JP5009801B2 - アリールアミン化合物および有機エレクトロルミネッセンス素子 - Google Patents

アリールアミン化合物および有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
JP5009801B2
JP5009801B2 JP2007533342A JP2007533342A JP5009801B2 JP 5009801 B2 JP5009801 B2 JP 5009801B2 JP 2007533342 A JP2007533342 A JP 2007533342A JP 2007533342 A JP2007533342 A JP 2007533342A JP 5009801 B2 JP5009801 B2 JP 5009801B2
Authority
JP
Japan
Prior art keywords
organic
compound
group
coating
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007533342A
Other languages
English (en)
Other versions
JPWO2007026846A1 (ja
Inventor
鉄蔵 三木
紀昌 横山
彬雄 谷口
結 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Shinshu University NUC
Original Assignee
Hodogaya Chemical Co Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd, Shinshu University NUC filed Critical Hodogaya Chemical Co Ltd
Priority to JP2007533342A priority Critical patent/JP5009801B2/ja
Publication of JPWO2007026846A1 publication Critical patent/JPWO2007026846A1/ja
Application granted granted Critical
Publication of JP5009801B2 publication Critical patent/JP5009801B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/791Starburst compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、各種の表示装置に好適な自己発光素子である有機エレクトロルミネッセンス(EL)素子に適した化合物と素子に関するものであり、詳しくは分子量1500以上6000以下のアリールアミン化合物と、該化合物の塗布成膜層を用いた有機EL素子に関するものである。
有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。
1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度が得られるようになった(例えば、特許文献1および特許文献2参照)。
特開平8−48656号公報 特許第3194657号公報
有機EL素子は、素子作製のプロセスと材料の特性の相違から、蒸着型の低分子系材料を用いた素子と塗布型の主として高分子系材料を用いた素子に分けられる。
蒸着型の素子は成膜のために真空蒸着装置を必要とするが、塗布型の素子は、塗布液を基板に塗布し、次いで塗布液中の溶媒を除去することによって容易に成膜をおこなえるので、製造工程が簡単となり、低コストで製造できる。インクジェット法や印刷法で簡便に塗布できるため、生産に高価な設備を必要としない。
塗布型の素子の作製に用いられる一般的な材料は、ポリ(1,4−フェニレンビニレン)(以後、PPVと略称する)などの高分子系の材料であった(例えば、非特許文献1参照)。
Applied Physics Letters 71−1 34ページ(1997)
また各種の役割をさらに細分化して、発光層とは別に、正孔注入層、正孔輸送層、電子輸送層を設けた有機EL素子が検討されている。正孔注入層や正孔輸送層を塗布によって作製するための正孔注入或いは輸送材料として、ポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルフォナート)(以後、PEDOT/PSSと略称する)が広範に用いられている(例えば、非特許文献2参照)。
Optical Materials 9(1998)125
しかし、PEDOT/PSSの塗布液は、PEDOTの分子鎖がイオン的な相互作用を及ぼしているPSSによって水和された水性のゲル分散液であるため、酸性の水溶液である。このため、塗布液がインクジェットの吐出ヘッドなどの塗布、印刷装置を腐食させるなど、使用上の難点がある。
また塗膜中のPSSが陽極に悪影響を与えることや、塗布液に使用した水が素子内に残存することが駆動中の劣化に繋がると指摘されている。さらに、PEDOTのチオフェン環が電子の流入によって還元されると言われている。これらの難点を有するがゆえに、PEDOT/PSSは十分な正孔注入・輸送材料であるとは言えず、とくに耐久性において、満足な素子特性が得られていなかった。
PEDOT/PSS以外の、塗布型の正孔注入・輸送性材料には、ポリ(N−ビニルカルバゾール)(以後、PVKと略称する)などの高分子がある。(例えば、非特許文献3参照)。
応用物理学会有機分子・バイオエレクトロニクス分科会会誌11巻1号13〜19ページ(2000)
PEDOT/PSSにおいても、PVKにおいても、高分子系の材料においては、高分子を重合架橋させる役割に使用された低分子材料の与える影響が懸念される。また一般に多種の分子種の混合物であるために、組成は完全に同一ではなく、作製される素子の性能の均一化が難しい。
この問題を解決するために特願2004−089836および特願2004−090334では、単一の分子種であって、かつアモルファス性に優れているアリールアミン化合物やその誘導体を提案し、さらにこれらの化合物の塗布成膜層を用いた高効率、高耐久性の有機EL素子を提案している。
これらの化合物は、ITOに近似した仕事関数を示すために、PEDOT/PSSのような正孔注入材料としては適しているが、単独で正孔注入・輸送材料として用いる場合には、化合物の仕事関数が正孔輸送材料としては低いため、作製された有機EL素子の効率がPVKを用いた素子より悪かった。
このように、単一の分子種であり、かつ単独で正孔注入・輸送材料として用いることのできる、高性能でアモルファス性な材料は得られていなかった。そのため、高効率で、高耐久性の有機EL素子が得られていなかった。
他方、本発明に類似した構造を有する化合物を用いる有機EL素子の提案には、特開平8−49045公報がある。この発明は、単一分子に結合した3またはそれ以上のアニリノベンゼン分子構造を有することを特徴とするアリールアミン化合物やその誘導体を用いて、高い熱安定性を有する有機EL素子を作製することを提案しているが、本構造の化合物は有機溶剤に溶けにくい性質を有していて、塗布液を作製することが困難であるため、素子の作製方法は蒸着型である。
本発明の目的は、高効率、高耐久性の有機EL素子用の材料として、塗布による成膜に適した化合物を提供することである。また優れた正孔注入・輸送性を有し、かつアモルファス性に優れた、単一分子種の化合物を提供することである。
そこで本発明者らは、上記の目的を達成するために、有機溶剤に溶けやすく、かつ仕事関数の高い、アモルファス性に優れた化合物を探索して、種々の化合物を化学合成し、有機EL素子を試作し、素子の特性評価を比較した。鋭意検討を行なった結果、本発明の化合物が高性能な正孔注入・輸送材料であり、この化合物を材料として用いることによって、高効率、高耐久性の有機EL素子を得られることを見出して、本発明を完成するに至った。
すなわち本発明は、一般式(1)で表される分子量1500以上6000以下のアリールアミン化合物であり、一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、該化合物が塗布成膜層として、少なくとも1つの有機層の構成材料として、用いられていることを特徴とする有機エレクトロルミネッセンス素子である。
(式中、Xは単結合、CHあるいはCH、または、NあるいはNHを表し、ArおよびArはそれぞれが同一で、置換もしくは無置換のフェニレン基、ビフェニレン基またはターフェニレン基を表し、R、R、RおよびRはそれぞれ独立にアリール基を表し、このアリール基はさらにトリフェニルアミン部分構造を形成するようにしてジアリールアミノ基で置換されていてもよく、さらに末端のアリール基は繰り返してトリフェニルアミン様の部分構造を形成するようにしてジアリールアミノ基で置換されていてもよい。mは0〜2の整数を表し、nは0または1を表す。)
本発明の一般式(1)で表される分子量1500以上6000以下のアリールアミン化合物の中で好ましいのは、分子内に窒素原子を6個または9個有しているものである。また、一般式(1)で表される分子量1500以上6000以下のアリールアミン化合物の中で好ましいのは、分子内にトリフェニルアミンまたはカルバゾール基等のようにベンゼン環とベンゼン環が結合基によって連結したトリフェニルアミン様の部分構造を6〜9個有しているものである。
一般式(1)中のArおよびArで表される置換フェニレン基、置換ビフェニレン基または置換ターフェニレン基における置換基としては、例えば、アルキル基が挙げられ、中でも、メチル基が好ましい。また、一般式(1)で表されるアリールアミン化合物の中心ベンゼン環に連結するフェニレン基あるいはビフェニレン基も同様の置換基で置換されていてもよい。
一般式(1)中のR〜Rで表されるアリール基として、具体的には、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のターフェニル基があげられる。そして、置換フェニル基、置換ビフェニル基、置換ナフチル基、置換ターフェニル基における置換基として、具体的には、フッ素原子、塩素原子、シアノ基、水酸基、ニトロ基、アルキル基、アルコキシ基、アミノ基、トリフルオロメチル基、ナフチル基、アラルキル基、フルオレニル基、インデニル基、ピリジル基、ピリミジル基、フラニル基、ピロニル基、チオフェニル基、キノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基のような基をあげることができ、これらの置換基はさらに置換されていても良い。
本発明の一般式(1)で表される分子量1500以上6000以下のアリールアミン化合物は、優れた正孔注入・輸送特性を有するばかりでなく、塗布によって安定な薄膜を容易に形成することができる。この結果、高効率の有機EL素子を実現できることが明らかになった。
また本発明の分子量1500以上6000以下のアリールアミン化合物を用いた素子においては、PEDOT/PSSを用いた素子のような、塗膜からのイオンの拡散による陽極劣化の懸念もないし、水分の影響についての心配もない。そのため素子の耐久性の改善が期待される。
このように本発明の有機EL素子は、優れた正孔注入・輸送特性を有し、かつ安定な薄膜を形成する分子量1500以上6000以下のアリールアミン化合物を用いたため、高効率、高耐久性を実現することができる。
本発明は、有機EL素子の正孔注入・輸送層の薄膜の材料として有用な、分子量1500以上6000以下のアリールアミン化合物であり、該化合物を用いて作製した有機EL素子である。本発明により、従来の塗布型有機EL素子の発光効率と耐久性を格段に向上させることができる。
TPA9−2のTOF−MSのチャート図である。 実施例6のEL素子構成を示した図である。 実施例7のEL素子構成を示した図である。
本発明の、分子量1500以上6000以下のアリールアミン化合物は、相当するアリールアミンと相当するアリールハライドをウルマン反応などの縮合反応によって合成することができる。
一般式(1)で表されるアリールアミン化合物の中で、好ましい化合物の具体例を以下に示すが、本発明は、これらの化合物に限定されるものではない。
本発明の化合物の精製はカラムクロマトグラフによる精製、溶媒による再結晶や晶析法などによって行った。化合物の構造は元素分析などによって同定した。
本発明の化合物は、一般的に用いられる溶剤を用いて塗布液を容易に作製することができる。塗布液を作製するために用いる溶媒にはトルエン、キシレンなどの炭化水素、シクロヘキサノンなどのケトン、アニソールなどのアミン系溶媒、o−ジクロロベンゼンや1,1,2,2−テトラクロロエタンなどの塩素系の溶媒が適している。塗布液には電子注入材料や発光材料、電子輸送材料などの機能性の化合物を混合することができる。
本発明の化合物の塗布液は、塗布によって薄膜を成膜して有機EL素子を作製することができる。塗布液を用いた成膜方法として、スピンコート法、キャスティング法、マイクログラビア法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法などの塗布方法を用いることができる。
塗膜の厚さは、有機EL素子の駆動電圧と耐久性が最適となるように選択できる。少なくても電流リークが発生しないような厚さが必要であり、あまり厚いと有機EL素子の駆動電圧が高くなって好ましくない。従って、塗膜の膜厚は、例えば1nmから1μmであり、好ましくは10〜100nmである。
本発明の有機EL素子の構造としては、基板上に順次に、陽極、正孔注入・輸送層、発光層兼電子輸送層、電子注入層、陰極からなるもの、また、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極からなるものがあげられる。尚、電子注入層は省略することができる。
これらの多層構造においては、例えば、正孔輸送層と発光層の間に電子阻止層を、発光層と電子輸送層の間に正孔阻止層を設けるなど、さらに多層化をおこなうことができる。またそれとは反対に、例えば、正孔注入層兼正孔輸送層兼発光層兼電子輸送層のように、何層かの有機層の機能を1層で兼用することによって、有機層の数を少なくすることができる。
本発明の陽極としては、ITO、NESA、酸化スズのような仕事関数の大きな電極材料が用いられる。正孔注入・輸送層としては、本発明の分子量1500以上6000以下のアリールアミン化合物を用いる。本発明の化合物は、正孔輸送層として他の材料を用いた正孔注入層と組み合わせて、あるいは、正孔注入層として他の材料を用いた正孔注入層と組み合わせて、有機EL素子を作製することができる。
組み合わせる正孔注入層としては、銅フタロシアニン(以後、CuPcと略称する)やスターバースト型のトリフェニルアミン誘導体、ナフタレンアミン化合物などの材料を蒸着して用いることができる。または、高分子材料の塗膜や、あるいは塗膜を不溶化することを目的とした処理をおこなった塗膜を用いることができる。高分子材料の例としては、PEDOT/PSSや、正孔輸送性の芳香族アミンを側鎖または主鎖に有する重合性の高分子などがあげられる。処理の例としては、紫外線照射や加熱処理などがあげられる。
組み合わせる正孔輸送層としては、N,N’−ジフェニル−N,N’−ジ(α−ナフチル)−ベンジジン(以後、NPDと略称する)、などの正孔輸送材料を用いることができる。
本発明の発光層、あるいは電子輸送層としては、本発明のアリールアミン化合物に発光材料や電子輸送材料を混合したものや、高分子材料に電子輸送材料を混合したものを用いることができる。高分子材料の例としては、ポリジアルキルフルオレン誘導体、PVK、ポリアニリン、ポリチオフェン、ポリ(p−フェニレンビニレン)、ポリシロキサンなどがあげられる。また、各種の発光材料や、カルバゾール誘導体、キノリンのアルミニウム錯体、キノリンの4価金属の錯体、オキサゾール誘導体、フェナントロリン誘導体などの電子輸送材料を用いることができる。
また、発光層に例えば、キナクリドン、クマリン6、ルブレンなどの蛍光色素、あるいはフェニルピリジンのイリジウム錯体などの燐光発光材料など、ドーパントと称されている発光材料を添加することや、オキサゾール誘導体、トリアゾール誘導体などの電子輸送材料を添加することによって、本発明の有機EL素子の性能を高めることができる。
本発明の有機EL素子の電子注入層としては、フッ化リチウムやセシウムなどを用いることができる。本発明の陰極としては、マグネシウム、カルシウム、アルミニウムなどの金属、およびそれらのうち1つ以上と銀やインジウムなどとの合金のような仕事関数の小さな電極材料が用いられる。
本発明の有機EL素子は正孔阻止層を有していても良い。正孔阻止層としてはバソクプロインやオキサゾール誘導体、トリアゾール誘導体などを用いることができる。
以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
(1,3,5−トリス〔4−[N,N−ビス(4’−ジフェニルアミノビフェニル−4−イル)]アミノフェニル〕ベンゼン(以後、TPA9−2と略称する)(2)の合成)
窒素気流下、脱水トルエン50ml、N,N−ビス(4’−ジフェニルアミノフェニル−4−イル)アミン8.33g、1,3,5−トリス(4−ブロモフェニル)ベンゼン1.68g、ナトリウムターシャリーブトキシド1.77g、酢酸パラジウム(II)0.01gを加えて60℃まで加熱し、トリターシャリーブチルフォスフィン0.036gを添加し、還流下9時間反応させた。
反応終了後、室温に放冷した後、析出物をろ過、採取し、風乾した。採取した固体を水100mlによる洗浄、ろ過を繰り返し(同操作を2回実施)、続いて100mlのメタノールによる洗浄、ろ過を行い、更に、トルエンによる加熱還流によって洗浄した後、放冷し、ろ過、採取することによって、粗製物を得た。得られた粗製物を1,2−ジクロロベンゼンに加熱溶解し、不溶物をろ別した後、1,2−ジクロロベンゼン溶液をメタノールに添加することで結晶を析出させ、ろ過した。この結晶を1,2−ジクロロベンゼンによる再結晶を繰り返すことによって、高純度なTPA9−2を4.2g(収率60%)得た。この操作によって得られた、TPA9−2のHPLC純度は99.5%であった。
得られた淡黄白色粉体について元素分析をおこなった。元素分析の測定結果は以下の通りであった。
理論値(炭素88.97%)(水素5.47%)(窒素5.56%)
実測値(炭素88.64%)(水素5.67%)(窒素5.50%)
得られた化合物を質量分析装置であるMALDI−TOF−MS(Perspective Biosystem Inc.,信州大学繊維学部機能高分子学科)を用いて分析した。TOF−MSの測定結果より、TPA9−2が理論値と等しい分子量、2267を有することを確認した。以上の結果から本発明の化合物を同定した。
[比較例1]
特開平8−49045公報の化合物が有機溶剤に溶けにくい性質を有していることを示すために、実施例1の化合物(2)にその構造が類似している分子量1264のアリールアミン化合物、1,3,5−トリス[4−(ジビフェニルアミノ)フェニル]ベンゼン(以下、TBAPBと略称する)
を比較例1の化合物として合成した。
(1,3,5−トリス[4−(ジビフェニルアミノ)フェニル]ベンゼン(17)の合成)
窒素気流下、脱水トルエン120ml、4−ジビフェニルアミン7.8g、1,3,5−トリス(4−ブロモフェニル)ベンゼン4.0g、ナトリウムターシャリーブトキシド3.2g、酢酸パラジウム(II)0.02gを加えて60℃まで加熱し、トリターシャリーブチルフォスフィン0.07gを添加し、還流下5時間反応させた。
反応終了後、室温に放冷した後、析出物をろ過、採取し、風乾した。採取した固体を水100mlで洗浄、ろ過・乾燥し、粗製物を得た。得られた粗製物を1,2−ジクロロベンゼンに加熱溶解し、不溶の触媒残渣を熱ろ過により除去し、ろ液を室温まで冷却し、析出した結晶をろ過、採取した。得られた結晶を1,2−ジクロロベンゼンを用いた再結晶による精製を繰り返すことで、TBAPBを4.8g(収率52%)得た。
得られた白色粉体について元素分析によって化学構造を同定した。元素分析の測定結果は以下の通りであった。
理論値(炭素91.17%)(水素5.51%)(窒素3.32%)
実測値(炭素91.16%)(水素5.66%)(窒素3.36%)
本発明の実施例1の化合物(2)と比較例1の化合物(17)について、示差走査熱量測定装置(セイコーインスツルメンツ製)によってガラス転移点を求めた。測定結果は以下の通りであった。
実施例1の化合物(2) ガラス転移点:177℃
比較例1の化合物(17)はアモルファス性が低く、熔融に続く急速冷却した後の昇温時において、ガラス相へと転移する吸熱現象を示さなかった。以上の結果から本発明の化合物が特開平8−49045公報の化合物よりアモルファス性が高く、成膜された薄膜状態が安定であることが明白である。
本発明の実施例1の化合物(2)2mgをビーカーに入れ、1.0gのシクロヘキサノンを加え、マグネティックスターラーで攪拌して溶解させた。化合物が完全に溶解したことを確認した後、0.2μmのフィルタ−でろ過して2質量%の塗布液1mlを調製した。
[比較例2]
本発明の比較例1の化合物(17)を、シクロヘキサノン、キシレン、THF、クロロホルム、1,1,2,2−テトラクロロエタンなど各種の溶剤を用いて溶解しようとしたが、化合物は溶解せず、0.7質量%以上の濃度の溶解液を得ることはできなかった。
比較例1の化合物(17)は、実施例1の化合物(2)の4分の1の分子量であるにもかかわらず、有機EL素子を作製するための塗布液を作製することができない。以上の結果から特開平8−49045公報の化合物が塗布型の素子作製に適していないことが明白である。
実施例3で調製した本発明の実施例1の化合物(2)の塗布液を、ガラス板上にスピンコート法によって塗膜し、真空オーブン中100℃で乾燥させて約50nmの塗布膜を成膜した。
原子間力顕微鏡(以後、AFMと略する)(エスアイアイ・ナノテクノロジー株式会社製 SPA−400)を用いて、作製した塗布膜の表面状態を観察した。本発明の実施例1の化合物の塗布膜は、均一でかつ欠陥のない薄膜であることが観察された。塗布膜の平坦性は高く、表面粗さ測定における算術平均粗さ(Ra)は0.25nmであった。
ガラス板上に作製した実施例1の化合物(2)の塗布膜について、大気中光電子分光装置(理研計器製、AC2)で仕事関数を測定した。仕事関数は5.32eVであった。
以上の結果から本発明の分子量1500以上6000以下のアリールアミン化合物を用いて作製した薄膜は、正孔注入・輸送層として適性なエネルギー準位を有しているといえる。
有機EL素子は、図2に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入・輸送層3、発光層兼電子輸送層4、電子注入層5、陰極(アルミニウム電極)6の順に積層して作製した。
膜厚150nmのITOを成膜したガラス基板1を有機溶媒洗浄後に、酸素プラズマ処理を行って表面を洗浄した。
ITO基板の上に、実施例3で作製した実施例1の化合物(2)の塗布液をスピンコート法によって塗膜し、真空オーブン中100℃で乾燥させて約50nmの正孔注入・輸送層3を成膜した。これを、真空蒸着機内に取り付け0.001Pa以下まで減圧した。
続いて、発光層兼電子輸送層4としてAlqを蒸着速度0.6Å/sで約50nm形成した。次に、電子注入層5としてフッ化リチウムを蒸着速度0.1Å/sで約0.5nm形成した。最後に、陰極蒸着用のマスクを挿入して、アルミニウムを約200nm蒸着して陰極6を形成した。ここまでの蒸着をいずれも真空を破らずに連続して行なった。作製した素子は、真空デシケーター中に保存し、大気中、常温で特性測定を行なった。
このように作製された本発明の有機EL素子の効率を、5000cd/m発光時と10000cd/m発光時における、発光輝度/電流量で定義される発光効率と、発光照度/電力量で定義される電力効率で評価した。
有機EL素子は安定な緑色発光を示した。5000cd/m発光時と10000cd/m発光時における、発光効率は4.31と4.37、電力効率は1.60と1.49であった。
さらに駆動電圧を上げ、電流密度の負荷を増大させて、破過前の最大輝度を評価した。この方法によって測定された最大輝度は、素子の電気的な安定性を反映しているため、有機EL素子の耐久性の指標となる。
駆動電圧を上げていくと、有機EL素子は、11.1Vで最大輝度34100cd/mを示した後、素子劣化が始まって輝度は低下した。
[比較例3]
比較のために、正孔注入・輸送層3の材料をPVKに代えてその特性を調べた。PVKは、オルトジクロロベンゼンに溶解して塗布液調製を行った以外は、実施例3と同様にして塗布液を作製した。実施例6と同様にして塗布によって約50nmの正孔注入・輸送層3を成膜した。続いて実施例6と同様に、発光層兼電子輸送層4、電子注入層5、陰極6をすべて蒸着によって形成した。
PVKを用いた有機EL素子は安定な緑色発光を示した。5000cd/m発光時と10000cd/m発光時における、発光効率は4.20と3.80、電力効率は1.57と1.33であった。発光輝度6000cd/mを超える高電流駆動条件において、効率の低下が認められた。
以上の結果から本発明の有機EL素子は、PVKを用いた素子よりも、発光輝度6000cd/mを超える高輝度発光時における発光特性の安定性が高いと言える。
さらに電圧を上げて負荷を増大させると、10.1Vで最大輝度17300cd/mを示して素子は劣化した。破過前の最大輝度は実施例6の有機EL素子の2分の1であった。
以上の結果から本発明の有機EL素子は、PVKを用いた素子よりも、素子の電気的な安定性が高く、耐久性が良いことが明白である。
有機EL素子は、図3に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、発光層兼電子輸送層5、電子注入層6、陰極(アルミニウム電極)7の順に積層して作製した。
膜厚150nmのITOを成膜したガラス基板1を有機溶媒洗浄後に、酸素プラズマ処理を行って表面を洗浄した。
ITO基板の上に、真空蒸着機を用いてCuPcを蒸着速度6nm/minで約15nm蒸着し、正孔注入層3を形成した。減圧してこのITO基板を取り出し、その上に実施例3で作製した実施例1の化合物(2)の塗布液をスピンコート法によって塗膜し、真空オーブン中100℃で乾燥させて約35nmの正孔輸送層4を成膜した。これを、真空蒸着機内に再度戻して、実施例6と同様に、発光層兼電子輸送層5としてAlqを蒸着速度0.6Å/sで約50nm形成した。次に、電子注入層6としてフッ化リチウムを蒸着速度0.1Å/sで約0.5nm形成した。最後に、陰極蒸着用のマスクを挿入して、アルミニウムを約200nm蒸着して陰極7を形成した。作製した素子は、真空デシケーター中に保存し、大気中、常温で特性測定を行なった。
このように作製された有機EL素子は安定な緑色発光を示した。駆動電圧7.2Vで5000cd/mの発光を、7.8Vで10000cd/mの発光を示した。この時の電力効率は1.49と1.45であった。
さらに駆動電圧を上げていくと、有機EL素子は、9.5Vで最大輝度41400cd/mを示した後、素子劣化が始まって輝度は低下した。
以上の結果から本発明の有機EL素子は、素子の電気的な安定性が高く、耐久性が良いため、高輝度発光に適していることが明白である。
以上の結果から、本発明の分子量1500以上6000以下のアリールアミン化合物が、優れた正孔注入・輸送性を有し、かつアモルファス性に優れた化合物であることが明白である。また本発明の化合物を用いて、塗布による成膜によって作製した有機EL素子の効率と耐久性が、従来の有機EL素子より優れていることが明白である。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2005年8月31日出願の日本特許出願(特願2005−251968)に基づくものであり、その内容はここに参照として取り込まれる。
本発明の分子量1500以上6000以下のアリールアミン化合物は、塗布によって薄膜を形成することができ、薄膜状態が安定であり、その仕事関数が正孔注入・輸送材料に適しているため、有機EL素子用の化合物として優れている。本発明の分子量1500以上6000以下のアリールアミン化合物を、塗布によって成膜した薄膜を、正孔注入・輸送層、あるいは正孔輸送層として用いて、有機EL素子を作製することにより、従来の塗布型の有機EL素子の発光効率と耐久性を格段に改良することができる。例えば、家庭電化製品や照明の用途への展開が可能となった。

Claims (4)

  1. 下記一般式(1)で表され、分子内に窒素原子を9個有している、分子量1500以上6000以下の有機エレクトロルミネッセンス素子用アリールアミン化合物。
    (式中、XはNを表し、ArおよびArはそれぞれが同一で、ビフェニレン基を表し、R、R、RおよびRはそれぞれ独立にアリール基を表し、mは0〜2の整数を表し、nは1を表す。
  2. 上記一般式(1)で表される分子量1500以上6000以下のアリールアミン化合物が、分子内にトリフェニルアミン様の部分構造を9個有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子用アリールアミン化合物。
  3. 一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、下記一般式(1)で表され、分子内に窒素原子を9個有している、分子量1500以上6000以下のアリールアミン化合物を、少なくとも1つの有機層の構成材料として含有する、有機エレクトロルミネッセンス素子。
    (式中、XはNを表し、ArおよびArはそれぞれが同一で、ビフェニレン基を表し、R、R、RおよびRはそれぞれ独立にアリール基を表し、mは0〜2の整数を表し、nは1を表す。
  4. 上記一般式(1)で表される分子量1500以上6000以下のアリールアミン化合物が、分子内にトリフェニルアミン様の部分構造を9個有することを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。
JP2007533342A 2005-08-31 2006-08-31 アリールアミン化合物および有機エレクトロルミネッセンス素子 Expired - Fee Related JP5009801B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007533342A JP5009801B2 (ja) 2005-08-31 2006-08-31 アリールアミン化合物および有機エレクトロルミネッセンス素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005251968 2005-08-31
JP2005251968 2005-08-31
PCT/JP2006/317272 WO2007026846A1 (ja) 2005-08-31 2006-08-31 アリールアミン化合物および有機エレクトロルミネッセンス素子
JP2007533342A JP5009801B2 (ja) 2005-08-31 2006-08-31 アリールアミン化合物および有機エレクトロルミネッセンス素子

Publications (2)

Publication Number Publication Date
JPWO2007026846A1 JPWO2007026846A1 (ja) 2009-03-12
JP5009801B2 true JP5009801B2 (ja) 2012-08-22

Family

ID=37808929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007533342A Expired - Fee Related JP5009801B2 (ja) 2005-08-31 2006-08-31 アリールアミン化合物および有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (2) US7867632B2 (ja)
EP (2) EP1942098A4 (ja)
JP (1) JP5009801B2 (ja)
KR (1) KR101286367B1 (ja)
CN (2) CN102746163A (ja)
TW (1) TWI391367B (ja)
WO (1) WO2007026846A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043639B2 (en) 2018-12-28 2021-06-22 Samsung Electronics Co., Ltd. Charge transport material, composition including the charge transport material, and organic light-emitting device including the composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153587B1 (ko) * 2004-03-25 2012-06-11 호도가야 가가쿠 고교 가부시키가이샤 아릴아민 화합물 및 유기 전계 발광 소자
JP5162891B2 (ja) * 2005-12-08 2013-03-13 三菱化学株式会社 有機化合物、電荷輸送材料、電荷輸送材料組成物および有機電界発光素子
EP2249410B1 (en) * 2008-02-25 2015-12-02 Samsung Electronics Co., Ltd. Organic electroluminescent element, and manufacturing method and uses therefor
KR100993012B1 (ko) 2008-09-05 2010-11-09 한국과학기술연구원 발광 특성을 갖는 디페닐아민 유도체
US8283002B2 (en) * 2008-11-18 2012-10-09 Plextronics, Inc. Aminobenzene compositions and related devices and methods
JP2022516434A (ja) * 2018-12-20 2022-02-28 サイテック インダストリーズ インコーポレイテッド ジ(アミノアリール)フルオレン化合物の製造方法
EP4357332A1 (en) * 2022-07-22 2024-04-24 Contemporary Amperex Technology Co., Limited Compound, preparation method therefor, use thereof, and perovskite solar cell comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126615A (ja) * 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd 電界発光素子
JPH0848656A (ja) * 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JPH10302960A (ja) * 1997-04-30 1998-11-13 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194657A (ja) 1989-12-22 1991-08-26 Mitsubishi Electric Corp 図形処理装置
JP3419534B2 (ja) * 1993-02-10 2003-06-23 靖彦 城田 トリスアリールアミノベンゼン誘導体、有機el素子用化合物および有機el素子
JP3914270B2 (ja) 1994-08-08 2007-05-16 Jfeスチール株式会社 鉄損の低い方向性電磁鋼板およびその製造方法
US5554450A (en) * 1995-03-08 1996-09-10 Eastman Kodak Company Organic electroluminescent devices with high thermal stability
US7282275B2 (en) * 2002-04-19 2007-10-16 3M Innovative Properties Company Materials for organic electronic devices
JP2004089836A (ja) 2002-08-30 2004-03-25 Takashimaya Space Create Co Ltd 環流式浄化システム
JP2004090334A (ja) 2002-08-30 2004-03-25 Fuji Photo Film Co Ltd 平版印刷版用原版及び製版印刷方法
JP3848307B2 (ja) * 2003-06-27 2006-11-22 キヤノン株式会社 アミノアントリル誘導基置換化合物およびそれを使用した有機発光素子
KR101153587B1 (ko) * 2004-03-25 2012-06-11 호도가야 가가쿠 고교 가부시키가이샤 아릴아민 화합물 및 유기 전계 발광 소자
EP1746094A4 (en) 2004-03-25 2009-06-10 Hodogaya Chemical Co Ltd CONNECTION WITH A PYRIDYL GROUP OF SUBSTITUTED OXADIAZOLRING STRUCTURE, AND ORGANIC ELECTROLUMINESCENT DEVICE
JP5175099B2 (ja) 2005-08-31 2013-04-03 保土谷化学工業株式会社 ピリジル基で置換されたトリアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126615A (ja) * 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd 電界発光素子
JPH0848656A (ja) * 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JPH10302960A (ja) * 1997-04-30 1998-11-13 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043639B2 (en) 2018-12-28 2021-06-22 Samsung Electronics Co., Ltd. Charge transport material, composition including the charge transport material, and organic light-emitting device including the composition

Also Published As

Publication number Publication date
EP1942098A4 (en) 2012-12-19
KR20080038383A (ko) 2008-05-06
US20110133171A1 (en) 2011-06-09
EP2620425A1 (en) 2013-07-31
CN101253145A (zh) 2008-08-27
US20090278442A1 (en) 2009-11-12
TWI391367B (zh) 2013-04-01
CN102746163A (zh) 2012-10-24
JPWO2007026846A1 (ja) 2009-03-12
US7867632B2 (en) 2011-01-11
KR101286367B1 (ko) 2013-07-15
US8227096B2 (en) 2012-07-24
WO2007026846A1 (ja) 2007-03-08
EP1942098A1 (en) 2008-07-09
TW200718674A (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP4077796B2 (ja) ビフェニル誘導体及びこれを採用した有機電界発光素子
JP5175099B2 (ja) ピリジル基で置換されたトリアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP4211433B2 (ja) 有機金属錯体、発光色素、有機電界発光素子材料および有機電界発光素子
JP5009801B2 (ja) アリールアミン化合物および有機エレクトロルミネッセンス素子
KR101153587B1 (ko) 아릴아민 화합물 및 유기 전계 발광 소자
JP2004210786A (ja) ジフェニルアントラセン誘導体及びそれを採用した有機電界発光素子
JP7504535B2 (ja) 新規な化合物、それを含むコーティング組成物、それを用いた有機発光素子およびその製造方法
JP2009051764A (ja) 置換されたフェナントレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2020536148A (ja) 重合体、これを含むコーティング組成物およびこれを用いた有機発光素子
JP5649029B2 (ja) 発光性組成物、有機電界発光素子、及びベンゾジフラン誘導体
JP5891055B2 (ja) アリールアミン化合物および有機エレクトロルミネッセンス素子
JP2004359671A (ja) アルミニウム混合配位子錯体化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
JP7094600B2 (ja) 重合体、これを含むコーティング組成物およびこれを用いた有機発光素子
WO2009107574A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法およびその用途
JP5584971B2 (ja) 高分子化合物の製造方法
JP4491264B2 (ja) アリールアミン化合物
JP2024052606A (ja) 高分子量化合物およびこれらを用いた有機エレクトロルミネッセンス素子
JP4308209B2 (ja) 有機電界発光素子
JP2008160118A (ja) 有機電界発光素子材料及びこれを用いた有機電界発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees