JP4996941B2 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP4996941B2
JP4996941B2 JP2007041526A JP2007041526A JP4996941B2 JP 4996941 B2 JP4996941 B2 JP 4996941B2 JP 2007041526 A JP2007041526 A JP 2007041526A JP 2007041526 A JP2007041526 A JP 2007041526A JP 4996941 B2 JP4996941 B2 JP 4996941B2
Authority
JP
Japan
Prior art keywords
light
guide plate
liquid crystal
incident surface
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007041526A
Other languages
English (en)
Other versions
JP2008203684A (ja
Inventor
高充 奥村
修 岩崎
俊明 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007041526A priority Critical patent/JP4996941B2/ja
Priority to US12/035,155 priority patent/US7738054B2/en
Publication of JP2008203684A publication Critical patent/JP2008203684A/ja
Application granted granted Critical
Publication of JP4996941B2 publication Critical patent/JP4996941B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]

Description

本発明は、光源から射出された光を拡散して光射出面から照明光を射出する導光板を備える面状照明装置と液晶表示パネルとを有する液晶表示装置に関する。
液晶表示装置としては、液晶表示パネルと、液晶表示パネルの裏面側から光を照射し、液晶表示パネルを照明するバックライトユニット(つまり、面状照明装置)を有する構成がある。このバックライトユニットは、照明用の光源が発する光を拡散して液晶表示パネルを照射する導光板や、プリズムシートや拡散シートなどの光学部材を用いて構成される。
現在、大型の液晶テレビ等の液晶表示装置に用いるバックライトユニットは、導光板を配置せず、照明用の光源の直上に拡散板等の光学部材を配置した、いわゆる直下型と呼ばれる方式が主流である。この方式では、光源である冷陰極管を液晶表示パネルの背面に複数本配置し、内部を白色の反射面として均一な光量分布と必要な輝度を確保している。
しかしながら、直下型のバックライトユニットでは、光量分布を均一にするために、液晶表示パネルに対して垂直方向の厚みが所定厚み、一例としては30mm程度必要である。今後バックライトユニットは、さらに薄型のものが望まれるであろうが、直下型では光量むらの観点からさらに薄く、例えば10mm以下の厚みをもつバックライトユニットを実現することは困難であると考えられる。
そこで、透明樹脂に光を散乱させるための散乱粒子を混入させた導光板を用いる方式のバックライトユニットが提案されている(例えば、特許文献1参照)。
例えば、特許文献1には、少なくとも1つの光入射領域及び少なくとも1つの光取出面領域を有する光散乱導光体と前記光入射面領域から光入射を行う為の光源手段とを備え、前記光散乱導光体は前記光入射面から遠ざかるにつれて厚みを減ずる傾向を持った領域を有していることを特徴とする光散乱導光光源装置が記載されている。
このような面状照明装置では、光源から放射され、光入射面から光散乱導光体内に進入した光が、その内部を伝播する過程において、一定の割合で、1回または多重的な散乱作用を受ける。また、光散乱導光体の両面あるいは反射体の表面に到達した光の相当部分は反射作用を受けて、光散乱導光体内へ戻される。
このような複合的な過程を通して、光源の方向からみて前方斜め方向に向かう指向性をもって光取出面から高効率で出射される光束が生成される。つまり、光源から放射された光を光散乱導光体の光取出面から出射される。
このように、散乱粒子が混入された導光板を用いることで、高い出射効率で、均一な光を射出することができると記載されている。
また、導光板としては、光入射面から遠ざかるにつれて厚みを減ずる傾向を持った領域を有している形状の導光板以外にも、平板形状の導光板や、光入射面から遠ざかるにつれて厚みを減ずる傾向を持った領域を有している形状の導光板を着き合わせた形状の導光板を有する面状照明装置が記載されている。
ここで、このような面状照明装置の導光板に光を入射させる光源としては、冷陰極管等の蛍光管以外にも、発光ダイオード(以下「LED」ともいう。)を用いることができる(引用文献2、引用文献3参照)。
LEDは、指向性を高い光を射出することができるため光源にLEDを用いることで、導光板に入射した光を導光板のより奥まで届けることができ、面状照明装置を大型化することができる。さらに、電源の構成を簡単にすることもできる。
また、特許文献2には、青色の単色光を発光する第一光源と、赤色の単色光を発光する第ニ光源とを用い、第一光源との青色光、青色の単色光から波長変換によって生成された緑色光と、第二光源の赤色光とを調合する加法混色により白色光を得る白色光源と、液晶表示素子の表示面との間のどこか、例えば、導光板の入射面と光源の間、導光板の照射面と液晶表示素子との間の少なくとも一方に減法混色による色補正手段を具備する構造の液晶表示装置が記載されている。
引用文献3には、光シャッターと、該光シャッターに対応する少なくとも赤、緑、青の三色の色要素を有するカラーフィルタと、透過照明用のバックライトとを組み合わせて構成されるカラー画像表示装置において、前記バックライトがLEDをその構造中に含み、可視光域380〜780nmの5nmごとの波長をλnmとし、該カラーフィルターの赤色画素による波長λnmにおける分光透過率(%)をそれぞれT(λ)、バックライトからの波長λnmにおける全発光強度で規格化した相対発光強度をI(λ)としたとき、これらがI(620−680)×TR(620−680)≧1.1を満たすことを特徴とするカラー画像表示装置が記載されている。
引用文献4には、透過光量を制御する複数の光シャッターと、赤、緑、青の3色を有するカラーフィルタと、光源からなるカラー表示装置において、光源は、前記3色のそれぞれの単色の発光特性を合成した単一の白色光源であって、各色要素の透過波長領域のピーク波長と一致し、かつより狭い帯域の分光特性を有し、カラーフィルタを透過した3色の透過光が色座標上に形成する三角形の面積はカラーフィルタの透過特性を示す三角形の面積より大きいことを特徴とするカラー表示装置が記載されている。
引用文献5には、青緑赤の発光ダイオードをバックライトの色光源に用い、青緑赤のカラーフィルタを用いるカラー液晶表示装置であって、該発光ダイオードの青緑赤のピーク波長が青で430〜480nmの範囲にあり、緑で520nm〜570nmの範囲にあり、赤で620〜660nmの範囲にあり、前記発光ダイオードの青緑赤のピーク波長におけるカラーフィルタの分光透過率が青赤緑で80%以上であることを特徴とするカラーフィルタを用いる液晶表示装置が記載されている。
引用文献6には、赤色(R)、緑色(G)、および青色(B)の画素部を有するカラーフィルタであって、前記緑色(G)画素部の透過率のピーク波長より短波長側における透過率と、前記青色(B)画素部の透過率のピーク波長より長波長側における透過率とが一致する波長における透過率が10%以下であり、かつ前記緑色(G)画素部の透過率のピーク波長が60%以上、および前記青色(B)画素部の透過率のピーク波長が50%以上であることを特徴とするカラーフィルタを用いる液晶表示装置が記載されている。
特開平07−36037号公報 特開2005−183139号公報 特開2006−47975号公報 特開平07−253577号公報 特開2003−207770号公報 特開2004−85592号公報
ここで、光源としてLEDを用い、白色光を射出させる構成としては、赤色、緑色、青色を発光の中心波長とする3種類のLEDを用い、各LEDから射出される赤色光、緑色光、青色光を射出させ、混色することで、白色光を射出させる方法と、青色や紫外領域の波長の光を中心波長として射出するLEDの発光面に蛍光体層を設け、LEDから射出された青色光や紫外光を蛍光体層で白色光に変換して射出させる方法がある。
赤色、緑色、青色を発光の中心波長とする3種類のLEDを用いる方法は、各色のLEDから射出される光の波長や発光強度を調整することにより、光射出面から所望の光を射出させることができるが、3種類のLEDの温度特性等の諸特性が異なるため制御が難しい、駆動方法が複雑である等の問題がある。また、光利用効率を高くし、かつ装置コスト低くすることが困難であるという問題もある。
他方、単色のLEDと蛍光体とを組み合わせた構成、特に、青色を射出するLEDの発光面に黄色の蛍光体を塗布した構成の光源は安価に作製することができる。
しかしながら、このような青色LEDと蛍光体とを組み合わせることで射出される光は色温度が低く、また、光利用効率を下げることなく、色温度を調整することが困難であるという問題がある。そのため、面状照明装置の光射出面から射出される光の色温度が低くなり、また、調整も困難であるという問題がある。
これに対して、特許文献2には、青色LEDと蛍光体とを組み合わせて擬似白色光源とし、さらに赤色LEDを配置することにより彩度を向上させる面状照明装置が提案されている。
このように赤色LEDを配置することで、赤色の演色性を向上させることはできるが、光源から射出される光の色温度を向上させることはできない。
また、特許文献3〜特許文献6には、カラーフィルタを用いて、射出される光の演色性または色再現性を高くする液晶表示装置が提案されている。
このようにカラーフィルタを配置し、カラーフィルタを透過させることでも、液晶表示装置から射出される光の演色性を向上させることはできるが、光源から射出される光の色温度を向上させることはできない。
また、特許文献1に記載されている、光源の入射位置から遠ざかるにつれて厚みを減する傾向を持つ形状、または、平板形状では、光の到達距離に限界があるため、大型化に限界があるという問題もある。
さらに、特許文献1に記載の導光板を用いる面状照明装置では、大型化するために光源からより遠い位置まで光を到達させるためには、導光板自体の厚みを厚くする必要がある。つまり、面状照明装置を、大型化、薄型化、軽量化できないという問題もある。
本発明の目的は、上記従来技術に基づく問題点を解消し、簡単な構成で、所望の色温度の光を射出することができ、高画質な画像を表示することができる液晶表示装置を提供することにある。
また、本発明の他の目的は、上記目的に加え、さらに、色再現性も高い光を射出することができ、高画質な画像を表示することができる液晶表示装置を提供することにある。
また、本発明の他の目的は、上記目的に加え、薄型で、軽量で、均一で輝度むらのない照明光を射出することができ、かつ大型化が可能な液晶表示装置を提供することにある。
さらに、本発明の他の目的は、上記目的に加え、光源から射出される光を効率よく利用することができ、さらに、より高輝度な光を光射出面から射出することができ高画質な画像を表示することができる液晶表示装置を提供することにある。
上記課題を解決するために、本発明は、発光面から青色光を射出するLEDチップを少なくとも1つ有する光源、前記光源から射出された光が入射される光入射面及び前記光入射面から入射した光を面状の光として射出する光射出面を有する透明な導光板、前記発光面と前記光入射面との間に配置され、前記発光面から射出される青色光を白色の光に変換して射出する蛍光体塗布部及び前記発光面から射出される青色光を青色光として射出する青色光透過部を備える蛍光部材を備え、前記導光板の光射出面上の光出面から光を射出する面状照明装置と、前記光出面上に配置され、少なくとも赤色の色要素を備える赤色フィルタ、緑色の色要素を備える緑色フィルタ及び青色の色要素を備える青色フィルタで構成されるカラーフィルタを備える液晶パネルとを有する液晶表示装置を提供するものである。
ここで、前記カラーフィルタは、前記青色フィルタの分光透過率が最大となる波長と、前記光源から射出される光の強度が最大となる波長との差が20nm以下であり、
前記青色フィルタの分光透過率と、前記緑色フィルタの分光透過率とが同一となる波長における分光透過率をPBGとし、前記緑色フィルタの分光透過率と、前記赤色フィルタの分光透過率とが同一となる波長における分光透過率をPGRとし、青色フィルタの半値幅をWとし、緑色フィルタの半値幅をWとしたとき、0≦PBG≦0.5、かつ、60≦W≦100、及び、0≦PGR≦0.2、かつ、60≦W≦100の少なくとも一方を満たすことが好ましい。
さらに、前記光源の前記LEDチップに隣接して配置され、前記光源の前記LEDチップとは異なる波長の光を射出する補助LEDチップを少なくとも1つ有する補助光源を有することが好ましい。
また、前記光源の前記LEDチップと前記補助光源の前記補助LEDチップとは、繰り返しパターンで配置されていることが好ましい。
前記補助光源の前記補助LEDチップは、前記補助光源の前記補助LEDチップは、ピーク波長が380nm以上780nm以下、かつ半値幅が5nm以上20nm以下の光を射出するLEDチップで構成されることが好ましい。
また、前記光源の前記LEDチップから射出される光の光量をlmとし、前記補助光源の前記補助LEDチップから射出される光の光量をlsとしたとき、0.05≦ls/lm<0.5を満たすことが好ましい。
ここで、前記青色光透過部は、透明フィルムまたは開口により形成されていることが好ましい。
また、前記光源は、複数の前記LEDチップと、前記LEDチップを支持する支持体とを有し、前記LEDチップは、前記支持体の前記光入射面に対向する面に列状に配置されていることが好ましい。
また、前記蛍光部材は、1つの前記LEDチップの前記発光面毎に複数の前記青色光透過部が形成されていることが好ましい。
さらに、前記蛍光部材は、前記複数のLEDチップに共通の一枚のシート状部材であることが好ましい。また、前記蛍光部材を前記複数のLEDチップ毎に設けることも好ましい。
また、前記蛍光部材は、全体の面積をSaとし、全ての前記青色光透過部の面積の和をSapとしたとき、SaとSapとの関係が、0.05≦Sap/Sa≦0.40を満たすことが好ましい。
また、前記蛍光部材は、前記発光面に接触して配置されていることが好ましく、前記光入射面に接触して配置されていることも好ましい。
前記導光板は、前記導光板は、前記光入射面が、前記光射出面の端縁に形成され、前記光入射面から離れるに従って、前記光射出面に垂直な方向の厚みが厚くなる形状であることが好ましい。または、前記導光板は、面状の光を射出する光射出面、該光射出面の端縁に形成され、前記光射出面と略直交する方向から前記光射出面と平行な方向に進行する光を入射させるための光入射面、および前記光射出面の反対側の面であって前記光入射面から遠ざかるに従って前記光射出面から遠ざかるように傾斜する傾斜面を有する形状であることが好ましい。
さらに、前記導光板は、内部に多数の散乱粒子を含み、前記散乱粒子の散乱断面積をΦ、前記散乱粒子の密度をN、補正係数をK、光の入射方向における前記導光板の前記光入射面から前記導光板の厚みが最も厚くなる位置までの長さをL、としたときに、不等式1.1≦Φ・N・L・K≦8.2、及び、0.005≦K≦0.1を満足することが好ましい。
また、前記LEDチップは、前記光入射面が形成された該光入射面の端縁側における前記光射出面と略直交する方向の前記光入射面の有効断面の長さより長い発光面を持ち、該発光面を前記導光板の前記光入射面に対向させて、前記光射出面と略直交する方向に対して所定角度傾斜させて配置されていることが好ましい。
さらに、前記導光板の前記光入射面は、前記光射出面と略直交する平面であり、前記光入射面の有効断面は、この略直交する平面に該当することが好ましく、前記導光板の前記光入射面は、前記光射出面と略直交する方向に対して前記光源の前記発光面に平行に対面するように傾斜する平面であり、前記光入射面の有効断面は、前記光入射面の中央における前記光射出面と略直交する方向の断面に該当することも好ましい。
また、前記光源の発光面の前記光射出面と略直交する方向に対する傾斜角度は、15度〜90度であることが好ましい。
さらに、前記導光板の前記光入射面の前記光射出面側および前記傾斜面側に配置され、前記光源から射出された光を前記光入射面に誘導する誘導反射板とを備えることが好ましい。前記誘導反射板は、前記導光板の前記光射出面の端部に取り付けられた第1誘導反射板と、前記導光板の前記傾斜面の端部に取り付けられ、前記傾斜面の端縁から外側に延長される延長部分を持つ第2誘導反射板とを有するものであることがさらに好ましい。
また、前記導光板は、前記光射出面は、矩形状であり、前記光入射面は、前記光射出面の対向する2つの端辺にそれぞれ形成される第1光入射面及び第2光入射面とで構成され、前記導光板は、前記第1光入射面及び第2光入射面において厚みが最も薄く、第1光入射面と第2光入射面とを結んだ線の中点において厚みが最も厚くなる形状であることが好ましい。
または、前記導光板は、面状の光を射出する光射出面、前記光射出面とのなす角が90°より大きい角度で傾斜して、該光射出面の端縁に形成された側面、前記光射出面の反対側の面であって前記側面から遠ざかるに従って前記光射出面から遠ざかるように傾斜する傾斜面、前記側面と前記傾斜面との間に形成され、光が入射される光入射面を有する形状とすることも好ましい。
本発明によれば、LEDから射出される青色光を白色の光に変換する蛍光部材に青色光透過部を形成することで、LEDから射出される光の一部を青色光として射出することができる。これにより、色温度の高い光を射出することができ、射出される光の色再現性を高くすることができ、高画質な画像を表示することが可能な液晶表示装置を提供することができる。
また、蛍光部材に青色光透過部を形成するのみで色温度を調整することができるため、調整が簡単となり、かつ、装置構成も簡単にすることができる。
さらに、青色フィルタの透過率が最大となる波長と、前記光源から射出される光の強度が最大となる波長との差が20nm以下であり、0≦PBG≦0.5、かつ、60≦W≦100、及び、0≦PGR≦0.2、かつ、60≦W≦100の少なくとも一方を満たすカラーフィルタを用いることで、色再現性をより高くすることができ、より高画質な画像を表示することができ、さらに光利用効率も高くすることができる。
また、本発明によれば、導光板を光入射面から離れるに従って光射出面に垂直な方向の厚みが厚くなる形状とすることで、光入射面から入射した光をより遠くまで届けることができ、薄型で、かつ光射出面を大きくすることができる。
さらに、光源の発光面を光射出面に垂直な方向に対して所定角度傾斜させることにより、光入射面の有効断面の長さよりも長い発光面を持つ光源を使用した場合も効率よく光を入射させることができる。つまり、光利用効率を高くすることができる。さらに、発光面の面積を大きくすることで、発光面から射出させる光の量も多くすることができる。
つまり、本発明によれば、輝度または照度の高い光を効率よく光射出面から射出することができ、さらに装置を薄くすることができる。
以下、本発明に係る液晶表示装置の実施形態を添付の図面に基づいて詳細に説明する。
図1は、本発明に係る液晶表示装置の一実施形態を示す斜視図であり、図2は、図1に示す液晶表示装置のII−II線断面図であり、図5は、図2に示した液晶表示装置の面状照明装置の一部を拡大して示す拡大断面図である。
図1及び図2に示すように、液晶表示装置2は、面状照明装置10と、その面状照明装置10の光射出面側に配置される液晶表示パネル4と、液晶表示パネル4を駆動する駆動ユニット6とを有する。なお、図1においては、面状照明装置の構成を示すため、液晶表示パネル4の一部の図示を省略している。
液晶表示パネル4は、予め特定の方向に配列されており、電界が印加されることで分子の配列を変え、屈折率の変化を利用して、光の透過/非透過が切り換えられる液晶セルが規則的に配置された液晶セル層(図示省略)と、液晶セル層の表示面側(液晶セルに入射した光が射出される側の面)に配置されたカラーフィルタ80とを有する。
液晶表示パネル4は、液晶セル層の各液晶セルに選択的に電界を印加して分子の配列を変え、液晶セル内に生じた屈折率の変化させて、光の透過/非透過を切り替え、カラーフィルタ80を透過する光を選択することで、液晶表示パネル4の表面上に文字、図形、画像などを表示する。
以下、液晶表示パネル4のカラーフィルタ80について説明する。
図3は、カラーフィルタの一部を拡大して示す拡大正面図である。
カラーフィルタ80は、赤色光成分の光を透過する赤色フィルタ82Rと、緑色光成分の光を透過する緑色フィルタ82Gと、青色光成分の光を透過する青色フィルタ82Bとで構成され、液晶表示パネル4の内部に配置されている。
カラーフィルタ80を構成する、赤色フィルタ82Rと緑色フィルタ82Gと青色フィルタ82Bとは、図3に示すように、一定規則に基づいて順番に配置されている。より詳しくは、液晶表示パネル4の1つの画素に対応して、それぞれ赤色フィルタ82Rと緑色フィルタ82Gと青色フィルタ82Bとが配置されている。また、各フィルタに対応して、上述した液晶セルが配置されている。
本実施例では、カラーフィルタ80は、桝目状に分割され、分割された1つの桝目領域に対して1つの赤色フィルタ82R、1つの緑色フィルタ82G、1つの青色フィルタ82Bがこの順で配置されている、つまり、本実施例では、各色が配置された3つの桝目で液晶表示パネルの1つの画素が構成される。
図4は、カラーフィルタ80を構成する赤色フィルタ82R、緑色フィルタ82G及び青色フィルタ82Bの透過率特性の一例を示すグラフである。ここで、図4では、縦軸を透過率[%]とし、横軸を波長[nm]とした。ここで、図4には、赤色フィルタ82RとしてR0を、緑色フィルタとしてG5を、青色フィルタとしてB6を用いた場合の透過率特性を示す。
図4に示すように、各色のフィルタは、それぞれ透過率特性が異なるフィルタであり、対応する色の波長域における分光透過率が高く、それ以外の波長域での透過率が低いフィルタである。
具体的には、赤色フィルタ82Rは、赤色光成分である、600nm以上の波長の光の分光透過率が高く、その他の波長域の光の分光透過率は低い透過率特性を備えるフィルムである。
また、緑色フィルタ82Gは、緑色光成分である、500nm以上570nm以下の波長の光の分光透過率が高く、その他の波長域の光の分光透過率は低い透過率特性を備えるフィルムであり、青色フィルタ82Bは、青色光成分である、420nm以上500nm以下の波長の光の分光透過率が高く、その他の波長域の光の分光透過率は低い透過率特性を備えるフィルムである。
つまり、赤色フィルタ82Rは、分光透過率が最大となる波長が、600nm以上であり、緑色フィルタ82Gは、分光透過率が最大となる波長が、500nm以上570nm以下であり、青色フィルタ82Bは、分光透過率が最大となる波長が、420nm以上500nm以下である。
なお、本実施形態では、各色のフィルタを均等に設けたが、本発明はこれに限定されず、各色毎に異なる比率としてもよい。また、配置順序も特に限定されず、任意の順序とすることができる。
この赤色フィルタ82Rを透過した光は、赤色光となり、緑色フィルタ82Gを透過した光は、緑色光となり、青色フィルタ82Bを透過した光は、青色光となって、カラーフィルタ80から射出される。
駆動ユニット6は、液晶表示パネル4内の透明電極に電圧をかけ、液晶セル内の液晶分子の向きを変えて液晶表示パネル4を透過する光の透過率を制御する。つまり、駆動ユニット6は、上述したように、液晶表示パネル4の液晶セルにより各位置の各色のフィルタに光を透過させるか否かを制御する。このように、位置に応じてフィルタを透過する光を射出させるかを切り換えることで、液晶表示パネル4に画像等が表示される。
次に、面状照明装置10について説明する。
面状照明装置10は、液晶表示パネル4の背面から、液晶表示パネル4の全面に光を照射する照明装置であり、液晶表示パネル4の画像表示面と略同一形状の光射出面を有する。
各図に示すように、面状照明装置10は、光源12と、矩形状の光出射面14aから均一な光を出射する照明装置本体14と、光源12と照明装置本体14との間に配置された蛍光部材17と、内部に光源12、照明装置本体14及び蛍光部材17を収納する筐体16とを備えている。筐体16は、後述するように、本体部16aと額縁部16bとからなるものである。
まず、光源12について説明する。
図5は、図2に示した面状照明装置の光源12近傍を拡大して示す拡大断面図である。また、図6(A)は、図1及び図2に示す面状照明装置10の光源12の概略構成を示す概略斜視図であり、図6(B)は、図6(A)に示す光源12の断面図であり、図6(C)は、図6(A)に示す光源12の1つのLEDチップのみを拡大して示す概略斜視図である。
図6(A)に示すように、光源12は、複数の発光ダイオードのチップ(以下「LEDチップ」という。)40と、光源支持部41とから構成されている。
LEDチップ40は、青色光を射出する発光ダイオードのチップであり、所定面積の発光面40aを有し、この発光面40aから青色光を射出する。ここで、LEDチップ40としては、GaN系発光ダイオード、InGaN系発光ダイオード等が例示される。ここで、本発明において、青色光とは、射出光のピーク波長が420nm以上500nm以下の光である。また、青色光を射出する発光ダイオードとしては、射出光のピーク波長が450nm以上480nm以下の光を射出する発光ダイオードを用いることが好ましい。
光源支持部41は、図6(B)に示すように、アレイ基板42と複数のフィン44と有する。上述した複数のLEDチップ40は、所定間隔離間して一列でアレイ基板42上に配置されている。具体的には、複数のLEDチップ40は、後述する導光板18の第1光入射面18dまたは第2光入射面18eの長手方向に沿って、言い換えれば、光射出面18aと第1光入射面18dとが交わる線、または、光射出面18aと第2光入射面18eとが交わる線と平行に、アレイ状に配列されている。
アレイ基板42は、一面が導光板18の最薄側端面に対向して配置された板状の部材であり、導光板18の側端面である第1光入射面18dまたは第2光入射面18eに対向して配置されている。アレイ基板42は、導光板18の光入射面18bに対向する面となる側面に、LEDチップ40を支持している。
ここで、本実施形態のアレイ基板42は、銅やアルミニウム等の熱伝導性の良い金属で形成されており、LEDチップ40から発生する熱を吸収し、外部に放散させるヒートシンクとしての機能も有する。
複数のフィン44は、それぞれ銅やアルミニウム等の熱伝導性の良い金属で形成された板状部材であり、アレイ基板42のLEDチップ40が配置されている面とは反対側の面に、隣接するフィン44と所定間隔離間して連結されている。
光源支持部41に、フィン44を複数設けることで表面積を広くすることができ、かつ、放熱効果を高くすることができる。これにより、LEDチップ40の冷却効率を高めることができる。
また、ヒートシンクは、空冷方式に限定されず、水冷方式も用いることができる。
なお、本実施形態では、光源支持部41のアレイ基板42をヒートシンクとして用いたが、LEDチップの冷却が必要ない場合は、ヒートシンクに代えて放熱機能を備えない板状部材をアレイ基板として用いてもよい。
ここで、図6(C)に示すように、本実施形態のLEDチップ40は、LEDチップ40の配列方向の長さよりも、配列方向に直交する方向の長さが短い長方形形状、つまり、後述する導光板18の厚み方向(光射出面18aに垂直な方向)が短辺となる長方形形状を有する。言い換えれば、LEDチップ40は、導光板18の光射出面18aに垂直な方向の長さをa、配列方向の長さをbとしたときに、b>aとなる形状である。また、LEDチップ40の配置間隔をqとするとq>bである。このように、LEDチップ40の導光板18の光射出面18aに垂直な方向の長さa、配列方向の長さb、LEDチップ40の配置間隔qの関係が、q>b>aを満たすことが好ましい。
LEDチップ40を長方形形状とすることにより、大光量の出力を維持しつつ、薄型な光源とすることができる。光源を薄型化することにより、面状照明装置を薄型にすることができる。
なお、LEDチップ40は、LEDアレイつまり光源をより薄型にできるため、導光板18の厚み方向を短辺とする長方形形状とすることが好ましいが、本発明はこれに限定されず、正方形形状、円形形状、多角形形状、楕円形形状等の種々の形状のLEDチップを用いることができる。
ここで、図2及び図5に示すように、LEDチップ40及びアレイ基板42は、後述する導光板18の光射出面18aに垂直な方向に対して所定角度傾斜して配置されている。つまり、LEDチップ40は、その発光面40aが後述する導光板18の光射出面18aに垂直な方向に対して所定角度傾斜する向きに配置されている。
この点については後ほど詳細に説明する。
また、LEDチップ40の発光面40aには、蛍光部材17が配置されている。
図7(A)〜(C)は、それぞれ図2に示した面状照明装置の蛍光部材と光源の一部を示す図であり、(A)は、上面図、(B)は、正面図、(C)は、側面図である。
図7(A)〜(C)に示すように、蛍光部材17は、シート状部材であり、光源12のLEDチップ40の発光面40aに接触して配置されている。つまり、蛍光部材17は、光源12のLEDチップ40の発光面40aに対向する部分が、光射出面40aに接触されている。ここで、蛍光部材17の配置方法は特に限定されず、例えば、接着材等により発光面40aに接着させても、固定部材等により発光面40aに接触した状態で固定してもよい。
蛍光部材17は、アレイ基板42上に配置された全てのLEDチップ40の発光面40aを覆う大きさのシート状部材であり、蛍光体塗布部48と開口部50とで構成されている。言い換えると、蛍光部材17は、基本的に蛍光体塗布部48で形成され、所定間隔毎に矩形の開口部50が形成されている。つまり、蛍光部材17の開口部50以外の部分は、蛍光物質で形成された蛍光体塗布部48となる。
蛍光体塗布部48は、YAG(イットリウム・アルミニウム・ガーネット)系蛍光物質で形成されている。蛍光体塗布部48は、LEDチップ40から射出された青色光が透過すると、YAG系蛍光物質が蛍光する。
このようにして、蛍光体塗布部48は、LEDチップ40から射出された青色光が透過すると、LEDチップ40から射出された青色光とYAG系蛍光物質が蛍光することで射出される光とで白色光を生成する。つまり、LEDチップ40から射出され蛍光体塗布部48を透過した光は、青色光から白色光となる。言い換えれば、蛍光体塗布部48は、透過する青色光を白色光に変換する。
開口部50は、矩形の開口であり、上述したように、シート状の蛍光部材17に一定間隔でマトリックス状に複数形成されている。開口部50は、LEDチップ40から射出された青色光を青色光として射出する。つまり、LEDチップ40から射出され開口部50を透過した光は、青色光としてそのまま射出される。
このように、蛍光部材17は、蛍光体塗布部48で構成される青色光を白色光に変換する領域と、開口部50で構成される青色光を青色光として透過する領域の2つの領域を有する。
ここで、蛍光体塗布部48と開口部50とを有する蛍光部材17は、例えば、透明シートの全面に蛍光物質を塗布して、透明シート全体に蛍光体塗布部を形成した後、開口部となる部分を切り抜くことで作成することができる。
また、他の一例としては、透明シートの開口部となる部分を切り抜き、開口部を形成した後に、透明シートに蛍光物質を塗布して蛍光体塗布部を作成してもよい。
図2に示すように、照明装置本体14は、基本的に、導光板18と、プリズムシート20と、拡散フィルム22と、反射板24と、上部誘導反射板34と、下部誘導反射板36とを有する。
以下、照明装置本体14を構成するこれらの光学部品について詳細に説明する。
先ず、導光板18について説明する。
導光板18は、図2に示すように、略矩形形状の平坦な光射出面18aと、この光射出面18aの両端に、光射出面18aに対してほぼ垂直に形成された2つの光入射面(第1光入射面18dと第2光入射面18e)と、光射出面18aの反対側に位置し、第1光入射面18dおよび第2光入射面18eに平行で、光射出面18aを2等分する2等分線α(図1参照)を中心軸として互いに対称で、光射出面18aに対して所定の角度で傾斜する2つの傾斜面(第1傾斜面18bと第2傾斜面18c)とを有している。第1傾斜面18b及び第2傾斜面18cは、第1光入射面18d及び第2光入射面18eから遠ざかるに従って光射出面18aからの距離が遠ざかる(大きくなる)ように、つまり、それぞれ第1光入射面18d及び第2光入射面18eから導光板の中心に向かうに従って、導光板の光射出面に垂直な方向の厚みが大きくなるように傾斜している。つまり、導光板18は、両端部、すなわち第1光入射面18dと第2光入射面18eで厚みが最も薄くなり、中央部、すなわち第1傾斜面18bと第2傾斜面18cが交差する2等分線αの位置で厚さが最大となる。言い換えれば、導光板18は、第1光入射面18dまたは第2光入射面18eから離れるに従って導光板の光射出面18aに垂直な方向の厚みが厚くなる形状である。なお、光射出面18aに対する第1傾斜面18b及び第2傾斜面18cの傾斜角度は特に限定されない。
また、上述した光源12は、それぞれ導光板18の第1光入射面18d及び第2光入射面18eに対向して配置されている。つまり、面状照明装置10は、2つの光源12が、導光板18をはさみこむように配置されている。言い換えれば、所定間隔離間して、向かい合って配置された2つの光源12の間に導光板18が配置されている。
このように導光板18を第1光入射面18dまたは第2光入射面18eから離れるに従って、光射出面18aに垂直な方向の厚みが厚くなる形状とすることで、光入射面から入射する光を光入射面からより遠い位置まで届けることができ、光射出面を大きくすることができる。また、光入射面から入射した光を遠い位置まで好適に届けることができるため、導光板を薄型化することができる。
図2に示す導光板18では、第1光入射面18d及び第2光入射面18eから入射した光は、導光板18の内部に含まれる散乱体(詳細は後述する)によって散乱されつつ、導光板18内部を通過し、直接、または第1傾斜面18b及び第2傾斜面18cで反射した後、光射出面18aから出射する。このとき、第1傾斜面18b及び第2傾斜面18cから一部の光が漏出する場合もあるが、漏出した光は導光板18の第1傾斜面18b及び第2傾斜面18cを覆う反射板24によって反射され再び導光板18の内部に入射する。
導光板18は、透明樹脂に、光を散乱させるための散乱粒子が混錬分散されて形成されている。導光板18に用いられる透明樹脂の材料としては、例えば、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)、ベンジルメタクリレート、MS樹脂、あるいはCOP(シクロオレフィンポリマー)のような光学的に透明な樹脂が挙げられる。導光板18に混錬分散させる散乱粒子としては、アトシパール、シンコーン、シリカ、ジルコニア、誘電体ポリマなどを用いることができる。このような散乱粒子を導光板18の内部に含有させることによって、均一で輝度むらが少ない照明光を光出射面から出射することができる。このような導光板18は、押出成形法や射出成形法を用いて製造することができる。
また、導光板18に含まれる散乱粒子の散乱断面積をΦ、光の入射する方向(導光板に入射した光の進行方向に平行な方向、光射出面に平行で、光射出面と光入射面(第1光入射面または第2光入射面)との接線に垂直な方向において、)における導光板18の第1光入射面18dまたは第2光入射面18eから光射出面18aに直交する方向の厚みが最大となる位置までの長さ、本実施形態では、導光板の光の入射する方向(本実施形態では、導光板18の第1光入射面18dに垂直な方向、以下「光軸方向」ともいう。)の半分の長さ(2等分線Lの位置までの長さ)をL、導光板18に含まれる散乱粒子の密度(単位体積あたりの粒子数)をN、補正係数をKとした場合に、Φ・N・L・Kの値が1.1以上であり、かつ8.2以下であり、さらに、補正係数Kの値が0.005以上0.1以下であるという関係を満たしているのがよい。導光板18は、このような関係を満たす散乱粒子を含んでいるので、均一で輝度むらが少ない照明光を光出射面18aから出射することができる。
一般的に、平行光束を等方媒質に入射させた場合の透過率Tは、Lambert−Beer則により下記式(1)で表される。
T=I/I=exp(−ρ・x)・・・(1)
ここで、xは距離、Iは入射光強度、Iは出射光強度、ρは減衰定数である。
上記減衰定数ρは、粒子の散乱断面積Φと媒質に含まれる単位体積当たりの粒子数Npとを用いて下記式(2)で表される。
ρ=Φ・N・・・(2)
したがって、導光板の光の進行方向に平行な方向における導光板の入射面から厚みが最も厚い位置までの長さ、導光板の光軸方向の半分の長さをLとすると、光の取り出し効率Eoutは、下記式(3)で与えられる。ここで、導光板の光軸方向の半分の長さLは、導光板18の光入射面に垂直な方向における導光板18の一方の光入射面から導光板18の中心までの長さとなる。
また、光の取り出し効率とは、入射光に対する、導光板の光入射面から光軸方向に長さL離間した位置に到達する光の割合であり、例えば、図2に示す導光板18の場合は、端面に入射する光に対する導光板の中心(導光板の光軸方向の半分の長さとなる位置)に到達する光の割合である。
out∝exp(−Φ・N・L)・・・(3)
ここで式(3)は有限の大きさの空間におけるものであり、式(1)との関係を補正するための補正係数Kを導入する。補正係数Kは、有限の空間の光学媒質中で光が伝搬する場合に経験的に求められる無次元の補正係数である。そうすると、光の取り出し効率Eoutは、下記式(4)で表される。
out=exp(−Φ・N・L・K)・・・(4)
式(4)に従えば、Φ・N・L・Kの値が3.5のときに、光の取り出し効率Eoutが3%であり、Φ・N・L・Kの値が4.7のときに、光の取り出し効率Eoutが1%である。
この結果より、Φ・N・L・Kの値が大きくなると、光の取り出し効率Eoutが低くなることが分かる。光は導光板の光軸方向へ進むにつれて散乱するため、光の取り出し効率Eoutが低くなると考えられる。
したがって、Φ・N・L・Kの値は大きいほど導光板として好ましい性質であることが分かる。つまり、Φ・N・L・Kの値を大きくすることで、光の入射面と対向する面から射出される光を少なくし、光射出面から射出される光を多くすることができる。すなわち、Φ・N・L・Kの値を大きくすることで、入射面に入射する光に対する光射出面から射出される光の割合(以下「光利用効率」ともいう。)を高くすることができる。具体的には、Φ・N・L・Kの値を1.1以上とすることで、光利用効率を50%以上にすることができる。
ここで、Φ・N・L・Kの値は大きくすると、導光板18の光射出面18aから出射する光の照度むらが顕著になるが、Φ・N・L・Kの値を8.2以下とすることで、照度むらを一定以下(許容範囲内)に抑えることができる。なお、照度と輝度は略同様に扱うことができる。従って、本発明においては、輝度と照度とは、同様の傾向があると推測される。
以上より、本発明の導光板18のΦ・N・L・Kの値は、1.1以上かつ8.2以下であるという関係を満たすことが好ましく、2.0以上かつ8.0以下であることがより好ましい。また、Φ・N・L・Kの値は、3.0以上であればさらに好ましく、4.7以上であれば最も好ましい。
また、補正係数Kは、0.005以上0.1以下(0.005≦K≦0.1)であることが好ましい。
以下、具体例とともに、導光板18についてより詳細に説明する。
まず、散乱断面積Φ、粒子密度N、導光板の光軸方向の半分の長さL、補正係数Kを種々の値とし、Φ・N・L・Kの値が異なる各導光板について、計算機シミュレーションにより光利用効率を求め、さらに照度むらの評価を行った。ここで、照度むら[%]は、導光板の光射出面から射出される光の最大照度をIMaxとし、最小照度をIMinとし、平均照度をIAveとしたときの[(IMax−IMin)/IAve]×100とした。
測定した結果を表1に示す。また、表1における判定は、光利用効率が50%以上かつ照度むらが150%以下の場合を○、光利用効率が50%より小さいまたは照度むらが150%より大きいの場合を×として示す。
Figure 0004996941
また、図8に、Φ・N・L・Kの値と光利用効率(光入射面に入射する光に対して光射出面18aから射出される光の割合)との関係を測定した結果を示す。
表1及び図8に示すように、Φ・N・L・Kを1.1以上とすることで、光利用効率を大きくすること、具体的には光利用効率を50%以上とすることができ、8.2以下とすることで、照度ムラを150%以下にすることができることがわかる。
また、Kcを0.005以上とすることで、光利用効率を高くすることができ、0.1以下とすることで、導光板からの射出される光の照度むらを小さくすることができることがわかる。
次に、導光板に混錬又は分散させる微粒子の粒子密度Nが種々の値の導光板を作成し、それぞれの導光板の光射出面の各位置から射出される光の照度分布を測定した。ここで本実施形態では、粒子密度Nを除いて他の条件、具体的には、散乱断面積Φ、導光板の光軸方向の半分の長さL、補正係数K、導光板の形状等は、同じ値とした。従って、本実施形態では、Φ・N・L・Kは、粒子密度Nに比例して変化する。
このようにして種々の粒子密度の導光板について、それぞれ光射出面から射出される光の照度分布を測定した結果を図9に示す。図9は、縦軸を照度[lx]とし、横軸を導光板の一方の光入射面からの距離(導光長)[mm]とした。
さらに、測定した照度分布の導光板の側壁から射出される光の最大照度をIMaxとし、最小照度をIMinとし、平均照度をIAveとしたときの照度むら[(IMax−IMin)/IAve]×100[%]を算出した。
図10に、算出した照度むらと粒子密度との関係を示す。図10では、縦軸を照度むら[%]とし、横軸を粒子密度[個/m3]とした。また、図10には、横軸を同様に粒子密度とし、縦軸を光利用効率[%]とした、光利用効率と粒子密度との関係も併せて示す。
図9、図10に示すように、粒子密度を高くする、つまりΦ・N・L・Kを大きくすると、光利用効率は高くなるが、照度むらも大きくなる。また、粒子密度を低くする、つまり、Φ・N・L・Kを小さくすると、光利用効率は低くなるが、照度むらを小さくなることがわかる。
ここで、Φ・N・L・Kを1.1以上8.2以下とすることで、光利用効率を50%以上とし、かつ、照度むらを150%以下とすることができる。照度むらを150%以下とすることで、照度むらを目立たなくすることができる。
つまり、Φ・N・L・Kを1.1以上8.2以下とすることで、光利用効率を一定以上とし、かつ照度むらも低減することができることがわかる。
なお、導光板は、上記形状に限定されず、光入射面から離れるに従って、導光板の厚みが厚くなる形状であれば、種々の形状とすることができる。
例えば、第1傾斜面18b及び第2傾斜面18cには、第1光入射面18d及び第2光入射面18eと平行な方向にプリズム列を形成してもよい。また、このようなプリズム列の代わりに、プリズムに類する光学素子を規則的に形成することもできる。例えば、レンチキュラーレンズ、凹レンズ、凸レンズ、ピラミッド型など、レンズ効果を有する光学素子を導光板の傾斜面に形成することもできる。
なお、導光板の形状は、本実施形態の形状に限定されず、例えば、図2に示した導光板を半分に切断した形状、つまり、光入射面が1面のみとなり、光入射面から離れるに従って、導光板の厚みが厚くなる形状、言い換えれば、光入射面が、光射出面の1つの端辺に形成される1つの光入射面から構成され、傾斜面が、光入射面からこれに対向する他端面に向かうに従って光射出面から遠ざかるように傾斜する1つの傾斜面から構成され、光入射面において最も薄く、他端面において最も厚い形状としてもよい。また、導光板の側面のいずれの面に光源を配置し、4方の側面を光入射面とし、4つの光入射面から中央に向かうに従って、厚みが厚くなる形状、つまり、導光板の光射出面とは反対側の面が四角錐形状となる形状、言い換えれば、光入射面が、該光射出面の4つの端辺にそれぞれ形成される4つの光入射面から構成され、傾斜面は、4つの光入射面からそれぞれ中央に向かうに従って前記光射出面から遠ざかるように傾斜した4つの傾斜面から構成され、光入射面における厚みが最も薄く、4つの傾斜面の交わる位置における厚みが最も厚い形状としてもよい。
導光板をこのような形状とすることでも、薄型を維持しつつ、光入射面から遠い位置まで光を到達させることができる。これにより導光板を薄型化でかつ光射出面を大型化することができる。
導光板を上記のような形状とした場合も、光の入射する方向において導光板の光入射面から光射出面に直交する方向の厚みが最大となる位置までの長さをLとし、上述のΦ・N・L・Kが1.1以上8.2以下を満たすことが好ましい。上記範囲を満たすことで照度むらが低減され、かつ光利用効率を高い光を光射出面から射出させることができる。
次に、プリズムシート20について説明する。
図2に示されるように、導光板18と拡散フィルム22の間に1枚のプリズムシート20が設けられている、つまり、プリズムシート20は、導光板18の光射出面18aに対向して配置されている。プリズムシート20は、透明なシートの表面上に複数の細長いプリズムを互いに平行に配列させることにより形成される光学部材であり、導光板18の光射出面から出射する光の集光性を高めて輝度を改善することができる。プリズムシート20の各プリズムの頂点が、導光板18の光射出面18aと対向するように、すなわち図中下向きに配置されている。また、別の態様として、プリズムシート20の上に、同一構造の第2のプリズムシートを、そのプリズムがプリズムシート20のプリズムと交差するように配置することができる。また、別のプリズムシートとして、多数の三角錐形状(ピラミッド形状)のプリズムを透明シート面に多数配列した構成のものを使用してもよい。
次に、拡散フィルム22について説明する。
拡散フィルム22は、プリズムシート20の導光板18側とは反対側の面に配置されている。つまり、導光板18の光射出面18a上には、光射出面18a側からプリズムシート20、拡散フィルム22の順で積層されている。
拡散フィルム22は、フィルム状部材に光拡散性を付与して形成される。フィルム状部材は、例えば、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)、ベンジルメタクリレート、MS樹脂、あるいはCOP(シクロオレフィンポリマー)のような光学的に透明な樹脂を材料に形成することができる。
拡散フィルム22の製造方法は特に限定されないが、例えば、フィルム状部材の表面に微細凹凸加工や研磨による表面粗化を施して拡散性を付与したり、表面に光を散乱させるシリカ、酸化チタン、酸化亜鉛等の顔料や、樹脂、ガラス、ジルコニア等のビーズ類をバインダとともに塗工したり、上記顔料やビーズ類を上記透明な樹脂中に混練したりすることで形成することができる。他には、反射率が高く光の吸収が低い材料で、例えば、Ag、Alのような金属を用いて形成することもできる。
本発明において、拡散フィルム22としては、マットタイプやコーティングタイプの拡散フィルムを用いることができる。
図2では、拡散フィルム22をプリズムシート20の上に配置したが、拡散フィルム22の配置位置は特に限定されず、導光板18とプリズムシート20との間に配置してもよい。
次に、照明装置本体の反射板24について説明する。
反射板24は、導光板18の第1傾斜面18b及び第2傾斜面18cから漏洩する光を反射して、再び導光板18に入射させるために設けられており、光の利用効率を向上させることができる。反射板24は、導光板18の第1傾斜面18b及び第2傾斜面18cに対応した形状で、第1傾斜面18b及び第2傾斜面18cを覆うように形成される。本実施形態では、図2では、導光板18の第1傾斜面18b及び第2傾斜面18cが断面三角形状に形成されているので、反射板24もこれに補形する形状に形成されている。
反射板24は、導光板18の傾斜面から漏洩する光を反射することができれば、どのような材料で形成されてもよく、例えば、PETやPP(ポリプロピレン)等にフィラーを混練後延伸することによりボイドを形成して反射率を高めた樹脂シート、透明もしくは白色の樹脂シート表面にアルミ蒸着などで鏡面を形成したシート、アルミ等の金属箔もしくは金属箔を担持した樹脂シート、あるいは表面に十分な反射性を有する金属薄板により形成することができる。
上部誘導反射板34は、導光板18とプリズムシート20との間、つまり、導光板18の光射出面18a側に、光源12及び導光板18の光射出面18aの端部(第1光入射面18d側の端部及び第2光入射面18e側の端部)を覆うようにそれぞれ配置されている。言い換えれば、上部誘導反射板34は、光軸方向に平行な方向において、導光板18の光射出面18aの一部から光源12のアレイ基板42の一部までを覆うように配置されている。つまり、2つの上部誘導反射板34が、導光板18の両端部にそれぞれ配置されている。
下部誘導反射板36は、導光板18の光射出面18a側とは反対側、つまり、第1傾斜面18b及び第2傾斜面18c側に、光源12の一部を覆うように配置されている。また、下部誘導反射板36の導光板中心側の端部は、反射板24と連結されている。
ここで、上部誘導反射板34及び下部誘導反射板36としては、上述した反射板24に用いる各種材料を用いることができる。
このように、上部誘導反射板34を配置することで、光源12から射出された光が導光板18に入射することなく、光射出面18側に漏れ出すことを防止できる。
これにより、光源12のLEDチップ40から射出された光を効率よく、導光板18の第1光入射面18d及び第2光入射面18eに入射させることができ、光利用効率を向上させることができる。
また、下部誘導反射板36も同様に、光源12から射出された光が導光板18に入射することなく、導光板18の第1傾斜面18b及び第2傾斜面18c側に漏れ出すことを防止できる。
これにより、光源12のLEDチップ40から射出された光を効率よく、導光板18の第1光入射面18d及び第2光入射面18eに入射させることができ、光利用効率を向上させることができる。
ここで、上部誘導反射板34は、下部誘導反射板36は、光源12から射出された光を第1光入射面18dまたは第2光入射面18e側に反射させ、光源12から射出された光を第1光入射面18dまた第2光入射面18eに入射させることができ、導光板18に入射した光を導光板18中心側に導くことができれば、その形状及び幅は特に限定されない。
次に、筐体16について説明する。
筐体16は、光源12と照明装置本体14を収納して支持するもので、基本的に、本体部16aと額縁部16bとを有する。
本体部16aは、上面が開放され、上方から照明装置本体14を収納して支持し、かつ、照明装置本体14の4方の側面を覆う形状であり、さらに、その4方の側面には、逆凹字(U字)形の折返部26が一体に形成されている。
額縁部16bは、上面に照明装置本体14の矩形状の光出射面14aより小さい矩形状の開口部28が形成され、下面が開放され、照明装置本体14およびこれが収納された本体部16aをその4方の側面も含め覆うように、照明装置本体14の光射出面14a側から被せられ、本体部16aに取り付けられている。
折返部26は、内面で導光板18、反射板24および後述の導光板支持部30の側面を支持し、かつ、折返部26の外側面が額縁部16bを嵌合されている。
本体部16aの折返部26と額縁部16bとの接合方法としては、ボルトおよびナット、接着剤、溶接等種々の公知の方法を用いることができる。筐体16は、基本的に以上のように構成される。
本実施形態の面状照明装置10は、さらに、本体部16aと反射板24との間に導光板支持部30が配置されている。導光板支持部30は、ポリカーボネート等の樹脂により形成されており、本体部16aと反射板24に当接している。
また、本体部16aの裏側には、光源12の電源(図示せず)を収納する電源収納部32(図1参照)が取り付けられている。
面状照明装置10は基本的に以上のような構成である。
このように、液晶表示装置2は、面状照明装置10の青色光を射出するLEDチップ40の発光面40aに蛍光部材17を配置することで、それぞれのLEDチップ40から射出された光は、蛍光部材17を透過し、導光板18の第1光入射面18dまたは第2光入射面18eに入射し光射出面18aから射出される
た、光射出面18aから射出された光は、プリズムシート20、拡散フィルム22等の光学部材を透過(通過)し、光射出面14aから射出される。
このようにして、導光板18の光射出面18aから射出された光は、光学部材20を透過し、照明装置本体14の光射出面14aから射出され、液晶表示パネル4を照明する。
液晶表示パネル4は、駆動ユニット6により、位置に応じて液晶セルを切り替えて選択的にカラーフィルタ80に光を透過させ、液晶表示パネル4の表面上に文字、図形、画像などを表示する。
面状照明装置10は、青色光を白色光に変換する蛍光体塗布部48で形成されている蛍光部材17の一部に開口部50を設け、LEDチップ40の発光面40aから射出される青色光の一部を青色光として射出させることで、導光板、照明装置本体または面状照明装置の光射出面から色温度の高い光を射出することができる。つまり、導光板の光入射面(第1光入射面または第2光入射面)とLEDの発光面との間に配置する蛍光部材の一部に開口部を設け、LEDから射出された光のうち一部の開口部を透過する光を青色光のまま透過させ、その他の蛍光体塗布部を透過する光を白色光に変換することで、光射出面から色温度の高い光を射出することができる。なお、蛍光部材を透過した青色光と白色光は、導光板を透過する際に混色される。
このように、面状照明装置10の光射出面から色温度の高い光を射出できることで、液晶表示パネルにより高画質な画像等を表示することができる。
また、蛍光部材17に形成する開口部50の比率を変化させて、蛍光部材17を透過した光の白色の光と青色光との割合を簡単に調整することができるため、簡単に色温度を調整させることができる。これにより、簡単な調整で導光板、照明装置本体または面状照明装置の光射出面から所望の色温度の光を射出させることができる。また、蛍光部材の蛍光物質の厚みにより色温度を制御するよりも、簡単に色温度を調整することができる。
ここで、蛍光部材17は、蛍光部材17の全体の面積をSaとし、開口部50の面積の和つまり、青色光透過部の面積の和をSapとしたときに、SaとSapとの関係が0.05≦Sap/Sa≦0.40を満たすことが好ましい。
Sap/Saを0.05以上とすることで、色温度を7000K以上にすることができ、0.40以下とすることで、色温度を35000K以下にすることができる。
以下、具体例とともにより詳細に説明する。
本具体的実施例では、蛍光部材17の全体の面積Saに対する青色光透過部の面積の和Sapの割合、つまりSap/Saを種々の値とした面状照明装置10の光射出面14aから射出される光の輝度分布及び色温度を測定した。なお、本実施例では、面状照明装置10の光射出面から射出された光を測定することにより、Sap/Saの変化に応じた色温度の変化を測定したが、液晶表示装置の画像表示面を測定した場合も同様の傾向となる。
図11は、蛍光部材17の全体の面積Saに対する青色光透過部の面積の和Sapの割合つまり、Sap/Saを0.05、0.1,0.15,0.2,0.25,0.3,0.35,0.4とした場合に、面状照明装置の光射出面から射出される光の波長分布(分光スペクトル)を測定した結果を示すグラフである。ここで、図11のグラフでは、縦軸を相対強度とし、横軸を波長[nm]とした。
また、図12は、蛍光部材17の全体の面積Saに対する青色光透過部の面積の和Sapの割合(Sap/Sa)と光射出面から射出される光の色温度との関係を示すグラフである。ここで、図12のグラフでは、縦軸を色温度[K]とし、横軸を蛍光部材17の全体の面積Saに対する青色光透過部の面積の和Sapの割合(Sap/Sa)とした。
図12に示すように、開口部を形成することにより、光射出面から射出される光の色温度を高くすることができることがわかる。
さらに、図12に示すようにSap/Saを変化させることで、色温度を種々の値とすることができることがわかる。具体的には、本実施形態によれば、蛍光部材全体に対する開口部の割合を0.05≦Sap/Sa≦0.40の間で調整することで、色温度を約7000K以上約34000K以下の任意の色温度とすることができることがわかる。つまり、開口部の大きさを調整するのみで、色温度を調整することができることがわかる。
また、図11に示すように、蛍光部材全体に対する開口部の割合を調整することにより、光射出面から射出される光の色味を調整できることもわかる。
以上より、本発明の効果は明らかである。
ここで、上記実施形態では、蛍光部材を、光源12のLEDチップ40の発光面40a上に積層させて配置したが、本発明はこれに限定されず、LEDの発光面と導光板の光入射面(第1光入射面、第2光入射面)との間であれば、どの位置に配置してもよい。
図13は、本発明の液晶表示装置に用いる面状照明装置の他の一例を示す拡大断面図である。
ここで、本実施形態の面状照明装置は、上述した2等分線を軸として対称形状であるので、導光板の一方の端部つまり第1光入射面18d側の端部のみを示し、第2光入射面18e側の端部の記載は省略しているが、第2光入射面18e側も同様の構成である。また、後述する面状照明装置の他の例も同様である。
図13に示す面状照明装置は、蛍光部材17aが、導光板18の第1光入射面18dに接触させて配置されている。つまり、蛍光部材17aは、導光板18の第1光入射面18dの光が入射する全面を覆うように配置されている。
ここで、蛍光部材17aは、第1光入射面18dとより大きい面積か、同じ面積のシートであることが好ましい。蛍光部材17aと第1光入射面との面積を同一か、蛍光部材17aの面積の方を大きくすることで、LEDチップ40から射出された光が蛍光部材17aを透過することなく、導光板18の第1光入射面18dに入射することを防止できる。
なお、図13に示すように、蛍光部材17aを導光板18の光入射面18dに直接配置する場合は、透明シートを用いることなく、導光板18の光入射面18dに直接蛍光物質を塗布して、蛍光体塗布部と開口部を形成するにより、蛍光部材17aを設けてもよい。
また、本実施形態では、蛍光部材17の開口部50を、矩形形状としたが、これに限定されず、種々の形状とすることができる。
図14(A)〜(C)は、それぞれ蛍光部材の他の一例を示す正面図である。
例えば、図14(A)に示すように、蛍光部材60aの開口部64aの形状を円形とし、蛍光部材60aの開口部64aを除く部分を蛍光体塗布部62aてもよい。なお、開口部の形状は、円形に限定されず、楕円形、多角形、星型等、種々の形状とすることができる。
また、図14(B)に示すように、蛍光部材60bの開口部64bの形状を、発光面の一辺と平行な棒形状とし、この開口部64bを一定間隔で配置し、蛍光部材60bの開口部64bを除く部分を蛍光体塗布部62bとしてもよい。
さらに、図14(C)に示すように、蛍光部材60cの開口部64cの形状を、X字形状とし、蛍光部材60cの開口部64cを除く部分を蛍光体塗布部62cとしてもよい。
このように開口部の形状は特に限定されないが、開口部は、1つのLEDチップの発光面に対して複数個設けることが好ましい。1つのLEDチップの発光面に対して開口部を複数設けることにより、LEDチップから射出され蛍光部材を透過することで生成される青色光と白色光とを混色しやすくすることができる。これにより、光射出面から、色むらがなくまたは色むらが低減され、かつ、色温度の高い光を射出させることができる。
また、1つの開口部の面積は、0.1mm2以上0.5mm2以下とすることが好ましい。1つの開口部の面積を、0.1mm2以上とすることで、蛍光部材に開口部を確実に形成し、開口部から青色光を射出させることができ、0.5mm2以下とすることで、蛍光部材を透過した光を効率よくかつ確実に混色させることができ、光射出面から色むらがなくまたは色むらが低減され、かつ、色温度の高い光を射出させることができる。
なお、本実施形態では、蛍光部材の一部に開口部を形成し、この開口部を、青色光を青色のまま透過する青色光透過部としたが、本発明はこれに限定されず、透明シートに選択的に蛍光物質を塗布し、透明シート上に蛍光物質が塗布された蛍光体塗布部と蛍光物質が塗布されていない透明部とを形成し、透明部を、青色光を青色光のまま透過する青色光透過部としてもよい。
また、上記実施形態では、蛍光部材を1枚のシート形状としたが、本発明はこれに限定されず、LEDチップの発光面毎に個別に蛍光部材を配置してもよい。
図15(A)〜(C)は、それぞれ面状照明装置の他の一例の蛍光部材と光源の一部を示す図であり、(A)は、上面図、(B)は、正面図、(C)は、側面図である。
図15(A)〜(C)に示す蛍光部材70は、LEDチップ40毎に設けられており、各蛍光部材70は、LEDチップ40の発光面40aに接触して設けられている。本実施形態では、蛍光部材70は、発光面40aに接着されている。
蛍光部材70は、蛍光体塗布部72と開口部74とを有し、LEDチップ40の発光面40aの全面を覆うように設けられている。蛍光部材70は、蛍光物質が塗布されて形成された蛍光体塗布部72と、所定間隔毎に所定径の円形の開口として形成された開口部74とで構成されている。つまり、蛍光部材70も、LEDチップ40から射出された青色光を白色光に変換する領域である蛍光体塗布部72と、青色光を青色光のまま射出させる領域である開口部つまり青色光透過部とで構成されている。
このように、蛍光部材70をLEDチップ40毎に設けても、LEDチップ40の発光面40aの全面に蛍光部材70を配置することで、発光面40aから射出された光は、蛍光部材70の蛍光体塗布部72または開口部74を透過(通過)する。
これにより、上述と同様に、LEDチップ40から射出された光の一部が青色光として入射させることができ、簡単な構成で、色温度の高い光を光射出面から射出させることができる。
また、LEDチップの発光面毎に蛍光部材を設ける場合も、開口部の形状は特に限定されず、図15()に示すようにように開口部74を円形としてもよく、図16(A)に示すように、蛍光部材76aの開口部78aを矩形としてもよい。
また、蛍光部材は、射出された光の混色が効率よくでき、光射出面から色むらのない光を射出できるため、1つのLEDチップ40の発光面40aに対して、複数の透明部を設けることが好ましいが、図16(B)に示すように、1つの発光面40aに対して1つの開口部78bを設ける構成としてもよい。つまり、1つの蛍光部材76bに対して、1つの開口部78bを設ける構成としてもよい。また、この場合も透明部の形状は特に限定されず、図16(B)では、開口部78bを矩形状としたが、図16(C)に示すように、蛍光部材76cの開口部78cを円形としてもよく、これにも限定されず、楕円形、星型、多角形、X字形等種々の形状とすることができる。
ここで、本実施形態のように、蛍光部材70をLEDの発光面に接触して設ける場合は、発光面に蛍光物質を直接塗布して、蛍光体塗布部と開口部とを形成してもよい。
これにより、蛍光部材70の位置ずれを防止でき、さらに、透明シートを用いることなく、蛍光部材を形成することができるため、部材を減らすことができ、装置構成をより簡単にすることができる。
ここで、液晶表示パネル4のカラーフィルタ80は、青色フィルタ82Bの分光透過率が最大となる波長と、LED40から射出される光の発光スペクトルの強度が最大となる波長、つまり、光源12のLED40から発光される光の波長スペクトルの主要ピークの波長との差が20nm以下であり、かつ、青色フィルタ82Bの分光透過率と緑色フィルタ82Gの分光透過率とが同じ値となる波長での分光透過率、つまり、青色フィルタ82Bの透過率特性をT(λ)、緑色フィルタ82Gの透過率特性をT(λ)としたときのT(λ)とT(λ)との交点の分光透過率をPBGとし、青色フィルタ82Bの分光透過率の半値幅[nm]をWとすると、PBGとWとが0≦PBG≦0.5、かつ、60≦W≦100を満足することが好ましい。ここで、半値幅とは、カラーフィルタの透過率の波長依存性により決定される値であり、強度が最大強度の半分となる一方の波長から他方の波長までの波長範囲(つまり波長範囲)である。
このようにカラーフィルタの青色フィルタの分光透過率が最大となる波長とPBGとWとが、上記範囲を満足することで、液晶表示装置の表示面、つまり液晶表示パネルに表示される画像等の彩度が低下することを防止でき、色再現性を確実に高くすることができ、さらに光利用効率を高くすることができる。
または、カラーフィルタ80は、青色フィルタ82Bの分光透過率が最大となる波長と、LED40から射出される光の発光スペクトルの強度が最大となる波長との差が20nm以下であり、かつ、緑色フィルタ82Gの分光透過率と赤色フィルタ82Rの分光透過率とが同じ値になる波長での分光透過率、つまり、赤色フィルタ82Rの透過率特性をT(λ)としたときに、上述のT(λ)とT(λ)との交点の分光透過率をPGRとし、緑色フィルタ82Gの分光透過率の半値幅[nm]をWとすると、PGRとWとが、0≦PGR≦0.2、かつ、60≦W≦100を満足することも好ましい。
このようにカラーフィルタの青色フィルタの分光透過率が最大となる波長とPGRとWとが、上記範囲を満足することでも、液晶表示装置の表示面、つまり液晶表示パネルに表示される画像等の彩度が低下することを防止でき、色再現性を確実に高くすることができる。さらに光利用効率を高くすることができる。
さらに、青色フィルタ82Bの分光透過率が最大となる波長と、光源12のLED40から射出される光の発光スペクトルの強度が最大となる波長との差が20nm以下であり、かつ、PBGとWとPGRとWとが、0≦PBG≦0.5、60≦W≦100、0≦PGR≦0.2、かつ、60≦W≦100の全てを満足することがより好ましい。
このようにカラーフィルタが、上記範囲のいずれもを満足することで、液晶表示装置の表示面、つまり液晶表示パネルに表示される画像等の彩度が低下することをより確実に防止でき、色再現性をより確実に高くすることができる。さらに光利用効率を高くすることができる。
さらに、本発明の面状照明装置は、光源に隣接して補助光源を配置することが好ましい。図17は、光源と補助光源の概略構成を示す正面図である。
補助光源90は、複数の補助LEDチップ92を有し、各補助LEDチップ92は、それぞれ光源12のLEDチップ40に隣接して配置されている。つまり、アレイ基板42の導光板18側の面には、LEDチップ40と補助LEDチップ92とは、交互に配置されている。また、補助LEDチップ92は、アレイ基板42に支持されている。
ここで、補助LEDチップ92としては、赤色光を射出させる赤色LED、緑色光を射出する緑色LED、青色LED等種々の色のLEDを用いることができる。ここで、本発明において、赤色光とは、射出光のピーク波長、つまり、発光スペクトルの強度が最も高くなる波長が600nm以上700nm以下の光であり、緑色光とは、射出光のピーク波長が500nm以上580nm以下の光である。
このように、補助光源を設け、補助光源からも光を射出させることでも、光射出面から射出される光の色再現性を高くすることができる。
ここで、補助光源から射出させる光は、光源から射出される光と異なる波長の光とすることが好ましい。補助光源から射出させる光を光源から射出される光と異なる波長の光とすることで、照明装置本体から射出される光の色再現性を高くすることができる。
補助LEDチップとしては、種々のLEDを用いることができるが、補助LEDチップとしては、ピーク波長(つまり、最大波長もしくは中心波長)が380nm以上780nm以下、つまり可視光域であり、かつ半値幅が5nm以上20nm以下の光を射出するLEDチップを用いることが好ましい。補助LEDチップとして、上記範囲を満たすLEDを用いることで、射出される光の色再現性を効率よく向上させることができる。
また、1つのLEDチップ40に対応して、1つの補助LEDチップ92を配置することに限定されず、1つのLEDチップ40に対して、複数の補助LEDチップ92を配置してもよく、逆に、複数のLEDチップ40に対して1つの補助LEDを配置してもよい。
また、複数の補助LEDチップを配置する場合は、同じ光を射出する、つまり、同じ波長スペクトルの光を射出する1種類の補助LEDチップを複数用いても、異なる光を射出する、つまり、異なる波長スペクトルの光を射出する複数種類の補助LEDチップを複数用いてもよい。例えば、補助光源として、上述した赤色LEDと緑色LEDとを組み合わせてもよい。
ここで、光源のLEDチップから射出される光の光量を、lmとし、補助光源の補助LEDチップから射出される光の光量をlsとしたとき、0.05≦ls/lm<0.5を満たすことが好ましい。
ls/lmを上記範囲とすることにより、補助光源から射出された光に起因して、光射出面から射出される光に色むらを生じさせることなく、色再現性を高くすることができる。また、調整も簡単に行うことができる。
なお、補助光源を配置する場合は、蛍光部材70をLEDチップ40毎に個別に配置する(図15参照)ことが好ましい。
蛍光部材をLEDチップ毎に配置することで、補助光源から射出された光は、直接導光板の光入射面に入射する。これにより、光利用効率を高くすることができる
以下、より具体的実施例とともに本発明に好適に用いることができるカラーフィルタについてより詳細に説明する。
まず、カラーフィルタ80の青色フィル82として、それぞれ分光透過率が最大となる波長が460nmであるカラーフィルタ(0)を用いた場合と、分光透過率が最大となる波長が435nmであるカラーフィルタ(2)を用いた場合の分光透過強度を測定した。ここで、光源としては、射出される光の強度が最大となる波長、つまり、発光スペクトルの強度が最大となる波長が440nmのLEDチップを用いた。
図18(A)及び(B)は、それぞれカラーフィルタの一例を示すグラフである。図18(A)及び(B)では、縦軸を透過率[%]とし、横軸を波長[nm]とした。
図18(A)に示すように、青色フィルタ82Bとして、分光透過率が最大となる波長、つまり、分光透過率が最も高い波長と、光源12のLED40から射出される光の発光スペクトルの強度が最大となる波長との差が5nmとなる透過率特性を有するフィルタを用いることで、図18(B)に示すように、青色フィルタ82Bとして、分光透過率が最大となる波長と、LED40から射出される光の発光スペクトルの強度が最大となる波長とが異なる波長となる透過率特性を有するフィルタを用いる場合、すなわち、互いのピークの波長がずれている、つまり差が20nmの透過率特性を有するフィルタを用いた場合よりも光利用効率を高くすることができ、色再現性を高くすることができる。また、互いのピークの波長の差が20nmとした場合でも一定以上の光利用効率とすることでき、色再現性も一定以上とすることができる。
具体的には、図18(B)に示すカラーフィルタを有する液晶表示装置では、NTSC比が64%であったが、フィルタ82として、ピークが一致するフィルタを用いたこと以外は同様の構成の図18(A)に示すカラーフィルタを有する液晶表示装置では、NTSC(national teledision system committee)比が68.4%であった。このように、分光透過率が最も高い波長と、光源12のLED40から射出される光の発光スペクトルの強度が最大となる波長との差を20nm以下、より好ましくは両者を同一波長とすることで、色再現性を高くすることができ、また、光の利用効率も高くすることができる。
次に、光源の構成、カラーフィルタの構成、補助光源を種々の構成とした液晶表示装置について、それぞれ、光射出面から射出される光の色温度、及びNTSC(national teledision system committee)比を測定した。
図19(A)及び図19(B)に、本実施例に用いたカラーフィルタの各色のフィルタの分光透過率を示す。ここで、図19(A)には、カラーフィルタ80の赤色フィルタ82RとしてR0、緑色フィルタ82GとしてG0、青色フィルタ82BとしてB0のフィルタを用いた場合の透過率分布を示し、図19(B)には、カラーフィルタ80の赤色フィルタ82RとしてR0、緑色フィルタ82GとしてG5、青色フィルタ82BとしてB6のフィルタを用いた場合の透過率分布を示す。なお、図19(A)及び図19(B)は、縦軸を透過率[%]とし、横軸を波長[nm]とした。
図19(A)に示すように、R0/G0/B0の各色フィルタを組み合わせたカラーフィルタは、PBG=0.65、PGR=0.27、W=75、W=65となる。これに対して、図19(B)に示すように、R0/G5/B6の各色フィルタを組み合わせたカラーフィルタは、PBG=0.23、PGR=0.07、W=105、W=100となる。
つまり、図19(A)に測定結果を示したカラーフィルタは、上述したカラーフィルタの好適範囲から外れたカラーフィルタであり、図19(B)に測定結果を示したカラーフィルタは、上述したカラーフィルタの好適範囲を満たすカラーフィルタである。
図20(A)及び図20(B)は、それぞれ、図19(A)及び図19(B)に示したカラーフィルタを透過した光の波長依存性を示すグラフである。ここで、図20(A)及び図20(B)では、縦軸を透過光の相対強度とし、横軸を波長[nm]とした。
図20(A)に示すように、上述の好適範囲を満たさないカラーフィルタから透過される光は、青色フィルタと緑色フィルタの両方を透過する光及び緑色フィルタと赤色フィルタの両方を透過する波長域が広域となり、かつ、この両方のフィルタが光を透過する波長域のそれぞれの透過光の強度が強く(高く)なるため、光射出面から射出される光の彩度が低くなってしまう。これに対して、図20(B)に示すように、上述の好適範囲を満たすカラーフィルタから透過される光は、複数のフィルタを透過する光の波長域が狭くなり、かつ、両方のフィルタが光を透過する波長域においては、一方のフィルタから透過する光の強度が低くなるため、所定の波長域において2種類以上のフィルタから高い強度の光が射出されることが防止でき、彩度の高い光を射出させることができることがわかる。
次に、表2及び表3に、条件、測定結果及び測定結果から算出した算出値を示す。また、比較例として、蛍光部材に開口部を形成せず、補助光源も設けず、カラーフィルタとして上述した好適に範囲に含まれない液晶表示装置の条件、測定結果及び測定結果から算出した算出値も併せて示す。
さらに、図21が、表2に示した各実施例及び比較例のそれぞれの液晶表示装置の光射出面から射出された光の三原色点をCIEXYZ表色系の視野角2°での色度図で示すグラフである。ここで、図21では、縦軸をCIEXYZ表色系のy軸とし、横軸をCIEXYZ表色系のx軸とした。また、図21には、比較のために、NTSC方式における三原色点を示す。
Figure 0004996941
Figure 0004996941
図21、表2及び表3の実施例1、実施例3、比較例1に示すように、蛍光部材に開口部を形成することで、色温度を高くすることができることがわかる。また、Sap/Saを調整することで、色温度を高くすることができることも分かる。
また、実施例2に示すように、カラーフィルタのPBG、PGR、W、Wを上記の好適範囲内とすることで、NTSC比をより高くすることができる。つまり、色温度を高くし、かつ色再現性を高くすることができることが分かる。
さらに、実施例4に示すように、補助光源を配置することでも、比較例に対して、色温度及びNTSC比を高くすることができることがわかる。
実施例5に示すように、カラーフィルタのPBG、PGR、W、Wを上記の好適範囲内とし、さらに補助光源を配置することで、色温度及びNTSC比を高くすることができることがわかる。
以上より、本発明の効果は明らかである。
次に、図2及び図5に示すように、本実施形態の液晶表示装置2の面状照明装置10の光源12のLEDチップ40及びアレイ基板42は、導光板18の光射出面18aに垂直、かつ、第1光入射面18dまたは第2光入射面18eの長辺方向の辺に平行な面S(以下「基準面S」ともいう。)に対して所定角度θ傾斜して配置されている。具体的には、LEDチップ40の発光面40aが基準面Sに対して、角度θ傾斜して配置されている。つまり、発光面40aが基準面Sから光射出面18aに向けて角度θ回転させた位置に配置されている。
このように、光源12を傾斜して配置することで、発光面の大きい光源から射出される光を効率よく導光板に入射させることができ、発光面の大きい光源を用いることで、光源から射出する光の量を多くすることができる。つまり、発光面の大きい光源から射出された光を効率よく導光板に入射させることで、導光板の光射出面から高輝度な光を射出させることができる。
また、上部誘導反射板及び下部誘導反射板を配置し、光源から射出された光を反射させることで、発光面を所定角度傾斜させて配置させた場合でも、光源から射出された光が導光板に入射することなく射出されることを防止でき、光源から射出された光を効率よく導光板の第1光入射面及び第2光入射面に入射させることができる。
ここで、光源12のLEDチップ40は、発光面40aの傾斜方向の長さ、つまり、本実施形態ではLEDチップ40の配列方向に直交する方向のLEDチップ40の発光面40aの長さa(図6参照)が、第1光入射面18dの光射出面18aの端縁側における光射出面18aと直交する方向の第1光入射面の断面の長さ、本実施例では、導光板18の光射出面18aに垂直な方向における導光板18の第1光入射面18dまたは第2光入射面18eの長さd1(以下「光入射面の有効断面の長さd1」という。)、つまり、第1光入射面18dまたは第2光入射面18eにおける導光板の厚み方向の長さよりも長いことが好ましい。
発光面40aの長さaを光入射面の有効断面の長さd1よりも大きくすることで、発光面からより多くの光を射出させることができる。
また、発光面40aを基準面Sに対して所定角度θ傾斜させて配置することで、発光面40aの長さaを光入射面の有効断面の長さd1よりも大きくした場合でも、効率よく導光板に光を入射させることができ、上述したように、輝度の高い光を効率よく、導光板の光射出面から射出させることができる。
ここで、基準面Sに対する発光面40aの傾斜角度θは、15°以上90°以下、つまり、15°≦θ≦90°とすることが好ましく、15°以上75°以下、つまり、15°≦θ≦75°とすることがより好ましい。ここで、傾斜角度θは、基準面Sを基準として、発光面40aを光射出面18a側に傾けた角度であり、θ=90°のとき、発光面40aは、光射出面18aと平行となり、発光面40aからは、導光板18の光射出面18aから射出される光と同一方向に光が射出される。
発光面40aの傾斜角度θを、15°≦θ≦90°とすることで、光利用効率をより高くすることができ、かつ、光射出面から射出される光を均一にすることができ、15°≦θ≦75°とすることで、光利用効率をより高くし、より均一にすることができる。
なお、光源12は、本実施形態のように、発光面40を光射出面側に向けて配置することが好ましいが、本発明はこれに限定されず、光源12の発光面40aを第1傾斜面18bまたは第2傾斜面18cに向けて配置してもよい。
以下、具体的実施例とともに面状照明装置10についてより詳細に説明する。ここで、本実施例の面状照明装置は、上述した2等分線αを軸として対称形状であるので、代表して第1光入射面側を用いて説明する。また、本実施例では、液晶表示パネル、つまりカラーフィルタを配置せず、面状照明装置の光射出面から射出される光を測定した。つまり液晶表示装置の射出面ではなく、面状照明装置の光射出面から射出される光を測定した。
本実施例の面状照明装置は、LEDチップ40の配列方向に直交する方向のLEDチップ40の発光面40aの長さaを2.5mm、LEDチップ40の厚みw1を0.5mm、LEDチップ40の配列方向に直交する方向のアレイ支持体42の長さd2を3.0mm、アレイ支持体42の厚みw2を0.5mm、導光板18の第1光入射面18dの有効断面の長さd1を2.0mm、上部誘導反射板34と導光板18の光射出面18aとが重なっている長さ、つまり、光入射面18dと上部誘導反射板34の導光板18中心側の端部との距離Lを5mmとした。また、反射板24及び下部誘導反射板36には、厚さ0.1mmで、反射率98%の反射フィルムを用い、上部誘導反射板34には、厚み0.1mm、反射率90%の反射フィルムを用いた。ここで、反射板24と下部誘導反射板36とは一枚の反射フィルムで形成されている。また、反射板24と下部誘導反射板36とは、連結部、つまり、導光板18の端部の第1光入射面18dに対応する位置で折り曲げられている。
このような形状の面状照明装置の光源12のLEDチップ40の発光面40aの傾斜角度θをθ=15°、30°、45°、60°、75°とした場合の面状照明装置の光源の光利用効率を測定した。
また、図22(A)に示すように、θ=0°、つまり、発光面40aを基準面Sと平行になる位置つまり角度で配置した面状照明装置の光源の光利用効率を測定した。さらに、図22(B)に示すように、LEDチップ40の配列方向に直交する方向のLEDチップ40の発光面40aの長さaを1.45mmとし、θ=0°として配置した面状照明装置の光源の光利用効率を測定した。なお、図22においては、寸法線を明確に示すために、蛍光部材17の図示を省略したが、蛍光部材17は、図5と同様にLEDチップ40の発光面40aに接して配置されている。
測定した結果を下記表4及び図23に示す。
Figure 0004996941
表4及び図23に示すように、光源の発光面を所定角度傾斜させることで、発光面40aを基準面Sと平行になる位置つまり角度で配置した場合よりも光利用効率を高くすることができることがわかる。つまり、導光板により多くの光を入射させることができ、光源から射出される光の輝度または照度をより高くすることができる。
さらに、本実施例においては、発光面40aの傾斜角度θを、15°≦θ≦45°以下とすることで、光入射面の有効断面の長さよりもLEDチップ40の配列方向に直交する方向のLEDチップ40の発光面40aの長さaを短くしたLEDチップ40を配置した場合よりも光利用効率を高くすることができることがわかる。
つまり、発光面の傾斜角度θを調整することで、光源から射出される光をより効率よく導光板に入射させ、光射出面からより輝度及び照度の高い光を射出させることができる。
なお、本実施例では、液晶表示パネル、つまりカラーフィルタを配置せず、面状照明装置の光射出面の光を測定した実施例としたが、カラーフィルタを配置した場合も、つまり、液晶表示パネルから射出される光を測定した場合も、同様に、発光面の傾斜角度θを調整することで、光源から射出される光をより効率よく導光板に入射させ、光射出面からより輝度及び照度の高い光を射出させることができる。つまり、上述した効果は、カラーフィルタの有無に係わらず得ることができる。
次に、面状照明装置の他の実施形態について説明する。
図24は、本発明の面状照明装置の他の実施形態を示す概略断面図であり、図25は、図24に示した面状照明装置の一部を拡大した拡大断面図である。
図24及び図25に示す面状照明装置100は、導光板18’の第1光入射面18d’及び第2光入射面18e’の形状を除いて、図1、図2及び図5に示す面状照明装置10と同様の構成である。したがって、両者で同一の構成要素には同一の符号を付してその詳細な説明は省略し、以下、面状照明装置100に特有の点を重点的に説明する。
面状照明装置100は、光源12と、矩形状の光射出面14aから均一な光を射出する照明装置本体14’と、光源12と照明装置本体14との間に配置された蛍光部材17bと、内部に光源12、照明装置本体14’、蛍光部材17bを収納する筐体16とを備えている。また、照明装置本体14’は、導光板18’と、プリズムシート20と、拡散フィルム22と、反射板24と、上部誘導反射板34と、下部誘導反射板36を有する。ここで、光源12、筐体16、プリズムシート20、拡散フィルム22、反射板24、上部誘導反射板34、下部誘導反射板36は、上述した面状照明装置10と同様の構成であるので、詳細な説明を省略する。
導光板18’は、図24及び図25に示すように、略矩形形状の平坦な光射出面18aと、この光射出面18aの両端に、光射出面18aに垂直な基準面Sに対して所定角度θ1傾斜して形成された2つの光入射面(第1光入射面18d’と第2光入射面18e’)と、光射出面18aの反対側に位置し、第1光入射面18d’および第2光入射面18e’に平行で、光射出面18aを2等分する2等分線α(図1参照)を中心軸として互いに対称で、光射出面18aに対して所定の角度で傾斜する2つの傾斜面(第1傾斜面18bと第2傾斜面18c)とを有している。第1傾斜面18b及び第2傾斜面18cは、第1光入射面18d’及び第2光入射面18e’から遠ざかるに従って光射出面18aからの距離が遠ざかる(大きくなる)ように、つまり、それぞれ第1光入射面18d’及び第2光入射面18e’から導光板18’の中心に向かうに従って、導光板の光射出面に垂直な方向の厚みが大きくなるように傾斜している。つまり、導光板18’は、両端部、すなわち第1光入射面18d’と第2光入射面18e’で厚みが最も薄くなり、中央部、すなわち第1傾斜面18bと第2傾斜面18cが交差する2等分線αの位置で厚さが最大となる。なお、光射出面18aに対する第1傾斜面18b及び第2傾斜面18cの傾斜角度は特に限定されない。
また、光源12は、それぞれ導光板18’の第1光入射面18d’及び第2光入射面18e’に対向して配置されている。つまり、面状照明装置10は、2つの光源12が、導光板18’をはさみこむように配置されている。言い換えれば、所定間隔離間して、向かい合って配置された2つの光源12の間に導光板18’が配置されている。
ここで、面状照明装置100も上述した面状照明装置10と同様に2等分線αを中心軸として対称形状であるので、代表して第1光入射面側を用いて説明する。
本実施形態の面状照明装置100は、図25に示すように、基準面Sに対する第1光入射面18d’の傾斜角度θ1と、第1光入射面18d’に対向して配置された光源12のLEDチップ40の発行面40aの基準面Sに対する傾斜角θとが同一角度で配置されている。つまり、第1光入射面18d’と発光面40aとが平行に配置されている。
本実施形態のように、導光板18の第1光入射面18d’を基準面Sに対して所定角度傾斜させた場合も、光源12のLED40の発光面40aに蛍光部材17bを配置することで、光射出面14から射出される光の色温度を高くすることができ、また、青色光透過部つまり、開口部または透明部の形状を調整することで光射出面14aから射出される光の色温度を所望の色温度とすることができる。
なお、本実施形態の場合も、蛍光部材17bの配置位置は、LEDの発光面と導光板の光射出面の間であれば、例えば、光入射面に接触(密着)させて配置する等、どの位置に配置してもよい。
また、導光板18の第1光入射面18d’を基準面Sに対して、所定角度θ1傾斜させることで、第1光入射面18’の表面積を第1光入射面18’の有効断面の表面積よりを大きくすることができる。これにより、光源12の発光面40aから射出された光を導光板18’に効率よく入射させることができる。
ここで、本実施形態のように第1光入射面18d’を傾斜させた形状とする場合は、第1光入射面18d’の光射出面18aの端縁側、つまり、第1光入射面18d’と光射出面18aとの接点(接線、つまり連結位置)における光射出面18aと略直交する方向の断面が、光入射面の有効断面となる。
また、本実施形態のように、導光板18の第1光入射面18d’を光源12の発光面40aに対して平行にすること、つまり、基準面Sに対する第1光入射面の傾斜角度を、それぞれ対向して配置された光源の発光面の傾斜角度と同一角度とするで、発光面40aから射出された光を導光板18の第1光入射面18d’に効率よく入射させることができる。
ここで、第1光入射面18d’の傾斜角度θ1は、本実施形態のように、光源の発光面40aの傾斜角度θと同一角度とすることが好ましいが、本発明はこれに限定されず、傾斜角度θ1と傾斜角度θとを異なる角度してもよい。つまり、第1光入射面18d’に対して、発光面40aを所定角度傾けて配置してもよい。
以下、具体的実施例とともに面状照明装置100についてより詳細に説明する。
本実施例の面状照明装置100は、LEDチップ40の配列方向に直交する方向のLEDチップ40の発光面40aの長さaを2.5mm、LEDチップ40の厚みw1を0.5mm、LEDチップ40の配列方向に直交する方向のアレイ支持体42の長さd2を3.0mm、アレイ支持体42の厚みw2を0.5mm、導光板18’の第1光入射面18d’の有効断面の長さd1を2.0mm、第1光射出面18d’の長さ、つまり、光射出面18aと第1傾斜面18bとを結ぶ第1光射出面18d’の長さd3を(2.0/cosθ1)、上部誘導反射板34と導光板18’の光射出面18aとが重なっている長さ、つまり、第1光入射面18d’と上部誘導反射板34の導光板18’中心側の端部との距離Lを5mmとした。また、反射板24及び下部誘導反射板36には、厚さ0.1mmで、反射率98%の反射フィルムを用い、上部誘導反射板34には、厚み0.1mm、反射率90%の反射フィルムを用いた。ここで、反射板24と下部誘導反射板36とは一枚の反射フィルムで形成されている。また、反射板24と下部誘導反射板36とは、連結部、つまり、導光板18’の第1光入射面18d’に対応する位置で折り曲げられている。
また、光源12の発光面40aと導光板18の第1光入射面18d’とは平行に、つまり、発光面40aの傾斜角度θと、第1光入射面18d’の傾斜角度θ1とは同一角度とした。なお、本実施例の場合も、面状照明装置の光射出面から射出される光を測定した。
このような形状の面状照明装置の発光面40aの傾斜角度θ及び第1光入射面θ1をθ=θ1とし、かつθ=15°、30°、45°、60°、75°とした場合の面状照明装置の光源の光利用効率を測定した。
また、上記実施例と同様に、図22(A)に示すように、θ=0°、つまり、発光面40aを基準面Sと平行になる位置、角度で配置した面状照明装置の光源の光利用効率を測定した。さらに、図22(B)に示すように、LEDチップ40の配列方向に直交する方向のLEDチップ40の発光面40aの長さaを1.45mmとし、θ=0°として配置した面状照明装置の光源の光利用効率を測定した。
測定した結果を下記表5及び図26に示す。
Figure 0004996941
表5及び図26に示すように、光源の発光面と導光板の光入射面を所定角度傾斜させることで、発光面40aを基準面Sと平行になる位置つまり角度で配置した場合と略同一、または、発光面40aを基準面Sと平行になる位置で配置した場合よりも光利用効率を高くすることができることがわかる。また、本実施形態では、同じ光源を用いたが、傾斜して配置することで、光源をより大きくすることも可能となる。つまり、導光板により多くの光を入射させることができ、光源から射出される光の輝度または照度をより高くすることができる。
さらに、本実施例においては、発光面40aの傾斜角度θ及び導光板の傾斜角度θ1を、θ=θ1、かつ15°≦θ≦60°以下とすることで、光入射面の有効断面の長さよりもLEDチップ40の配列方向に直交する方向のLEDチップ40の発光面40aの長さaを短くしたLEDチップ40を配置した場合よりも光利用効率を高くすることができることがわかる。
つまり、発光面の傾斜角度θ及び導光板の傾斜角度θ1を調整することで、光源から射出される光をより効率よく導光板に入射させ、光射出面からより輝度及び照度の高い光を射出させることができる。
次に、他の具体的実施例について説明する。
本実施例では、θ=45°とし、第1光入射面18dと上部誘導反射板34の導光板18中心側の端部との距離Lを5mmとした上述した面状照明装置10の具体的実施例と略同様の構成とした2つの面状照明装置の光射出面から射出されるそれぞれ各位置の輝度(cd/m2)、照度(lx)、光利用効率(%)及び平均輝度(cd/m2)を測定した。なお、本実施例の場合も面状照明装置の光射出面から射出される光を測定した。
さらに、θ=θ1=45°とし、第1光入射面18d’と上部誘導反射板34の導光板18中心側の端部との距離Lをそれぞれ5mmと10mmとしたことを除いて上述した面状照明装置100の具体的実施例と略同様の構成とした2つの面状照明装置の光射出面から射出されるそれぞれの各位置の輝度(cd/m2)、照度(lx)と、光利用効率(%)及び平均輝度(cd/m2)とを測定した。また、反射板を配置せず、導光板の光入射面及び光源の発光面が基準面と平行とした面状照明装置の光射出面から射出される各位置の輝度(cd/m2)、照度(lx)と、光利用効率(%)及び平均輝度(cd/m2)も測定した。
測定した輝度分布を図27に、照度分布を図28に示す。ここで、図27は、縦軸を輝度(cd/m2)とし、横軸を導光板中心からの距離(mm)とした。また、図28は、縦軸を照度(lx)とし、横軸を導光板中心からの距離(mm)とした。
また、表6に測定した光利用効率(%)及び平均輝度(cd/m2)を示す。
Figure 0004996941
表6に示すように、光入射面を傾斜させ、上部誘導反射部材を配置することで、平均輝度及び光利用効率をより高くすることができることがわかる。
また、上部誘導反射板の長さLを5mmとすることで、平均輝度を高くすることができることがわかる。
以上より本発明の効果は明らかである。
次に、本発明の面状照明装置のさらに他の実施形態について説明する。
図29(A)及び(B)、図30は、それぞれ、本発明の面状照明装置の他の実施形態を示す拡大断面図である。ここで、図29(A)に示す面状照明装置110、図29(B)に示す面状照明装置110’及び図30に示す面状照明装置150も、上述した面状照明装置10及び面状照明装置100と同様に左右対称な形状であるので、一方の端部のみを示す。
図29(A)に示す面状照明装置110は、基準面Sに対する発光面40aの傾斜角度θを90°としたことを除いて、他の構成は、基本的に面状照明装置10と同様の構成である。
面状照明装置110の光源12は、LEDチップ40の発光面40aの傾斜角度θが90°となる位置、つまり、発光面40aが第1光入射面18dに対して垂直に配置されている。このLEDチップ40は、第1光入射面18dの第1傾斜面18b側に配置されている。
蛍光部材17cは、LEDチップ40の光射出面40aに接触して配置されている。
なお、蛍光部材17cの形状、構成は、上述した蛍光部材17と同様であるので、その詳細な説明は省略する。
上部誘導反射板112は、導光板18の光射出面の端部で折り曲げられた板状部材であり、導光板18の光射出面18aの一部から、LEDチップ40の発光面40aの第1光入射面18dよりも遠い側の端部までを覆って配置されている。なお、上部誘導反射板112としては、上述した上部誘導反射板34と同様の材料を用いることができる。
この面状照明装置110は、光源12から射出され、蛍光部材17cを透過された光が、直接または上部誘導反射板112に反射された後、第1光入射面18dから導光板18に入射する。導光板18に入射した光は、上述した面状照明装置10と同様に光射出面から射出される。
本実施形態の構成でも同様に、光源12のLED40の発光面40aに蛍光部材17eを配置することで、光射出面14から射出される光の色温度を高くすることができ、また、青色光透過部つまり、開口部または透明部の形状を調整することで光射出面14aから射出される光の色温度を所望の色温度とすることができる。
このように、発光面40aの傾斜角度θを90°にすることでも、発光面が大きい光源、例えば、光入射面の有効断面の長さよりも長い発光面を有する光源から射出された光を効率よく光射出面に入射させることができ、光利用効率を向上させることができる。また、傾斜角度θを90°にすることで、発光面の面積をより大きくすることができるため、光射出面から輝度または照度の高い光を射出させることができる。
また、本実施形態の場合も、蛍光部材の配置は特に限定されず、図29(B)に示すように、面状照明装置110’の導光板18の第1光入射面19dに接触する位置に蛍光部材17cを配置してもよい。
図30に示す面状照明装置150は、導光板152の形状を除いて、図29(A)に示した面状照明装置110と同様の構成である。
導光板152は、略矩形形状の平坦な光射出面152aと、光射出面152aの両端に、光射出面152aに対して所定角度傾斜して形成された2つの側面(第1側面152f及び第2側面152g)と、光射出面152aを2等分する2等分線α(図1参照)を中心軸として互いに対称で、光射出面152aに対して所定の角度で傾斜する2つの傾斜面(第1傾斜面152bと第2傾斜面152c)と、それぞれの傾斜面の端部と側面の端部との間に形成された2つの光入射面(第1光入射面152d及び第2光入射面152e)を有している。ここで、導光板152は、光射出面152aと第1側面152dのなす角が90°より大きく、第1光入射面152dと第1側面152fのなす角が90°より小さい形状である。また、第1光入射面152dは、基準面Sとの傾斜角度θ1が90°で形成されている。
また、本実施形態では、第1光入射面152dの第1傾斜面152b側の端縁における導光板152の光射出面152aと略直交する方向の断面が、光入射面の有効断面となる。
なお、面状照明装置150は、対称形状であるため、図30では、第1側面152d側の端部のみを示す。
光源12は、複数のLEDチップ40と光源支持部41とを有し、導光板152の第1傾斜面152bと第1側面152fの間に形成された第1光入射面152dに対向して配置されている。
光源12は、基準面Sに対する発光面40aの傾斜角度θが90°となる位置に配置されている。したがって、光源12の発光面40aと、第1光入射面152dとは平行に配置されている。
上部誘導反射板112は、光射出面152aの第1側面152f側の一部及び第1側面152fの形状に沿って、導光板152を覆うように配置されている。また、上部誘導反射板112の導光板152の第1側面152f側の端部は、光源12と接続している。
また、導光板152の第1傾斜面152b側には、下部誘導反射板36及び反射板24が配置されている。
つまり、導光板152は、第1側面152f側の光射出面152a、第1側面152f、第1光入射面152d及び第1傾斜面152bが、上部誘導反射板112、光源12、下部誘導反射板36及び反射板24により隙間なく覆われている。ここで、本実施形態では、反射板24が下部誘導反射板36とが一体に形成されている。
蛍光部材17eは、第1光入射面152dとLEDの発光面40aとの間に配置されている。
蛍光部材17eは、上述した蛍光部材17と同様の形状、構成であるのでその詳細な説明は省略する。
この光源12の発光面40aから射出された光は、蛍光部材17eを透過した後、導光板152の第1光入射面152dから入射し、直接導光板152の中心側に、または、第1側面152fもしくは上部誘導反射板112に反射されて導光板152の中心側に進行する。
導光板152の中心側に進行する光は、上述した導光板18と同様に、導光板152の内部に含まれる散乱体(詳細は後述する)によって散乱されつつ、導光板152内部を通過し、直接、または第1傾斜面152b及び第2傾斜面152cで反射した後、光射出面152aから出射する。
本実施形態の構成でも同様に、光源12のLED40の発光面40aに蛍光部材17eを配置することで、光射出面14aから射出される光の色温度を高くすることができ、また、青色光透過部つまり、開口部または透明部の形状を調整することで光射出面14aから射出される光の色温度を所望の色温度とすることができる。
また、光源の発光面を基準面に対して所定角度傾斜させ、導光板の光入射面も所定角度傾斜させ、さらに、導光板の光入射面と光射出面との間に側面を設けることでも、光源から射出された光を効率よく導光板に入射させることができ、光利用効率を高くすることができる。
さらに、導光板に側面を設け、光射出面を傾斜面側に配置することで、光源の発光面の面積をより大きくすることができ、輝度または照度の高い光を光射出面から射出させることができる。また、光入射面から入射した光を所定角度傾斜した側面で反射させることで、傾斜面側に設けた光入射面から光を入射させた場合も光射出面からムラのない光を射出させることができる。
また、側面を設けることで、光入射面から入射した光を側面で反射させることができ、基準面に対する光入射面の傾斜角度を大きくした場合でも、簡単に光入射面から入射した光を導光板の中心方向に誘導することができる。
また、本実施形態のように、基準面Sに対する第1光入射面152dの傾斜角度θ1を90°、つまり、第1光入射面152と光射出面とを平行にすることで、光源の発光面の面積をより大きくすることができる。
なお、このように導光板の傾斜面の端部から光を入射させる面状照明装置の場合も、導光板152に含まれる散乱粒子の散乱断面積をΦ、光射出面152aに平行で、光射出面152aと側面(第1側面152fまたは第2側面152g)との接線に垂直な方向において、導光板152の側面と光入射面の接点、つまり導光板の端部から導光板152の厚み(光射出面に垂直な方向の厚み(長さ))が最大となる位置までの距離をLとし、導光板152に含まれる散乱粒子の密度(単位体積あたりの粒子数)をN、補正係数をKとした場合に、Φ・N・L・Kの値が1.1以上であり、かつ8.2以下であり、さらに、補正係数Kの値が0.005以上0.1以下であるという関係を満たしているのが好ましい。導光板18は、このような関係を満たす散乱粒子を含んでいるので、均一で輝度むらが少ない照明光を光出射面152aから出射することができる。
また、側面を形成した場合も、好ましい態様は、上述した実施形態と同様であり、例えば、傾斜角度θ=θ1は、15°≦θ≦90°とすることが好ましい。
以下、具体的実施例とともに本発明の面状照明装置をより詳細に説明する。
本実施例では、θ=90°としたこと、つまり、光源のLEDチップの発光面40aの傾斜角度、上部誘導反射板の形状を面状照明装置110に示す形状としたこと及び上部誘導反射板の長さLを10mmとしたことを除いて、上述した面状照明装置10と略同様の大きさ、構成とした。この面状照明装置110の光射出面から射出される各位置の照度(lx)と、光利用効率(%)とを測定した。なお、本実施例も、面状照明装置の光射出面から射出される光を測定した。
また、比較のために、θ=45°とし、上部誘導反射板の長さLを10mmとした面状照明装置の導光板の光入射面及び光源の光射出面が基準面と平行とした面状照明装置の光射出面から射出される各位置の照度(lx)と、光利用効率(%)も測定した。
測定した結果を図31及び表7に示す。ここで、図31のグラフでは、縦軸を照度(lx)とし、横軸を導光板中心からの距離(mm)とした。
Figure 0004996941
図31及び表7に示すように、θ=90°とした場合もθ=45°の場合と同様に光利用効率を高くすることができることがわかる。また、図31に示すように、導光板の中央部分から均一な光を射出することができることがわかる。
以上、本発明に従う液晶表示装置について詳細に説明したが、本発明は上記実施態様に限定はされず、本発明の主旨を逸脱しない範囲において、各種の改良や変更をしてもよいのはもちろんである。
上述ではいずれの実施形態でも、図2に示すように、本体部16aと反射板24との間に樹脂等で形成された導光板支持部30を配置し、導光板18の第1傾斜面18b及び第2傾斜面18c側から反射板24を支持して、導光板18と反射板24とを密着させたが、本発明はこれに限定されない。
ここで、反射板24の導光板18側とは反対側の面、つまり本実施形態の本体部16aと反射板24との間には、緩衝部材を配置することが好ましい。ここで、緩衝部材は、導光板の形状に沿って変形する導光板よりも剛性が低い部材であり、例えば、スポンジ等がある。
緩衝部材により、反射板24及び導光板18の第1傾斜面18b及び第2傾斜面18c側を支持することで、反射板24を導光板18に密着させることができ、反射板24がたわむことを防止できる。また、支持体を緩衝部材とすることにより、導光板と反射板とをムラなく接触させることができる。これにより、反射板の一部のみが接触し、光を乱反射させ、光射出面から射出される光の輝部として視認されることを防止し、均一な光を光射出面から射出させることができる。
ここで、図32(A)〜(D)は、それぞれ、導光板及び反射板を支持する緩衝部材の概略構成の一例を示す分解断面図である。
例えば、図32(A)に示すように、反射板24の導光板18とは反対側の面に矩形状の緩衝部材202を配置してもよい。ここで、緩衝部材202としては、面状照明装置として組み立てたときに緩衝部材202から導光板18に作用する最大応力が、本実施例では、第1傾斜面と第2傾斜面との接続部に作用する応力が、5[N/cm2]以下となる材料を用いることが好ましい。
また、図32(B)に示すように、反射板24の導光板18とは反対側の面に多層の緩衝材212a、212b、212cにより構成された緩衝部材212を配置し、導光板18の形状に応じて位置により緩衝部材212の厚みが異なる形状としてもよい。このように位置に応じて、緩衝部材212の厚みを変化させることで、緩衝部材の圧縮率を低下させ、導光板に作用する最大応力を低くすることができる。これにより、導光板に作用する力をより均一にすることができ、導光板と反射板とを均一に密着させることができる。
また、図32(C)に示すように、緩衝部材222を導光板18の傾斜面に沿った形状としてもよい。つまり、緩衝部材222は、導光板18側の面に導光板18の第1傾斜面及び第2傾斜面を同じ傾斜角の第1傾斜面222a及び第2傾斜面222bが形成された形状である。
このように、緩衝部材を導光板の傾斜面に沿った形状とすることでも導光板と反射板とを均一に密着させることができる。
さらに、図32(D)に示すように、緩衝部材232を導光板18の傾斜面に沿った形状とし、さらに緩衝部材232の導光板18側とは反対側の面に、導光板18の傾斜面の形状に沿った板金部材234を設けた構成としてもよい。
緩衝部材232の導光板18側とは反対側の面に導光板18の傾斜面の形状に沿った板金部材234を設けることで、緩衝部材の圧縮率を均一にすることができ、かつ緩衝部材を介して反射板を支持することで、導光板と反射板とを密着させることができる。
また、上記実施形態ではいずれも光源として、LEDチップを一方向に単列配置したが、これに限定されず、LEDチップを複数列配置した構成、つまりLEDチップをマトリックス状に配置した構成としてもよい。
他方、本実施形態では、複数のLEDチップを列状に配置したが、これにも限定されず、LEDチップを1つのみ配置した構成としてもよい。例えば、光射出面が略矩形状の導光板の4隅の一箇所を切り欠いた形状とし、この切り欠き部分を光入射面とし、この光入射面に対向させて、1つのLEDチップを配置した構成とすることもできる。
これにより、面状照明装置を小型化することができる。
また、本実施形態の液晶表示装置では、光源から射出される光を効率よく利用できる点から、光源の発光面を導光板の光射出面に直交する方向に対して所定角度傾斜させて配置したが、本発明はこれに限定されず、光源の発光面を導光板の光射出面に対して垂直に配置してもよい。
また、導光板の形状は、光をより遠くまで到達させることができ、装置を大型化することができる等の効果があるため、上述したように、光射出面から離れるに従って厚みが厚くなる形状とすることが好ましいが、本発明はこれに限定されず、例えば、平板形状や、光入射面から離れるに従って厚みが薄くなる形状としてもよい。
また、透明樹脂に可塑剤を混入して導光板を作製してもよい。
このように、透明材料と可塑剤とを混合した材料で導光板を作製することで、導光板をフレキシブルにすること、つまり、柔軟性のある導光板とすることができ、導光板を種々の形状に変形させることが可能となる。従って、導光板の表面を種々の曲面に形成することができる。
本発明に係る液晶表示装置の一実施形態を示す概略斜視図である。 図1に示した液晶表示装置のII−II線断面図である。 カラーフィルタの一部を拡大して示す拡大正面図である。 カラーフィルタを構成する赤色フィルタ、緑色フィルタ及び青色フィルタの透過率特性の一例を示すグラフである。 図2に示した面状照明装置の一部を拡大して示す拡大断面図である。 (A)は、図1及び図2に示す面状照明装置の光源の概略構成を示す斜視図であり、(B)は、(A)に示す光源の断面図であり、(C)は、(A)に示す光源の1つのLEDを拡大して示す概略斜視図である。 (A)〜(C)は、それぞれ図2に示した面状照明装置の蛍光部材と光源の一部を示す図であり、(A)は、上面図、(B)は、正面図、(C)は、側面図である。 Φ・N・L・Kと光利用効率との関係を測定した結果を示す図である。 粒子密度が異なるそれぞれの導光体から射出される光の照度をそれぞれ測定した結果を示す図である。 光利用効率及び照度むらと粒子密度との関係を示す図である。 Sap/Saを種々の値とした面状照明装置の光射出面から射出される光の波長分布を測定した結果を示すグラフである。 蛍光部材の全体の面積Saに対する青色光透過部の面積の和Sapの割合と光射出面から射出される光の色温度との関係を示すグラフである。 本発明の面状照明装置の他の実施形態の概略構成を示す断面図である。 (A)〜(C)は、それぞれ蛍光部材の他の一例を示す正面図である。 (A)〜(C)は、それぞれ面状照明装置の他の一例の蛍光部材と光源の一部を示す図であり、(A)は、上面図、(B)は、正面図、(C)は、側面図である。 (A)〜(C)は、それぞれ蛍光部材の他の一例を示す正面図である。 光源と補助光源の概略構成を示す正面図である。 (A)及び(B)は、それぞれカラーフィルタの一例を示すグラフである。 (A)及び(B)は、それぞれカラーフィルタの各色のフィルタの分光透過率を示す。 (A)及び(B)は、それぞれ、図19(A)及び図19(B)に示したカラーフィルタを透過した光の波長依存性を示すグラフである。 面状照明装置の光射出面から射出された光の三原色点をCIEXYZ表色系での色度図で示すグラフである。 (A)及び(B)は、それぞれ本発明の面状照明装置との比較のために用いた面状照明装置の一例の概略構成を示す拡大断面図である。 発光面の傾斜角度θを種々の値とした面状照明装置の光利用効率を測定した結果を示すグラフである。 本発明の面状照明装置の他の実施形態の概略構成を示す断面図である。 図24に示した面状照明装置の一部を拡大して示す拡大断面図である。 発光面の傾斜角度θを種々の値とした面状照明装置の光利用効率を測定した結果を示すグラフである。 発光面および光入射面の傾斜角度と上部誘導反射板の取付け長を種々の値とした面状照明装置の光射出面から射出される光の輝度分布を示すグラフである。 発光面および光入射面の傾斜角度と上部誘導反射板の取付け長を種々の値とした面状照明装置の光射出面から射出される光の照度分布を示すグラフである。 (A)及び(B)は、それぞれ本発明の面状照明装置の他の一例の概略構成を示す拡大断面図である。 本発明の面状照明装置の他の一例の概略構成を示す拡大断面図である。 図29(A)に示した面状照明装置の光射出面から射出される光の照度分布を示すグラフである。 (A)〜(D)は、それぞれ導光板及び反射板を支持する緩衝部材の一例を示す分解構成図である。
符号の説明
10 面状照明装置
12 光源
12a 発光面
14 照明装置本体
14a 光出射面
16 筐体
16a 本体部
16b 額縁部
17、60、70、76 蛍光部材
18 導光板
18a 光射出面
18b 第1傾斜面
18c 第2傾斜面
18d、18d’ 第1光入射面
18e 第2光入射面
20 プリズムシート
22 拡散フィルム
24 反射板
26 折返部
28、50、74、78 開口部
32 電源収納部
34 上部誘導反射板
36 下部誘導反射板
40 LEDチップ
41 光源支持部
42 アレイ基板
44 フィン
48、72、77 蛍光体塗布部
80 カラーフィルタ
82R 赤色フィルタ
82G 緑色フィルタ
82B 青色フィルタ
90 補助光源
92 補助LEDチップ

Claims (20)

  1. 発光面から青色光を射出するLEDチップを少なくとも1つ有する光源、
    前記光源から射出された光が入射される光入射面及び前記光入射面から入射した光を面状の光として射出する光射出面を有する透明な導光板、
    前記発光面に密着して配置され、前記発光面から射出される青色光を白色の光に変換して射出する蛍光体塗布部及び前記発光面から射出される青色光を青色光として射出する、前記発光面毎に複数ずつ形成され、1つあたりの面積が0.1〜0.5mm である青色光透過部を備える蛍光部材を備え、前記導光板の光射出面上の光出面から光を射出する面状照明装置と、
    前記光出面上に配置され、少なくとも赤色の色要素を備える赤色フィルタ、緑色の色要素を備える緑色フィルタ及び青色の色要素を備える青色フィルタで構成されるカラーフィルタを備える液晶パネルとを有することを特徴とする液晶表示装置。
  2. 前記カラーフィルタは、前記青色フィルタの分光透過率が最大となる波長と、前記光源から射出される光の強度が最大となる波長との差が20nm以下であり、
    前記青色フィルタの分光透過率と、前記緑色フィルタの分光透過率とが同一となる波長における分光透過率をPBGとし、前記緑色フィルタの分光透過率と、前記赤色フィルタの分光透過率とが同一となる波長における分光透過率をPGRとし、青色フィルタの半値幅をWとし、緑色フィルタの半値幅をWとしたとき、0≦PBG≦0.5、かつ、60≦W≦100、及び、0≦PGR≦0.2、かつ、60≦W≦100の少なくとも一方を満たす請求項1に記載の液晶表示装置。
  3. さらに、前記光源の前記LEDチップに隣接して配置され、前記光源の前記LEDチップとは異なる波長の光を射出する補助LEDチップを少なくとも1つ有する補助光源を有する請求項1または2に記載の液晶表示装置。
  4. 前記光源の前記LEDチップと前記補助光源の前記補助LEDチップとは、繰り返しパターンで配置されている請求項3に記載の液晶表示装置。
  5. 前記補助光源の前記補助LEDチップは、ピーク波長が380nm以上780nm以下、かつ半値幅が5nm以上20nm以下の光を射出するLEDチップで構成される請求項3または4に記載の液晶表示装置。
  6. 前記光源の前記LEDチップから射出される光の光量をlmとし、前記補助光源の前記補助LEDチップから射出される光の光量をlsとしたとき、0.05≦ls/lm<0.5を満たす請求項3〜5のいずれかに記載の液晶表示装置。
  7. 前記青色光透過部は、透明フィルムまたは開口により形成されている請求項1〜6のいずれかに記載の液晶表示装置。
  8. 前記青色光透過部は、開口により形成されている請求項7に記載の液晶表示装置。
  9. 前記光源は、複数の前記LEDチップと、前記LEDチップを支持する支持体とを有し、
    前記LEDチップは、前記支持体の前記光入射面に対向する面に列状に配置されている請求項1〜のいずれかに記載の液晶表示装置。
  10. 前記蛍光部材は、前記複数のLEDチップに共通の一枚のシート状部材である請求項1〜9のいずれかに記載の液晶表示装置。
  11. 前記蛍光部材は、全体の面積をSaとし、全ての前記青色光透過部の面積の和をSapとしたとき、SaとSapとの関係が、0.05≦Sap/Sa≦0.40を満たす請求項1〜10のいずれかに記載の液晶表示装置。
  12. 前記導光板は、前記光入射面が、前記光射出面の端縁に形成され、
    前記光入射面から離れるに従って、前記光射出面に垂直な方向の厚みが厚くなる形状である請求項1〜11のいずれかに記載の液晶表示装置。
  13. 前記導光板は、
    内部に多数の散乱粒子を含み、前記散乱粒子の散乱断面積をΦ、前記散乱粒子の密度をN、補正係数をK、光の入射方向における前記導光板の前記光入射面から前記導光板の厚みが最も厚くなる位置までの長さをL、としたときに、下記の不等式
    1.1≦Φ・N・L・K≦8.2
    0.005≦K≦0.1
    を満足する請求項12に記載の液晶表示装置。
  14. 前記LEDチップは、前記光入射面が形成された該光入射面の端縁側における前記光射出面と略直交する方向の前記光入射面の有効断面の長さより長い発光面を持ち、該発光面を前記導光板の前記光入射面に対向させて、前記光射出面と略直交する方向に対して所定角度傾斜させて配置されている請求項12または13に記載の液晶表示装置。
  15. 前記導光板の前記光入射面は、前記光射出面と略直交する平面であり、前記光入射面の有効断面は、この略直交する平面に該当する請求項14に記載の液晶表示装置。
  16. 前記導光板の前記光入射面は、前記光射出面と略直交する方向に対して前記光源の前記発光面に平行に対面するように傾斜する平面であり、前記光入射面の有効断面は、前記光入射面の中央における前記光射出面と略直交する方向の断面に該当する請求項14に記載の液晶表示装置。
  17. 前記光源の発光面の前記光射出面と略直交する方向に対する傾斜角度は、15度〜90度である請求項14〜16のいずれかに記載の液晶表示装置。
  18. さらに、前記導光板の前記光入射面の前記光射出面側および前記傾斜面側に配置され、前記光源から射出された光を前記光入射面に誘導する誘導反射板とを備える請求項14〜17のいずれかに記載の液晶表示装置。
  19. 前記誘導反射板は、前記導光板の前記光射出面の端部に取り付けられた第1誘導反射板と、前記導光板の前記傾斜面の端部に取り付けられ、前記傾斜面の端縁から外側に延長される延長部分を持つ第2誘導反射板とを有するものである請求項18に記載の液晶表示装置。
  20. 前記導光板は、
    前記光射出面は、矩形状であり、
    前記光入射面は、前記光射出面の対向する2つの端辺にそれぞれ形成される第1光入射面及び第2光入射面とで構成され、
    前記導光板は、前記第1光入射面及び第2光入射面において厚みが最も薄く、第1光入射面と第2光入射面とを結んだ線の中点において厚みが最も厚くなる形状である請求項1〜19のいずれかに記載の液晶表示装置。
JP2007041526A 2007-02-21 2007-02-21 液晶表示装置 Active JP4996941B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007041526A JP4996941B2 (ja) 2007-02-21 2007-02-21 液晶表示装置
US12/035,155 US7738054B2 (en) 2007-02-21 2008-02-21 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041526A JP4996941B2 (ja) 2007-02-21 2007-02-21 液晶表示装置

Publications (2)

Publication Number Publication Date
JP2008203684A JP2008203684A (ja) 2008-09-04
JP4996941B2 true JP4996941B2 (ja) 2012-08-08

Family

ID=39706324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041526A Active JP4996941B2 (ja) 2007-02-21 2007-02-21 液晶表示装置

Country Status (2)

Country Link
US (1) US7738054B2 (ja)
JP (1) JP4996941B2 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215815B2 (en) 2005-06-07 2012-07-10 Oree, Inc. Illumination apparatus and methods of forming the same
WO2006131924A2 (en) 2005-06-07 2006-12-14 Oree, Advanced Illumination Solutions Inc. Illumination apparatus
US8272758B2 (en) 2005-06-07 2012-09-25 Oree, Inc. Illumination apparatus and methods of forming the same
JP4996941B2 (ja) * 2007-02-21 2012-08-08 富士フイルム株式会社 液晶表示装置
US7907804B2 (en) 2007-12-19 2011-03-15 Oree, Inc. Elimination of stitch artifacts in a planar illumination area
US8182128B2 (en) * 2007-12-19 2012-05-22 Oree, Inc. Planar white illumination apparatus
CN101978297A (zh) * 2008-03-05 2011-02-16 奥利高级照明解决公司 照明装置及其形成方法
US8297786B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US8301002B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US8755005B2 (en) * 2008-09-24 2014-06-17 Koninklijke Philips N.V. Thin edge backlight with LEDS optically coupled to the back surface
US8624527B1 (en) 2009-03-27 2014-01-07 Oree, Inc. Independently controllable illumination device
US8328406B2 (en) 2009-05-13 2012-12-11 Oree, Inc. Low-profile illumination device
WO2010150202A2 (en) 2009-06-24 2010-12-29 Oree, Advanced Illumination Solutions Inc. Illumination apparatus with high conversion efficiency and methods of forming the same
US8752973B2 (en) * 2009-10-06 2014-06-17 Sharp Kabushiki Kaisha Lighting device, display device and television receiver
EP2447746A1 (en) * 2010-10-28 2012-05-02 Koninklijke Philips Electronics N.V. Lighting device with waveguide plate
JP5824855B2 (ja) * 2011-04-28 2015-12-02 大日本印刷株式会社 白色発光ダイオード光源用のカラーフィルタおよびそれを用いた液晶表示装置
US9621838B2 (en) 2011-10-25 2017-04-11 Funai Electric Co., Ltd. Display device and television apparatus
US8591072B2 (en) 2011-11-16 2013-11-26 Oree, Inc. Illumination apparatus confining light by total internal reflection and methods of forming the same
TWI476353B (zh) * 2012-04-13 2015-03-11 Radiant Opto Electronics Corp 照明模組
WO2014006501A1 (en) 2012-07-03 2014-01-09 Yosi Shani Planar remote phosphor illumination apparatus
JP6176517B2 (ja) * 2012-09-24 2017-08-09 大日本印刷株式会社 カラーフィルタおよび表示装置
US9759855B2 (en) 2013-02-25 2017-09-12 Empire Technology Development Llc Hybrid nanoparticles and illumination devices using the hybrid nanoparticles
US9212809B2 (en) * 2013-11-21 2015-12-15 Ford Global Technologies, Llc Photoluminescent dynamic lighting
KR102318262B1 (ko) 2015-03-11 2021-10-27 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시 장치
CN206848647U (zh) * 2017-05-04 2018-01-05 深圳市华星光电技术有限公司 一种用于背光模组的光转换膜、背光模组及显示设备
JP7354669B2 (ja) 2018-08-31 2023-10-03 Dic株式会社 表示装置
CN115343875A (zh) * 2022-08-24 2022-11-15 厦门天马微电子有限公司 显示面板及显示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3781441B2 (ja) 1993-07-23 2006-05-31 康博 小池 光散乱導光光源装置及び液晶表示装置
JPH07253577A (ja) 1995-02-20 1995-10-03 Seiko Epson Corp カラー表示装置
JPH10242531A (ja) * 1997-02-26 1998-09-11 Sanken Electric Co Ltd 面板発光装置
KR19990000306A (ko) * 1997-06-04 1999-01-15 손욱 액정 표시 장치 및 그것의 색 조절 방법
US6426590B1 (en) * 2000-01-13 2002-07-30 Industrial Technology Research Institute Planar color lamp with nanotube emitters and method for fabricating
JP3840940B2 (ja) * 2001-09-28 2006-11-01 株式会社日立製作所 画像表示装置
JP2003207770A (ja) 2002-01-15 2003-07-25 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及びそれを用いた液晶表示装置
EP1493050B1 (en) * 2002-03-28 2011-10-05 Koninklijke Philips Electronics N.V. Compact lighting system and display device
JP3955505B2 (ja) * 2002-07-08 2007-08-08 日本ライツ株式会社 導光板
JP4594579B2 (ja) * 2002-08-22 2010-12-08 大日本印刷株式会社 カラーフィルタ
JP2004145276A (ja) * 2002-08-27 2004-05-20 Seiko Epson Corp 着色層材料、カラーフィルタ基板、電気光学装置及び電子機器、カラーフィルタ基板の製造方法、並びに電気光学装置の製造方法
JP4388360B2 (ja) 2003-12-18 2009-12-24 セイコーインスツル株式会社 照明装置及び液晶表示装置
JP4425681B2 (ja) * 2004-03-29 2010-03-03 三菱電機株式会社 液晶表示装置
EP1742096A4 (en) 2004-04-26 2008-10-01 Mitsubishi Chem Corp BLUE COLOR COMPOSITION FOR A COLOR FILTER, COLOR FILTER, AND COLOR FILTER DISPLAY EQUIPMENT
JP4696661B2 (ja) 2004-04-26 2011-06-08 三菱化学株式会社 カラーフィルター用青色組成物、カラーフィルター及びカラー画像表示装置
JPWO2006001297A1 (ja) * 2004-06-23 2008-07-31 ローム株式会社 白色発光素子およびその製造方法
KR20060000544A (ko) * 2004-06-29 2006-01-06 삼성전자주식회사 표시 장치용 백라이트, 표시 장치용 광원, 광원용 발광다이오드
KR101039026B1 (ko) * 2004-10-12 2011-06-03 삼성전자주식회사 발광 다이오드를 이용한 선광원 및 이를 이용한 백라이트유닛
JP4866003B2 (ja) * 2004-12-22 2012-02-01 パナソニック電工株式会社 発光装置
JP2006202533A (ja) * 2005-01-18 2006-08-03 Seiko Instruments Inc 照明装置
JP4963592B2 (ja) * 2006-07-28 2012-06-27 富士フイルム株式会社 面状照明装置
JP4685748B2 (ja) * 2006-11-15 2011-05-18 富士フイルム株式会社 面状照明装置
JP4996941B2 (ja) * 2007-02-21 2012-08-08 富士フイルム株式会社 液晶表示装置

Also Published As

Publication number Publication date
US7738054B2 (en) 2010-06-15
US20080198300A1 (en) 2008-08-21
JP2008203684A (ja) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4996941B2 (ja) 液晶表示装置
JP4685748B2 (ja) 面状照明装置
US7866872B2 (en) Light guide plate, light guide plate unit, and planar lighting device
TWI235807B (en) Light guiding board, and lighting device, plane light source device and display device using the light guiding board
TWI490564B (zh) 導光板、面狀照明裝置及液晶顯示裝置
JP5635472B2 (ja) 導光板
WO2008013304A1 (fr) Dispositif d'éclairage de surface
WO2008010593A1 (fr) Plaque de guidage de lumière unitaire, unité de plaque de guidage de lumière, dispositif d'éclairage plan et dispositif d'affichage à cristaux liquides
US8419264B2 (en) Planar lighting device
JP4963592B2 (ja) 面状照明装置
JP5110875B2 (ja) 面状照明装置
JP2010097908A (ja) バックライトユニットおよび液晶表示装置
JP2004038108A (ja) 導光板および平面照明装置
JP4555250B2 (ja) 導光板及びこれを用いる面状照明装置
JP4824600B2 (ja) 面状照明装置、面状照明装置の評価方法及びこれを用いる製造方法
JP5670794B2 (ja) 面状照明装置
WO2013001929A1 (ja) 導光板及び面状照明装置
JP2013246925A (ja) 導光板
JP4680847B2 (ja) 面状照明装置
WO2012124364A1 (ja) 導光板および面状照明装置
JP2009245732A (ja) 導光板及びそれを用いる面状照明装置
WO2013008600A1 (ja) 導光板及び面状照明装置
JP4680857B2 (ja) 面状照明装置
JP2010086669A (ja) 面状照明装置
JP2009093863A (ja) 面状照明装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4996941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250