。参考までに、図22には、▲1▼+▲2▼の場合も示してある。
【0180】
[実施例14]
本発明の実施例14として、図23に、電子放出面の様々な形状を示す。同図の(a)は、ドーナッツ状電子放出面の例である。中心部にある領域71と最周辺部72は、その表面に仕事関数の高い(電子放出の閾値が高い)物質が配置されている。また、領域73は、低仕事関数の材料が、その表面に配置されている。仕事関数の高い物質としては、例えば、ニッケルがあり、低い物質としてバリウムを用いた例がある。
【0181】
図23の(b)は、略長方形の電子放出面を例示したものである。ここでは、領域74,75が、電子を放出しにくい面である。また、同図の(c)は、(b)に示す場合に加えて、電子放出面をさらに細かく区切った例を示している。なお、電子放出面が高抵抗の場合に、低抵抗であるが電子放出しにくい材料を用いる構成とすることができる。電子放出面全体の電位を一定に保つことと、多くの電子を放出することの両方を実現した例である。
【0182】
[実施例15]
本発明の実施例15について説明する。ここでは、電子放出面の周辺部を低電子放出面にする設計指標を説明する。図24は、本実施例15に係るFEDの側面図である。同図に示すエミッション膜81の周辺部から放出され、▲1▼に示す軌道をとる電子は、絶縁膜82に飛び込んでしまい、放電破壊の原因になる。軌道▲2▼を辿る電子は、ゲート電極83に飛び込むため、それによってゲート―カソード間に電流が流れる。すなわち、インピーダンスが下がることで、FEDとしての駆動負荷が厳しくなる。加えて、電子が飛び込むことで、ガス放出やチャージアップの原因となる。
【0183】
軌跡▲3▼をとる電子は、蛍光スクリーン84のターゲット領域85から外れているので、無効な電子である。例えば、RGBカラーFEDにおける色分離領域(ブラックマトリクスと呼ばれている領域)に電子が照射しても、それが発光に寄与しないため、無効な電子といえる。軌跡▲3▼の電子は、このような電子である。これに対して、軌跡▲4▼,▲5▼,▲6▼を辿る電子は、ターゲット領域85に入っているので、有効な電子といえる。
【0184】
上述した▲1▼〜▲3▼の軌跡をとる電子は、放出されない方がよいし、また、放出しても無駄な電子である。FEDの最適設計の観点から、軌跡▲1▼〜▲3▼に係る電子は、抑制されるべきである。そこで、本発明では、▲1▼,▲2▼,▲3▼に対応する、エミッション膜上の領域に、高仕事関数(電子放出の閾値が高い)材料を配置したり、あるいは、CNTのように、微細突起の電界集中で電子を放出させる材料では、その突起を寝かせたり、突起を削り落とす等によって、上記の領域からの電子放出を抑制する。
【0185】
図25は、本実施例における電子放出面の他の設計指標について図示したものである。すなわち、図25は、図24に示す構造を有するFEDのゲート−カソード間に電圧を印加した場合の電子放出特性を示している。同図の“A”は、上述した軌跡▲4▼+▲5▼+▲6▼のエミッション電流特性である。また、“B”は、▲4▼+▲5▼について、“C”は、▲4▼のみのエミッション電流特性である。
【0186】
“B”の特性は、▲6▼の電子放出領域、すなわち、エミッション膜の中心部分での電子放出を抑制することで得られる。抑制のための方法は、軌跡▲1▼等における領域に対する抑制と同様である。
【0187】
図25において、“A”の特性は、閾値が低電圧で、その閾値以上の電圧においてのエミッション増加傾向は、緩やかである。“A”の特性を有するFEDを駆動するには、大きな駆動振幅を必要とするので好ましくない。よって、“B”、または“C”に示す特性が好ましい。しかしながら、特性“B”,“C”は、特性“A”と比較して、同じ電圧におけるエミッション量が少ない。必要とするエミッション量と駆動振幅に応じて、電子を放出させることと、放出させないことの両方を設計する。
【0188】
なお、図25は、蛍光スクリーン84とカソード電極との間の電界が比較的低い場合の特性カーブを示しているが、電界が高い場合には、ゲート−カソード間電圧がゼロでも、エミッション電流が流れる。そこで、ゼロ電圧でエミッションが出ることを防ぐことも、FED設計の重要な指標になる。
【0189】
具体的には、図24に示す形状、構造を持つFEDにおいて、エミッタホール86の径が80ミクロンで、ゲート絶縁膜厚(エミッタホール86に露出している、絶縁膜82の実効厚み)が20ミクロン、ゲート電極83の厚みが1ミクロンであり、かつ、蛍光スクリーン84が、カソード電極から1mmの距離に配置されている場合、軌跡▲1▼,▲2▼,▲3▼をとる無効電子を抑制するには、エミッタホール86の外周から10ミクロンの領域では、電子を放出させないようにする。また、駆動振幅の設計、およびゼロ電圧エミッションを防ぐには、エミッタホール86の中心から半径5ミクロンの領域において、電子放出を抑制する。
【0190】
[実施例16]
図26は、本発明の実施例16に係るFEDの構成を示す側面図である。なお、同図において、図24に示す、上記実施例15に係るFEDと同一構成要素には同一符号を付してある。本実施例に係るFEDは、そのゲート電極83aの形状に特徴がある。すなわち、図26に示すように、ゲート電極83aは、エミッタホール86に対して、その縁部分のゲート配線がテーパー形状になっている。
【0191】
ゲート電極が上記の形状を有するため、上述した実施例15に係るFED(図24参照)では、電子がゲートに飛び込むが、本実施例では、軌跡▲2▼に示すように、電子がゲートに飛び込むことはない。この電子は、無効電子ではあるが、チャージアップやガス放出の原因となる悪影響が抑制される。
【0192】
また、図26に示す構造においても、軌跡▲1▼,▲2▼,▲3▼をとる電子は、無効電子であるため、その放出を抑制すべく、その放出面に電子放出抑制処理(例えば、伏毛処理)を施す。しかし、万が一、その処理が不十分でも、放電破壊等の故障が生じにくい。さらに、図26に示す構造では、ゲート電極83aによる円孔レンズの効果(等電位面の歪み)が異なり、ターゲット85に照射される電子の割合が増える。
【0193】
なお、図26に示すFEDにおける電子軌跡は、それらに付した記号について、図24の場合と同じ(▲1▼,▲2▼,▲3▼は、いずれも無効電子)であるが、等電位面の歪み具合に関しては、図24に示すFEDの方が、図26よりも激しいことから分かるように、図24に示すFEDの方が、無効電子が多い。
【0194】
また、図26に示すFEDは、同じ絶縁膜厚、同じゲート配線膜厚(テーパー部を除く)の場合には、中心付近のゼロ電位エミッション現象やエミッション量の増加が鈍いという問題は、より深刻である。そこで、図24に示すFEDの構造に比べて、中心付近の、より広い領域をアルミニウム等で覆って、電子放出の抑制を行う。
【0195】
[実施例17]
図27は、本発明の実施例17に係るFEDの構成を示す側面図である。なお、同図において、図24に示す、上記実施例15に係るFEDと同一構成要素には同一符号を付してある。本実施例に係るFEDは、カソード配線上にCNTペースト塊を堆積させた例に関するものである。
【0196】
図27に示すように、本実施例に係るFEDは、30ミクロン厚のゲート絶縁膜82、2ミクロン厚のゲート配線83、20ミクロン直径のエミッタホール86、蛍光スクリーン84を3mmの高さに配置した構造を有する。また、CNTペースト塊91は、15ミクロンの直径、15ミクロン厚の塊であり、それをスクリーン印刷のマスクを介して、エミッタホール86中に落下させる。その後、塊を加熱することで、CNTペースト塊91中のバインダー成分の一部を軟化させて、図27に示すように、略円錐台形状の堆積物にする。
【0197】
本実施例に係るFEDの等電位面は、円錐台形状を有するCNTペースト塊91の斜面部分の勾配が影響して、図27に示すように、上に凸の傾向になる。なお、図27に示すFEDは、カソード配線に−10V、ゲート配線に+10V、蛍光スクリーン84に6kVの電圧を印加した状態である。また、軌跡▲1▼,▲2▼,▲3▼をとる電子は、無効電子なので、実際に試作したFEDでは、この部分のCNTが鈍化するようにしてある。
【0198】
鈍化させるための具体的な方法としては、FEDとして、蛍光スクリーン84と組み合わせる前に、蛍光スクリーンがない状態で真空チャンバーに入れ、10-3Pa台の真空状態でゲート−カソード間に電圧を印加して、エミッションを出させる。この場合、蛍光スクリーンがないので、放出された電子の大半が、絶縁膜82か、ゲート配線83に飛び込む。
【0199】
真空度が良くないため、残留イオンが多く、電子が放出されている近傍ではイオン化して、それがCNTペースト塊91に照射される。この際、電界のかかり具合と、絶縁膜82やゲート配線83に近いという理由によって、CNTペースト塊91の斜面部分が、選択的にイオンによってダメージを受け、CNTの微細構造が丸まっていく。
【0200】
このようなトリミングプロセスを経過させた後、蛍光クリーンと組み合わせて、FEDとして動作させると、事前にCNTペースト塊91の斜面部分のCNTが丸められて、電界集中しにくくなっているため、その中央の領域だけが電子を放出する。
【0201】
真空度を悪くして(10-3Pa台)、電流密度が10mA/cm2 以上、30mA/cm2 以下のエミッションを1時間行う。すると今度は、CNTペースト塊91の中心部分が、選択的にイオンダメージを受け、その部分のCNTが鈍化する。この2次トリミングを終了後、排気を継続して、10-5Pa台の真空度にしてから、FEDとして駆動する。この場合、イオンが少ない状態にあるので、その後は、CNTペースト塊91に目立ったダメージが起こることなく、FEDは動作する。この安定状態において、電子は、主にドーナツ状の領域から放出される。
【0202】
[実施例18]
本発明の実施例18について説明する。図28は、本実施例に係る、2×3ピクセル(画素)のFEDの駆動に関して例示し、説明するための図である。今、図28の左上のピクセルを輝度1で、右上を輝度256で、同じく、中段左側を12、右側を0(つまり、光っていない)、下段左側を8、右側を250の輝度で光らせようとしている。ここで、各数値は、“256”を100%の輝度として、“128”ではその半分、“1”では、256分の1の輝度を意味している。
【0203】
上記の輝度を実現するため、図29に示すように、パルス幅変調(PWM)によってFEDを駆動する。このとき、H1,H2,H3の振幅が等しく、V1とV2の振幅が等しいとした場合における、図28の発光状態を実現するピクセル設計について、図30等を用いて説明する。
【0204】
図30の(a)は、エミッタホールが1つ、(b)では2つ、(c)では3つ備えている様子を示す。また、V1とH1の振幅を同じにして駆動しようとする場合、図31に示すエミッション特性を検討する必要がある。同図において、▲1▼は、エミッタホールが3つの場合、▲2▼はエミッタホールが2つの場合、そして、▲3▼は、エミッタホールが1つの場合を示している。
【0205】
上述した“256”の輝度を得るため、図31の“A”のレベルの電子放出が必要であるとした場合、駆動振幅は、図31の矢印で示す領域のようになる。すなわち、エミッタホールが3つある場合(▲1▼の場合)、最も小さな振幅で動作する。そして、エミッタホールが2個(▲2▼)の場合、エミッタホールが1個(▲3▼)の場合の順に、駆動振幅が大きくなる。
【0206】
なお、上記▲2▼,▲3▼の場合、駆動電圧でOFFレベルにしても電子が放出されてしまい、求められた輝度(色)表示ができないという問題がある。
【0207】
【発明の効果】
以上説明したように、本発明によれば、電子源として機能し、少なくとも2つ以上の領域からなる連続した電子放出膜であって、これらの領域の内、1つの領域の表面における一定の電子放出量に必要な電界が、他の領域の表面で必要な電界と異なっていたり、1つの領域で電子放出する材料表面の仕事関数が、他の領域の表面で電子放出する材料表面の仕事関数と異なっていたり、これらの領域表面の凹凸について、1つの領域における凸部分の平均先端半径が、他の領域における凸部分の平均先端半径と異なっていたり、1つの領域での単位面積当たりの電子放出量が、他の領域での単位面積当たりの電子放出量と異なっていたり、これらの領域表面の凹凸について、1つの領域における凸部の面積密度が、他の領域における凸部の面積密度と異ならせることで、かかる電子放出膜を使用した電界電子放出装置において、その電子放出膜の表面を膜自身の微細加工限界とは別に微細にパターニングして特性を変えることができる。
【0208】
また、最内周領域、中間領域、および最外周領域からなる、電子源として機能する連続した電子放出膜において、これら最内周領域と最外周領域における電子放出特性と、中間領域における電子放出特性とを異ならせることで、電子放出膜の微細限界とは独立した微細なパターンで電子放出を制御できる。
【0209】
さらには、本発明に係る電子放出膜を電子放出装置に使用することで、容易に文字等の発光表示ができるだけでなく、異常放電が起こりにくく、信頼性の高い電子放出装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る、コールドカソードのカソードパネルの側面図である。
【図2】実施例1に係る、コールドカソードのカソードパネルの正面図である。
【図3】立毛表面状態にあるCNT膜表面を模式的に示す図である。
【図4】CNT膜の伏毛表面を模式的に示す図である。
【図5】実施例1に係るカソードパネルを用いたFEDの破断線A−A’の切断側面を示す図である。
【図6】実施例1に係るカソードパネルを用いたFEDの破断線B−B’における切断側面図である。
【図7】本発明の実施例2に係るカソードパネルの側面を示す図である。
【図8】本発明の実施例3に係るカソードパネルの側面を示す図である。
【図9】本発明の実施例4に係るカソードパネル(ノーマルゲート構造)の側面図である。
【図10】本発明の実施例5に係るカソードパネルの側面図である。
【図11】本発明の実施例8に係るカソードパネルの側面を示す図である。
【図12】本発明の実施例9に係るカソードパネルの側面を示す図である。
【図13】本発明の実施例10に係るカソードパネルの側面図である。
【図14】カーボンナノチューブFEDのエミッタホール部分の断面図である。
【図15】カソードパネルのエミッタホール底部の拡大図である。
【図16】本発明の実施例12に係る、カーボンナノチューブを用いたFEDの断面図である。
【図17】実施例12に係るカソードパネルの製造プロセスを示す図である。
【図18】本発明の実施例13に係るFEDの構造を示す断面図である。
【図19】周辺カバーのストライプ状パターンを示す図である。
【図20】実施例13に係るFEDのカソードパネルを形成するプロセスの概要を示す図である。
【図21】実施例13に係るFEDにおける各電子線のエミッション特性を示す図である。
【図22】電子放出の総和を示す図である。
【図23】本発明の実施例14に係る電子放出面の様々な形状を示す図である。
【図24】本発明の実施例15に係るFEDの側面図である。
【図25】実施例15における電子放出面の他の設計指標を示す図である。
【図26】本発明の実施例16に係るFEDの構成を示す側面図である。
【図27】本発明の実施例17に係るFEDの構成を示す側面図である。
【図28】本発明の実施例18に係るピクセルについてFEDの駆動を説明する図である。
【図29】FED駆動に係るパルス幅変調(PWM)を示す図である。
【図30】エミッタホールの様子を示す図である。
【図31】エミッション特性を示す図である。
【図32】従来のカソードパネルの典型的な構成を示す図である。
【図33】従来のサスペンドゲート型のカソードパネルの一例を示す図である。
【図34】アンダーゲート型のカソードパネルの構造例を示す図である。
【符号の説明】
10,25,30,35,40,45,47,49 カソードパネル
11 ガラス基板
12 金属配線
13,51 CNT膜
14 立毛表面部分
15 伏毛表面
16 外部引出しパッド
17 CNT膜下地部分
21 蛍光体
22 電源
23 電流計
26,28,34,38 導電性カバー
27,67,86 エミッタホール
31 ゲート配線
32 ゲート絶縁膜
33 グリッド電極
36 アンダーゲート
41 絶縁膜
42 ゲート配線
50,60 FED
52,68,82 絶縁膜
53,65,83,83a ゲート電極
55,84 蛍光スクリーン
56 カソード配線
57a 最中央領域
57b 中間領域
57c 最外周領域
61 グラファイト系エミッション膜
63 アルミニウム製中央カバー
64 銀ペースト製周辺カバー
85 ターゲット領域
91 CNTペースト塊

Claims (11)

  1. 基板上に繊維状構造が形成されてなる電子放出を促進する領域と、電子放出を抑制する領域とを有し、電子源として機能する連続した電子放出膜であって、
    前記繊維状構造は、前記基板上に立毛状態に形成され、さらに、前記電子放出を抑制する領域に対応する部分が粘着剤を塗布されて引っ張られて細径化され切断されて先端が先鋭化していることを特徴とする電子放出膜。
  2. 前記電子放出を抑制する領域として基板露出部が点在し、更にエッジ部分が導電性カバーで覆われて前記電子放出を抑制する領域となっていることを特徴とする請求項1に記載の電子放出膜。
  3. 前記電子放出を抑制する領域に対応する部分が膜の平均表面に沿った方向に配向処理されたことにより伏毛状態とされていることを特徴とする請求項1に記載の電子放出膜。
  4. 前記電子放出を抑制する領域は、
    最中央領域と、
    前記最中央領域に隣接し、前記最中央領域より一回り大きいドーナツ状の中間領域と、
    前記中間領域に隣接し、前記中間領域より一回り大きいドーナツ状の最外周領域とで構成され、
    前記最中央領域と前記最外周領域における立毛状態対する伏毛状態の割合が中間領域よりも高いことを特徴とする請求項3に記載の電子放出膜。
  5. 前記中間領域の繊維状構造が導電性膜で覆われ先端が先鋭化され、
    前記導電性膜の導電率が、前記最中央領域および前記最外周領域の導電率より大きいことを特徴とする請求項4に記載の電子放出膜。
  6. 請求項1乃至5のいずれかに記載の電子放出膜を備え、
    前記電子放出膜の所定領域の表面、または側面の一部が絶縁膜に接して配置されていることを特徴とする電界電子放出装置。
  7. 請求項1乃至6のいずれかに記載の電子放出膜を備え、
    前記電子放出膜の周辺部の一部を含む第1の領域、
    または中央部の一部あるいは周辺部を含まない第2の領域、
    または周辺部の一部を含み、かつ中央部の一部あるいは周辺部を含まない第3の領域の表面、または側面の一部が絶縁膜に接して配置されていることを特徴とする電界電子放出装置。
  8. 前記電子放出膜の側面および端部が導電性膜で覆われていることを特徴とする請求項6または7記載の電界電子放出装置。
  9. 前記絶縁膜の上面の一部にゲート電極が配置されていることを特徴とする請求項6または7記載の電界電子放出装置。
  10. 前記ゲート電極に設けられた孔に対する、そのゲート電極の縁部分が、上部方向に開く斜面形状を有することを特徴とする請求項9記載の電界電子放出装置。
  11. 前記電子放出膜がカーボンナノチューブの堆積物で置き換えられた構造を有し、その堆積物が略円錐台形状を有することを特徴とする請求項6記載の電界電子放出装置。
JP2001233873A 2001-08-01 2001-08-01 電子放出膜および電界電子放出装置 Expired - Fee Related JP5011619B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001233873A JP5011619B2 (ja) 2001-08-01 2001-08-01 電子放出膜および電界電子放出装置
US10/479,790 US20040217382A1 (en) 2001-08-01 2002-07-31 Electron emission film and electric field electron emission device
PCT/JP2002/007801 WO2003012817A1 (fr) 2001-08-01 2002-07-31 Film emetteur d'electrons et dispositif emetteur d'electrons a champ magnetique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233873A JP5011619B2 (ja) 2001-08-01 2001-08-01 電子放出膜および電界電子放出装置

Publications (2)

Publication Number Publication Date
JP2003045315A JP2003045315A (ja) 2003-02-14
JP5011619B2 true JP5011619B2 (ja) 2012-08-29

Family

ID=19065591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233873A Expired - Fee Related JP5011619B2 (ja) 2001-08-01 2001-08-01 電子放出膜および電界電子放出装置

Country Status (3)

Country Link
US (1) US20040217382A1 (ja)
JP (1) JP5011619B2 (ja)
WO (1) WO2003012817A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195938B2 (en) 2001-10-19 2007-03-27 Nano-Proprietary, Inc. Activation effect on carbon nanotubes
US8062697B2 (en) * 2001-10-19 2011-11-22 Applied Nanotech Holdings, Inc. Ink jet application for carbon nanotubes
KR101017037B1 (ko) * 2004-02-26 2011-02-23 삼성에스디아이 주식회사 전자 방출 표시장치
JP2007157533A (ja) * 2005-12-06 2007-06-21 Mitsubishi Electric Corp 電子放出型表示装置およびその製造方法
WO2008022129A2 (en) * 2006-08-14 2008-02-21 Cnt Technologies, Inc. System and methods for spinning carbon nanotubes into yarn, and yarn made therefrom
TW200939280A (en) * 2007-10-05 2009-09-16 Du Pont Under-gate field emission triode with charge dissipation layer
CN102074440B (zh) 2010-12-15 2012-08-29 清华大学 场发射阴极装置及场发射显示器
JP6810343B2 (ja) * 2016-10-17 2021-01-06 富士通株式会社 カーボンナノチューブ構造、放熱シート及びカーボンナノチューブ構造の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809125B2 (ja) * 1995-02-27 1998-10-08 日本電気株式会社 集束電極付電界放出型冷陰極
JP2000156147A (ja) * 1998-11-19 2000-06-06 Sony Corp 冷陰極電界電子放出素子及び冷陰極電界電子放出型表示装置
JP2000268706A (ja) * 1999-03-18 2000-09-29 Matsushita Electric Ind Co Ltd 電子放出素子及びそれを用いた画像描画装置
JP3546945B2 (ja) * 1999-10-14 2004-07-28 日本電気株式会社 冷陰極装置
JP2001155621A (ja) * 1999-11-26 2001-06-08 Toshiba Corp 電子放出素子および画像表示装置
JP3730476B2 (ja) * 2000-03-31 2006-01-05 株式会社東芝 電界放出型冷陰極及びその製造方法

Also Published As

Publication number Publication date
US20040217382A1 (en) 2004-11-04
JP2003045315A (ja) 2003-02-14
WO2003012817A1 (fr) 2003-02-13

Similar Documents

Publication Publication Date Title
US6616497B1 (en) Method of manufacturing carbon nanotube field emitter by electrophoretic deposition
US7365482B2 (en) Field emission display including electron emission source formed in multi-layer structure
US7081030B2 (en) Method for making a carbon nanotube-based field emission display
JP4008123B2 (ja) 炭素系超微細冷陰極及びその作製方法
JP4830217B2 (ja) 電界放出型冷陰極およびその製造方法
US20040043219A1 (en) Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
US9053890B2 (en) Nanostructure field emission cathode structure and method for making
WO2002007180A1 (fr) Element a emission d'electrons et son procede de fabrication; affichage utilisant un tel element
JP2000268701A (ja) 電子放出素子、その製造方法ならびに表示素子およびその製造方法
KR20030038455A (ko) 전극 디바이스의 제조방법
JP5011619B2 (ja) 電子放出膜および電界電子放出装置
JP2005243635A (ja) 電子放出素子用電子放出源の形成方法とこれを利用した電子放出素子
US6890230B2 (en) Method for activating nanotubes as field emission sources
JP2004241295A (ja) カーボンナノチューブを用いた電子放出素子用電極材料およびその製造方法
US7221087B2 (en) Carbon nanotube-based field emission display
JP3826120B2 (ja) 電子放出素子、電子源及び画像表示装置の製造方法
JP4043153B2 (ja) 電子放出源の製造方法、エミッタ基板の製造方法、電子放出源及び蛍光発光型表示器
JP2006261074A (ja) 電界放出物質の塗布方法および電界放出素子
JP3581276B2 (ja) 電子銃及びその製造方法並びにフィールドエミッションディスプレイ
WO2002037518A1 (fr) Cathode a emission de champ et son procede de production
JP2004071527A (ja) 電子放出装置
Shao et al. Fabrication and field emission performance of arrays of vacuum microdiodes containing CuO nanowire emitters grown directly on glass without a catalyst
JP2003031116A (ja) 電界放出型冷陰極及びその製造方法並びに電解放出型冷陰極を備えた平面画像装置
JP4476090B2 (ja) 電子放出装置の製造方法
JP4043141B2 (ja) 電子放出源の製造方法及び電子放出源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees